
Learning Score-Optimal Chordal Markov Networks
via Branch and Bound

Kari Rantanen

MSc thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, September 27, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/132491566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Faculty of Science Department of Computer Science

Kari Rantanen

Learning Score-Optimal Chordal Markov Networks via Branch and Bound

Computer Science

MSc thesis September 27, 2017 54

Chordal Markov Networks, Bayesian Networks, Exact Structure Learning, Branch and Bound

Graphical models are commonly used to encode conditional independence assumptions between
random variables. Here we focus on undirected graphical models called chordal Markov
networks. Specifically, we will consider the chordal Markov network structure learning problem
(CMSL), where the aim is to find (or “learn”) a graph structure that best fits the given data
with respect to a given decomposable scoring function.

We introduce a branch and bound search algorithm for CMSL which represents chordal
Markov network structures as decomposable DAGs. We show how revisiting equivalent
solution candidates can be avoided in the search by detecting symmetries among graph
structures. For the symmetry breaking we apply specific rules by van Beek and Hoffman (CP
2015), and also propose a new rule that takes advantage of the special nature of decomposable
DAGs. In addition, we show how we can achieve on-the-fly score pruning for CMSL.

We also propose methods for obtaining strong upper bounds for CMSL that help us
close branches in the search tree. We implement a dynamic programming algorithm to find
the optimal Bayesian network structures and then use the scores of those graphs as upper
bounds. We also show how we can relax the requirement for decomposability in decomposable
DAGs in order to achieve even stronger upper bounds. Furthermore, we propose a method
for obtaining an initial lower bound in CMSL by turning a Bayesian network structure into a
chordal Markov network structure.

Empirically we show that our approach is competitive with the recently proposed CMSL
algorithms by being able to sometimes scale up to 20 variables within 24 hours with unbounded
treewidth. We also report that our branch and bound requires considerably less memory than
the fastest of the recently proposed algorithms for CMSL.
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1 Introduction

Many fields, such as machine learning, computational physics and cognitive
science, deal with different kinds of data, and the ability to access the
underlying probability distributions is often crucial [7]. However, with a large
number of variables, storing these distributions can take a lot of space, and
queries might be very inefficient to perform as well. The study of Graphical
models aims at providing tools for tackling these problems [1, 39, 25].

The key idea behind graphical models is to capture the conditional inde-
pendences of given random variables [23]. This is done by storing a graph
structure where each vertex corresponds to one of the variables and the
edges are used to encode the underlying dependencies. The graph can then
be used to reduce the size of factors that we need to represent the entire
joint probability distribution of the variables. This way we are often able to
compress an exponentially-sized probability distribution into a tractable-sized
representation [23]. The more accessible representation can also speed up
certain queries on the distribution.

There are several methods for constructing a graphical model. One of
them would be to apply formal knowledge, such as a system design, to
synthesize a model. It is also possible to take a more subjective route,
where a group of people uses their expertise to capture a situation into a
graphical model [7]. In both cases a good prior knowledge is needed about
the target to be modeled. However, here we focus on data-driven approaches,
where the graphical model is automatically learned based on given data,
such as medical or voting records [23]. Both the network structure (a graph
encoding the conditional independence assumptions) and the parametrization
(probabilities) can be learned from data. Here we focus exclusively on the
structure learning side.

Specifically, we consider the chordal Markov structure learning problem
(CMSL), where the aim is to find a specific type of undirected graphical
model that best fits given data [8, 40, 26, 25]. In literature chordal Markov
networks are sometimes referred as triangulated Markov random fields or
decomposable models.

The CMSL algorithms considered here will be score-based approaches. In the
score-based setting, we treat the structure learning task as an optimization
problem, where we try to find a network structure that maximizes a given
objective function [2]. The scoring function is constructed based on given
data so that the solutions to the optimization problem will be best-fitting
network structures for the data in terms of the scoring function. Scoring
functions, such as the ones considered in this work, provide a compromise
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between data fit and model complexity [23], and thereby aim at avoiding
overfitting, a typical problem in machine learning.

Finding a maximum likelihood chordal Markov network with bounded struc-
ture complexity is known to be NP-hard [31]. For this reason several Markov
chain Monte Carlo approaches have been proposed [27, 36, 16, 17]. CMSL
is very closely related to another well-known problem, Bayesian network
structure learning (BNSL) [23], but can appears to be computationally more
challenging. For example, a recent exact approach to CMSL, based on con-
straint optimization, did not scale up to 10 variables [5]. A similar approach
was also taken in [24] in the form of a direct integer programming encoding
for CMSL, but was not empirically evaluated in an exact setting. GOBNILP,
an efficient integer programming approach for BNSL, was expanded for
CMSL [2, 32]; the implementation scales up to 15 variables within an hour.
To the best of our knowledge, the currently fastest implemented algorithm
for CMSL is Junctor, a dynamic programming approach based on recursive
characterization of clique trees [20, 21]. In general, none of the recently pro-
posed algorithms for CMSL seem to be able to solve a 20-variable instance
within 24 hours, whereas any 20-variable BNSL instance can be solved within
one minute with dynamic programming, as we demonstrate in Section 4.

In this thesis we introduce a new algorithm for learning a score-optimal
chordal Markov networks. Although the ultimate output of our algorithm is
an undirected graph, we will instead work with decomposable DAGs (directed
acyclic graphs) which are an alternative representation form for chordal
Markov network structures. In this respect our approach is connected to
CPBayes, a recently proposed exact BNSL algorithm by van Beek and
Hoffmann [38], which specifically operates on DAGs. The main similarity
between our algorithm and CPBayes is that both of them utilize a branch
and bound search for finding an optimal network structure. However, the
branch and bounds are of very different nature, due to the different learning
problems being solved. Because of the properties of BNSL, CPBayes merely
searches for an optimal permutation of the variables, since the optimal graph
structure for each permutation is trivial to determine [38]. This is not the
case with CMSL, and as such merely searching over permutations does not
suffice. Instead, here we have to consider a larger variety of options, and so
we propose a dynamic programming algorithm that, within each search tree
node, determines these necessary options.

Van Beek and Hoffman [38] introduced several powerful score pruning rules
and symmetry-breaking constraints for BNSL, most of which are not applica-
ble to CMSL. However, we are able to utilize their depth constraints to rule
out some equivalent solutions from the search space. Futhermore, CPBayes
implements symmetry breaking for BNSL based on so-called covered edges,
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originally proposed by Chickering [3, 4], which is applicable to CMSL. Here
we propose a new symmetry-breaking rule for CMSL, which covers the cov-
ered edge rules, but allows for considerable amount of additional pruning by
taking advantage of the special properties of decomposable DAGs. We will
also introduce a method for achieving on-the-fly score pruning for CMSL.

In order to efficiently close branches in the search tree, we propose ways to
calculate strong upper bounds for CMSL. Since BNSL is currently much faster
to solve than CMSL, one of our strategies is to compute the scores of optimal
Bayesian network structures and then use those scores as upper bounds for
CMSL. For this purpose we implement a dynamic programming algorithm
by Silander and Myllymäki [30]. In addition, we show how to obtain even
stronger upper bounds by relaxing the requirement of decomposability in the
solutions. Finally, we propose a way for obtaining lower bounds for CMSL
by taking an optimal Bayesian network structure and then turning it into a
feasible decomposable DAG. Our empirical results suggest that the methods
proposed in this thesis form a way of learning chordal Markov networks that
is competitive with the recently proposed CMSL algorithms.

The structure of this thesis is as follows. Section 2 includes preliminary
definitions and concepts that are necessary for understanding the rest of the
thesis. Specifically, we will start by introducing Bayesian networks and the
problem of learning them in Section 2.1. Then, in Section 2.2, we will proceed
to introduce chordal Markov networks and the equivalent decomposable
models, and the problem of learning these structures. Section 2.3 introduces
clique trees, which are an alternative way for representing chordal Markov
network structures, and also provide insight to some of the properties of
decomposable models. In Section 2.4 we explain dynamic programming,
the essential algorithm paradigm that is used in various subroutines in our
branch and bound. We end the preliminaries in Section 2.5 by giving a brief
overview of the different approaches that have been developed for chordal
Markov network structure learning.

In Section 3 we introduce our approach for CMSL. First, we explain the core
branch and bound in Section 3.1. In Sections 3.2 and 3.3, we explain how
to reduce the search space with the use of symmetry-breaking constraints
and on-the-fly score pruning. Section 3.4 shows to calculate strong bounds
for CMSL. We end introducing our approach in Section 3.5 by providing
an example of how our algorithm behaves with an example instance, tying
together the concepts introduced in the preceding sections.

Section 4 contains the results of our empirical evaluation, benchmarking
our approach under different settings, and comparing its performance to the
fastest CMSL algorithms. Finally, we will give concluding remarks of our
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findings in Section 5.

A paper covering the contributions of this thesis, titled “Learning Chordal
Markov Networks via Branch and Bound”, has been accepted for publication
in the proceedings of the 30th Annual Conference on Neural Information
Processing Systems (NIPS 2017).
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2 Preliminaries

In this section we overview key concepts that will be used throughout the
thesis. Although the main subject of this thesis concerns the learning
of chordal Markov network structures, we will start by defining Bayesian
networks (BN). This is because we will represent chordal Markov networks
as structures that are actually a specialization of BN structures. Also, we
will make use of BN structure learning in our approach to CMSL.

2.1 Bayesian networks

In the scope of this thesis we will assume that Bayesian networks (and chordal
Markov networks) are constructed based on multivariate discrete data. Let
V = {v1, ..., vn} be a set of random variables and let Xi = {xi,1, . . . , xi,ki

}
denote the set of possible values for each vi ∈ V . We can represent the
data as a m× n data matrix D, where m is the sample size of the data [30].
That is, each of the n columns in D represent one of the variables, and each
row of the matrix is a sample; an n-vector assigning a value for each of the
variables [30]. For example, Di,j = x means that the ith sample of D assigns
value x ∈ Xj for variable vj .

The data can be synthetically generated or a collection of real-world observa-
tions. To give an concrete example, one of the data sets used in our empirical
evaluation, Voting, includes votes of each of the U.S. house of representatives
congressmen on different issues. Here each sample (row in the data matrix)
represents one of the 435 congressmen, whereas each variable (column in
the matrix) specifies an attribute attached to the congressman. The first
variable specifies whether the person was a republican or democrat, and the
following 16 variables state whether the person voted for or against a given
issue. However, in the context of this work we consider structure learning
which does not concern what the given dataset represents or what method
was used to gather the samples.

We will use the following definition for Bayesian networks [7].

Definition 1. Given a set of variables V , a Bayesian network (BN) is a
pair (G,P) where
- G = (V,E) is the network structure; a directed acyclic graph over V , and
- P is the network parametrization; a set of factors representing the joint
probability distribution of V .

Since the network structure contains one vertex corresponding to each of the
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variables of the network, we will be using the terms “variable” and “vertex”
interchangeably. We now shortly detail some basic graph-specific definitions.

Let G = (V,E) be a directed acyclic graph (DAG). We define the parent
set of v in G as paG(v) = {v′ : (v′, v) ∈ E}. That is, a vertex vi ∈ V is a
parent of vj ∈ V (vj is the child of vi) in G if the edge vi → vj exists. We
call vertex a source if it has no parents. If the vertex is not included in any
of the parent sets of other vertices, we call it a sink. Naturally, a vertex
cannot contain itself in its parent set. Also the acyclity of DAGs restricts
the parent set possibilities for vertices.

Example 1. Figure 1 is an example of a DAG containing six vertices. Call
this graph G. Now, for example, paG(v6) = {v1}, paG(v4) = {v2, v3} and
paG(v1) = ∅. The graph has one source node; v1, and three sink nodes; v5, v6
and v4.

The network parametrization of a BN is a set of conditional probability tables
(CPT), each of which stores the conditional probability distribution of one of
the variables [7]. The probability of any instantiation v1 = x1, . . . , vn = xn

can be factorized as

P(v1 = x1, . . . , vn = xn) =
n∏

i=1
P(vi = xi | v` = x` : v` ∈ paG(vi)),

where G is a Bayesian network structure containing vertices v1, . . . , vn. This
factorization encodes conditional independence relations according to d-
separation property [23].

Therefore, given a Bayesian network (G,P), each CPT for variable v ∈ V
only needs to store the probability distribution of v given all the possible
instantiations of paG(v) [7]. Source vertices are an exception since their
parent sets are empty; their CPTs only need to store marginal probabilities
of the corresponding variable getting its possible values.

Example 2. Consider the CPT in Table 1. Here we see, for example, that
P(v4 = true | v2 = true, v3 = false) = 0.9: That is, the probability for

v5

v1

v3

v2

v4

v6

Figure 1: A directed acyclic graph; a possible Bayesian network structure.
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v4 = true is 0.9 when we have v2 = true and v3 = false. Note that v2 must
always be either true or false; for this reason we must have

P(v4 = true | v2 = true, v3 = false)+P(v4 = false | v2 = true, v3 = false) = 1.

This implies P(v4 = false | v2 = true, v3 = false) = 0.1. Thus the probabilities
for v4 = false can be inferred and are not needed in the CPT.

Given data D over variables V , and a network structure G = (V,E),

P(D | G) =
∫
P
P(D | P, G) · P(P | G) dP

is the marginal likelihood of D given G [23], where P(D | P, G) is the
likelihood of the data given the Bayesian network (G,P), and P(P | G) is the
prior distribution of G given parameters P. In practice it is often necessary
to use a logarithmic value log P(D | G) of the marginal likelihood [5].

Now, when we want to find the network structure G that best fits the data
D, we aim to maximize the posterior probability of G given D [23]:

P(G | D) = P(D | G) · P(G)
P(D) ,

where P(D | G) is the marginal likelihood, P(G) is the prior probability of G
and P(D) is a constant normalizing factor that can be ignored when solving
the structure learning problem. The prior probabilities P(G) can be used to
favor graphs that have a preferred structure. However, when using uniform
priors the term P (G) can be ignored, and thus the optimization problem
reduces to maximizing the marginal likelihood [5]. That is, the aim is to find
a network structure G that maximizes log P(D | G).

Given a data matrix D over random variables V , log P(D | G) gives rise
to a decomposable scoring function that decomposes as a sum of local
scores which assign a real number (“score”) to each pair (v, S) where v ∈ V

v2 v3 v4 P(v4 | v2, v3)
false false true 0.6
false true true 0.5
true false true 0.9
true true true 0.2

Table 1: An example CPT for variable v4 in Figure 1, where the random
values v2, v3 and v4 take values from the set {true, false}.
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and S ⊆ V \ {v}. That is, the scoring function assigns a value to each
potential parent set choice that could occur in a BN structure. Concretely,
the decomposability of the scoring function means that we can calculate
the global score of a graph based on the parent sets of its vertices [2]. The
scores are can be defined in such a way that finding a graph with the highest
score equals to finding the network structure that maximizes the posterior
probability [23]. There are several types of scoring functions to choose from,
such as BDe(u), BIC and AIC [30]. However, we will not go into further
details on how scoring functions are constructed, because we will assume in
the context of this work that the scoring function is given to the structure
learning algorithms as input.

Given a scoring function s over a set of variables V , we will use s(v, S) to
denote the score of variable v ∈ V having S ⊆ V \ {v} as its parent set. We
are now ready to define the score of a Bayesian network structure.

Definition 2. Let V = {v1, ..., vn} be a set of variables and let s be a
decomposable scoring function over V . Given a Bayesian network structure
G = (V,E), score of G is

s(G) =
∑
v∈V

s(v, paG(v)).

In words, the score of a Bayesian network structure is the sum of the scores
of the parent set choices of the vertices in the DAG.

A BNSL instance is a pair (V, s), where V = {v1, . . . , vn} is a set of variables
and s is a decomposable scoring function over V . In addition we may be
given a parent set bound b ∈ N, 0 ≤ b < n. The bound constrains that each
vertex in a feasible graph can have at most than b parents. That is, given
G = (V,E), we require paG(v) ≤ b for all v ∈ V . Intuitively, a small value for
b results in sparser graphs and also in a smaller number of possible solution
candidates for the instance.

Definition 3. Given a BNSL instance I = (V, s), the Bayesian network
structure learning (BNSL) problem is the task of finding a directed acyclic
graph G = (V,E) such that

G = arg max
G′∈G

s(G′),

where G is the collection of all possible DAGs over V . Such a G is called an
optimal solution for I.

It should be noted that for many scoring functions there may exist several
Bayesian network structures with equal score [30]. Thus it is sufficient to
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find any network structure that maximizes the scoring function. For this
reason we will mainly use the term an optimal solution. The same holds
true for chordal Markov network structures.

We end this section by giving a brief overview of exact algorithms for BNSL.

Several branch and bound based approaches for BNSL have been proposed
over the years. The first exact algorithm for BNSL was introduced by
Suzuki [33] in 1996, which was a depth-first branch and bound that used
Minimum Description Length as the scoring function. This work was extended
with better bounding methods by Tian [37]. Depth-first branch and bounds
were also proposed by Malone and Yuan [29] and van Beek and Hoffmann [38],
latter of which used constraint programming to reduce the BNSL search
space. Fan and Yuan [13] developed an improved method to calculate lower
bounds in branch and bound based BNSL approaches, whereas Suzuki [34]
showed how to achieve tighter upper bounds.

A dynamic programming based BNSL algorithm was developed by Silander
and Myllymäki [30], inspired by an earlier approach by Koivisto and Sood [22].
Yuan and Malone [41] showed how Bayesian networks could be learned using
an A*-like approach, where BNSL is viewed as the task of finding the
shortest path in an implicit state-space search graph [41]. Jaakkola et al. [18]
proposed using linear programming relaxations for learning optimal Bayesian
network structures. A linear programming based approach was also taken
later by Cussens and Bartlett [32], resulting in one of the fastest BNSL
implementations at the moment [2].

2.2 Chordal Markov networks

In this section we will overview chordal Markov networks and the related
optimization problem.

Let Gu = (V,E) be an undirected graph. We say that Gu satisfies the
global Markov property if and only if the following holds true: For each
Sa, Sb, Sc ⊂ V , the sets of variables Sa and Sc are conditionally independent
given Sb if and only if every path from a vertex in Sa to a vertex in Sc

goes through a vertex in Sb [5]. For example, in Figure 2, Sa = {v5, v6} is
conditionally independent of Sc = {v4} given Sb = {v2, v3}.

A cycle has a chord if there is an edge between two non-consecutive vertices
of the cycle [20]. Furthermore, an undirected graph is chordal if all its cycles
with 4 or more vertices contain a chord.

Definition 4. Given a set of variables V, a chordal Markov network is a
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pair (G,P) where
- Gu = (V,E) is the network structure; a chordal undirected graph, and
- P is the network parametrization; a set of factors representing the joint
probability distribution of V .

We will now define decomposable DAGs, which are one way of representing
chordal Markov network structures. Decomposable DAGs are very similar to
Bayesian network structures, but use an additional concept of an immorality
to restrict the set of possible graphs.

Definition 5. Let G = (V,E) be a DAG where (p, v) ∈ E and (p′, v) ∈ E
for v, p, p′ ∈ V, p 6= p′. We say that p and p′ are an immorality in G if and
only if we have both (p, p′) /∈ E and (p′, p) /∈ E.

In words, a pair of vertices are an immorality in DAG if and only if (1) there
is no edge between the vertices, and (2) the vertices share a common child
vertex.

Definition 6. Let G = (V,E) be a DAG. If no pair of vertices v, v′ ∈ V
causes an immorality in G, then we say that G is a decomposable DAG.

Given any DAG G, we can construct its undirected version Gu by ignoring
the edge directions. An undirected graph like this is called the skeleton
of G. Now, if G is a decomposable DAG, then Gu is a chordal Markov
network structure [8, 23]. Thus, it is possible to work with directed graphs
when searching for optimal chordal Markov network structures. For example,
GOBNILP uses this strategy for CMSL [2].

Decomposable scoring functions are constructed so that two DAGs have the
same score if they share a same skeleton and contain no immoralities [32].
Hence such graphs are equivalent in terms of their score.

Definition 7. Let G = (V,E) and G′ = (V,E′) be decomposable DAGs and
let Gu and Gu′ be their skeletons, respectively. If Gu = Gu′, then G and G′
are equivalent.

A caveat of working with directed graphs is that for a chordal Markov network
structure of n vertices, there can exist up to exponential number of corre-
sponding decomposable DAGs with respect to the number of vertices. This
happens, for example, when there is an edge between each pair of vertices (i.e.
the graph is complete). For this reason the space of possible decomposable
DAGs is considerably larger than the space of their skeletons. However, in
Section 3.2 we introduce powerful ways of breaking these symmetries.
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Example 3. The graph in Figure 2 is the skeleton of the graph in Figure 1.
Since the graph in Figure 1 is decomposable, this is a chordal Markov network
structure. If we changed the edge v1 → v2 into v1 ← v2 in Figure 1, we
would still have a decomposable model matching the graph above. However,
we cannot change the edge v2 → v4 into v2 ← v4 in Figure 1 because then we
would have an immorality between v1 and v4, and thus the result would no
longer be a decomposable DAG.

A CMSL instance is a pair (V, s), where V = {v1, . . . , vn} is a set of variables
and s is a decomposable scoring function over V .

Definition 8. Given a CMSL instance I = (V, s), The chordal Markov
network structure learning problem is the task of finding a decomposable DAG
G such that

G = arg max
G′∈G

s(G′),

where G is the collection of all possible decomposable DAGs over V . G is
called an optimal solution to I.

As the set of possible decomposable DAGs is a subset of the set of possible
DAGs (for a given number of variables), one might assume that CMSL would
be computationally less challenging than BNSL. However, this is not the case;
for instance, when the order of the vertices is fixed, the optimal Bayesian
network structure (following that order) is unambiguous, and can be inferred
in linear time with respect to the number of vertices [30, 38]. This is because
greedily selecting the highest-scoring parent sets for each vertex (following
the order) is enough; the order itself guarantees acyclity, which is the only
requirement for feasibility in BNSL [18]. In CMSL, finding the optimal
network is non-trivial even when the order of the vertices is fixed. This is
because, due to the avoidance of immoralities, the set of possible parent set
choices for a vertex heavily depends on the parent set choices that were made
for the preceding vertices in the ordering.

Furthermore, approaches to BNSL often make use of score-pruning rules [11,
10] which, in contrast to CMSL, work under the assumption that immoralities

v5

v1

v3

v2

v4

v6

Figure 2: An undirected graph that is chordal.
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are allowed. These rules typically allow for pruning out parent sets whose
subsets satisfy a given criteria, so that the parent set could always be replaced
by its subset [11, 10]. In Section 3.2 we will show that certain BNSL pruning
rules are not applicable in the context of CMSL

2.3 Clique trees

In this section we will define an alternative representation for chordal Markov
network structures based on clique trees [21]. This is because clique trees
will be used in a proof later in the thesis, and because we will be comparing
our CMSL algorithm to an algorithm that operates on clique trees.

We will start by providing the following definition for clique [20].

Definition 9. Let (V,E) be an undirected graph and let C ⊆ V be a subset
of the vertices. If for all v, v′ ∈ C, v 6= v′ we have {v, v′} ∈ E, then we call
C a clique.

In words, a clique is a set of vertices such that there is an edge between each
pair of the vertices [20].

Definition 10. Let G = (V,E) be an undirected graph. A clique tree
T = (V, E) over G is a tree where each node Ci ∈ V is a clique of G, and
the following conditions hold true.
I.

⋃
iCi = V ,

II. if {v`, vk} ∈ E, then {v`, vk} ⊆ Ci for some Ci ∈ V, and
III. given Ci, Cj , Ck ∈ V, if there is a path from Ci to Ck through Cj in T ,
then we must have Ci ∩ Ck ⊆ Cj. (The running intersection property)

Note that also decomposable DAGs represent chordal Markov network struc-
tures based on their cliques. Consider any decomposable DAG G = (V,E)
and each v ∈ V . We must have paG(v)\{v′} ⊆ paG(v′) for some v′ ∈ paG(v).
In words, the acyclity and the lack of immoralities require that each parent
set contains a vertex that is a child vertex to all the other vertices in the
parent set. This implies that each {v}∪paG(v) forms a clique in the skeleton
of G.

In the discussion of Sections 2.1 and 2.2 we considered scoring functions that
assigned scores to pairs of a variable and its possible parent set. However,
we usually do not work in terms of parent sets when using the clique tree
representation. We can calculate the score of a clique C = {v1, . . . , vn} by

s(C) =
n∑

i=1
s(vi, {vi+1, . . . , vn}),
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which follows from the earlier observation about the relationship between
cliques and parent sets in decomposable DAGs.

The intersections between the cliques of a clique tree are called separators [5].
Given set of cliques C = {C1, ..., Cn} of a chordal Markov network structure
G and the set of corresponding separators S = {S1, ..., Sn−1}, we obtain the
following alternative way of calculating the score of G [20]:

s(G) =
∑
C∈C

s(C)−
∑
S∈S

s(S).

That is, the score of the graph is the product of the clique scores, subtracted
by the product of the separators scores [8, 12]. Thus clique trees offer an
alternative way to decomposable DAGs for representing chordal Markov
network structures.

Sometimes we are given a CMSL instance with a treewidth bound. Clique
trees allow us to define the treewidth of an undirected graph in the following
way [23].

Definition 11. Let Gu = (V,Eu) be an undirected graph. Given all the
possible clique trees T1 = {V1, E1}, . . . , Tn = {Vn, En} over Gu, the treewidth
of Gu is

TW (Gu) = min
i=1,...,n

max
C∈Ti

|C| − 1.

In words, the treewidth of an undirected graph Gu is the minimum width over
all the possible clique trees over Gu. The width of a clique tree is the size of
its largest clique minus 1. Bounding the treewidth of a CMSL instance means
that a solution graph is considered feasible only if its treewidth does not
exceed a given constant [20]. This is achieved by restricting the maximum
parent set size.

{v1, v5}

{v1, v6}

{v1, v2, v3} {v2, v3, v4}

{v1}

{v1}

{v2, v3}

Figure 3: A clique tree representation of the undirected graph in Figure 2.
The node labels represent the cliques, and the edge labels represent the
separators between the cliques..
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2.4 Dynamic programming

In this section we explain briefly the well-known generic algorithmic technique
of dynamic programming [6], which is used heavily in various sub-procedures
in the CMSL approach presented in this work.

Dynamic programming (DP) is a method of utilizing a divide and conquer
strategy on a given problem and storing in memory (caching) already visited
partial solutions [6]. In divide and conquer, we break the problem at hand
into smaller and smaller subproblems, until we reach problems (called base
cases) that are trivial to solve. The main challenge is to construct solutions
to larger subproblems based on the solutions to smaller subproblems [6].
Using this strategy, we will finally obtain the solution to the original (full)
problem.

Each time we solve a subproblem, we store its solution in a data structure
called DP table as a pair of input and solution. The idea is to be able to
efficiently retrieve any previously-computed solution using the input as the
key [6]. An efficient way of implementing a DP table is to use a simple array
that provides unit-time accesses and updates. However, this requires that
all the input values have distinguished non-negative integer equivalences
(i.e. can be directly used as unique array indexes). Also, the smallest and
largest of these integers must be within a reasonable distance from each
other; otherwise we might need to allocate an array that exceeds our memory
capacity. One alternative would be to use a hash map, which could potentially
provide an amortized unit-time accesses and updates.

Caching is an essential part of dynamic programming since it helps us avoid
solving the same subproblems multiple times. In fact, ideally we need to
solve each subproblem only once. For more complex problems, it is also
possible to define multiple types of subproblems and therefore multiple
DP-tables [20, 21].

We will now address how to efficiently cache subsets, since this happens very
often with DP algorithms that work on graphs. Let V = {v1, ..., vn} be the
set of all vertices of a given BNSL/CMSL instance and let IW (vi ∈ V ) be an
indicator variable for W ⊆ V where IW (vi) = 1 iff vi ∈ W and IW (vi) = 0
iff vi /∈W . Now, we can represent any W ⊆ V with a non-negative integer
n∑

i=1
2i−1 · IW (vi). These numbers are unique, and as such they can be used

as array indexes. This requires Θ(2n) memory for the DP table.

For the sake of simplicity, the pseudocodes of the DP algorithms that we
will introduce in the coming sections will not include the caching part. For
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this reason we will now represent a straight-forward method for adding the
caching to those algorithms.

Let I1, ..., In and O1, ..., Om be abstract sets, and let f : I → O be a function
such that I = {(i1, ..., in) : i1 ∈ I1, ..., in ∈ In} is the set of possible inputs for
f and O = {(o1, ..., om) : o1 ∈ O1, ..., om ∈ Om} is the set of possible outputs
for f . Now, we will construct g; a cached version of f , in the following
fashion.

1. Initialize an empty DP-table D which is capable of storing the values
from {(i, o) : i ∈ I, o ∈ O}. We use D[i] = o to denote the values in D
for i ∈ I, o ∈ O.

2. Construct function g : I → O as follows. In the beginning of g(i ∈ I)
we will check if the value D[i] exists, and if so, let g(i) = D[i]. Otherwise,
we compute the solution o ∈ O like in f , but by replacing all the calls
to f in the recursion with calls to g. Finally, we let g(i) = D[i] = o.

Example 4. Let Fibonacci : N → N be the following a algorithm to
calculate Fibonacci numbers.

1: function Fibonacci(n)
2: if n ≤ 1 then return n
3: return Fibonacci(n− 1) + Fibonacci(n− 2)
4: end function

In this classic example we can see that the problem is being divided into
smaller subproblems, and the solutions from those are then added up get a
solution to a larger subproblem. The base case is at n ≤ 1. As for the time
complexity, the recursion gets constantly divided into two heavily-overlapping
branches, which implies O(2n).

Now, given a DP-table D, we can construct the following DP algorithm
DP-Fibonacci:

1: function DP-Fibonacci(n)
2: if D[n] does not exist yet then
3: if n ≤ 1 then return n
4: D[n]← DP-Fibonacci(n− 1) + DP-Fibonacci(n− 2)
5: end if
6: return D[n]
7: end function
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Here the time complexity is O(n) since each value DP-Fibonacci(0) . . .
DP-Fibonacci(n) is computed only once.

2.5 Exact algorithms for CMSL

In this section we give a brief overview of algorithms that have been developed
for score-optimal chordal Markov network structure learning.

Solving CMSL instances is possible with GOBNILP, one of the top approaches
for Bayesian network structure learning [32]. GOBNILP implements a branch-
and-cut approach where BNSL is modeled as a series of relaxed integer
programs that are then solved with the SCIP optimization framework [2].
The relaxations are based on the observation that acyclity is the reason why
BNSL is computationally hard, thus by allowing cycles one can get quickly
(mostly infeasible) solutions to the problem [2]. These solutions are then used
to guide the search by gradually deriving new constraints (cutting planes)
until the optimal network structure is found. The program has an option for
disallowing immoralities from the solutions, thus providing a way of learning
network structures that are equivalent to chordal Markov networks [2]. Based
on our empirical evaluation (Section 4), GOBNILP scales up to 15 variables
within an hour with unbounded treewidth.

Corander et al. [5] and Janhunen et al. [19] developed a different approach
for CMSL, based on creating a set of logical constraints to convey the
properties of a desired solution. These constraints are then given to an
external solver which eventually terminates with the optimal solution to
the learning problem. The authors experimented with multiple ways to
represent the constraints, including maximum satisfiability, satisfiability
modulo theories and answer-set programming [5].

To obtain efficient encodings, the following balancing condition was intro-
duced: A clique graph is balanced if for all vertices the number of cliques
containing the vertex is one higher than the number of edges attached to that
vertex [5]. Since all the balanced spanning trees of a clique graph have the
same score, the balancing constraint is used to prune considerable amount
of equivalent solutions from the search space [5]. This strategy allowed their
approach to scale up to 8 variables with unbounded treewidth [19].

A similar approach to that of Corander et al. [5] was also provided by Kumar
and Bach [24] in the form of direct integer programming, but the method
was not empirically evaluated in an exact setting.

Most recently, Kangas et al. [20, 21] developed a dynamic programming
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algorithm Junctor for learning chordal Markov network structures. Junctor
divides CMSL into the following three types of subproblems [20].

1. Given a separator S in a clique tree and a set of unassigned vertices U ,
find a clique S ⊂ C ⊆ S ∪U that, if added to the tree, would lead to a
locally optimal solution.

2. Given a clique C in a clique tree and a set of unassigned vertices U , find
a way to partition U into subsets R1, ..., Rk ⊆ U so that each subset
corresponds to a separate branch in the tree and that the partitioning
would lead to a locally optimal solution.

3. Given a clique C in a clique tree and a set of unassigned vertices R,
find a separator S ⊂ C that, if was used by the tree, would lead to a
locally optimal solution.

The three types of subproblems are able to aid each other: We can solve
problem 1 by using the solutions to problem 2, solve 2 with solutions to 3
and solve 3 with solutions to 1. This leads to a recursive characterization of
clique trees, where the globally optimal solution is found by solving problem
1 with S = ∅ and U being the set of variables of the CMSL instance [20].
Furthermore, Junctor uses three memoization tables, one for each subproblem,
to cache the scores of already-visited partial solutions [20]. Hence, even
thought Junctor has to iterate through all the possible solution candidates,
the caching helps to avoid computing same tree structures multiple times.
The program is also likely to benefit from its relatively simple nature which
provides it a minimal performance overhead.

Junctor has Ω(4n) time complexity and Ω(3n) space complexity, where n
is the number of variables [20]. Due to the dynamic programming, the
algorithm offers extremely consistent running times; in our empirical tests it
is able to solve any 17-variable instance within an hour and any 19-variable
instance within 24 hours. It is one of the currently fastest practical algorithms
for CMSL when the treewidth of the instances is not bounded [20]. On the
other hand, when a given treewidth bound is low enough, Junctor is often
outperformed by GOBNILP [20].
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3 Branch and bound for CMSL

In this section we present details on our branch and bound approach to
CMSL. We start with an overview of the search algorithm, and then explain
how we apply symmetry breaking, make use of dynamic programming for
computing parent set choices during search, and obtain strong bounds for
pruning the search tree.

3.1 The branch and bound

In general it is possible to gradually construct a same DAG in multiple
different ways by adding the vertices and edges to it in different order.
Clearly, the search would be unnecessarily inefficient if identical solution
candidates would be repeatedly considered. Thus we will define ordered
decomposable DAGs which encode the precise order in which a graph was
constructed during the search. This information can then be used to prune
the search space by identifying symmetries (see Section 3.2).

Definition 12. G = (V,E, π) is an ordered decomposable DAG over variables
V = {v1, . . . , vn} if and only if (V,E) is a decomposable DAG and π :
{1...n} → {1...n} a total order over V such that (vi, vj) ∈ E only if π−1(i) <
π−1(j) for all vi, vj ∈ V .

In words, ordered decomposable DAGs forbid any edge vi → vj where vj

precedes vi in the ordering.

Example 5. Let G = (V,E, π) be the ordered decomposable DAG represented
in Figure 4. Because the graph contains the edge v1 → v3, we must have
π−1(1) < π−1(3) (by Definition 12). Similarly we must have π−1(1) < π−1(4),
π−1(4) < π−1(5) and π−1(4) < π−1(2). Thus one of the possible orderings π
for G is v1 ≺ v4 ≺ v5 ≺ v3 ≺ v2.

v1v3

v5

v4v2

Figure 4: A decomposable DAG where the order of the vertices can be
ambiguous.
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Partial solutions during search are hence ordered decomposable DAGs, which
are extended by adding a parent set choice (vk, P ), i.e., adding the new node
vk and edges from each of its parents in P (already in the DAG) to vk.

Definition 13. Let U = {v1, . . . , vn} be a set of variables, and let G =
(V,E, π) be an ordered decomposable DAG such that V ∩U = ∅. Given vk ∈ U
and P ⊆ V , we say that the ordered decomposable DAG G′ = (V ′, E′, π′) is
G with the parent set choice (vk, P ) if the following conditions hold.

1. V ′ = V ∪ {vk}.
2. E′ = E ∪

⋃
v′∈P {(v′, vk)}.

3. We have π′(i) = π(i) for all i = 1...|V |, and π′(|V |+ 1) = k.

Algorithm 1 represents the core functionality of the branch and bound. The
recursive function takes two arguments; the remaining vertices of the problem
instance, U , and the current partial solution G = (V,E, π). In addition we
keep stored a best lower bound solution G∗, which is the highest-scoring
solution that has been found so far. Thus, at the end of the search, G∗ is
an optimal solution. During the search we use G∗ for bounding as further
detailed in Section 3.4.2.

In the loop on line 7 we branch with all the necessary parent set choices for
the current partial solution: The procedure ParentSetChoices(U,G) and
the related symmetry breaking are explained in Sections 3.2 and 3.3. We sort
the parent set choices into decreasing order based on their score, so that (v, P )
is tried before (v′, P ′) if s(v, P ) > s(v′, P ′), where v, v′ ∈ U and P, P ′ ⊆ V .
This is done to focus the search first to the most promising branches for finding
an optimal solution. When U = ∅, we have ParentSetChoices(U,G) = ∅,
and so the current branch gets terminated.

Choosing the parent set becomes trivial when U contains only one vertex.
In this case future immoralities are not a concern, and thus it is sufficient to
greedily select the highest-scoring available parent set for the final vertex.
When the parent sets for each vertex are stored in segment trees based on
their score, it is possible to choose the last parent set in O(n) time, where
n is the number of vertices of the problem instance. This is achieved by
checking the highest-scoring subset within each of the cliques in the partial
solution, very similarly to the technique used later in Section 3.4.1. This is
faster than iterating through all the available parent set choices for the last
vertex, which requires up to O(2n−1) time.
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Algorithm 1 The core branch and bound search.
1: function BranchAndBound(U,G = (V,E, π))
2: if U = ∅ and s(G∗) < s(G) then
3: G∗ ← G . Update the lower bound if improved.
4: end if
5: if this branch cannot improve LB then return . Backtrack
6: for (vi, P ) ∈ ParentSetChoices(U,G) do . Iterate the current
7: parent set choices.
8: Let G′ = (V ′, E′, π′) be G with the parent set choice (vi, P ).
9: BranchAndBound(U \ {vi}, G′) . Continue the search.

10: end for
11: end function

3.2 Symmetry breaking

We continue by proposing symmetry breaking for the space of ordered
decomposable DAGs.

Similarly as van Beek and Hoffmann [38] for BNSL, we define the depths of
vertices as follows.

Definition 14. Let G = (V,E, π) be an ordered decomposable DAG. The
depth of v ∈ V in G is

d(G, v) =

 0 if paG(v) = ∅,
max

v′∈paG(v)
d(G, v′) + 1 otherwise.

Definition 15. The depths of G are ordered, if for all vi, vj ∈ V where
π−1(i) < π−1(j), the following conditions hold.

1. d(G, vi) ≤ d(G, vj).
2. If d(G, vi) = d(G, vj), then i < j.

In words, condition 1 of Definition 15 states that vertices, which come earlier
in the ordering, cannot have a larger depth than the vertices that come
later in the ordering. That is, the depths are monotonically increasing with
respect to the ordering function. Condition 2 states that if two vertices have
the same depth, they must be ordered lexicographically.

Example 6. Let G = (V,E, π) be the ordered decomposable DAG represented
in Figure 4. We have d(G, v1) = 0, d(G, v4) = 1, d(G, v3) = 1, d(G, v2) = 2
and d(G, v5) = 2. When we require the depths of G to be ordered (Defini-
tion 15), we can infer the exact order of the vertices as follows.
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Condition 1 implies that π−1(1) = 1, π−1(4) < π−1(5), π−1(4) < π−1(2),
π−1(3) < π−1(5) and π−1(3) < π−1(2). Condition 2 implies that π−1(3) <
π−1(4) and π−1(2) < π−1(5). Therefore the order of the vertices must be
v1 ≺ v3 ≺ v4 ≺ v2 ≺ v5.

Chickering [3, 4] proposed using so-called covered edges to detect equivalences
between Bayesian network structures. This technique was implemented in
the form of symmetry-breaking constraints by van Beek and Hoffmann [38]
to reduce the search space in their BNSL approach. Here we will introduce a
concept of preferred vertex order, which is a generalization of covered edges,
and only works for decomposable DAGs.
Definition 16. Let G = (V,E, π) be an ordered decomposable DAG. A pair
vi, vj ∈ V violates the preferred vertex order in G if the following conditions
hold.

1. i > j.
2. paG(vi) ⊆ paG(vj).
3. There is a path from vi to vj in G.

Example 7. Consider Figure 5. In the graph (a) we have paG(v3) ⊆ paG(v1)
and paG(v3) ⊆ paG(v4), and there are paths from v3 to both v1 and v2. Thus
the pairs (v1, v3) and (v2, v3) violate the preferred vertex order, and graph
(a) would get pruned.

In graph (b) we see that the vertices v3 and v2 are the only case where there
is a directed path to a lexicographically smaller vertex (Conditions 1 and 3
of Definition 16). However, as we have paG(v3) = {v1} 6⊆ {v3} = paG(v2),
the pair (v2, v3) does not violate the preferred vertex order. Thus the graph
(b) would not get pruned.

The graphs are equivalent, because they share the same skeleton and neither
contains immoralities. In this case the only difference between the graphs

(a)

v3

v1 v2

v4
(b)

v3

v1 v2

v4

Figure 5: An example of fixing a violation of preferred vertex order in a
DAG by flipping an edge.
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is the direction of the edge between v1 and v3. In general equivalent graphs
can differ by multiple edges, resulting in exponential number of equivalent
graphs with respect to the number of vertices. This highlights the importance
of breaking symmetries.

Next we will show that it is justified to use the concept of preferred vertex
order to prune the search space without dismissing an optimal solution along
the way. We start by defining a way to (lexicographically) compare total
orders.

Definition 17. Let V = {v1, ..., vn} be a set of vertices and let π and π′
be total orders over V . Let k = min{i | π(i) 6= π′(i)} be the first difference
between the orders. We denote π = π′ if no such difference exists. Otherwise
π < π′ if and only if π(k) < π′(k).

We will now introduce a lemma that is used in the proof. The following
lemma establishes that if a violation of the preferred order exists, we are able
to fix it so that the lexicographical value of the resulting graph increases in
the process.

Lemma 1. Let G = (V,E, π) be an ordered decomposable DAG. If there
exists any vi, vj ∈ V such that the pair (vi, vj) violates the preferred vertex
order in G, then there exists an ordered decomposable DAG G′ = (V,E′, π′)
where

1. G′ belongs to the same equivalence class with G,
2. the pair (vi, vj) does not violate the preferred vertex order in G′, and
3. π < π′.

Proof. We begin by defining a directed clique tree C = (V, E) over G.

Given vk ∈ V , let Ck = paG(vk)∪{vk} be the clique defined by vk in G. The
nodes of C are these cliques; we also add an empty set as a clique to make sure
the cliques form a tree (and not a forest). Formally, V = {Ck : vk ∈ V }∪{∅}.

Given vk ∈ V where paG(vk) 6= ∅, let φk = argmaxv`∈paG(vk)π
−1(`) denote

the parent of vk in G that is in the least significant position in π. Now, the
edges of C are

E = {(∅, Ck) : Ck = {vk}, vk ∈ V } ∪
{(C`, Ck} : v` = φk, Ck 6= {vk}, vk ∈ V }.

In words, if vk ∈ V is a source vertex in G (i.e. Ck = {vk}), then the parent
of Ck is ∅ in C. Otherwise (i.e Ck 6= {vk}) the parent of Ck is C`, where v`
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is the closest vertex to vk in order π that satisfies C` ∩ paG(vk) 6= ∅. We see
that all the requirements for clique trees (Definition 10) hold for C:

(I)
⋃

C∈V C = V .

(II) If {v`, vk} ∈ E, then either {v`, vk} ⊆ Ck or {v`, vk} ⊆ C`.

(III) Due to the decomposability of G, we have Ca ∩ Cc ⊆ Cb on any path
from Ca to Cc through Cb (the running intersection property).

Now, assume that there exists vi, vj ∈ V such that the pair (vi, vj) violates
the preferred vertex order in G; that is, we have i > j, paG(vi) ⊆ paG(vj)
and a path from vi to vj in G. This means that there is a path from Ci to
Cj in C as well.

Let P ∈ V be the parent node of Ci in C. We see that Cj exists in a subtree
T of C, which is separated from rest of C by P , and where Ci is the root
node. Let T ′ be a new clique tree, which is like T , but redirected so that Cj

is the root node of T ′. Let C′ be a new clique tree, which is like C, but T is
replaced with T ′.

We show that C′ is a valid clique tree. First of all, the nodes (cliques) of C′
are exactly the same as in C, so C′ clearly satisfies the requirements I and II.
As for the requirement III, consider the non-trivial case where Ca, Cb ∈ C
have a path from Ca to Cb through Ci in C. This means vi /∈ Ca (due to the
way C was constructed), and so we get

Ca ∩ Cb ⊆ Ci → Ca ∩ Cb ⊆ Ci \ {vi}
→ Ca ∩ Cb ⊆ paG(vi) ⊆

Def. 3 (2)
paG(vj) ⊆ Cj .

Therefore the running intersection property holds for C′.

Let π̂ be the total order by which C′ is ordered. Let G′ = (V,E′, π̂) be a new
ordered decomposable DAG that is equivalent to G, but where the edges E′
are arranged to follow the order π̂.

Finally, we see that G′ satisfies the conditions of the theorem:

1. The cliques of G′ are identical to that of G, so G′ belongs to the same
equivalence class with G.

2. We have π̂−1(j) < π̂−1(i), and therefore there is no path from vi to
vj in G′. Thus the pair (vi, vj) does not violate the preferred vertex
order in G′.
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3. Let o = π−1(i). We have π̂(o) = j < i = π(o). Furthermore, the
change from T to T ′ in C′ did not affect any vertex whose position
was earlier than o. Therefore π̂(k) = π(k) for all k = 1...(o− 1). This
implies π̂ < π.

We are now ready to introduce the following theorem that justifies the use
of preferred vertex order to prune the search space. We show here that even
if fixing one violation introduces new violations, only a finite number of
steps are needed to obtain a graph with no violations, since each step can
be performed so that the lexicographical value of the solution increases (by
Lemma 1).

Theorem 1. Let G = (V,E, π) be an ordered decomposable DAG. There
exists an ordered decomposable DAG G′ = (V,E′, π′) that is equivalent to
G, but where for all vi, vj ∈ V the pair (vi, vj) does not violate the preferred
vertex order in G′.

Proof. Consider the following procedure for finding G′:

1. Select vi, vj ∈ V where the pair (vi, vj) violates the preferred vertex
order in G. If there are no such vertices, assign G′ ← G and terminate.

2. Let π be the total order of the vertices of G. Construct an ordered
decomposable DAG Ĝ = (V, Ê, π′), such that
(I) the pair (vi, vj) does not violate the preferred vertex order in Ĝ,
(II) Ĝ belongs to the same equivalent class with G and
(III) π′ < π.
Lemma 1 proves that Ĝ can be constructed from G.

3. Assign G← Ĝ and return to step 1.

It is clear that when the procedure terminates, G′ belongs to same equivalence
class with G and there are no violations of the preferred vertex order in G′.
We also see that the total order of G (i.e. π) is lexicographically strictly
decreasing every time the step 3 is reached. There are finite amount of
possible permutations (total orders) and therefore the procedure converges.
The existence of this procedure and its correctness proves that G′ exists.

Mapping to practice, Theorem 1 allows for very effectively pruning out all
symmetric solutions but the one not violating the preferred vertex order
within our branch and bound approach.
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The concept of preferred vertex order implicitly forces the lexicographically
smallest vertex to be a source vertex in the graph that contains it. This
can be seen as follows. Consider any nonempty directed graph G = (V,E)
where the lexicographically smallest vertex is v1 ∈ V . Now, if v1 ∈ V is not
a source, then v1 exists in a subgraph of G where a vertex vi ∈ V is the
source. Clearly this means that

1. i > 1,
2. paG(vi) = ∅ ⊆ paG(v1) and
3. there is a path from vi to v1.

Thus the pair (vi, v1) violates the preferred vertex order in G.

Note that “violates the preferred vertex order” concerns the order in which the
vertices are in the underlying DAG, whereas “depths are ordered” concerns
the order by which a solution was constructed. We use the former to prune
whole solution candidates from the search space, and the latter to ensure
that no solution candidate is seen twice during search.

Intuitively, the smaller the total order of the partial solution is (Definition 17),
the less likely is adding a new vertex to the solution to cause a violation of
the preferred vertex order. For example, if a solution is constructed during
the search by adding the vertices in lexicographic order (v1, v2, . . .), then the
first and third condition of Definition 16 can never hold at the same time.
This gives rise to the following important observation.

Let V = {v1, v2, ..., vn} be the vertices of a CMSL problem instance. When
we require the depths to be ordered and that there are no violations of
the preferred vertex order, it becomes particularly important to fix the
lexicographically smallest vertex v1 ∈ V as the first vertex in the order.
Otherwise, if some other vertex is chosen to be the first, then we would
enter a branch in the search that does not contain any valid solutions with
respect to the symmetry-breaking constraints. This is because v1 needs to be
a source vertex (as explained earlier), but it could no longer be assigned on
depth 0 because the depth would already contain a lexicographically larger
vertex.

So far we have shown how pruning can be achieved for CMSL. Now, on the
contrary, we will show that certain BNSL pruning rules are not applicable to
CMSL. The rules are by van Beek and Hoffman [38] and use the notation
domain(v) to denote the set of possible parent sets for a vertex v. In addition,
a parent set P ∈ domain(v) is consistent for vertex v in a decomposable
DAG G if having P as the parent set of v would preserve the acyclity and
the lack of immoralities in G.
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Theorem 2. (Refutation to Theorem 3 from [38] in the case of CMSL.) Let
G = (V,E) be a decomposable DAG, and let P, P ′ ∈ domain(v), P 6= P ′ be
possible parent sets for v ∈ V . Even if s(P ) ≥ s(P ′) and P is consistent for
v in G, it is still possible that we cannot safely prune P ′ from domain(v) in
CMSL.

Proof. Let G = (V,E) be a decomposable DAG where V = {v1, v2, v3} and
E = ∅, and let the BDeu scores be the following (given as pairs of a parentset
and its score):

domain(v1) = {(∅,−152.04124751), ({v2},−152.10200712),
({v3},−154.71116923), ({v2, v3},−4.90692972)},

domain(v2) = {(∅,−151.88351388), ({v1},−151.94427349),
({v3},−154.71116923), ({v1, v3},−4.90692972)},

domain(v3) = {(∅,−149.27435178), ({v1},−151.94427349),
({v2},−152.10200712), ({v1, v2},−4.90692972)}.

Clearly ∅ is consistent for each vi ∈ V in G. We also have s(∅) ≥ s({vj}) for
any vj 6= vi in domain(vi). However, by pruning those parentsets we could no
longer construct a graph where the vertices form a clique. The clique would
provide the globally optimal score of s(v1, ∅) + s(v2, {v1}) + s(v3, {v1, v2}) =
−152.04124751 + (−151.94427349) + (−4.90692972) = −308.89245072.

Theorem 3. (Refutation to Theorems 4 and 5 from [38] in the case of
CMSL.) Given a vertex v and its possible parent sets P, P ′ ∈ domain(v),
even if s(P ) ≥ s(P ′) and P ⊂ P ′, it is still possible that P ′ cannot be safely
pruned from domain(vi) in CMSL.

Proof. Let G = (V,E) be any decomposable DAG containing vertices v and
v′, and let P ⊂ P ′ for some P, P ′ ∈ domain(v). It is clear that v′ ∈ P implies
v′ ∈ P ′. Thus, if adding the edge v′ → v would form a cycle or an immorality
in G, then v′ ∈ P would imply that neither P or P ′ are consistent for v in
G. In other words, P ′ is consistent for v in G only if P is consistent for v in
G. Therefore Theorem 2 completes the proof.

Score-pruning is not the only aspect of BNSL techniques that is not fully
applicable to CMSL. We will now provide an example of symmetry breaking
for BNSL that does not work when immoralities are disallowed.

Theorem 4. (Refutation to symmetry-breaking constraint 8 from [38] in the
case of CMSL.) Given vertices vi and vj, even if domain(vi) would equal to
domain(vj) when all the occurrences of vj are replaced by vi, it may not be
sufficient to only apply a single ordering between vi and vj in CMSL.
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Proof. Let V = {v1, v2, v3} be the set of vertices and consider the following
undirected graphs G1 = (V,E1), G2 = (V,E2) and G3 = (V,E3): In G1 we
have {v1, v2} ∈ E1 and {v2, v3} ∈ E1. In G2 we have {v1, v3} ∈ E2 and
{v3, v2} ∈ E2. In G3 we have {v3, v1} ∈ E3 and {v1, v2} ∈ E3.

Now, due to immoralities, G1 forbids v2 from being the last in the ordering,
G2 forbids v3 from being the last in the ordering and G3 forbids v1 from
being the last in the ordering. Therefore it is not possible to arrive to each
of these solutions with a mutual vertex ordering.

3.3 Dynamic choice construction

In this section we will propose a dynamic programming approach to branch
selection and parent set pruning during search, based on the following
definition of valid parent sets.
Definition 18. Let G = (V,E, π) be an ordered decomposable DAG. Given
vk /∈ V and P ⊆ V , let G′ = (V ′, E′, π′) be G with the parent set choice
(vk, P ). The parent set choice (vk, P ) is valid for G if the following hold.

1. For all vi, vj ∈ P we have either (vi, vj) ∈ E or (vj , vi) ∈ E. (Forbid
immoralities)

2. For all vi ∈ V , the pair (vi, vk) does not violate the preferred vertex
order in G′. (Definition 16)

3. The depths of G′ are ordered. (Definition 15)

Sometimes we are given an instance with a bounded treewidth, which means
that we are restricted to using parent sets that have less elements than a
given threshold. In this case the Definition 18 (valid parent set choice) must
include the size restriction.

Given a partial solution G = (V,E, π), a vertex v /∈ V , and a subset
P ⊆ V , function GetSupersets in Algorithm 2 represents a dynamic
programming method for determining valid parent set choices (v, P ′) for
G where P ′ ⊇ P . An advantage of this formulation is that invalidating
conditions for a parent set, such as immoralities or violations of the preferred
vertex order, automatically hold for all the supersets of the parent set; this
is applied on line 8 to avoid unnecessary branching.

On line 12 we require that a parent set P is added to the list only if none
of its valid supersets P ′ ∈ C have a higher score. This pruning technique is
based on the observation that P ′ provides all the same moralizing edges as
P , and therefore it is sufficient to only consider the parent set choice (v, P ′)
in the search when s(v, P ) ≤ s(v, P ′).
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Algorithm 2 Constructing parent set choices via dynamic programming.
1: function ParentSetChoices(U,G = (V,E, π))
2: return

⋃
v∈U

⋃
M∈M(G,v)

GetSupersets(v,G,M)

3: end function
4:
5: function GetSupersets(v,G = (V,E, π), P )
6: Let C ← ∅
7: for v′ ∈ V \ P \ {v} do
8: if (v, P ′) is valid for G with some P ′ ⊇ P ∪ {v′} then
9: C ← C ∪ GetSupersets(v,G, P ∪ {v′})

10: end if
11: end for
12: if (v, P ) is valid for G and s(v, P ) > s(v, P ′) for all P ′ ∈ C then
13: C ← C ∪ {(v, P )}
14: end if
15: return C
16: end function

Also the symmetry-breaking constraints behave in such way that it is safe to
choose a higher-scoring valid parent set over its subsets. For example, the
condition 3 in Definition 16 is only less likely to hold when the set paG(vi)
contains additional elements. Furthermore, the pruning on line 12 does not
force any particular order for the graph construction, and as such it does
not affect the constraint of depths being ordered.

Given the set of remaining vertices U , function ParentSetChoices in
Algorithm 2 constructs all the available parent set choices for the current
partial solution G = (V,E, π). The collectionM(G, vi) contains the subset-
minimal parent sets for vertex vi ∈ U that satisfy the third condition of
Definition 18. If V = ∅, then M(G, vi) = {∅}. Otherwise, let k be the
maximum depth of the vertices in G. Now M(G, vi) contains the subset-
minimal parent sets that would insert vi on depth k + 1. In addition, if
i > j for all vj ∈ V where d(G, vj) = k, then M(G, vi) also contains the
subset-minimal parent sets that would insert vi on depth k. Note that the
cardinality of any parent set inM(G, vi) is at most one.

3.4 Bounds for CMSL

In this section we introduce methods for computing strong upper and lower
bounds for chordal Markov network structure learning.
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Algorithm 3 A dynamic-programming algorithm for constructing a segment
tree for the given scoring function. [30]

1: function OptimalParentSet(v, V )
2: if V = ∅ then return ∅
3: P ← V
4: for v′ ∈ V do
5: P ′ ← OptimalParentSet(v, V \ {v′})
6: if s(v, P ) < s(v, P ′) then P ← P ′

7: end for
8: return P
9: end function

3.4.1 BNSL-based upper bounds

When we use a same scoring function for both BNSL and CMSL, the score of
the obtained optimal Bayesian network structure is always an upper bound
value for the score of the optimal decomposable DAG. For this reason we
can use BNSL to obtain upper bounds for CMSL.

We will start by explaining how to construct a segment tree for a given
scoring function, since this will be needed when computing bounds for CMSL.
Segment tree is a data structure that allows one to store intervals for efficient
access [9].

Given a scoring function s, a vertex v and a set of vertices v /∈ V , Algorithm 3
determines the highest-scoring parent set P ⊆ V for v [30]. Formally,

OptimalParentSet(v, V ) = arg max
P⊆V

s(v, P ).

When V is empty, the optimal parent set is trivially the empty set (line 2).
Otherwise, we will find the optimal parent set by recursively going through
all the subsets of V as follows. On line 3 we initialize an auxiliary variable
P , which denotes the incumbent optimal parent set of v within V . Inside
the loop of line 4, we check all the ways of removing a single vertex from
V , and recursively call OptimalParentSet to obtain the optimal parent
sets for these subsets. If any of these parent sets P ′ provide a higher score
than the incumbent parent set P , we update P to equal P ′. When the loop
is terminates, P will be the highest-scoring parent set for v within V .

It is clear that we need to use dynamic programming to make Algorithm 3
efficient. But, on the other hand, we will be calling Algorithm 3 repeatedly
while computing upper and lower bounds. For this reason we suggest that
the output values of OptimalParentSet would be kept cached, not only
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Algorithm 4 A dynamic programming algorithm to calculate the optimal
Bayesian network structure score [30].

1: function OptimalBayes(V,A)
2: if A = V then return 0
3: Let b← −∞
4: for v ∈ V \A do
5: Let P = OptimalParentset(v,A)
6: b← max(b, s(v, P ) + OptimalBayes(V,A ∪ {v})
7: end for
8: return b
9: end function

during its own execution, but throughout the entire branch and bound
search. That is, given a set of vertices V of the CMSL instance, we can call
OptimalParentSet(v, V \ {v}) for each vertex v ∈ V in the beginning of
the branch and bound, and then have all the optimal parent set information
stored in the DP tables which work as segment trees. Thus, when n is the
number of variables of the CMSL instance, we will use Θ(n · 2n) time to
construct the segment trees, and then the following calls to Algorithm 3 will
only take a constant time, since they will simply fetch the already-computed
values from memory.

To compute an optimal Bayesian network structure, we will use a standard
dynamic algorithm by Silander and Myllymäki [30]. Our motivation for
using dynamic programming is that it automatically stores the optimal BN
structure scores for all the subsets of the vertices. That is, we use same
strategy as in the case of OptimalParentset. Thus by spending Θ(n · 2n)
time in the beginning of the branch and bound, we will obtain all the BNSL-
based upper bounds for CMSL in O(1) time by reading the DP table during
search [30].

The DP-based BNSL works by recursively modifying an implicit BN structure
B and scoring it. As an input we are given a set of variables V of the
BNSL/CMSL instance, and also a subset A ⊆ V that we call assigned
vertices. The assigned vertices represent the current contents of B. Then our
task is to find the highest-scoring way of adding the unassigned vertices V \A
to B. Note that since we are learning BN structures here, immoralities can
be ignored. For this reason any unassigned vertex v ∈ V \A could potentially
use any subset P ⊆ A as its parent set when added to B.

Given the sets V and A, Algorithm 4 returns the score of an optimal way of
choosing parent sets for the unassigned vertices V \A. When A = V , we have
the base case, and return 0 as the optimal score. Otherwise we use a variable b
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to store the incumbent highest score. In the loop on line 4 we go through each
unassigned vertex v ∈ V \A as a means of checking how high BN structure
scores we would get by now adding v toB. First, we use OptimalParentset
to determine the highest-scoring parent set P ⊆ A for v. Then, we call the
algorithm recursively to evaluate s(v, P ) + OptimalBayes(V,A ∪ {v}). If
this value is higher than b, we update b to equal this. In the end, when
the loop is finished, b is the optimal score for the parent set choices of the
unassigned vertices.

Now, calling OptimalBayes(V, ∅) will let us store the scores of the optimal
BN structures over the subsets of V . As with Algorithm 3, we will do this
exhaustive call in the beginning of the branch and bound, and afterwards
assuming calls to OptimalBayes taking unit time.

The Θ(n · 2n) time complexity of the upper bound computation might seem
unefficient at first. However, for perspective, Junctor uses Ω(4n) time to
solve an entire CMSL instance [20], and our branch and bound approach for
CMSL is not theoretically better than that. It is clear that Ω(4n) grows a lot
faster than Θ(n · 2n). For instance, at n = 12, we have n·2n

4n = 0.0029296875.
In other words, as CMSL appears to be computationally a much harder
problem than BSNL, we can afford to solve related BSNL instances exactly
in the process of solving a CMSL instance. Empirically we report that, at
n = 20, we are able to calculate the optimal BN structures in less than a
minute using Algorithm 4.

3.4.2 Improved upper bounds

In Section 3.4.1 we explained how to calculate simple BNSL-based upper
bounds for CMSL. The introduced method required us to compute the
optimal Bayesian networks for all the subproblems, which could then be used
as upper bounds for CMSL. In this section we explain how we can at times
achieve even better upper bounds.

The upper bounds obtained via BNSL can be at times can quite loose when
the networks contain a lot of immoralities. For this reason, in Algorithm 5,
we introduce an additional method for computing the upper bounds, taking
immoralities “relaxedly” into consideration. The algorithm takes four inputs:
A fixed partial solution G = (V,E, π), a list of vertices A that we have
assigned during the upper bound computation, a list of remaining vertices
U , and an integer d ≥ 0 which dictates the maximum recursion depth. As a
fallback option, on line 2 we return the optimal BN score for the remaining
vertices if the maximum recursion depth is reached.

31



On line 3 of Algorithm 5 we construct the collection of sets P that are the
maximal sets that any vertex can take as parent set during the upper bound
computation. The sets in P take immoralities relaxedly into consideration:
For any vi, vj ∈ V , we have {vi, vj} ⊆ P for some P ∈ P if and only if
(vi, vj) ∈ E or (vj , vi) ∈ E. That is, when choosing parent sets during the
upper bound computation, we allow immoralities to appear, as long as they
are not between vertices of the fixed partial solution.

In the loop on line 5, we iterate through each vertex v ∈ U that is still
remaining, and find its highest-scoring relaxedly-moral parent set according
to P . Note that given any P ′ ∈ P , we can find the highest-scoring parent set
P ⊆ P ′ in O(1) time using the constructed segment tree from Section 3.4.1.
Thus line 6 takes O(|V |) time to execute. Finally, on line 7 of the loop,
we split the problem into subproblems to see which parent set choice (v, P )
provides the highest local upper bound u to be returned.

We can often reduce the collection P by removing each element that is a
proper subset of some other element in P. This is because it is sufficient
to consider P̂ ∈ P instead of P ′ ∈ P on line 6 if P ′ ⊂ P̂ . Note that,
due to the morality, each term {v} ∪ paG(v) on line 3 is actually a clique
in the fixed partial solution. For this reason, in our implementation, we
find the collection of maximal cliques

⋃
v∈V
{{v} ∪ paG(v)} ⊆ C of the partial

solution in the beginning of the upper bound computation, and then have
P =

⋃
C∈C
{C ∪ A}. This speeds the algorithm up by a rather small margin,

and for this reason a simplified version of P was chosen for the pseudocode.

Example 8. Consider Figure 6. Here we see a set of relaxedly moral
vertices A = {v10, v11}, and a fixed partial solution with the vertices V =
{v1, v3, v4, v6, v7, v8}. The vertex v11 has both v10 and v7 as its parents, even
though there is no moralizing edge between v10 and v7. This is allowed because
the upper bound computation only forbids immoralities where both parents
belong in V .

If we were to assign a new relaxedly moral vertex into Figure 6, its parent
set would be a subset of one of the sets in P:

P = {{v1, v10, v11}, {v1, v3, v10, v11}, {v1, v3, v4, v10, v11},
{v6, v10, v11}, {v6, v7, v10, v11}, {v6, v7, v8 v10, v11}},

which can be reduced to

P = {{v1, v3, v4, v10, v11}, {v6, v7, v8, v10, v11}}.

For comparison, Algorithm 4 (dynamic programming for BNSL), could choose
any subset of V ∪A = {v1, v3, v4, v6, v7, v8, v10, v11} in the same situation.
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Figure 6: An example scenario in Algorithm 5. The vertices and edges with
solid lines represent a fixed partial solution, and the vertices and edges with
dotted lines represent a set of relaxedly moral vertices, i.e. the set A.

Algorithm 5 requires O((n − m) · m · 2n−m) time, where m = |V | is the
number of vertices in the fixed partial solution and n is the total number of
vertices in the problem instance. This analysis assumes that the optimal BN
structures and the segment trees have been precomputed. (In the empirical
evaluation, the total runtimes of our branch and bound approach include
these computations.)

We use the upper bounds within the branch and bound as follows. Let G be
the current partial solution, let U be the set of remaining vertices, and let
B be the optimal Bayesian network structure for the vertices in U . We can
close the current branch if s(G∗) ≥ s(G) + s(B). Otherwise, we can close
the branch if s(G∗) ≥ s(G) + UpperBound(G, ∅, U, d) for some d > 0. Our
implementation uses d = 10.

Unlike in the case of Algorithm 4 (computing the optimal BN structures),
here we would not benefit from keeping the DP table stored for later use.
This is because here the returned values do not depend only on the vertices
of the partial solution G, but also on the edges between those vertices.
This means that changing even a single edge in the partial solution could
potentially result in different outcome in Algorithm 5. Therefore we will call
the algorithm repeatedly in the branch and bound.

Algorithm 5 requires a lot of time considering how often it is used. For this
reason we will now propose couple of ways to make it more efficient.

Identifying when the BNSL score is unlike to be improved. It is clear that
an optimal BNSL score is an upper bound value to the corresponding score
given by UpperBound. However, if the current partial solution (graph)
is complete, i.e. each pair of vertices in the graph is connected, then the
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Algorithm 5 Computing upper bounds for a partial solution via dynamic
programming.

1: function UpperBound(G = (V,E, π), A, U, d)
2: if d = 0 then return OptimalBayes(U)
3: Let P =

⋃
v∈V
{{v} ∪ paG(v) ∪A}

4: Let u← −∞
5: for v ∈ U do
6: Let P = arg max

P⊆P ′∈P
s(v, P )

7: u← max(u, s(v, P ) + UpperBound(G,A∪ {v}, U \ {v}, d− 1))
8: end for
9: return u

10: end function

BNSL score and the score by UpperBound will be equal. This is because
no immoralities could now occur between the vertices of the partial solution.

Following the same intuition, the larger the parentsets are in the partial
solution, the less restrictive UpperBound is, and thus the closer its results
might be to that of the BNSL score. For this reason it might be reasonable
to only use UpperBound when the density of the partial solution is not
too high. It is also possible to retrieve the corresponding Bayesian network
structure using the DP table and to check whether it contains immoralities.
If it does not, then UpperBound could not possibly find a graph with lower
score.

Terminating Algorithm 5 early. In the branch and bound, UpperBound
is only used to check whether its result is greater or equal to s(G∗)− s(G).
Therefore it might be useful to pass this value to UpperBound, so that the
upper bound calculation can be terminated as soon as any value greater or
equal to the threshold is found.

3.4.3 Lower bounds

In this section we introduce a method for calculating lower bounds for CMSL.
A good initial lower bound is an essential part of our algorithm since it may
help us prune large parts of the search space from early on.

Our approach is based on first constructing an (infeasible) upper bound
solution and then turning it into a feasible lower bound solution. We can
use the optimal Bayesian network structures (as described in Section 3.4.1)
as the upper bounds.
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Algorithm 6 A way to construct the optimal BN structures when the scores
of those structures have already been computed [30].

1: function ConstructBNStructure(V )
2: Let V ′ ← ∅
3: Let E′ ← ∅
4: while V ′ 6= V do
5: v ← arg max

v∈V \V ′
OptimalBayes(V, V ′ ∪ {v})

6: P ← OptimalParentset(v, V ′)
7: V ′ ← V ′ ∪ {v}
8: E′ ← E′ ∪ {(p, v) : p ∈ P}
9: end while

10: return G = (V ′, E′)
11: end function

With the DP tables, it takes only a low polynomial time to retrieve the
optimal BN structure for a given set V of vertices [30]. A straight-forward
method for achieving this is shown in Algorithm 6. Here, the variables V ′ and
E′ store the vertices and edges of the graph to-be-constructed, respectively.
On line 5 we check which vertex v ∈ V \ V ′ yielded the highest-scoring BN
structure when the set of assigned vertices was V ′ ∪ {v}. On line 6 we check
which parent set P ⊆ V ′ yielded the highest score for variable v. Then, we
use v and P to update V ′ and E′. We repeat this process as long as V ′ does
not contain all the vertices in V ; thus the loop takes exactly |V | iterations
to complete.

Now, we can obtain an initial lower bound solution G∗ for the branch and
bound as follows.

1. Construct the optimal BN structure over all the vertices of the given
CMSL instance.

2. Heuristically try different ways to make the structure decomposable by
either adding or removing edges.

3. Let G∗ be the highest-scoring decomposable DAG from Step 2.

There are various ways to implement Step 2 (graph moralization). In general
finding a way to turn non-chordal graph into chordal graph by adding a
minimum number edges is a NP-hard problem [15, 14]. Since chordal graphs
are equivalent to decomposable DAGs, this means that in general finding a
score-optimal way to turn non-decomposable DAG into decomposable DAG
is NP-hard as well. For this reason our implementation settles for finding
an approximate solution instead. This does not affect the correctness of the
overall search algorithm.
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When we are using a bounded treewidth, it is impossible to moralize certain
graphs by simply adding new edges to it. This happens when the moralization
requires us to add new parents for a vertex that had already reached the
maximum parent set size. For this reason our implementation uses two
moralization schemes; (1) only adding edges and (2) only removing edges,
and chooses the highest-scoring graph out of the obtained solutions. The
latter method (removing edges) is guaranteed to always give a feasible
solution, since a graph with no edges is trivially decomposable.

Given a moralization scheme, we can use a greedy algorithm to moralize a
graph. In this case we go over each of the immoralities in the graph, and
then either (1) look for addable edges that would remove the immorality, or
(2) look for removable edges that had formed the immorality. In both cases
we select the edge that locally worsens the score of the resulting graph as
little as possible. Adding/removing edges can cause more immoralities to
appear, and as such the result of the locally optimal choices can be far from
the globally optimal one.

Our method for moralization works as follows. First we consider all the
non-cyclic outcomes after adding/removing at most a given number of edges.
Then we proceed to moralize those outcomes greedily, all while keeping track
of the highest-scoring moralized graph. It should be noted that it is possible
to arrive to same graph multiple times during the procedure. We can use
caching to store the visited graphs, and this way avoid doing unnecessary
work.

The above procedure for obtaining the initial lower bound can also be
extended to the rest of the search. That is, on any node of the search tree in
the branch and bound, we can merge the current partial solution with the
Bayesian network structure that corresponds to the node, and then moralize
the result to get a new feasible solution. Empirically, it is not uncommon
for the optimal solution to be found this way, but the constant moralization
takes such time that it does not generally pay off. However, this technique
might become useful if a good heuristic was developed to judge whether
moralizing a given graph could improve the current lower bound.

3.5 Example run of the algorithm

This section provides an example of how our branch and bound operates on
a selected problem instance.

Let the vertices of the problem instance be V = {v1, v2, v3, v4, v5}. Even for a
very small number of variables like this, the search process is very complicated
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considering the dynamic branch selection (Section 3.3), bound computations
(Section 3.4.1, 3.4.2 and 3.4.3) and constraint evaluation (Section 3.2) in
every search tree node. For this reason we present a very high-level example
of the overall search process where all unnecessary details are omitted for
readability. This is also the reason why we will not list all the 5 · 24 = 80
parent set scores here.

Before we start the actual branch and bound search (Section 3.1), we use
dynamic programming to compute an upper bound solution B, which is an
optimal Bayesian network structure over V (Section 3.4.1). Assume that we
obtain the graph (a) in Figure 7.

The next step is to compute an initial lower bound solution G∗, which is
obtained by greedily moralizing B (Section 3.4.3). Assume that the result
is graph (b) in Figure 7. In this case adding the edge v1 → v2 yielded the
highest-scoring outcome in the greedy moralization.

We are now ready to begin the branch and bound search (Section 3.1). We
will keep track of a partial solution G = (V ′, E, π) to which we gradually
add new parent set choices (Definition 13). However, as we explained in
Section 3.2, the constraint of preferred vertex order forces us to fix the
lexicographically smallest vertex as a source node. Assume that we start
with V ′ = {v1}, E = ∅, and π(1) = 1.

We are at the root node of the search tree. Here the set of possible parent
set choices is

{(vi, ∅) : vi ∈ V \ {v1}} ∪ {(vi, {v1}) : vi ∈ V \ {v1}}.

That is, we could add one of the remaining vertices {v2, v3, v4, v5} to G, and
each vertex could have either ∅ or {v1} as its parent set, resulting in total of

(a)

v1

v3 v4

v2

v5
(b)

v1

v3 v4

v2

v5

Figure 7: Examples of initial upper and lower bound solutions, respectively.
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eight possibilities. Note that in this situation it is not possible to violate the
symmetry-breaking rules of Section 3.2.

When we use dynamic programming to determine the necessary parent set
choices (Section 3.3), we apply the on-the-fly score pruning along the way.
Assume that we have s(vi, ∅) ≤ s(vi, {v1}) for each vi ∈ {v2, v3, v4, v5}. Now,
it is sufficient to try only four parent sets in this search tree node, namely
(v5, {v1}), (v3, {v1}), (v2, {v1}) and (v4, {v1}). We will try these choices in
ascending order based on their scores.

Assume that we construct a new partial solution that is G with the parent
set choice (v5, {v1}) (Definition 13), and move to the respective search tree
node (Section 3.1). However, as we calculate upper bound for this branch
(Section 3.4.2), we notice that it is less than our current lower bound s(G∗).
Thus we conclude that the current branch does not lead to an improved
solution, and so we backtrack in the search (Section 3.1).

Assume that we construct a new partial solution that is G with the parent
set choice (v3, {v1}) (Definition 13) and move to the respective search tree
node (Section 3.1). This time we notice that the computed upper bound
(Section 3.4.2) is higher than the current lower bound s(G∗). Therefore we
will continue exploring in this branch.

Continuing with the search, assume that we have added the parent set choices
(v4, {v1}), (v5, {v1, v4}) and (v2, {v4, v5}) to G, resulting in a solution G′. The
gradual construction of G′ can be seen in Figure 8. Since G′ contains all the
vertices in V , we are now in a leaf node in the search tree. We notice that
s(G∗) < s(G′), i.e., G′ has higher score than our current lower bound solution
G∗. Thus we update G∗ ← G′ and backtrack in the search (Section 3.1).

(1)

v1

v3
(2)

v1

v3 v4
(3)

v1

v3 v4

v5
(4)

v1

v3 v4

v5

v2

Figure 8: An example of how a solution is gradually constructed during the
search.
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Assume that the higher lower bound s(G∗) now causes all the remaining
branches to be closed since none of the computed upper bounds are high
enough (Section 3.4.2). In this case G∗ (i.e. G′) is an optimal solution to
the problem instance, and its skeleton is a score-optimal chordal Markov
network over V with respect to the given scoring function.
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4 Empirical evaluation

In this section we will empirically evaluate the practical performance of the
branch-and-bound algorithm proposed in this work.

4.1 Experiment setup

To recap from Section 2.5: GOBNILP [32, 2] is a state-of-the-art Bayesian
network structure learning system that implements an integer programming
branch-and-cut approach that allows CMSL by ruling out DAGs that are not
decomposable. Junctor [20, 21] is a state-of-the-art dynamic programming
approach to CMSL. We implemented our branch and bound algorithm in
C++, and will refer to this prototype as BBMarkov. The source code of the
implementation can be found at http://cs.helsinki.fi/group/coreo/bbmarkov.

We used a total of 54 real-world datasets used as standard benchmarks for
exact approaches [41, 38]. For investigating scalability of the algorithms in
terms of the number of variables n, we obtained from each dataset several
benchmark instances by restricting to the first n variables for increasing
values of n. This strategy also allowed us to include tests with datasets
whose variable counts would otherwise be too large for CMSL.

We follow a standard practice of benchmarking exact structure learning
algorithms and do not include the time spent for constructing the scoring
functions. That is, we give the pre-computed scoring function (i.e. a list of
clique or parent set scores) as an input to the algorithms, and then measure
how much time they need to terminate with an optimal solution. We used
the BDeu scoring function with equivalent sample size 1.

We will consider instances with both unbounded and bounded treewidths.
Bounding the treewidth means restricting the maximum parent set size
for decomposable DAGs in BBMarkov and GOBNILP, and restricting the
maximum clique size for clique trees in Junctor.

All the experiments were run using Debian GNU/Linux on 2.83-GHz Intel
Xeon E5440 computer with 32-GB RAM. We used GOBNILP version 1.6.2
with IBM ILOG CPLEX Optimization Studio (version 12.7.1.0) as the linear
programming solver.
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Table 2: Comparison between BBMarkov and Junctor when solving full
datasets, and the running times for the 17-variable water and carpo datasets
under different sample sizes. The numbers in parentheses indicate the time
BBMarkov needed to find its final (optimal) solution.

Running times (s)

Dataset n BBMarkov Junctor

Wine 13 <1 (<1) 6

Adult 14 58 (35) 29

Letter 16 >3600 (>3600) 592

Voting 17 281 (207) 3050

Zoo 17 >3600 (>3600) 2690

Tumor 18 610 (268) 12019

water100 17 100 (49) 2580

water1000 17 2731 (279) 2592

water10000 17 >3600 (>3600) 2928

carpo500 17 1625 (979) 2581

carpo1000 17 3080 (3067) 2586

carpo10000 17 >3600 (>3600) 2623

4.2 Running time comparison

In this section we compare the running times of BBMarkov to those of
Junctor and GOBNILP.

Figure 9 compares the running times of BBMarkov and GOBNILP when the
treewidths of the instances is not restricted. A 1-hour time limit was used for
each instance, which is represented with the grey dashed line. The different
variable counts (n-values from 11 to 15) of the instances are represented by
using different symbols for each n. The vast majority of the points of the plot
are located on the left side of the diagonal, which indicates that BBMarkov
is in general faster than GOBNILP for CMSL. Tests for n > 15 are omitted
in the plot since GOBNILP was unable to solve any of such instances within
the time and memory limit.
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Figure 9: Running time comparison between BBMarkov and GOBNILP. The
dashed line denotes the 1-hour timeout or memout.
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Figure 10: Running time comparison between BBMarkov and Junctor. The
dashed line denotes the 1-hour timeout or memout.
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Table 3: Examples of best-case performance of BBMarkov with large number
of variables. The numbers in parentheses indicate the time BBMarkov needed
to find its final (optimal) solution.

Running times (s)
Dataset n BBMarkov Junctor
alarm 17 268 (62) 2724

18 1462 (315) 12477
19 10274 (2028) 52130
20 49610 (50) memout

Heart 17 41 (22) 3007
18 162 (85) 11179
19 1186 (698) 50296
20 15501 (13845) memout

insurance100 17 113 (28) 3056
18 494 (113) 11334
19 17125 (15150) 50014
20 >86400 (>86400) memout

hailfinder500 17 225 (108) 2588
18 2543 (1348) 12422
19 13749 (6418) 53108
20 33503 (25393) memout

mildew1000 17 379 (287) 2590
18 1751 (1278) 11294
19 33160 (27421) 52572
20 >86400 (>86400) memout

water100 17 100 (49) 2580
18 590 (244) 12244
19 6581 (6187) 52575
20 61152 (54806) memout

Figure 10 compares BBMarkov to Junctor when treewidth is not restricted.
The scatter plot follows the exact same format as Figure 9, except that here
the n-values (variable counts) vary from 12 to 17. The tests with n > 17 were
omitted from the plot since Junctor was unable to solve any of them under
the 1-hour time limit. For this reason there are no timeouts for Junctor in
this plot.
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We can see from Figure 10 that the running times of Junctor are consistent
with a same n-value. For any n = 17 instance, we know that we are able to
solve it within 1 hour with Junctor, whereas there is no guarantee whether
the same holds true for BBMarkov. On the other hand, for any n = 18
instance, BBMarkov might be able to solve it within 1 hour, whereas it is
guaranteed that Junctor cannot (with the hardware used in our tests). It
should be noted that this conclusion is not only based on empirical data but
also on the theoretical Ω(4n) lower bound of Junctor.

Table 2 shows the running times of BBMarkov and Junctor when solving
datasets whose variable count is not reduced from the original. The numbers
in parentheses showcase the time that BBMarkov needed to find an optimal
solution, whereas the numbers without surrounding parentheses denote
overall running times. The table also showcases how the sample size of
an instance may affect BBMarkov; the number of samples is the number
displayed in the instance name.

As BBMarkov is very sensitive about different factors, e.g. how strong
upperbounds can be calculated for a particular scoring function, it may
perform especially well with some instances. Examples of this are shown in
Table 3. A 24-hour time limit was used for these tests.
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Figure 11: Comparison with GOBNILP when the treewidth is bounded to 2.
The dashed line denotes the 1-hour timeout or memout.
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Figure 12: Comparison with GOBNILP when the treewidth is bounded to 4.
The dashed line denotes the 1-hour timeout or memout.
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Figure 13: Comparison with GOBNILP when the treewidth is bounded to 6.
The dashed line denotes the 1-hour timeout or memout.
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Finally, we compare the running times of the algorithms when the treewidth
of the instances is bounded. Figures 11, 12 and 13 compare BBMarkov to
GOBNILP under treewidth bounds of 2, 4 and 6, respectively. Here we can
see that GOBNILP benefits a lot from the treewidth-bounding, displaying
clearly better performance compared to the unbounded case. We note that
GOBNILP also becomes faster than Junctor when the treewidth bound is
low enough on a sufficiently large number of variables [20]. As Figure 13
shows, BBMarkov is again faster than GOBNILP when treewidth bound
is 6, but the difference is not as big as in the unbounded case. Judging by
our empirical evaluation, sometimes our implementation solves an instance
almost at same speed regardless of whether the treewidth is bounded or
not. This is due to the greedy nature of how our branch and bound iterates
branches in the search tree.

4.3 Memory usage and the impact of bounding

In this section we evaluate other aspects of BBMarkov beyond the running
time comparison of previous section.

Figure 14 compares the memory usage of BBMarkov and Junctor with
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Figure 14: Comparison between the memory usage of BBMarkov and Junctor
when the treewidth is not bounded.
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unbounded treewidth. This evaluation was performed by solving a subset of
the instances for each n and averaging the amount of used memory. Junctor’s
Ω(3n) lower bound on memory usage makes it consistently run out of memory
for n ≥ 20. At n = 19, BBMarkov uses on average approx. 1 GB of memory
whereas Junctor uses more than 25 GB. This is shown in Figure 14. The
memory usage of GOBNILP is not examined here, but we report of numerous
cases where the program ran out memory at n = 16. We note that GOBNILP
uses considerably less memory with bounded treewidth, which was the reason
why the evaluation in Figures 11, 12 and 13 was possible for n ≥ 16.

Figure 15 compares the performance of BBMarkov to itself when using
different strategies for computing upper bounds. Using optimal BN structure
scores as upper bounds refers to the method described in Section 3.4.1.
Similarly, using tight upper bounds refers to applying the method of relaxing
immoralities as in Section 3.4.2. However, we do compute the optimal BN
structures in both cases. This is because the BN scores are used to optimize
the latter method (computing the tight upper bounds), and because we need
the BN structures in order to calculate the initial lower bound like explained
in Section 3.4.3.

As shown in Figure 15, using the tight bounds results in a better performance
when the number of variables of the instance, n, is less than 15. When n
increases, we can see that using only the BN-based bounds becomes a more
efficient strategy. This is understandable, because even though the tight
bounds might theoretically provide better upper bounds, they also become
computationally rather expensive to calculate when the number of variables
becomes large.

Compared to Junctor, one of the benefits of BBMarkov is its ability to print
out lower bound solutions right after they are found during the search. When
the execution of the algorithm finished, the latest lower bound is proven to
be the optimal solution. For this reason it is not uncommon that the optimal
solution is displayed well before the execution is terminated. In Figure 16,
we can see comparison between the time needed for BBMarkov to merely
find an optimal solution versus both finding and proving it.
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5 Conclusions and further work

We introduced an exact branch and bound method for score-optimal chordal
Markov network structure learning (CMSL). We showed how symmetry-
breaking constraints can be used to detect equivalent solution candidates and
thus considerably reduce the size of the search space. The symmetry-breaking
technique was incorporated into a dynamic programming algorithm that,
within each search tree node, determined the necessary choices for branching.
We also showed how Bayesian network structure learning could be used to
provide upper bounds for CMSL. In addition, we introduced a dynamic
programming algorithm for calculating even tighter upper bounds by taking
immoralities relaxedly into consideration.

Empirically, we showed that our approach (BBMarkov) was able to scale
further in certain cases than the competing algorithms. When the treewidth
was not bounded, BBMarkov was able to solve some 20-variable instances
within 24 hours, whereas the same did not hold true for other algorithms.
In addition, we noted that BBMarkov used considerably less memory than
its counterparts; for example, GOBNILP ran out of memory at 16 variables
and Junctor at 20 variables, whereas BBMarkov was very far from running
out of memory at 20 variables. Overall, the techniques introduced in this
thesis form a complementary approach to the earlier proposed state-of-the-art
algorithms for learning score-optimal chordal Markov network structures.

We finish by proposing promising directions for future work.

Improved branching. One way of speeding up our approach would be intro-
ducing an improved branching strategy, i.e., a heuristic that aims at finding
a good order for iterating the current search tree branches. This is important
because it could help us find faster a solution that could potentially improve
the incumbent lower bound solution. The improved lower bound solution,
in turn, could help us close branches and terminate the search faster. The
current implementation of BBMarkov uses a naive branching strategy of first
trying the parent set choices that have the highest scores. An alternative
branching strategy would be to sort the parent set choices based on the
upper/lower bounds from the resulting partial solutions.

Improved bounding. In Section 3.2 we described constraints for pruning
equivalent solutions based on symmetries. However, the upper bound com-
putation of Algorithm 5 does not take symmetries into consideration in any
way. Theoretically, if symmetry-breaking constraints were utilized in the
algorithm, even if just relaxedly (like in the case of immoralities), stronger
upper bounds would be obtained.
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Parallelization. In general, relatively little research has been made on scaling
up structure learning techniques by parallelization [35, 28]. Our algorithm
does not currently utilize any parallelization techniques, either. When it is
possible to explore multiple search tree branches simultaneously, getting stuck
in a bad branch may not be as big concern. Therefore applying parallelization
in the branch and bound could help us partially counter problems caused by
less-than-optimal branching strategies.

Parallelizing the branch and bound would require that each thread would
work with its own search tree node, which would lead them storing their own
parent set choice lists. Since the parent set choice lists can be large, this
would increase the algorithm’s memory usage. However, since this would only
add a constant factor to the memory requirement, based on our empirical
evaluation the memory usage would still remain below that of Junctor and
GOBNILP with a large number of variables, assuming a conservative number
of threads.

Backwards search via lazy decomposability. The branch and bound constructs
graph candidates by gradually adding new sink nodes to them. Currently
the search process is performed in a “forward” manner, which means that
the parent sets of the new sinks can contain any vertices in the graph as long
as no immoralities are introduced along the way. It would also be possible
to perform the search “backwards”, which means that we would handle the
decomposability lazily. That is, the parent sets of the new sinks could contain
any vertices not in the graph as long as the immoralities introduced by earlier
sink choices would eventually get resolved. For example, if the backwards
search chooses {v2, v3} as the parent set of v1, then we would require that
the future parent set choice of v2 will contain v3 or the future parent set
choice of v3 will contain v2.

The advantage of a backward search would be the possibility of applying
different kind of score pruning. In Section 3.2 we proposed on-the-fly score
pruning for CMSL, which worked so that any parent set of a vertex could
be pruned if it had a feasible superset with a greater or equal score. In a
backwards search the rule would work in reverse, i.e., any parent set of a
vertex could be pruned if it had a feasible subset with a greater or equal
score. The latter idea is intuitively promising because it is closer to the score
pruning performed in top BNSL approaches [38].

Incremental search. Given a set of random variables V and v ∈ V , it can be
observed that an optimal chordal Markov network structure GV for V can
be very similar to an optimal structure GV \{v} for V \ {v}. This observation
is based on the optimal solutions obtained by solving instances with varying
number of variables on same datasets during the empirical evaluation of Sec-
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tion 4. The phenomenon is also intuitive, since the conditional dependencies
between the variables in V \ {v} are the same in both cases.

It would be possible to construct a greedy algorithm which determines
an approximately optimal way of inserting v into GV \{v} under a relaxing
condition, e.g., without removing existing edges from the graph. Such a
greedy algorithm could then be used to generate lower bounds for the optimal
structure over V . We have already found a number of instances where this
method results in considerably better lower bounds than the moralization of
optimal BN structures, but further research is needed.

Based on the empirical evaluation and the super-polynomial time complexity
of exact CMSL approaches, learning score-optimal chordal Markov network
structure for variables V \ {v} is multitudes faster than learning a structure
over V . For example, in case of Junctor, the difference is always more than
4-fold in practice. For this reason we could afford to solve the problem
instances incrementally for increasing numbers of variables, and use the
solutions of preceding steps to generate (possibly very strong) initial lower
bounds for the succeeding steps.
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