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Kumpulan tiedekirjasto

This thesis focuses on privacy-preserving statistical inference. We use a probabilistic point of
view of privacy called differential privacy. Differential privacy ensures that replacing one indivi-
dual from the dataset with another individual does not affect the results drastically. There are
different versions of the differential privacy. This thesis considers the ε-differential privacy also
known as the pure differential privacy, and also a relaxation known as the (ε, δ)-differential privacy.

We state several important definitions and theorems of DP. The proofs for most of the
theorems are given in this thesis. Our goal is to build a general framework for privacy pre-
serving posterior inference. To achieve this we use an approximative approach for posterior
inference called variational Bayesian (VB) methods. We build the basic concepts of varia-
tional inference with certain detail and show examples on how to apply variational inference.

After giving the prerequisites on both DP and VB we state our main result, the differentially
private variational inference (DPVI) method. We use a recently proposed doubly stochastic va-
riational inference (DSVI) combined with Gaussian mechanism to build a privacy-preserving
method for posterior inference. We give the algorithm definition and explain its parameters.

The DPVI method is compared against the state-of-the-art method for DP posterior inference
called the differentially private stochastic gradient Langevin dynamics (DP-SGLD). We compare
the performance on two different models, the logistic regression model and the Gaussian mixture
model. The DPVI method outperforms DP-SGLD in both tasks.
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Chapter 1

Introduction

Statistical methods are nowadays applied in many fields of science such as biology (Vit-
tinghoff et al., 2011), physics (Baldi et al., 2014) and behavioural sciences (Vogelstein
et al., 2014) to name a few and also in corporate world, for example in finance (Ticknor,
2013). With increasing computational resources we are able to solve difficult tasks in
statistical inference. Problems such as regression, classification and clustering in which
we want to learn to predict our model or learn some underlying structure of the data
have gained a lot of attention. These kind of methods that apply statistical inference into
learning tasks using computational resources are called machine learning in general.

Using more data usually leads to better generalisation and accuracy in machine learn-
ing. Consider a query where students of a class are asked to release their weight in order
to compute the average weight of students of that age. If we have a class of 10 students
we probably will get a worse estimate for average weight of children of that age than from
a class of size 20. However by increasing the number of test subjects we also compromise
the privacy of more students. If all but one of the students are willing to release their
weight publicly it is obvious that releasing the average weight will also reveal the weight
of the one student that did not want his or her weight to be released. This toy example
might not look that worrying, but in more general learning tasks these kind of privacy
breaches might lead to more alarming outcomes. Therefore it is important to provide
privacy guarantees for test subjects.

From the above example, it is obvious that a simple anonymization scheme of remov-
ing the names of individuals in the study is not enough to ensure the privacy. There have
been many different definitions of anonymity during years e.g., k-anonymity (Samarati
and Sweeney, 1998) and `-diversity (Machanavajjhala et al., 2007) to name a couple. Dif-
ferential privacy (DP) (Dwork and Roth, 2014) gives a mathematical definition of privacy.
It has many nice properties, one of which is that it is immune to any side information of
test subjects. Differential privacy is based on a probabilistic view of anonymity. It ensures
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that replacing one individual from the dataset with another individual does not affect the
results drastically. This can be accomplished through adding stochasticity at different
levels of the estimation process, such as adding noise to data itself (input perturbation,
Dwork, 2006), changing the objective function to be optimised or how it is optimised (ob-
jective perturbation, Chaudhuri et al., 2011), releasing the estimates after adding noise
(output perturbation, Dwork, 2006) or by sampling from a distribution based on utility
or goodness of the alternatives (exponential mechanism, McSherry and Talwar, 2007).

In recent years differential privacy has gained a lot of attention. It has been applied
to many of standard machine learning approaches, such as objective-perturbation-based
logistic regression (Chaudhuri and Monteleoni, 2008), regression using functional mecha-
nism (Zhang et al., 2012) to name a few. However privacy-preserving Bayesian inference
(e.g. , Williams and McSherry, 2010; Zhang et al., 2014) has only recently started attract-
ing more interest. Dimitrakakis et al. (2014) showed that under certain assumptions the
posterior distribution is differentially private. Although the result is mathematically ele-
gant it lacks a certain generality. Methods based on this approach suffer from the major
weakness that the privacy guarantees are only valid for samples drawn from the exact
posterior which is usually impossible to guarantee in practice. Recent methods by Zhang
et al. (2016), Foulds et al. (2016) and Honkela et al. (2016) are based on perturbing the
sufficient statistics. These methods provide good accuracy, but are limited to the models
that come from exponential family of distributions. The sufficient statistic perturbation
approach was recently also applied to variational inference (Park et al., 2016), which is
again applicable to models where non-private inference can be performed by accessing the
sufficient statistics.

Wang et al. (2015) propose a simple gradient based method for posterior sampling.
This method, called DP-SGLD, achieves differential privacy by gradient perturbation with
stochastic gradient Markov chain Monte Carlo (MCMC) sampling. Privacy guarantees are
achieved automatically when the log-probability of the model is Lipschitz continuous. This
approach works in principle for arbitrary models, but because of the gradient perturbation
mechanism, each MCMC iteration will consume some privacy budget, hence limiting the
number of iterations which may lead to stopping before convergence.

The goal of this thesis is to provide a general framework for inferring an approxima-
tion of the posterior distribution in a differentially private manner. We achive this by
applying two recent ideas from differential privacy and from variational Bayesian meth-
ods. Variational inference seems preferable to stochastic gradient MCMC here because
a good optimiser should be able to make better use of the limited gradient evaluations
and the variational approximation provides a very efficient approximation of the posterior
distribution. The recently proposed doubly stochastic variational inference (Titsias and
Lázaro-Gredilla, 2014) and the further streamlined automatic differentiation variational
inference (ADVI) method (Kucukelbir et al., 2017) provide a generic variational infer-
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ence method also applicable to non-conjugate models. These approaches apply a series
of transformations and approximations so that the variational distributions are Gaussian
and can be optimised by stochastic-gradient-based methods. Here, we propose differen-
tially private variational inference (DPVI) based on gradient clipping and perturbation
as well as double stochasticity.

We start this thesis by introducing the basic definitions and techniques in differential
privacy. After that we move into the variational inference and explain the most crucial
concepts of it. We then use the results of Chapters 2 and 3 to formulate the DPVI. In
Chapter 5 we make a thorough case study on the Bayesian logistic regression model with
comparisons to the non-private case under different design decisions for DPVI. We also
test the performance of DPVI on a Gaussian mixture model.
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Chapter 2

Differential privacy

In order to provide privacy, we first need to define what do we mean by privacy and
how can we measure it. We can see privacy as anonymity of an individual. Giving
privacy guarantees to subject of a study means that we need to assure them that the
data they are providing for the study cannot be traced back from the results of the
study. Simple anonymization schemes such as masking the names of our subjects will fail
(see e.g., Narayanan and Shmatikov, 2008) because a possible adversary can combine
some prior information to trace back these masked attributes. In this thesis we use the
definition presented by Dwork (2006) called differential privacy, that gives a probabilistic
point of view on anonymity. Rather than masking some attributes of our dataset we ask,
how can we make individuals’ contribution to learning results indistinguishable from each
other. Differential privacy is a strong privacy guarantee. We start with the definition of
ε-differential privacy and then move to a relaxation called (ε, δ)-differential privacy.

2.1 ε-differential privacy

Before we give the first definition of privacy, we define adjacency and randomized algo-
rithm.

Definition 2.1. We call two datasets x, x′ adjacent if they differ at most in one entry i.e.

max(|x \ x′|, |x′ \ x|) = 1.

We denote adjacency between x and x′ with x ∼ x′.

Our definition of adjacency is flexible in sense that number of entries in x and x′ need
not to be the same.
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Definition 2.2. We call an algorithm A : D → Rk randomized if A is a random variable
with probability triple (Rk,B(Rk), µ) where B(Rk) denotes the Borel σ-algebra of Rk and
µ is a probability measure that is parametrized by the input of A.

Definition 2.3. A randomized algorithm A is ε-differentially private if for all pairs of
adjacent datasets x, x′, and for every S ⊂ im(A)

(2.4)
Pr(A(x) ∈ S)

Pr(A(x′) ∈ S)
≤ eε.

Definition 2.3 assures that changing any element of dataset affects the probability of
A’s output at most by a factor eε. We measure the privacy with parameter ε and smaller
ε values provide more strict privacy guarantees.

Ratio on left hand side of (2.4) is an important quantity when considering differential
privacy. We call its logarithm the privacy loss.

Definition 2.5. Let A be a randomized algorithm and x, x′ two adjacent databases, then
privacy loss of A is

LA(x)||A(x′) = ln

(
Pr(A(x) = ξ)

Pr(A(x′) = ξ)

)
.

As we mentioned before, the definition of adjacency is flexible in terms of dataset
size. This gives us two possible interpretations on ε-differential privacy. These are called
unbounded and bounded differential privacy when number of dataset entries differ by one
and when the number of entries are the same, respectively. These two definitions are
not necessarily equivalent. It is quite clear that if there exists a null element for query,
bounded version implies the unbounded one, but it is possible that unbounded version is
not, at least with same ε, bounded. However we can get the following result.

Theorem 2.6. Unbounded version of ε-differential privacy implies bounded version of
2ε-differential privacy.

Proof. Assume x′ = x ∪ i and x′′ = x′ \ k, where i and k are some individuals data and
i 6= k. Now x and x′′ have the same number of data entries and differ by one element.
Assume that A is a randomized algorithm that provides unbounded ε-differential privacy.
Now for all S ∈ im(A) we get

Pr(A(x) ∈ S) ≤ eε Pr(A(x′) ∈ S) ≤ eε(eε Pr(A(x′′) ∈ S)) = e2ε Pr(A(x′′) ∈ S).

It is clear that this holds for any two different entries i and k and so A provides bounded
2ε-differential privacy.
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To get some insight on ε-differential privacy let us have a look on following example
(Dwork and Roth, 2014, page 30),

Example 2.7. Consider a study where respondents will give ”yes” or ”no” answer to
some question of interest. To ensure the privacy and provide plausible deniability for
respondents, we use the following algorithm A in the study

1. Flip a coin.

2. If tails, then respond truthfully.

3. If heads, flip again and respond ”Yes” if heads and ”No” otherwise.

Now we ask what kind of privacy this algorithm provides. Let x and y be the truthful
answers to our study that differ only in one element, let us say in ith element. Let z be the
output of algorithm A. Clearly p(Output = ”Yes”|Input = ”Yes”) = 1/2 + 1/4 = 3/4,
p(Output = ”Yes”|Input = ”No”) = 1/4 and similarly for ”No” answers. Consider
zi =”Yes”

Pr(A(x) = z)

Pr(A(y) = z)
=

Pr(A(xi) = zi)

Pr(A(yi) = zi)
=

{
p(Output=”Yes”|Input=”Yes”)
p(Output=”Yes”|Input=”No”)

= 3
p(Output=”Yes”|Input=”No”)
p(Output=”Yes”|Input=”Yes”)

= 1
3

⇒Pr(A(x) = z)

Pr(A(y) = z)
≤ 3.

Above holds similarly for zi=”No”, so we get that A is ln 3-differentially private.

Next we define an important quantity called `1-sensitivity.

Definition 2.8. The `1-sensitivity ∆1f of a function f : D → Rk is defined as

∆1f = sup
x∼x′
||f(x)− f(x′)||1 = sup

x∼x′

k∑

i=1

|f(x)i − f(x′)i|

Sensitivity plays a key role in privacy calculations, because it tells us how much our
query results differ in the worst case on any two adjacent datasets.

Algorithm A in Example 2.7 is an illustrating example of a randomized algorithm
that provides differential privacy. We could ask, what kinds of randomized algorithms
provide differential privacy? Answer is simply all kinds of randomized algorithms that add
uncertainty on the output. However for an arbitrary randomized algorithm, calculation
of exact privacy budget, i.e., providing a bound on ε, can be difficult. Next we introduce
a probability distribution that we can use to achieve differential privacy.
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Definition 2.9. Random variable X is distributed according to Laplace distribution
centered at 0 with scale parameter b if it has density

p(x | b) =
1

2b
exp

{
−|x|
b

}
.

With random variables drawn from Laplace distribution we can build an randomized
algorithm. We call this method the Laplace mechanism.

Definition 2.10. Laplace mechanism for any function f : D → Rk is defined as

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk)

where Yi ∼ Lap(∆f/ε).

This mechanism gives us a way to provide ε-differential privcy on a query with known
sensitivity.

Theorem 2.11. Laplace mechanism provides ε-differential privacy.

Proof. Assume x,x′ ∈ D, x ∼ x′ and f : D → Rk with `1-sensitivity ∆f . Denote
the probability density function of M(x, f(·), ε) as px and density of adjacent pair with
px′ . Now releasing some z ∈ Rk given x means that (Y1, . . . , Yk) = f(x) − z, where
Yi ∼ Lap(∆f/ε), ∀i. So we get

px(z) =
k∏

i=1

ε

2∆f
exp

(
−ε|f(x)i − zi|

∆f

)

⇒ px(z)

px′(z)
=

k∏

i=1

exp
(
− ε|f(x)i−zi|

∆f

)

exp
(
− ε|f(x′)i−zi|

∆f

)

=
k∏

i=1

exp

(
ε

∆f
(|f(x′)i − zi| − |f(x)i − zi|)

)

≤ exp

(
ε

∆f

k∑

i=1

|f(x′)i − f(x)i|
)

= exp

(
ε

∆f
||f(x′)− f(x)||1

)

≤ exp(ε).
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2.2 (ε, δ)-differential privacy

Sometimes we do not require as strict privacy guarantee as ε-differential privacy provides.
We give a useful relaxation called (ε, δ)-differential privacy.

Definition 2.12. A randomized algorithm A is (ε, δ)-differentially private if for all pairs
of adjacent databases x, x′ and for every S ⊂ im(A)

Pr(A(x) ∈ S) ≤ eε Pr(A(x′) ∈ S) + δ

The relaxation constant δ can be seen as a probability of a privacy breach. We can
easily see, that small positive ε and δ values provide better privacy. It is immediate
that every ε-differentially private algorithm is also (ε, δ)-differentially private with any
δ ∈ [0, 1)1. Unfortunately this relation only works in one direction as we can show with
simple example.

Example 2.13. Consider algorithm A that is ln(eε + δ)-differentially private. Now A is
clearly (ε, δ)-differentially private because

Pr(A(x) ∈ S) ≤ Pr(A(x′) ∈ S)(eε + δ) ≤ eε Pr(A(x′) ∈ S) + δ.

However since ln(eε + δ) > ε for all δ > 0, algorithm A is not ε-differentially private.

In the next lemma we show how privacy loss and (ε, δ)-differential privacy are linked.

Lemma 2.14.
(1) If the privacy loss of algorithm A is bounded by ε with probability at

least 1− δ, then A preserves (ε, δ)-differential privacy.

(2) If the algorithm A preserves (ε, δ)-differential privacy, then probability
of the absolute value of privacy loss exceeding 2ε is bounded by 2δ

εeε
.

Proof of (1). Let us first assume that privacy loss is bounded by ε with probability greater
than 1− δ. Define a set B as a region where ε-differential privacy is breached

LA(x)||A(x′)(B) > ε.

By assumption Pr(A(x) ∈ B) < δ. Now by law of total probability for all S ∈ im(A) we
have

Pr(A(x) ∈ S) = Pr(A(x) ∈ B ∩ S) + Pr
(
A(x) ∈ BC ∩ S

)

≤ Pr(A(x) ∈ B) + eε Pr
(
A(x′) ∈ BC ∩ S

)

≤ eε Pr(A(x′) ∈ S) + δ

thus A is (ε, δ)-differentially private.

1The case δ = 0 corresponds to the ε-differential privacy.
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Proof of (2). Assume now that A preserves (ε, δ)-differential privacy. Consider a set B′

defined as

B′ =
{
o : e2ε Pr(A(x′) = o) < Pr(A(x) = o)

}
.

Now we get

Pr(A(x) ∈ B′) > e2ε Pr(A(x′) ∈ B′) ≥ eε(ε+ 1) Pr(A(x′) ∈ B′).

Using above and Definition 2.12 we get

δ ≥ Pr(A(x) ∈ B′)− eε Pr(A(x′) ∈ B′) ≥ eεεPr(A(x′) ∈ B′)

⇒Pr(A(x′) ∈ B′) ≤ δ

eεε
.

Similar result holds also for set

B′′ =
{
o : e−2ε Pr(A(x′) = o) > Pr(A(x) = o)

}

so now we can easily see that the claim holds.

As for ε-differential privacy, also for (ε, δ)-differential privacy it holds that unbounded
definition implies the bounded definition with small loss in parameters. Following the
same kind of reasoning we get the following result.

Theorem 2.15. Unbounded (ε, δ)-differential privacy implies bounded (2ε, δ(eε + 1))-
differential privacy. The factor eε + 1 ≈ 2 with small epsilon values.

Proof. Assume algorithm A preserves unbounded (ε, δ)-differential privacy. As in the
proof of Theorem 2.6 we assume x′ = x ∪ i and x′′ = x′ \ k, where i and k are some
individuals data and i 6= k. Again applying privacy bound twice we get

Pr(A(x) ∈ S) ≤ eε Pr(A(x′) ∈ S) + δ ≤ eε(eε Pr(A(x′′) ∈ S) + δ) + δ

= e2ε Pr(A(x′′) ∈ S) + δ(1 + eε).

Similar to the `1-sensitivity (Definition 2.8) we define a quantity called `2-sensitivity.

Definition 2.16. The `2-sensitivity of a function f : D → Rk, is defined as

∆2f = max
x∼x′
||f(x)− f(x′)||2.
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Now we can construct a mechanism, that is based on adding zero mean Gaussian noise
to the query with known `2-sensitivity, which provides (ε, δ)-differential privacy.

Definition 2.17 (Gaussian Mechanism). Given a query f : D → Rk with `2-sensitivity
∆2f and a privacy budget (ε, δ) where ε ∈ (0, 1), δ < 0.5 and ε > δ, we define the Gaussian
mechanism as

MG(x, f(·), ε, δ) = f(x) + (Y1, . . . , Yk),

where Y1 ∼ N(0, σ2) with σ >
√

2 ln(1.25/δ)∆f/ε.

Lemma 2.18. For Gaussian random variable X with zero mean and variance σ2

Pr(X > y) ≤ σ

y
√

2π
exp
(
−y2/2σ2

)

holds that for all y > 0.

Proof. Denote the probability density function of standard normal distribution with φ(x)

φ(x) =
1√
2π

exp
(
−x2/2

)
.

We clearly see that φ′(x) = −xφ(x). Assuming y > 0, integration by parts yields

Pr(x > y) =

∫ ∞

y

φ(x)dx = −
∫ ∞

y

φ′(x)

x
dx

= −
[
φ(x)

x

]∞

y

−
∫ ∞

y

φ(x)

x2︸ ︷︷ ︸
≥0

dx

≤ φ(y)

y
.

Now if X ∼ N(0, σ) we know that X/σ ∼ N(0, 1) and therefore

Pr
x∼X

(x > y) = Pr
x∼X/σ

(
x >

y

σ

)

≤ φ(y/σ)

(y/σ)

=
σ

y
√

2π
exp
(
−y2/2σ2

)
.
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Theorem 2.19. Gaussian mechanism provides (ε, δ)-differential privacy.

Proof. We show the proof for case k = 1. It can be shown that for the absolute value of
privacy loss (see Definition 2.5) of the Gaussian mechanism we get

∣∣LMG(x,f(·),ε,δ)||MG(x′,f(·),ε,δ)
∣∣ ≤

∣∣∣∣
1

2σ2
(2x∆2f + ∆2

2f)

∣∣∣∣ ,(2.20)

where f is the object we want to perturb, ∆2f is the `2-sensitivity of f and x is a Gaussian
random variable with zero mean and σ2 variance. Now, according to part 1 of Lemma
2.14 it is sufficient to show that (2.20) is bounded by ε with probability at least 1 − δ.
Privacy loss is bounded by ε when x < σ2ε/∆2f −∆2f/2. So all we need to show is that

Pr
(
|x| ≥ σ2ε/∆2f −∆2f/2

)
< δ.

Because x is a Gaussian random variable with E(x) = 0, we can only consider the tail of
the distribution and require

Pr
(
x ≥ σ2ε/∆2f −∆2f/2

)
< δ/2.(2.21)

Now we can use Lemma 2.18 with y = σ2ε/∆2f −∆2f/2 to show (2.21). We require

σ

y
√

2π
exp
(
−y2/2σ2

)
< δ/2⇔ ln(y/σ) + y2/2σ2 > ln

(
2/
√

2πδ
)

⇒ ln
(
(σ2ε/∆2f −∆2f/2)/σ

)
+ (σ2ε/∆2f −∆2f/2)2/2σ2 > ln

(
2/
√

2πδ
)
.

Let us first consider the term inside the logarithm of the leftmost term in the above
inequality. Denote it as g(σ). We can easily see that since ε and ∆f are positive, g′(σ) >
0, ∀σ > 0. We can solve the region where g(σ) ≥ 1 and therefore its logarithm is positive.

g(σ) = 1⇔ σ2 ε

∆2f
− σ − ∆2f

2
= 0

⇒ σ =
(1±

√
1 + 2ε)

2

∆2f

ε
·

The other solution for σ is clearly negative, so we consider only the case

σ ≥ (1 +
√

1 + 2ε)

2

∆2f

ε
.

Now it is easy to verify that if ε ≥ δ, choosing σ >
√

2 ln(1.25/δ)∆2f/ε yields g(σ) > 1
and therefore log(g(σ)) ≥ 0. Because we have proved that the first term in the inequality
of interest is positive, it is sufficient to show that

h(σ) = (σ2ε/∆2f −∆2f/2)2/2σ2 > ln
(

2/
√

2πδ
)
.(2.22)
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We can now see that h(σ) = g2(σ)/2 and therefore in the range we are considering, σ >√
2 ln(1.25/δ)∆2f/ε the derivative h′(σ) = g′(σ)g(σ) is positive. Again it is numerically

easy to ensure that choosing σ >
√

2 ln(1.25/δ)∆2f/ε satisfies the required condition and
we conclude the proof. The proof for multidimensional version follows almost immediately
from the 1-d case (see Dwork and Roth, 2014, Appendix A).

2.3 Techniques for differential privacy

We have given the definition of differential privacy and shown an example of an algorithm
that provides differential privacy. In this section we introduce some basic techniques used
to assure differential privacy in general databases. Next we will give a toy example of a
database and a query.

Example 2.23. In this example we are considering a diabetes study, where we have five
individuals. The first column of the following table is the identity of an individual and
the second column indicates if the individual has diabetes, denoted as 1, or not, denoted
as 0.

Alice 0
Bob 1
Charles 0
Diana 1
Eric 1

Consider an adversary who wants to know if Diana has diabetes or not. Let us assume
that there has been a similar study a year before that did not involve Diana but other
participants were involved. Assume that an adversary knows that the status of other
participants has not changed since the last study. Our goal is to release the number of
diabetics in our study. Given the result of the previous study and the result of the same
study but now Diana involved will compromise Diana’s privacy because the results will
differ by one and the adversary will know that Diana has diabetes.

In order to provide differential privacy we need to inject noise into our computations
somehow. There are several methods for adding stochasticity to our inference. In this
thesis we present input, output and objective perturbation. Besides these basic methods
that are all based on additive noise there are methods such as exponential mechanism
(McSherry and Talwar, 2007) and plausible deniability scheme, seen in Example 2.7, that
provide differential privacy.

Input perturbation (Dwork, 2006) is the easiest way to achieve privacy. It adds noise
to our pure dataset and we can release the noisy data to third party. Output perturbation
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(Dwork, 2006) adds noise to the results of a query given pure data. Objective perturbation
(Chaudhuri et al., 2011) adds noise to some task that we are performing on our dataset.
In contrast to input perturbation, in neither output nor objective perturbation we are
able to release the data to third party but only the results of a given query. Although it
makes the release of data is possible, input perturbation is a very crude way of providing
differential privacy, because of the noise level we are adding will affect the inference on
this data a lot.

To summarise above methods, let us denote Z as a random vector or scalar depending
on the query we are considering:

Input perturbation: Given pure data x we release x + Z
Output perturbation: Given query f and data x we release f(x) + Z
Objective perturbation: Given task g and data x we release g(x + Z)

2.4 Composition and enhancing privacy guarantees

Differential privacy is a strong privacy guarantee. It is in fact so strong that given output
of an ε- or (ε, δ)-differentially private algorithm, an adversary can do whatever he or she
likes on the result and can never weaken the privacy guarantee. This property is called
immunity to post-processing.

Proposition 2.24. Given an (ε, δ)-differentially private algorithm A and any function
f , the composition f(A) is still (ε, δ)-differentially private.

Proof.

Pr(f(A(x)) ∈ S) = Pr
(
A(x) ∈ f−1(S)

)

≤ eε Pr
(
A(x′) ∈ f−1(S)

)
+ δ

= eε Pr(f(A(x′)) ∈ S) + δ.

Immunity to post-processing is very useful because after we have provided differential
privacy we can do anything we want on the results, if we do not access the data anymore.

Sometimes we do not need to use the whole dataset to respond to a query with sufficient
accuracy. If we assume that all individuals of a dataset are somewhat similar we may just
use a subset of the whole dataset to respond our query. Li et al. (2012) showed that
using only a subset of the whole dataset actually amplifies the privacy guarantee of an
unbounded (ε, δ)-differentially private algorithm.
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Theorem 2.25 (Privacy amplification). Consider an unbounded (ε, δ)-differentially pri-
vate algorithm A. Using a subsample of size qN , where N is the size of our whole dataset,
as an input for A preserves unbounded (ε′, δ′)-differential privacy where

ε′ = log(1 + q(eε − 1))

δ′ = qδ.

Proof. Consider datasets x and x′ such that x′ = x \ {i}. Denote the subsample with T
and the distribution of A(x) with Prx. For the subsampled input on A it clearly holds
that Prx(S|i /∈ T ) = Prx′(S) and Prx(S|i ∈ T ) ≤ eε Prx′(S) + δ for all S ∈ im(A). Using
the law of total probability we get

Prx (S) = (1− q)Prx(S|i /∈ T ) + qPrx(S|i ∈ T )

≤ (1− q)Prx′(S) + qeεPrx′(S) + qδ

= (1 + q(eε − 1))Prx′(S) + qδ.

So far we have considered the case where individuals give their data to a curator
who performs a query and provides some privacy guarantees. In real life however we
admit our data to several different queries. It is possible for an adversary to weaken the
privacy guarantees of a differentially private query by using the results of these previous
queries, even if they all are differentially private. Differential privacy has a composing
property, which means that ε’s and δ’s add up. The basic version of this is called the basic
composition theorem. It gives a way of computing the privacy cost of multiple differentially
private queries applied on the same dataset.

Theorem 2.26 (Basic composition theorem). Given algorithms A1, . . . ,An which are
(ε1, δ1), . . . , (εn, δn) differentially private, respectively, the composition of these algorithms
is (
∑n

i=1 εi,
∑n

i=1 δi)-differentially private.

Proof. (See Dwork and Roth, 2014, Appendix B).

Although basic composition theorem gives us a way to accumulate the privacy cost on
multiple queries it is rather crude, and given that εi = ε with ∀i the privacy cost increases
linearly. Dwork et al. (2010) showed that we can enhance the ε part of total privacy cost
by sacrificing the δ part by a small additional factor. This enhancement is known as the
advanced composition theorem.

Theorem 2.27 (Advanced composition theorem). Let Ak be a k-fold composition of
(ε, δ)-differentially private algorithms. Algorithm Ak then provides (ε′, kδ+δ′)-differential
privacy with

ε′ =
√

2k ln(1/δ′)ε+ kε(eε − 1)
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and δ′ ∈ [0, 1] arbitrary.

Proof. (See Dwork et al., 2010, Appendix B).

Now let us take a look at an example where composition theorems become useful.

Example 2.28. Consider a study where we want to minimize the sum of squared error
between yi and wxi where yi, xi, w ∈ R. Our cost function is

S(w) =
N∑

i=1

(yi − wxi)2.

This particular problem has an analytical solution

ŵ =

(
N∑

i=1

x2
i

)−1 N∑

i=1

xiyi.

If we had information that both xi, yi are bounded we could easily calculate the sensitivity
of ŵ and just release the perturbed least squares solution. Instead of using the analytical
solution we use a gradient-based method to minimize S(w). Non-private updates are

wn = wn−1 − ηS ′(wn−1)

S ′(wn−1) = −
N∑

i=1

2xi(yi − wn−1xi),

where η > 0 is a learning rate. In order to preserve privacy we bound the absolute value
of each individual contribution to the sum in S ′ by C. This kind of clipping solution
gives us a way to compute the sensitivity of S ′. After clipping, the `1 sensitivity between
adjacent datasets D,D′ becomes

∆S ′ =

∣∣∣∣∣
∑

i∈D
c(2xi(yi − wn−1xi))−

∑

j∈D′

c(2xj(yj − wn−1xj))

∣∣∣∣∣ ≤ 2C

where c(·) denotes clipping. Because of the iterative use of data we need to use composition
theorems to compute the privacy cost. At each update we perturb the gradient of S ′ by
adding Laplacian noise to it.

Figure 2.1 shows the approximation of w given by above-described gradient-based
algorithm applied to a synthetic dataset with 100 samples. Clipping value C was set to
0.5 and for each ε value the algorithm was run for 500 iterations. We can clearly see that
noise level used in BCT curve perturbs the learning too much. However allowing small
relaxation to BCT budget as δ = 10−6 our results improve a lot.
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Figure 2.1: On the left the synthetic dataset with true fit. On the right comparison
between Advance composition theorem (ACT) and Basic composition theorem (BCT).
The curve shows mean of 20 runs of algorithm for both ACT and BCT with errorbars
denoting the standard error of mean. The δ′ of ACT was set to 1e-6.

There has been a lot of research on composing differentially private queries. Kairouz
et al. (2015) showed improved results on both ε and δ part of the privacy budget com-
pared to the ACT. Another improvement on composing private queries called Moments
accountant (MA) was introduced by Abadi et al. (2016). Moments accountant is a pri-
vacy accounting method tailored to Gaussian mechanism. It provides strong composition
result when randomized algorithm takes as input just a fraction of the whole dataset i.e.
it takes advantage of subsampling through privacy amplification. The proof can be found
in the appendix of Abadi et al. (2016). Next example illustrates the power of MA and
privacy amplification.

Example 2.29. Consider a task where we use Gaussian mechanism to provide differential
privacy. Let us assume that our dataset consists of N = 1000 samples and we use
subsampling with q = 0.005. We compared the level of perturbation needed for different
number of data passes to achieve (1.0, 10−3)-differential privacy. Figure 2.2 shows the
σ required in each iteration to maintain aforementioned privacy guarantee. We can see
that increasing the number of data passes ten fold, does not affect the σ of the MA much
whereas σ of the amplified version of ACT is increased from 2 to 6.
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Figure 2.2: Comparison of the level of perturbation between the moments accountant
and the amplified version of advanced composition theorem. The privacy budget for the
Gaussian mechanism is (1.0, 10−3) and the subsampling ratio q is set to 0.005.
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Chapter 3

Variational Bayesian methods

“ An approximate answer to the right problem is worth a good deal more
than an exact answer to an approximate problem. ”

John Tukey

Consider a probabilistic model that consists of observed random variables X and
unobservable random variables Z that include model parameters and latent variables. We
denote the prior distribution of the parameters with p(Z) and likelihood of X given Z
with p(X|Z). In Bayesian learning tasks we would like to infer the posterior distribution
of Z i.e. probability density of Z given data denoted with p(Z|X). Applying Bayes’ rule
and marginalization we get the posterior as

p(Z|X) =
p(X,Z)

p(X)
=

p(X,Z)∫
Supp(Z)

p(X,Z)dZ
,(3.1)

where p(X,Z) = p(X|Z)p(Z) denotes the joint probability between observed and unob-
served random variables. Following example shows how to analytically infer the posterior
distribution for a certain model.

Example 3.2. Consider Gaussian linear regression model

yn ∼ N (wxn, τ)

w, τ ∼ NINV(0, λ0, a0, b0),
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where NINV denotes normal-inverse-gamma. The likelihood and prior densities are de-
fined as

p(y|w, τ) =
N∏

n=1

p(yn|w, τ) =
N∏

n=1

√
1

2πτ
exp

(
− 1

2τ
(yn − wxn)2

)

=

(
1

2πτ

)N/2
exp

(
− 1

2τ

N∑

n=1

(yn − wxn)2

)

p(w, τ) =

√
λ0

τ2π

ba00

Γ(a0)

(
1

τ

)a0+1

exp

(
−2b0 + λ0w

2

2τ

)
.

Let us calculate the posterior. We start by calculating p(y)

p(y) =

∫

Supp(w)×Supp(τ)

p(y|w, τ)p(w, τ)dτdw(3.3)

∝
∫

R

∫

R+

τ−(N+1)/2−a0−1 exp

(
− 1

2τ

(
2b0 + λ0w

2 +
N∑

n=1

(yn − wxn)2

))
dτdw.(3.4)

The terms inside the exponential in (3.4) can be rewritten as

2b0 +
N∑

n=1

y2
n −

(
N∑

n=1

x2
n + λ0

)
r2 +

(
N∑

n=1

x2
n + λ0

)
(w − r)2,

where

r =

∑N
n=1 ynxn∑N

n=1 x
2
n + λ0

.

We can see that integrand in (3.4) is just unnormalized normal-inverse-gamma density.
Therefore p(y) becomes

p(y) = (2π)−N/2
ba00

Γ(a0)

Γ(a1)

ba11

√
λ0

λ1

,

with

a1 = a0 +N/2

b1 = 2b0 +
N∑

n=1

y2
n −

(
N∑

n=1

x2
n + λ0

)
r2

λ1 =

(
N∑

n=1

x2
n + λ0

)

µ1 = r
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Finally we get the posterior p(w, τ |y) by plugging p(y) into (3.1).

Unfortunately, the posterior distribution is not always analytically available. There
are models where the integral in the denominator of (3.1) is intractable, and therefore
direct posterior calculation is impossible. One example of such models is the previous
Gaussian linear regression example with a slight modification. This will be seen in Ex-
ample 3.16. When analytical posterior is intractable we can still approximate it. The
approximation can be done by using Markov chain Monte Carlo (MCMC) methods that
draw samples from the posterior. Because MCMC methods rely on sampling they can be
computationally inefficient especially for large scale problems. Also the convergence of the
chain can be difficult to check. Instead of focusing to MCMC methods we use Variational
Bayesian (VB) methods to approximate the intractable posterior distribution.

3.1 Variational Inference

We start our variational Bayes method consideration with formulation of an important
quantity called evidence lower bound (ELBO). First we observe that we can rewrite the
log-evidence ln p(X) in following way.

Theorem 3.5. For arbitrary probability density function q(Z), the following holds

ln p(X) =

∫
q(Z) ln

(
p(X,Z)

q(Z)

)
dZ−

∫
q(Z) ln

(
p(Z|X)

q(Z)

)
dZ.(3.6)

Proof.
∫
q(Z) ln

(
p(X,Z)

q(Z)

)
dZ−

∫
q(Z) ln

(
p(Z|X)

q(Z)

)
dZ

=

∫
q(Z)

(
ln

(
p(X,Z)

q(Z)

)
− ln

(
p(Z|X)

q(Z)

))
dZ

=

∫
q(Z) ln

(
p(X,Z)

p(Z|X)

)
dZ

=

∫
q(Z) ln

(
p(Z|X)p(X)

p(Z|X)

)
dZ = ln p(X)

We identify the second term on the RHS of (3.6) as the Kullback-Leibler (KL) di-
vergence between q(Z), that we call the variational distribution, and the true posterior
p(Z|X). We denote the first term on the RHS of (3.6) with L(q).

The following lemma is one of our key components for formulating the variational
distribution q(Z).
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Lemma 3.7. KL-divergence KL(p0 || p1) between any two densities p0 and p1 is non-
negative and zero exactly when p0 = p1.

Proof.

KL(p0 || p1) =

∫

R
p0(x) ln

p0(x)

p1(x)
dx

= −
∫

R
p0(x) ln

p1(x)

p0(x)
dx

≥ −
∫

R
p0(x)

(
p1(x)

p0(x)
− 1

)
dx = 0

where the inequality follows from the fact that lnx is a concave function that intersects
line x − 1 only in x = 1 and therefore lnx ≤ x − 1. It is clear that when p0 = p1, the
KL-divergence vanishes.

The KL-divergence is a measure of the difference between two probability distributions
(see e.g. Cover and Thomas, 2012) so we can gain approximations of p(Z|X) by minimizing
the divergence between the variational and the true posterior. However this is not feasible
because we need the true posterior. Recall that we wrote the log-evidence ln p(X) as

ln p(X) = L(q) + KL(q(Z) || p(Z))

now from non-negativity of KL-divergence we get

ln p(X) ≥ L(q) =

∫
q(Z) ln

(
p(X,Z)

q(Z)

)
dZ.(3.8)

Because of the above inequality, L(q) is called the evidence lower bound. Assume now
that the variational distribution q(Z) factorizes in the following way

q(Z) =
M∏

i=1

qi(Zi),(3.9)

where Zi are the of elements of Z. Substituting (3.9) into L(q) in (3.8) yields

L(q) =

∫ ∏

i

qi(Zi)

(
ln p(X,Z)−

∑

i

ln qi(Zi)

)
dZ

(3.10)

=

∫
qj(Zj)

(∫
ln p(X,Z)

∏

i 6=j
qi(Zi) dZi

)
dZj −

∫
qj(Zj) ln qj(Zj) dZj + const(3.11)

=

∫
qj(Zj) ln p̃(X,Zj)dZj −

∫
qj(Zj) ln qj(Zj) dZj + const(3.12)
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Where const denotes a constant w.r.t. distribution qj. We have used notation

(3.13) ln p̃(X,Zj) = Ei 6=j [ln p(X,Z)] + const

where the notation Ei 6=j is adopted from Bishop (2006) and it denotes the expectation
w.r.t. the variational distribution q over variables Zi such that i 6= j i.e.,

∏
i 6=j qi(Zi). From

(3.12) we recognize negative KL divergence between qj(Zj) and p̃(X,Zj) so maximizing
L(q) is equivalent to minimizing this KL divergence w.r.t qj while keeping qi 6=j fixed. This
minimum occurs when qj(Zj) = p̃(X,Zj) so expression for optimal solution q∗j (Zj) is given
by

(3.14) ln q∗j (Zj) = Ei 6=j [ln p(X,Z)] + const

which finally yields

(3.15) q∗j (Zj) =
exp(Ei 6=j [ln p(X,Z)])∫

exp(Ei 6=j [ln p(X,Z)])dZj

.

Next we show an example of how to use variational inference.

Example 3.16. Consider Gaussian linear regression model as in Example 3.2, but with
slight modification

yn ∼ N (wxn, τ)

w, τ ∼ NINV(0, λ, a0, b0)

λ ∼ Gam(α, β).

Densities are given as

p(y;w, τ) =

(
1

2πτ

)N/2
exp

(
− 1

2τ

N∑

n=1

(yn − wxn)2

)

p(w, τ ; 0, λ, a0, b0) =

√
λ

τ2π

ba00

Γ(a0)

(
1

τ

)a0+1

exp

(
−2b0 + λw2

2τ

)

p(λ;α, β) =
βα

Γ(α)
λα−1 exp(−βλ).

The joint density function p(y, w, τ, λ) becomes

p(y, w, τ, λ) = C1τ
−N

2
−a0−1− 1

2 exp

(
− 1

2τ

(
2b0 + λw2 +

∑

n

(yn − wxn)2

)
− βλ

)
λα+ 1

2
−1.
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In order to compute the analytical posterior we need to marginalize the above density
w.r.t. w, τ and λ. However, after marginalization over λ, we get something relatively
complicated

p(y, w, τ) = C2τ
−N

2
−a0−1− 1

2 exp

(
− 1

2τ

(
2b0 +

∑

n

(yn − wxn)2

))(
w2

2τ
+ β

)−α+ 1
2

.

Now instead of calculating the analytical posterior, we approximate the posterior p(w, τ, λ|x)
with variational distribution q(w, τ, λ), which we assume factorizes as q(w, τ)q(λ). Using
(3.14), we get

ln q∗(λ) = Ew,τ [ln p(y, w, τ, λ)] + const

= ln p(λ;α, β) + Ew,τ [ln p(y;w, τ)]︸ ︷︷ ︸
const. w.r.t. λ

+Ew,τ [ln p(w, τ ; 0, λ, a0, b0)] + const

= (α− 1) lnλ− βλ+
1

2
lnλ− Ew,τ

[
λ
w2

2τ
−
(

1

2
+ a0 − 1

)
ln τ

]
+ const

=

(
α− 1

2

)
lnλ− λ

(
β +

1

2
Ew,τ

[
w2

τ

])
+ const.

So we see, that q∗(λ) takes form of gamma distribution with parameters

αt = α +
1

2

βt = β +
1

2
Ew,τ

[
w2

τ

]
.

Next we calculate q∗(w, τ).

ln q∗(w, τ) = Eλ[ln p(y, w, τ, λ)] + const

= ln p(y;w, τ) + Eλ[ln p(w, τ ; 0, λ, a0, b0)] + Eλ[ln p(λ;α, β)]︸ ︷︷ ︸
const. w.r.t w,τ

+const

= −N
2

ln τ − 1

2τ

N∑

n=1

(yn − wxn)2 − (
1

2
+ a0 + 1) ln τ − w2

2τ
Eλ [λ]− b0

τ
+ const

= − ln τ

(
N + 1

2
+ a0 + 1

)
− 1

2τ

(
N∑

n=1

(yn − wxn)2 + w2Eλ [λ] + 2b0

)
+ const.

We can rearrange the term inside the exponential as we did in Example 3.2 and we get

25



yet another normal-inverse-gamma distribution with hyperparameters

at = a0 +N/2

bt = 2b0 +
N∑

n=1

y2
n − λtµ2

t

λt =

(
N∑

n=1

x2
n + Eλ[λ]

)

µt =

∑
ynxn
λt

.

The remaining two expectations Eλ[λ] and Ew,τ
[
w2

τ

]
become

Eλ[λ] =
at
bt
,

Ew,τ
[
w2

τ

]
=

1

λt
+
µtat
bt

.

We first initialize one of these to some value and then update each parameter iteratively.

3.2 Reparameterization trick

In the beginning of this chapter we gave analytically intractable posteriors as a motivation
for variational learning. We saw in example 3.16 how we can maximize the lower bound
using (3.14). However, analytical solutions for expectations taken in (3.14) are generally
intractable. For example with the Bayesian logistic regression, model given in Example
3.19, we run into trouble while trying to use the standard VB approach. This happens
often with non-conjugate models.

There are methods to overcome the analytically intractable expectations in the vari-
ational treatment of this model, for example local variational approach (Bishop, 2006)
or augmentation (Polson et al., 2013). Kingma and Welling (2013) showed a method to
overcome the difficulty of evaluating analytical expectations w.r.t. the variational distri-
bution. We begin by assuming that the variational distribution of parameter vector w
takes the form of a multivariate normal distribution with mean vector µ and a diagonal
covariance matrix σ2I.

w ∼ N (µ,σ2I).

By properties of normal distribution, we can write w = µ + σ � ε, where ε ∼ N (0, I),
and � denotes elementwise multiplication. This reparametrization of w with µ and σ
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is a key component in our inference. We recall that our aim is to maximize the ELBO
which takes the form

L(q) = −KL(q(w; ξ) || p(w)) + Eq(w;ξ) [log p(D|w)] .(3.17)

Both terms on the right-hand side are expectations w.r.t. the variational distribution,
which we assumed to be a multivariate normal distribution. These expectations may still
be intractable, but we can approximate them using Monte Carlo integration.

Definition 3.18 (Monte Carlo integration). Given a function f and a probability measure
µ(dx), the integral

∫

Ω

f(x)µ(dx)

can be approximated with Monte Carlo integral

1

N

N∑

i=1

f(xi), where xi ∼ µ.

Using Monte Carlo (MC) integration we can now write both of these expectations in
terms of ε from which we can sample. After the MC integration our ELBO is now a
function of variational parameters ξ = (µ,σ).

Next we show an example of how to use the reparametrization trick to make analyti-
cally intractable ELBO available.

Example 3.19. Consider Bayesian logistic regression model that was mentioned in the
beginning of this Section

P (y|x,w) = σ(ywTx)

p(w) = N (w; w0,S0)

σ(x) =
1

1 + e−x
.

The sigmoid σ(·) makes both the analytical posterior and the standard variational ap-
proach difficult. Assume now that the variational distribution takes the form of a mul-
tivariate Gaussian distribution q(w; ξ) = φ(w;µ,σ2I). We approximate now the varia-
tional expectation of likelihood with MC integration.

Eq(w;ξ) [log p(yi|w)] ≈ 1

L

L∑

l=1

log p(yi|wl),

27



where wl is a sample from the N(µ,σ2I). Because we want to optimize the parameters
µ and σ we rewrite w = µ + σ � ε, where ε ∼ N(0, I). Now we can rewrite (3.8) as

L(ξ; yi) ≈ −KL(q(w; ξ) || p(w)) +
1

L

L∑

l=1

log σ(yi(µ + σ � εl)
Txi)

The negative KL-divergence of multivariate normal distribution (Duchi, 2007) becomes

−KL(q(w; ξ) || p(w)) =
1

2

J∑

j=1

(
1 + log σ2

j − µ2
j − σ2

j

)
.

So the approximate ELBO becomes:

L̃i =
1

2

J∑

j=1

(
1 + log σ2

j − µ2
j − σ2

j

)
+

1

L

L∑

l=1

log σ(yi(µ + σεl)xi).

Partial derivatives w.r.t µs components yield

∂Li
∂µk

= −µk +
1

L

L∑

l=1

yixik(1− σ(yi(µ + σ � εl)
Txi))

and w.r.t to σs components

∂Li
∂σk

=
1

σk
− σk +

1

L

L∑

l=1

yiεlkxik(1− σ(yi(µ + σ � εl)
Txi)).

Now we can apply any gradient based-optimizer to our problem and obtain an approxi-
mation of the posterior distribution.

3.3 Doubly-Stochastic Variational Inference

The reparametrization trick introduced in the previous section gives us a way to overcome
intractable expectations. However, the likelihood term that appears in (3.17) can be
computationally very expensive. Common approach in machine learning is to approximate
this kind of costly functions that can be separated into individual contributions, by using
only a random subset of the original data. Stochastic gradient descent (SGD) (Robbins
and Monro, 1951) is a method that does exactly this. It iteratively updates the parameters
of a cost function by taking a random minibatch of the original dataset, computes the
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gradient of the cost function given this minibatch, scales the minibatch gradient by a
factor of (N/Nm), where Nm denotes the size of minibatch, and descents in the direction
given by this gradient approximation multiplied with step size. There has been lot of
research on the SGD method to improve learning. Several methods have been developed
to make the step size in gradient descent adaptive. In this thesis we consider a popular
method called AdaGrad (Duchi et al., 2011).

Titsias and Lázaro-Gredilla (2014) introduced an idea of applying SGD into variational
inference approximated with the reparametrization trick. This method is called doubly-
stochastic variational inference (DSVI). The DSVI method makes the original likelihood
computation less costly by computing the gradient from only a subset of the dataset.
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Chapter 4

Differentially Private Variational
Inference

Our aim is to build a general differentially private framework for posterior estimation.
Motivation for such privacy preserving method is to protect the data of the individuals in
our dataset. Releasing the posterior distribution without a privacy layer could enable some
adversary to deduce sensitive information about the individuals back from the results.

We propose a method that is easy to implement and is applicable to a wide range
of models. Differentially Private Variational Inference (DPVI) is based on automatic
differentiation variational inference (ADVI) by Kucukelbir et al. (2017) that applies ”black
box” differentiation on doubly-stochastic variational inference introduced in Section 3.3.
DPVI preserves privacy by perturbing the gradients of DSVI with Gaussian noise. The
contribution of an individual’s gradient is restricted by norm clipping in order to bound the
sensitivity of total gradient. We use the AdaGrad to make the step size of gradient ascent
adaptive. The AdaGrad was chosen because it scales each component of the gradient by
the `2-norm of previous gradient components and therefore assures that for example even
if the Gaussian noise contribution happens to be large, we do not jump too far.

Even though stochastic-gradient-based optimization reduces the computational cost,
stochasticity helps DPVI also in another sense. Subsampling that is used in SGD enhances
the privacy guarantees through privacy amplification. This is an essential part of the idea
behind DPVI.

Because of the generality of the DSVI method, DPVI is a general framework for ap-
proximate posterior inference. In our experiments we used spherical multivariate normal
distributions as our approximate distribution in the reparametrization. This is mainly
because using a full rank covariance matrix in the reparametrization makes the compu-
tations more costly and also it seems that the perturbation makes the full rank approx-
imation worse than spherical approximation. However DPVI easily generalizes to any
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reparametrization available.

Algorithm 1 DPVI

Input: Data set D, sampling probability q, number of iterations T , SGA step size ηt,
Clipping threshold ct and initial values ξ0.
for t ∈ [T ] do

1. Pick random sample U from D with sampling probability q
2. Calculate gradient of ELBO for each i ∈ U
3. Clip and sum gradients:
4. g̃t(xi)← gt(xi)/max(1, ||gt(xi)||2)

ct
)

5. g̃t ←
∑

i g̃t(xi)
6. Add noise: g̃t ← g̃t +N (0, 4c2

tσ
2I)

7. Update AdaGrad parameter. Gt ← Gt−1 + g̃2
t

8. Ascent: ξt ← ξt−1 + ηtg̃t/
√
Gt

end for

Next we show that the DPVI algorithm is differentially private.

Theorem 4.1. Algorithm 1 preserves differential privacy.

Proof. At each iteration of Algorithm 1, we compute the gradients and clip their norm
using the predetermined clipping threshold ct. Clipping forces the `2 norms of each indi-
vidual gradient to be less than or equal to ct. Now the sensitivity of g̃t becomes

∆2g̃t = sup
i 6=j
||g̃t(xi)− g̃t(xj)||2 ≤ 2 sup

i
||g̃t(xi)||2 ≤ 2ct.

It is now clear that applying the Gaussian mechanism to each component of g̃t preserves
differential privacy as we see from Theorem 2.17.

As we can see from the description of Algorithm 1, DPVI has many parameters that
affect both to the accuracy of our posterior and the privacy budget. Next we give some
rules of thumb, how these parameters are expected to affect the learning. We show some
examples of the effect of these parameters in the Section 5.

Maybe the most important parameter to tune is the number of iterations T . It is
clear that it has maybe the biggest effect on convergence of parameters of DSVI. Without
privacy we could just let the algorithm run until convergence and release the final pa-
rameters. However the privacy guarantees degrade as the number of iterations increase.
Therefore it is very important for a curator to find a sufficiently small number of iterations
to provide both good performance of the algorithm and sufficient privacy guarantees.
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Because of the use of subsampling, gradients at each iteration affect the parameters as
an averaged version of the gradient w.r.t the whole dataset. Using large subsample size
will make the sum of gradients less vulnerable to the Gaussian noise. On the other hand,
we want to use a relatively small value of q to take advantage of the privacy amplification.

Another important parameter is the clipping thereshold ct. We would like to preserve
the original gradient as much as we could, but because the noise level depends linearly on
the clipping threshold, we need to find some moderately small threshold. A good practise
is to find a small ct value in the non-private case and then try to apply it to private
version.

We also have parameters that affect only the performance of DPVI via the SGD. The
learning rate ηt is one of these. Although we use the AdaGrad to make the learning rate
adaptive with respect to the previous gradients, we still have chosen to include this kind of
parameter that controls the base level of learning rate. When it comes to calibrating the
DPVI, ηt is really an important parameter. Because of the additional differential privacy
noise, it is possible that our perturbed gradient will point to some very bad direction, that
it cannot ever come back again. Therefore it is important to find such ηt so that the leaps
are not too big. Our experiments, not presented in this thesis, also suggest to reset the
AdaGrad parameter after some number of iterations. This is done to boost the learning a
bit. However resetting the AdaGrad parameter too often will lead to bad results, because
the leaps become large.
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Chapter 5

Experiments

In this chapter we apply DPVI to two different models, logistic regression and the Gaussian
mixture model.

We compared the DPVI method against the state-of-art Differentially private stochas-
tic gradient Langevin dynamics (DP-SGLD) method by Wang et al. (2015). The DP-
SGLD algorithm is a Hamiltonian Monte-Carlo-based approach to draw samples from
the posterior distribution. It relies on the Lipschitz continuity of the model likelihood
to control the sensitivity. The noise addition happens through the Gaussian mechanism.
Because DP-SGLD is also an iterative algorithm it uses the composition property of dif-
ferential privacy similar to the ACT (see Wang et al., 2015, Theorem 4) to provide exact
bounds on the privacy spent.

Algorithm 2 DP-SGLD

Input: Data X of size N , Size of minibatch τ , number of data passes T , privacy budget
(ε, δ), Lipschitz constant L, initial θ1 and the logarithm of the prior probability density
function r of the model parameters θ.
for t = 1 : [NT/τ ] do

1. Random sample a minibatch S ⊂ [N ] of size τ .

2. Sample each coordinate of zt iid from N
(

0, 128NTL2

τε2
log
(

2.5NT
τδ

)
log(2/δ)η2

t ∨ ηt
)

.

3. Update θt+1 ← θt − ηt
(
∇r(θ) + N

τ

∑
i∈S∇`(xi|θ)

)
+ zt.

4. Return θt+1 as a posterior sample (after a pre-defined burn-in period).
5. Increment t← t+ 1.

end for
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5.1 Logistic regression

Consider a binary classification task. Our data consists of class labels yi and feature
vector xi. We assume that there is a non-linear relationship between the class and the
features. Recall the logistic regression model from Example 3.19.

Pr(yi|xi,w) = σ(yiw
Txi)

p(w) = N (w ; w0,S0),

where σ(·) is the sigmoid function given as

σ(x) =
1

1 + exp(−x)
.

For our binary classification task, we want to separate the data into two classes accord-
ing to the label yi. Classification is done based on whether the probability Pr(yi = 1|xi)
exceeds 0.5. This probability is given as

Pr(yi = 1|xi) =

∫
Pr(yi = 1|xi,w)p(w|x)dw.(5.1)

In order to calculate the integral in (5.1) we need the posterior distribution for w.
As we stated in Section 3.2, direct and analytical variational posterior inferences are not
possible. Using the approximate posterior q(w) in integral (5.1) yields

Pr(yi = 1|xi) ≈
∫
σ(wTxi)q(w)dw.

By the results proved in Bishop (2006, Section 4.5.2) we get

Pr(yi = 1|xi) ≈ σ(κ(σ2
a)µa),

where

κ(σ2) = (1 + πσ2/8)−1/2

σ2
a = xTi Σq(w)xi

µa = µT
q(w)xi.

We test DPVI on two different datasets, Abalone and Adult (Lichman, 2013). The
Abalone dataset consists of 4177 samples with 8 attributes. Attributes are Sex, Length,
Diameter Height, Whole weight, Shucked weight, Viscera weight and Shell. Besides these
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attributes, the dataset also has an attribute Rings. We use our binary classifier to deter-
mine whether the abalones have more or less than 10 rings. Before the training, the whole
dataset is divided into 80% training set and 20% test set. The dataset is normalized by
subtracting feature mean and dividing by feature standard deviation.

The Adult dataset consists of 48842 samples with 14 attributes. Class labels indicate
whether the annual income of an individual exceeds $50K. We divide the dataset into
training and test set and normalize it same as we did with the Abalone dataset.

Because the DP-SGLD method relies on drawing samples from the approximate pos-
terior, the predictive probability Pr(yi = 1|xi) was computed as

(5.2) Pr(yi|xi) =

∫
Pr(yi = 1|xi,w)qDP−SGLD(w)dw ≈ (1/L)

L∑

l=1

σ(wT
l xi),

where wl are the posterior draws of DP-SGLD after the burn-in period. In Figure 5.1 we
see that DPVI outperforms the DP-SGLD method and reaches the non-private level with
relatively small epsilon values. The δ is set to 0.001 in these figures. For the Abalone
dataset we used q = 0.05 which corresponds to minibatches of size 167 and for the Adult
dataset we used q = 0.005 corresponding to minibatches of size 195. On the Abalone
data we ran the DPVI algorithm for 1000 iterations and with the Adult data for 2000
iterations. Presented results are obtained using clipping threshold 5 for the Abalone and
75 for the Adult task.

As we mentioned before, DPVI has many parameters that affect the performance. In
Figure 5.2 we see how altering the subsample size affects the classification accuracy. We
kept the number of iterations fixed and calculated the privacy cost for each sampling ratio
q using the moments accountant. We used five different noise levels to show how changing
ε affects the classification accuracy. Because we used a fixed number of iterations for each
q value, the ε interval for each q value changes. From the Abalone figure we see that
q = 0.01, which means ∼ 41 samples per iteration, gives decent accuracy even with small
epsilon values, but is too small to overcome the effect of noise even with εtot = 1. The
largest subsampling ratio q = 0.1 on the other hand yields classification accuracy close to
non private version, but the privacy guarantee is hurt because of smaller effect of privacy
amplification. We observe the same in the experiment on the Adult data set.

In Figure 5.3 we see how altering the clipping threshold will affect the classification
accuracy. The noise level of the DPVI algorithm depends on ct which explains why smaller
ct values in the Abalone experiment at some smaller values of ε yield better accuracies
than larger values. On the other hand it is obvious that allowing gradients to have larger
norms improves the performance of learning. In the Adult experiment we see that we get
almost the same classification accuracy with all ct values greater than 10.0. This could
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Figure 5.1: Comparison of binary classification accuracies on the Abalone data set (top)
and the Adult data set (bottom). The figure shows test set classification accuracies of
non-private logistic regression, two variants of the DPVI with the moments accountant
(DPVI-MA) and advanced composition accounting (DPVI) and the DP-SGLD. The curve
shows the mean of 10 runs of both algorithms with error bars denoting the standard error
of the mean.
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Figure 5.2: Accuracy vs. total ε in the Abalone (top) and Adult (bottom) datasets with
several data subsampling ratios q in DPVI with the moments accountant. The curve
shows the mean of 10 runs of the DPVI algorithm with error bars denoting the standard
error of the mean. Note that the y-axis scale covers a much smaller range than in Fig. 5.1.
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Figure 5.3: Accuracy vs. total ε in the Abalone (top) and the Adult (bottom) datasets
with several gradient clipping threshold ct values in DPVI with the moments accountant.
The curve shows the mean of 10 runs of the DP algorithm with error bars denoting the
standard error of the mean. Note that the y-axis scale covers a much smaller range than
in Fig. 5.1.
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suggest that given large enough ε, increasing the clipping threshold does not improve the
learning dramatically after some value.

5.2 Gaussian mixture model

A mixture model is a probabilistic model to represent the data as a collection of samples
from several underlying models. The Gaussian mixture model is a mixture of (multi)normally
distributed random variables.

For a fixed number K of mixture components our model is

π ∼ Dir(α)

k ∼ Cat(π)

µ(k) ∼ N (0, I)

τ (k) ∼ Inv-Gamma(1, 1).

We want to avoid inference of latent variables, in this case indicator variables k de-
noting the mixture component responsible of producing each sample, because that would
make the privacy preserving inference more complicated, we will discuss more of this in
Chapter 6. Instead of augmenting the model with aforementioned latent variables we
perform inference directly on the marginal likelihood. Marginalizing the latent variable k
from our model yields the following likelihood

p(xi|π,µ, τ ) =
K∑

k=1

πk N (xi;µ
k, τ (k)I).

The posterior approximation q(π, µ, τ) = q(π)q(µ)q(τ) is fully factorised. q(π) is
parametrised using the softmax transformation from a diagonal covariance Gaussian while
q(µ) is Gaussian with a diagonal covariance and q(τ) is log-normal with a diagonal co-
variance.

The synthetic data used in experiments was drawn from the mixture of five spherical
multivariate Gaussian distributions with means [0, 0], [±2,±2] and covariance matrices
0.5I. Similar data has been used previously by Honkela et al. (2010) and Hensman et al.
(2012). We used 1000 samples from this mixture for training the model and 100 samples
to test the performance. We used both DPVI and DP-SGLD on this data. Performance
comparison was done by computing the predictive likelihoods for both algorithms with
several different epsilon values. We also show an example of the posterior distribution
that we learn from the above mixture model by using both DPVI and DP-SGLD.

Figure 5.5 shows the results of both DPVI and DP-SGLD algortihms. Green dots
represent the simulated data. Black dots represent the means of Gaussians and black
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spheres the covariance structure of each Gaussian, which in this case is spherical. The
other colored dots represent the posterior means we learn by using these private algo-
rithms. The covariance structure of each component is shown in a sphere with the same
color as the mean. We can see that DPVI finds one of the means almost exactly and 3
means out of 5 relatively well. The DP-SGLD algortihm on the other hand learns 2 of
the 5 means with very good accuracy but for some reason misses the (-2,2) and (-2,-2)
centered Gaussians almost completely.

In Figure 5.4 we can see that the DPVI algorithm performs almost as well as the non-
private version of DPVI even with relatively small epsilon values. The reason why DPVI
outperforms the DP-SGLD in predictive likelihood comparison could easily be explained
by the behaviour we saw in Figure 5.5. The DP-SGLD algorithm for some reason tends
to miss some of the mixture componens as well as the variances given by it tend to be
small. Therefore it is obvious that if we cover a wider range of the support of our mixture
model, we get better prediction likelihoods.

In the experiments, both DP-SGLD and DPVI used q = 0.03. The DP-SGLD algo-
rtihm was run for 150 iterations, whereas the DPVI was run for 1000 iterations. The
gradient clipping threshold for DPVI was set to ct = 1.0. For DPVI predictive likelihood
was approximated by Monte-Carlo integration using samples from the learned approx-
imate posterior. For the DP-SGLD, predictive likelihood was approximated using 100
samples after a burn-in period for this sampler as Wang et al. (2015) suggest. Non-
private results were obtained by setting σ = 0 in DPVI, using q = 0.01 and running the
algorithm for 2000 iterations.

40



10 1 100 101

tot

40

35

30

25

20

15

10

5

Pe
r E

xa
m

pl
e 

Pr
ed

ict
iv

e 
lik

el
ih

oo
d

GMM with synthetic data

Non DP
DP-SGLD
DPVI-MA
DPVI

Figure 5.4: Per example predictive likelihood vs. ε. For both the DP-SGLD and the
DPVI the curves show the mean of 10 runs of the algorithm with error bars denoting the
standard error of the mean.
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Figure 5.5: Approximate posterior predictive distribution for the Gaussian mixture model
learned with DPVI (top) and DP-SGLD (bottom). The DP-SGLD distribution is formed
as an average over the last 100 samples from the algorithm.
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Chapter 6

Discussion

The DPVI method proposed in this thesis provides a general framework for privacy pre-
serving variational inference. Because of the generality of DSVI and for the simplicity of
the automated version of it, the ADVI, our method could be applied to a wide range of
models. For example there is ongoing work on differentially private datasharing.

While DPVI performed well in our experiments there are still weaknesses that need
to be studied in future work. As we briefly mentioned in the Gaussian mixture model
experiment in Section 5, models with latent variables cause trouble for privacy. The
problem arises from the concept of differential privacy. This is simply because usually
there are as many latent variables as there are datapoints. Because differential privacy
provides indistinguishability between the individuals in the dataset it is easy to see that
if some variables are individual specific it is difficult to perturb them with strict enough
privacy guarantees and still maintain a good performance in learning. Perturbing these
kind of gradients would add huge amounts of noise to the latent variable updates. The
problem with latent variables can be easily avoided if our model allows us to integrate out
the latent variables. Another possible way to overcome such difficulty is to let a trusted
curator update the latent variables given the differentially private global variables. In
this setting the posterior distribution of the latent variables would never be released but
it would still be part of the optimization of the global variable posterior distribution.

Another of the weaknesses is the number of parameters to be tuned. In Chapter 4 we
gave some heuristics on how to tune the parameters, but in the end the only way to really
tune these parameters is by experimenting on different choices. In our experiments we saw
that even though the parameter tuning affects the results, the range of parameter values
that provide good performance is wide. Another problem is that because we can only
release the perturbed gradients, in order to maintain privacy guarantees, we cannot check
the convergence of the SGD. The clipping scheme that is applied to bound the sensitivity
of each individual gradient also causes trouble. One could think that upon convergence
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the effect of clipping would disappear as the total gradient would tend to zero. However
this is not true since the clipping scheme is applied to individual gradients that typically
do not disappear even at convergence. Therefore it is possible that clipping will change
the stationary points of the SGD algorithm.

While differential privacy has gained quite a lot attention in recent years, especially
in the theoretical point of view, it still has not been widely applied in practice. However,
recently big corporations such as Apple (Pease and Freudiger, 2016) and Google (Eland,
2015) have chosen to adopt differential privacy into some of their systems. Differential
privacy has also gained attention from public authorities. The United States Census
Bureau has recently awarded cooperative agreement for differential privacy research (U.S.
Census Bureau, 2016). In addition, the new Europe Union wide data protection legislation
GDPR (European Parliament, 2016), that will take effect in 2018 is going to change the
ways companies and institutions can store data and what they can release based on the
data. It is fair to say that in future differential privacy could be the industry standard
for privacy protection and therefore there is demand for such frameworks as DPVI that
are easy to implement and provide good performance.
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Chapter 7

Conclusions

In this thesis we have established a method for privacy preserving variational inference.
We combined modern techniques from variational Bayesian methods with the latest results
on differential privacy. The main theorems and techniques used in order to establish DPVI
are presented in this work. The proposed method is essentially a privacy preserving
extension of the popular DSVI method and therefore generalizes for a wide range of
models.

According to our experiments on two very different models, the DPVI algorithm per-
forms with accuracy close to non-private version of the DSVI. Our method was also
compared against the state-of-the-art method for privacy preserving posterior inference
the DP-SGLD. Our experiments show that DPVI outperforms DP-SGLD in both of the
learning tasks. For DPVI we have shown the results for two different ways of composing
privacy cost, the state-of-the-art moments accountant and the amplified version of the
advanced composition theorem.
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