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1 Introduction 

The backbone of any computer program is the operating system (OS) it is executed on. The tools you 

use for developing and executing your applications depends on what is supported by the operating 

system. The successful execution of applications is also greatly dependent on the successful execution 

of operating system software. Errors in the underlying OS can lead directly into errors in the running 

applications. 

For some time now, I have been working on a cloud platform project. Simply put, we work to offer 

operating system and basic services for Nokia applications running on cloud. We are currently using 

a Linux [Lin17a] distribution called NetLinux as the OS. While the exact content of NetLinux is not 

publicly available, most of its packages are included from open source releases without modifications. 

Many internally developed services that the applications can utilize for effective operation are installed 

on top of the OS. 

We deliver our platform as a disk image. This image is used to launch virtual machines that the cloud 

applications can be installed on. To clarify, there are three clear layers used: operating system 

(NetLinux), platform services offered to applications and the running applications. 

In the cloud platform project, we have our own fork of NetLinux and many of us work directly on the 

operating system components instead of the platform services. However, the fork is basically just di-

rect clone of the NetLinux main repository, with regular merges executed after new releases. The rea-

son for using this repository fork is being able to deliver critical changes to applications without having 

to rely on operating system release schedule. 

Having worked with NetLinux before, we have experience on using the open source components and 

the current development workflow is familiar to us. These skills will become useful when tackling the 

problems presented in this paper. We are in luck not having to start from scratch in this matter. We 

trust that we are able to acquire better results in a lesser amount of time when working on a subject 

that we already have basic knowledge of. 

NetLinux distribution is based on Linux From Scratch [Bee16] project. Composing our operating sys-

tem like this offers some benefits over the most widely used distributions such as compactness, flexi-

bility and security [Wha17].  

Building the operating system from source code ourselves is important to us for many reasons:  

01 Code changes should be reviewed by one of our developers before including them in an official 

release. 

02 We want to have the possibility of implementing and releasing our own changes quickly when 

necessary. 

03 The build process must be completely in our control to make sure that all the specifications are 
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met. 

04 We must be able to control the release schedule of all the software. 

Obviously, there is no perfect approach. Many issues have been identified with the current distribution 

and the way our platform is built. The operating system is built as a monolithic entity from sources 

and offered as a binary image to applications that operate on it. This results in a number of issues 

which application developers have called for improvement on.  

The NetLinux distribution is used by many different applications, many different components are re-

quired. Application developers would obviously prefer for the operating system to only include com-

ponents that are required by their application, not the ones used by some other software that they do 

not have any affiliation with. This is one reason why different applications would prefer different kinds 

of images to use. 

It would be extremely costly for applications to maintain a modified version of the operating system 

because of:  

01 Separate build system needs to be set up that would build modified images for the application 

in question 

02 If one part of the operating system is modified, the whole image has to be rebuilt from the 

sources 

In order to set up a private build system this the application developers would have to fork the distri-

bution, implement the code changes and handle building a version of the entire OS themselves. Con-

stant work is required for keeping the operating system up to date with upstream while making sure 

that features that they do not want to use, are excluded. 

Rebuilding the platform from scratch and delivering it to application developers would require tre-

mendous amounts of effort. Compiling an entire operating system is very time consuming. It is unrea-

sonable to spend time on building all the components that have not been modified. 

Another major issue with NetLinux is its development process. Implementing code changes, testing 

the modified software or debugging current software requires a lot of unnecessary effort. This is what 

we will be trying to improve. 

Software development is by no means a simple task. Finding the points of failure and figuring out the 

appropriate corrections can be even more demanding. Complicated tasks should never be made more 

difficult than necessary. Any software development project should aim at using modern tools and pro-

cesses that are efficient, effective and easy to use. 

Our application developers have been pointing out that when a fault occurs in the operating system, 

they have very limited chances to debug the issue. Even finding the correct point of failure can some-

times prove difficult. If the developers are able to identify the malfunctioning component, they have 

had major problems with accessing the source code of the component in question. Having the program 
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code available is obviously essential in being able to track down the bugs and prepare corrections for 

them. 

The inability to access the sources can be caused by not having the access rights or simply not knowing 

where to look. What we should do, is to provide a simple way for any relevant developer to access the 

sources of all packages running in our system. After accessing the code and making changes to a 

package, the developers should also be able to easily install the new version. Adding debug prints for 

examining the issues more closely or preparing a fix and testing it should become trivial tasks for any 

developer to perform. 

Currently, it can be very cumbersome to test code changes locally even for operating system develop-

ers. Compilation has to be carried out manually and the correct configuration and installation paths 

can be challenging to track down. 

These are the kinds of issues that no organization in any field should deal with for a long time. It is 

essential for customer satisfaction that broken products are fixed as soon as possible. The services that 

are offered must be reliable and responsive. However, if the staff does not have the proper tools to 

carry out their tasks, how can they be expected to meet tight deadlines given to them? 

We want to divide our software into clear packages to help solve the mentioned challenges. There is 

already ongoing research on building the cloud platform from RPM packages. While we want to con-

tinue assisting with the current progress, we also want to look into offering our developers with proper 

packaging tools. When implementing changes to the way software products are formed, we want to 

closely examine the whole process from development to delivery. We will have to find tools that allow 

the development cycle to be simple and efficient. 

Obviously building our products from RPM packages instead of source code requires us to build the 

packages first. Making this process simple and elegant is essential. Improving on building the OS 

image should not reflect negatively on our ability to develop new software. This could easily be the 

case if we left the developers on their own. 

To battle this effect, we want to provide package maintenance software that hides the more compli-

cated parts of software packaging. This tool should be available for all the developers working on 

products that deal with our cloud platform. 

New tools must not attempt to replace existing functionality unnecessarily. Learning new things takes 

time and should not be demanded without grounds. Therefore, tools that we will be developing should 

offer new functionality that can easily be used alongside the existing tools. Finding out the needed 

features and implementing them in a way that integrates well into current development process, are 

things that we must pay special attention to. 

In short, we see three possible avenues to choose from when starting to implement the developer tool 

set:  
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01 Implement a completely new package maintenance tool specifically designed for our operating 

environment. 

02 Look into the packaging tools used in the open source community and take in use the most 

suitable one. 

03 Partially utilize open source products and adapt these to our specific needs 

Our research takes place at a time of change. The development of next major version of our platform 

has begun, and the operating system is yet to be decided. We do not expect our research to complete 

in time to be used with the current iteration. Thus, we do not want to make decisions that are affected 

by our current operating system. 

We will make our decisions generally on what we see as the best solution for interacting with RPM 

packaging in large software projects such as ours. Some characteristics to keep in mind are: 

- large and diverse code base 

- supporting different storage methods 

- integrating the tools to operate with existing systems  

We will also explore the future possibilities of our tools. One technology that is known to be gaining 

more popularity rapidly is containerization. We want to ensure that the tools that we develop will stay 

useful in the everchanging context that we operate in. From our point of view this means investigating 

packaging software into Docker images in addition to RPMs. 

In addition to streamlining the development process, we should also improve the development plat-

form. Currently the development is conducted either on the NetLinux virtual machine that we want to 

modify or some external computer from which the code is then transferred to the NetLinux deployment 

for compilation. 

The former approach suffers from the lack of development tools. NetLinux does not contain all the 

standard software that developers use on their mainstream distributions to develop code. On the other 

hand, the latter way of making software changes is not as efficient as we would like either. Moving 

the source code between hosts takes time and adds unnecessary complexity to the development pro-

cess. 

We will aim at finding a way to offer both, the simplicity of native development and the tool diversity 

plus customizability of remote development. Firstly, we can accelerate development by offering more 

advanced tools. Secondly, it is self-explanatory that enjoyable working environment enhances produc-

tivity. We have noticed that this not only applies to physical environment like office interior, but also 

the virtual environments we deal with. Having to battle with various unrelated issues can cause great 

harm to morale. 

We will attempt to utilize the new development environment that we will be working on, to find ways 
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to improve the platforms that the developers use for their daily tasks. The tools available in the devel-

opment environment should be easily customizable by each user. Thus, all developers would have a 

way to quickly get access to their personalized development environment within the system that is 

being developed. We want to find a solution that offers a reproducible, customizable and easy-to-use 

platform for development. 

The corporate environment that we operate on enforces its own challenges and many things that work 

in the open source community, will not work in our context. We will dedicate a chapter for summing 

up our findings about the requirements enforced on us by our operating environment. Some differences 

are ownership of programs, strict development practices and smaller developer base when compared 

to working on an open source operating system. 

The open source community is wide and incorporating some of their practices can help us greatly. 

Still, we must make sure that we conduct our research with Nokia developers as our target audience. 

To achieve this, the special requirements of the users must be clear. We must find the right solutions 

for the specific users of our tools and be able to make their working life as easy as possible. 

The goal is to incorporate these development tools into the operating system and also offer the chance 

to install them on personal development machines. My work will include many programming tasks 

required to implement the tools. However, research must be our main focus as the approaches should 

be carefully considered before making decisions. 

We should aim at conducting both tasks side-by-side. Implementation must be sound and the tools in 

question should be operational as soon as possible. We want to be able to offer our software to the 

developers in early stages for their benefit and ours. Starting to introduce new tools and getting feed-

back at early stages of development are invaluable assets. A lot of working hours can be saved when 

the features that the users prefer to take becomes clear in the beginning of the development. 

We hope to be able to have our tools in wider use. We will keep testing the tools throughout the re-

search process but acquiring different views from different users is often the best way of choosing the 

next steps to take. This will also greatly benefit us in evaluating our own work and promoting our tools 

in case they are received well. 

 

1.1 Research questions and structure of this thesis 

01 How can we simplify the workflow of developers working on our products that incorporate our 

cloud platform? 

02 What kind of convenience tools can we offer the developers? 

03 What special constraints does the corporate context of Nokia and closed development environ-

ment in general set for the used tools? 
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04 Can we prepare the chosen developer tools for the future by exploring venues related to con-

tainerization? Is what case our tools would become unusable in the future? 

05 How can we improve internal storing of used source code to better support the developers’ 

efficiency? 

06 How can we prepare for the possible operating system change of our cloud platform? 

07 What should a future development platform be like? 

08 What changes do we need for our current development setups? 

09 What are the befits we can gain by introducing new a development platform? 

 

We will start by taking a quick glance into the DevOps philosophy and discuss how we could benefit 

from this. Moving towards DevOps is in our sights and embracing it should be enabled by the tools 

that we use. The acquired information will work as a basis for the rest of our work. 

Next, we will explore tools that we want to offer for our developers. We hope to introduce tools that 

function properly in our specific programming environment and will make the development process 

simple and efficient. 

We will then move onto the basics of containerization. This subject is a hot topic and there is a lot of 

ongoing research on the subject. For these reasons, we must not exclude it from our research conducted 

for this paper. 

We will also briefly look into, how we should handle open source code that our tools help developers 

accessing. Current storage approach will be examined and we will present some benefit we could gain 

by changing it. 

To conclude the development process research, we will present moving towards possible new operat-

ing system for future platform versions. While this is quite technical task, the workload can be large 

so the possible avenues should be examined closely before thinking about starting the transition. 

Next, we will go through the new development platform approach. We will also introduce how we can 

complete the work for the build process. These two subjects will be examined as future steps to fully 

offer the tools needed for the complete development process. 

Finally, we will gather the various corporate requirements we have come across during our work. 

These finding have been used throughout the research process and should be taken to heart for future 

use. Then we will briefly evaluate our achievements during the research process and conclude the 

paper. 
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1.2 Research setting 

We will focus our efforts of incorporating open source development tools to examining Fedora soft-

ware infrastructure. While NetLinux and Fedora are two very different distributions, we are confident 

that we will find a suitable developer tools for the future. The differences that will affect our work the 

most are the fact that no package management system is installed in NetLinux and building the OS 

from source (NetLinux) versus building using binary packages (Fedora). 

Every software project incorporates similar build and development tools at some level. This is true for 

both corporate and open source setting. Therefore, we have a wide variety of possibilities to choose 

from. OpenSUSE utilizes Open Build Service [ope17a] for building its packages and Debian developer 

use aptitude and dh-tools to speed up their work . The decision to focus on incorporating Fedora in-

frastructure is based on multiple different reasons that will be visited many times in this paper. 

First of all, we prefer to utilize tools that have been specifically developed to operate on RPM based 

environments. Secondly, the Fedora tool supply is very large, as we can expect from such a popular 

distribution. Thirdly, we are confident that Fedora community will offer us good amount of support 

when it is required. 

Our initial review has shown that Fedora development and build process is highly evolved. It fares 

really well when compared to the tools of other distributions and there is at least satisfying amount of 

information available about the systems that we want to utilize. No doubt there will be many cases, 

when we are forced to learn things by reading code or by trial and error. However, it is common to 

open source software, and software projects in general that not all information is documented. Thus, 

this caveat is unavoidable. We are also confident that we will be able to learn required things by our-

selves when necessary. 

At this stage, all of the systems that we attempt to integrate into Nokia development and build pro-

cesses, will be run on an internal cloud service. We will be able to start virtual machines of different 

capacity on demand and connect to them via VNC and SSH. The sparsity of available hardware and 

enormous flexibility we are able to achieve are the main reasons for this approach. 

A positive side effect that we will be facing is the need to implement our systems in easily reproducible 

fashion. Cloud instances can be unreliable in many cases and we must be able to quickly replicate the 

systems and start them again when failures occur. We encountered this in practice on many occasions 

during this research process. Without documented and automated process of system setup, we would 

have encountered enormous delays as we would have had to redo a lot of the work that we had com-

pleted earlier. 

In addition to the remote systems that we will be setting up, the development environments that we 

will be using for test and demo purposes, also reside in the cloud. Similar reasoning can be applied to 

this choice, perhaps even more strongly than before. Setting up the development tools must be ex-

tremely simple. This task will have to be completed by all users, in contrast to the remote build systems 
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where it is enough that the administrator has set up the service. Therefore, it is highly useful that we 

will face frequent reinstallation. If the installation process that our tools require is cumbersome, we 

will want to simplify it as soon as possible to save our own and other users’ time.  
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2 State of the art 

At the time of writing, the most sought after way of developing and delivering software is through 

DevOps principles. This approach is being discussed widely and many organizations are seeking to 

transition using this practice. 

DevOps is a promising new way of providing customers with software products. It covers the software 

delivery process ranging from planning to development, verification and delivery. In recent years this 

term has gained wide attention and attempts to adopt DevOps principles have risen immensely over 

the past few years [Wei16]. There are already architecture modes and platforms being designed with 

precisely DevOps in mind [DJG16, GCG15]. 

There seems to still be some ambiguousness present in defining DevOps as stated in [JBP16]. We are 

going to follow definitions from just a few papers to keep the terminology simple and straightforward. 

To still acquire a wide view of the research conducted on this development practice, we will want to 

examine papers from the early days of the topic, but also the research containing the most recent results 

and views. In short DevOps entails quick and agile development of software and the business pro-

cesses that enable this [EGH16]. 

There has been wide interest in the IT industry to adopt the DevOps principles. In telecommunications, 

being left behind has been a trend for long. This should definitely be improved on and the newest 

innovations should be adopted when benefits can be gained. In our research, we will attempt to start 

strongly supporting the possibilities of moving towards DevOps practices. 

The benefits of this approach have already been seen in practice as shown by [BFH16, VKK14] and 

we strongly believe that we could gain a lot by adopting this way of producing software. We want to 

be able to decrease the amount of time it takes for us to deliver our software products to customers 

[DJG16]. Benefits of testing and delivering software often have also remarkable. The issues caused 

by finding bugs can be limited by being able to provide lightning fast fixes. 

Delivering features and fixes in a faster pace will allow moving forward with new technology much 

faster and keeping the software operational at all times. In the telecommunications industry, availabil-

ity is essential and big defects can even cause life threatening situations in some cases. Minimizing 

the time from the point is receiving a software development task, to having it included in the cus-

tomer’s copy of the system, benefits us and our customers greatly. 

 

2.1 Defining DevOps 

DevOps is about integrating or at least tightening the gap between different stages of software delivery 

[EGH16]. These stages can be considered to be software development, verification, delivery and op-

erations. These four stages have traditionally been clearly separated from each other. The type of work 
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has been strictly bounded by the team you work in. To be more accurate, the task assigned for your 

team has defined the type of tasks you will be working on. Software development personnel have 

focused on software development and operations personnel have focused on operating the delivered 

software only. 

Working closer together with teams from all stages of software production is essential. Proper com-

munication and co-operation benefits everyone. Also, combining differing skillsets can offer new in-

sights to your own tasks and provide new ways to complete them more efficiently. A developer that 

has experience in operating the system he is creating can acquire a deeper understanding of what is 

required of the system or what would be the best way to implement a feature. For a developer, being 

able to get a glance at what kind of approaches work best in practice can help improve future imple-

mentations. Similarly, operators can for example learn new tricks and gain a deeper understanding of 

the software they are using, if they get to work on the source code too. 

It has also been stated, that DevOps can be seen as an extension to agile development [JBP16]. Agile 

has already conquered the world of software development and is utilized all around the programming 

world. DevOps is the next step of the evolution towards even more efficient software development 

processes. We never want to stay in what is familiar to us, but keep improving and trying to be able to 

find ever better ways to conduct the required tasks. 

Another thing to consider, is what moving towards DevOps has required from the first adopters. Agile 

development practices and cloud computing have been seen as enablers for the emergence of DevOps 

[JBP16]. It is clear, that moving from a bounded and very formal development process towards unri-

valed flexibility requires a lot of changes in the minds of industry professionals. Only after accepting 

agile ways of working it has become feasible for people to start moving towards even greater elasticity. 

On the other hand, cloud computing is seen as the technology that allows delivering software to cus-

tomers the way that DevOps requires [JBP16]. Being able to continuously integrate new code for 

production would not likely be possible without the benefits provided, like on-demand scalability and 

availability.  

The main goal of DevOps is reducing the time it takes for a software component to transform from an 

idea in a person’s head, through the development cycle, and into a value producing part of the final 

product [ABD16]. This can clearly be applied to everything we are trying to accomplish while working 

on this project. While reaching the use of true DevOps principles will most likely elude us, we will 

certainly take steps towards this goal. 

 

2.2 What Composes DevOps? 

Some software development practices that are already used are considered vital for a successful adop-

tion of DevOps. For example, without continuous integration it would not be possible to offer the 
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continuous and healthy product deliveries that are considered to be an important part of DevOps. If 

the software cannot be integrated and verified often enough, there is no chance to deliver it to the 

customer in required intervals. Delivering software faster and more often at the cost of quality is not 

a viable option. 

There are many practical things that implementing DevOps contains and we are not going to list all of 

them in this paper. However, we consider offering some examples to be useful in better understanding 

the thought process behind DevOps. One example listed in [EGH16] is considering infrastructure to 

be handled as source code similarly to the product application. Used infrastructure is essential in proper 

functioning of the product and should be handled accordingly. This includes full testing, logging and 

monitoring services. The infrastructure should also be configured in a consistent manner. The goal of 

this practice is to make it possible for the viability of the product to be verified in all levels. 

An interesting way of describing DevOps practices is that teams working at different stages of software 

delivery should adopt a using common Definition of Done [PuB16]. Often a task is considered done 

by developers for example when it has been verified and accepted to be merged into master branch. 

This is what DevOps wants to change. The different teams should collaborate closely in not only get-

ting the feature pushed to the master branch, but all the way to the customer. 

In our case, the reasoning behind all this can be stated as aiming for better ways of answering to 

customers’ needs [RPA16]. Communication must be efficient on all levels and new requirements must 

be answered to swiftly. 

 

2.3 Steps Towards DevOps 

Changing processes and practices used for guiding the creation of value-offering software products is 

always a great challenge. This is especially true for large corporations that often rely heavily on these 

processes. Internal structures of an organization like this can be quite complex. Using well defined 

processes to deliver products helps understanding and controlling the product pipeline that can contain 

a very large amount of different steps. Sometimes the processes can be cumbersome, but in order to 

control enormous enterprise entities, some amount of them are needed. 

In the telecommunications industry, we also face other challenges that can make the transition more 

difficult. One reason is that implementing DevOps is considered harder for embedded systems in com-

parison to cloud services [EGH16]. Taking continuous delivery in use while handling loads of legacy 

code is challenging. This is exactly what we are going to face. Being able to integrate the diverse code 

base that our products contain, into the delivery pipeline completely, is challenging. 

Once again, it is also stated by Ebert et al. that one of the most essential parts of the transition is 

increasing collaboration of development and operations teams.  This can prove especially demanding 

for us, as a telecommunications vendor. In most cases the division of tasks is quite clear. The distance 



12 

between different teams can be huge as they are from different organizations. Development is usually 

conducted by the vendor whereas deployment and operation falls under the responsibility of the ser-

vice providers [JMN17]. 

Cross-organizational collaboration is almost always more demanding in comparison to combining 

your efforts amongst internal actors. Even simple aspects such as communication can be cumbersome. 

Different organizations can have conflicting guidelines and their goals can take different directions. 

Clear standard practices would most likely have to be defined, in order for the collaboration to be 

effective. 

Another telco-specific challenge in using the DevOps practices is that the infrastructure is geograph-

ically much more divided than in case of traditional IT services [JMN17]. While we are moving to-

wards cloud utilization in telco as well, the locational challenges are something that we should defi-

nitely be kept in mind when planning our transition. 

Practical examples of conforming to DevOps practices are also covered in [EGH16]. One great advice 

given is that build, development and production environments should always be configured similarly. 

Getting to verify the whole software stack on all stages can yield great benefits. Interested parties are 

referred to the original text for more details. 

The effect of DevOps transformation is not limited to molding the workflow of development, deploy-

ment and verification personnel. It is important that for example software architects and product own-

ers also take the new way of delivering software into account [DJG16]. A clear indication of this, is 

that DevOps approach contains moving towards employment of smaller components in the used soft-

ware architecture [EGH16]. Therefore, the transition offers challenges on higher levels as well. Ac-

cording to earlier research, designing software architecture that truly supports using DevOps practices 

is quite hard [DJG16]. Providing employees with related training well ahead of actually using the 

approach is essential.  

 

2.4 Software development in a DevOps environment 

While trying to take the DevOps mind set to the heart in general, we want to keep our focus in trying 

to improve the development practices. We want to stick to our chosen topic to keep the research quality 

as high as possible and offer answers to the questions that we have defined. 

So how can we make our software development process more efficient by following the DevOps sug-

gestions? Tools used by the developers must be made as simple as possible to operate, while offering 

all the necessary functionality [EGH16]. Developers need to be able to target their attention towards 

problems related to the program being developed. For example, building and installing the software 

under work should be made simple. Fast delivery cannot be achieved if even software development is 

not efficient. 
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According to [RaS16], in addition to sharing knowledge between different teams, tools and infrastruc-

ture should also be shared. This will help everyone at all levels to understand the work of others better 

which in turn can reduce communication difficulties. The software that is constantly running on the 

same infrastructure will not suffer from surprising problems caused by changing operating environ-

ment. Propagation of information and communication in general will be easier as people use the same 

tools and thus have access to exactly the same information. 

We must aim to assist developers and operators alike by automating many of the steps of software 

delivery [RPA16]. When the manual effort needed, for example, to test or install software is mini-

mized, employees can really focus on their actual tasks. 

The tools used should also support automated mechanisms of collecting information [CYC14]. From 

the developer perspective that we are looking, this could mean implementing processes for installing 

modified software. Gathering information by quickly adding debug prints for example, is a common 

method of finding malfunctioning components. Spending a small amount of extra time on daily tasks 

translates into a lot of time wasted over time. 

When talking about DevOps, continuous delivery often comes up as a definitive term [KVL16]. In 

order to achieve this the automation must range from development to deployment. As mentioned by 

Kärpänoja et al., packaging and testing are important steps here. In our research, we will also look into 

implementing effective packaging processes. Our aim is to make testing and delivery of new packages 

simple for the developers. As suggested in [RaG03], what we are trying to achieve is in a way a com-

bination of our current agile development methods with component based development practices. This 

falls naturally into place with the other goals of our research. 
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3 Accelerating the development process 

The topic of this section, is looking into the tools that we can use for simplifying the development 

process. Allowing developers to focus their efforts on programming their respective subsystems is 

what we want to achieve. In this chapter, we will focus on smoothening the workflow from acquiring 

the sources, to publishing the code changes. 

We want the developers to be able to work with software packages similarly to many open source 

projects. Developing and updating singular packages eases the process of getting to test your changes 

and makes publishing process faster. When making code changes and creating a completely new image 

from scratch, a lot of time is lost. If we can utilize software packaging to easily develop, test and debug 

the programs, our work will become much more efficient. 

When developing a platform for applications to operate on, we offer different services that the appli-

cations can utilize [Vau12]. This is why, it is important to make our development process simple. The 

application developers must have better chances at participating on the platform development as well. 

This allows developers from other layers of the software stack to better understand the platform. 

As application developers’ understanding of the platform layer deepens, they can better utilize the 

different services it provides. It will be much easier for them to figure out what services they actually 

need to use and how they should be used effectively. 

Communication with platform development teams is important. So are the possibilities to reduce time 

to fix bugs for example [Vau12]. If a certain application needs platform patching to function properly, 

they can allocate their developers the help platform developers, in order to speed up the correction 

process. 

The improved development tools and practices can lead to great mutual benefit. By adopting similar 

practices and deepening the collaboration of different software projects, we will be able to create better 

software in a lesser amount of time. 

All that we have discussed in in this chapter, supports our ambitions of producing software systems 

the DevOps way. Developing and building software more efficiently can reduce the software delivery 

intervals greatly. There are of course other things that affect this. While releases to customers are 

conducted on certain intervals, no development process can change it. However, our new tools help us 

in preparing to answer to stricter delivery schedules, when it becomes necessary. 

 

3.1 Software packaging 

Packaging software includes compiling the source code based on specific configuration and packaging 
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the chosen result files. These files can then be easily installed to a system that wants to use the pack-

aged software in question. Being able to skip compiling the code all together yields great benefits. It 

saves the time of an end-user and helps people with less technical expertise to be able to use the 

applications they want. New disk images can also be built much more efficiently. Only the changed 

software components have to be recompiled. The rest of the system already exists as packages and can 

be installed directly. 

There are multitude of package managers in use all over the worldwide computer infrastructure. Some 

of the most well known ones are apt-get [vaus17] and yum [Fus17a]. These tools use the pre-compiled 

software packages in different kinds of repositories to allow users to have easy access for large amount 

of programs with minimal effort. Finding out and installing the required dependencies, before in-

stalling the desired component itself, are their main tasks. 

It is stated in [Spi12] that the key gain in using package management systems is that the installation 

and maintenance of software components can be accomplished in a simpler way. The authors state that 

the reason for this, is that package management software organize and standardize the software pro-

duction and consumption processes. These words present a clear reasoning for us to pursue packaging 

as a way of improving our software development process. Standardizing the installation process is 

needed for developers to be able to install packages of their choice easily. Organization of software 

components makes them more available and accessible, which is exactly what we are after.  

As stated, we are currently delivering our software to customers as disk images. This practice is work-

ing well, and at this time is something that we do not seek to improve on. Allowing users to upgrade 

their software components in a package based way would not come without a price. We would have 

to allow access to package repositories from all sites where our products are used. Starting to use 

package based upgrade could also result in complex installation problems due to package conflicts. 

Even the most commonly used package managers often struggle with this kind of problems[ADT11] 

[TSJ07]. Even when finding the out the solutions, it is quite an expensive computing task to achieve 

[DiV11]. We want to provide our customers with simple installations and upgrades. We can avoid 

“dependency hell” situations that continuously upgrading singular packages can lead to. Thus, in this 

case we will continue providing pristine installation images for our users. 

What we want to achieve, is to offer our developers easier way of installing software. This way we 

can achieve many of the benefits we have discussed in this thesis. 

Easily installing new packages and adding debug information effectively is something that needs to 

be a quick process as it is a daily task for many developers. Finding out the best ways of working by 

using the best possible tools can offer great gains for all parties. Our developers can achieve more in 

less amount of time, and also keep their motivation to work higher. When there is no standardized way 

of installing different components, often a great deal of effort has to be placed on finding out how this 

is done. Solving these problems that are not directly related to the tasks at hand can be very frustrating. 
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We also want to have all software in our system to be fully traceable. When running our services, it 

should be easy to find out which components and what versions of them are being used. Starting to 

troubleshoot often starts with finding out what version of software was being used. Which release 

should be downloaded for examination? Is the problem caused by something that is already fixed on 

a newer version? 

Obviously, software packaging does not come without its own challenges. Additional work is required 

from the developers, as they will be forced to write configuration files for packaging their software. 

Maintaining the software dependencies, that play an essential role in common software packaging 

approaches, can cause problems. Also, as our product does not currently support software packaging 

at all, this technology leap can prove especially challenging. 

The tools that we use to achieve the simplicity of development, play an essential role in our success. 

We need to be able to support our developers and allow them to work to the best of their ability. Finding 

the right solutions for our specific working conditions must be the main goal.  

 

3.2 Chosen tools 

We have opted to attempt moving to packaging our subsystems as RPM (RPM Package Manager) 

packages. This decision has been made internally in a project I am involved in, based on previous 

research. The following sections will focus on finding out ways to help the developers interacting with 

the new software distribution approach. 

We will start by looking at an existing RPM package maintenance tool fedpkg [GBS16a]. We want to 

have similar functionality available for our developers. RedHat places a good amount of work on the 

Fedora project and to our advantage, on its release engineering team. Their open source software de-

velopment tools are sophisticated and have been shown to deliver results in large scale on the Fedora 

project. 

The Fedora release engineering project has produced a large development, build and deployment in-

frastructure that is largely in production use. This will offer us many exciting possibilities if we wish 

to extend our tool base. While Fedora tool integration can cause issues, when not the whole tool set is 

not adopted, it can also yield great benefits when multiple different tools are needed. 

Finding out what parts of the functionality of fedpkg we need and how are we able to implement them 

to operate in our environment. Some of the guides on package maintenance workflow where we started 

researching the subject are [Mat17, RoA16]. These documents offer a fine view of the tools used for 

building the most widely utilized Linux software packages. Key parts include the required interaction 

to fetch and build software. The commands described in these documents are abundant, and we do not 

see a need for such a wide variety of commands at this point. With the most essential components, we 

can already start to utilize the tool set in practice while continuing to fine tune the functionality.  
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We will implement only the essential features and keep adding new ones when there is need for them. 

User evaluation will surely be essential in determining our success in choosing the right features to 

offer. 

We started by looking into directly making use of the wide utilities available in fedpkg and trying to 

configure it to fit in our development environment. First, we sought out existing attempts at achieving 

similar goals. Integrating fedpkg has been attempted by developers working on a Fedora-based oper-

ating system for Raspberry Pi, Pidora [Mah13]. This development seems to have stopped a long ago. 

However, examining their efforts indicated to us that using fedpkg out of the box requires a lot of 

additional components. Conforming to fedpkg needs instead of integrating it into the already existing 

systems seemed necessary. There has also been an RPM build system in use at CERN (European 

Organization for Nuclear Research) [Tra09]. This seems like a more valiant effort and has resemblance 

to what we are trying to achieve. These slides can offer a good overview of the basics of RPM build 

process. They have taken in use a full, Fedora-like development and build process. We cannot use 

similar approach as we must respect our existing processes. Still, this shows us that the Fedora ap-

proach can indeed be used to empower software development. 

As our examinations quickly showed that full functionality of fedpkg is tightly integrated into Fedora 

development environment. We would have more trouble disconnecting the ties into Fedora, than im-

plementing our own changes. The most viable option would have been to commit ourselves to other 

Fedora tools, such as Fedora package database [Chi14], like they have done at CERN. They have 

incorporated the full Fedora release engineering toolset in order to compose their software products. 

For us, this approach is out of the question, as we need to combine software components from many 

different providers. Tying ourselves to singular ways of storing our software cannot be accomplished. 

Different components need different handling, as we will learn later on. 

A Koji [Ata17] server has recently been set up for our research purposes. It is an RPM package and 

image build system used by Fedora. Koji offers a centralized place to monitor the ongoing builds and 

download the results to debug possible problems or take the components in use. Koji can be scaled by 

connecting more builder machines to the hub to answer needs of large software projects. We will be 

able to support multiple different architectures if necessary. Koji can be accessed through a web-based 

user interface and a command line client. 

Koji is a well established tool that can be relied on and is also proved to be an efficient hub for building 

RPMs. We can scale it’s building capabilities by deploying additional builder nodes and offer support 

for different package releases with tagging functionality. In addition to this, it is already well integrated 

into other Fedora release engineering software that we will be adopting. 

These tools have been designed to co-operate from the beginning. This enables us to achieve the best 

results in wide development use. Difficulties with communication among different tools will be min-

imal. The upstream will also provide support for the combination of these tools. This way we do not 
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have worry about our issues being declined due to unsupported tools being used as part of the chain. 

In our work, we will utilize the command line clients building and configuring capabilities. The web 

UI will only be used for monitoring ongoing tasks and fetching results when needed. We will also be 

performing some maintenance tasks directly on the Koji server. Examples of such tasks are configur-

ing Koji itself, debugging Koji malfunctions and in a few cases, even directly modifying the postgresql 

database used by Koji. 

Koji was also included in the work conducted at CERN. We were in luck to be able to incorporate this 

functionality into our work without the effort of setting it up ourselves. We must however, start exam-

ining the possibilities it offers. Only a little examination has been conducted on the system before our 

involvement. 

RPMs have two type of dependencies: runtime and build. Koji server enables resolving the package 

dependencies in a chroot build environment using mock [Suc17]. With this functionality, developers 

can easily build RPMs for local testing and debugging without having to install all the build depend-

encies for each package. 

We can also use Koji in our chain of building and publishing the RPM packages. When preparing an 

official build of a package to be released, the build will be handled on Koji server and the resulting 

RPMs will be made available for download from the server. 

Koji is a powerful tool and we will want to see how we could get the most out of it. Taking fedpkg 

into use sets too many boundaries on us. However, we want to be able to utilize the build functionality 

available to us. Creating tools, that integrate well with both, the Fedora software ecosystem, and that 

of ours. 

Fedpkg is a python subclass of a tool called rpkg [GBS16b]. Rpkg offers most of the functionality, 

while fedpkg integrates it into the Fedora systems. This is a perfect opportunity for us to adapt these 

tools for our own needs. 

We have decided to create our own rpkg subclass called rcppkg. This way we can offer the set of 

commands that we actually require to be able to optimize our developers’ effectiveness. We want our 

tool to offer some functionality that fedpkg does not contain and likely would not accept to be merged. 

We can leave those parts of the development process that we are comfortable with intact. We can also 

avoid having to use all the systems that have been chosen by Fedora. 

Those that examine the rpkg and fedpkg code base, can quickly see that functionality that fedpkg 

implements on top of rpkg is quite small and it is strictly related to specific Fedora needs. It would 

make no sense for us to fork fedpkg, then stripping most of its functionality to implement our own. 

Rcppkg will be examined more closely in the following chapters. 
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3.3 Developing rcppkg 

We approached developing our tool in the order of the natural workflow of a developer. The initial 

implementation offers four simple commands for the user: 

Command Purpose 

$ rcppkg clone Clone the spec file repository into rcppkg build direcory. Cur-

rently this is configured to ~/rcppkgbuild. Then based on the in-

formation acquired from spec file repo, clone the sources to cur-

rent directory. 

$ rcppkg local Locally build an RPM from sources in current directory and the 

files in matching spec file repository under the rcppkg build di-

rectory. 

$ rcppkg mockbuild Locally build an RPM in a mock chroot from sources in current 

directory and the files in matching spec file repository under the 

rcppkg build directory. 

$ rcppkg build Build an RPM in a mock chroot on the Koji server from sources 

fetched from remote source file storage or git based on the infor-

mation acquired from latest spec file repository version. 

$ rcppkg search Search through the packages in git spec file group and print all 

matches. 

These commands are enough for developers to be able to build and maintain RPMs effectively. Builds 

can be carried out both locally and remotely. The most essential command is ‘rcppkg build’ as this 

allows us to connect to Koji and build RPMs for relase. The possibility for local builds is also essential 

because we do not want to clutter the Koji server with test compilations. We have also wanted to 

incorporate the search command to quickly be able to locate the needed packages from the command 

line. 

3.3.1 rcppkg clone 

First, we looked into assisting developers in accessing the source code of different packages. For this 

purpose, we have implemented support for “clone” command. Using git for source code cloning re-

quires knowing the location of the repository you want to access. In addition to this, much of the 

source code is not even stored in git. This leads to the previously mentioned problem of spending 

unnecessary time on locating the right sources. 

We want all developers working on different levels of our software stack to be able to access all of the 

source code running in the systems developed. This can often be challenging due to source code being 

stored in multiple places. This way we are also conforming to the DevOps philosophy of standardizing 
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the tools in use. Operating system developers often deal with source tarballs copied from upstream, 

whereas application developers use mostly version control systems. Having a single tool that can be 

used by everyone is our first step towards DevOps in this paper.  

By using rcppkg, the developers avoid having to find out anything related to where the source code is 

actually stored. Developer just has to know the name of the package and with a single command, 

“rcppkg clone <package name>”, the tool will be able to fetch the latest packaged source code for the 

developer. 

When building RPMs, specific configuration files called spec files [BMS00] are needed. When fetch-

ing the sources via “rcppkg clone” to the current directory, spec files are also fetched into a special 

“RCPPKG_spec_file”-directory. This way the developer will instantly be ready to build the package 

in question.  

3.3.2 rcppkg local and rcppkg mockbuild 

After making the needed changes, the next step for a developer would be to compile the source code 

and test it. We offer two different commands for enabling local testing. Commands “rcppkg local” and 

“rcppkg mockbuild” both compile the sources in the developer’s working directory and create an RPM 

package. The difference is that “rcppkg mockbuild” uses the Koji server to set up a chroot environment 

and resolve the package dependencies by utilizing mock. When using “rcppkg local” the compilation 

and RPM package creation will be done locally and the developer will need to resolve possible missing 

build dependencies manually. Both have their advantages, but we suspect that mockbuild will be the 

more popular one, as it allows developers to keep their own machines clean. Local builds on the other 

hand take less time, once the build dependencies have been resolved.  

3.3.3 rcppkg build 

Lastly, the command “rcppkg build” works in a similar fashion as “rcppkg mockbuild”. The chroot 

environment created by mock will be utilized and the actions required from the developer are kept to 

a minimum. Here however, the results will be stored to the Koji server and be made for everyone. 

Developers should always first create and test local builds before using “rcppkg build” to publish their 

results as official builds to the Koji server.  

3.3.4 rcppkg search 

In addition to these practical, development related commands, we implemented the command “rcppkg 

search”. We feel that this kind of utility will be highly used and serves to reduce “development over-

head”, the time spent on other activities than the actual task. Being able to use keywords to search for 

available packages without leaving your terminal window is effective. The time spent of switching 

tabs and finding correct URLs can start building up over time. 

A major difference to the fedpkg way of doing things is that our implementation handles the source 

and spec files simultaneously. Fedpkg has separate commands for fetching the sources and spec files 
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while we wanted to provide simplicity by cloning everything that is needed to be present for issuing a 

build. Probably the biggest functional change that we have made is that we offer integration for build-

ing from git sources. In Fedora builds, the sources are usually packages as release tarballs. Many 

included packages are constantly being developed and we do not want to force the developers to issue 

source releases each time they want to create a new build. 

 

3.4 Setting up rcppkg 

We have attempted to minimize the manual work required to start packaging the software component 

you are working on. To use rcppkg, you will only have to create spec files for the packages you want 

to manage and setup git repositories where these are stored. Spec files are configuration files guiding 

rpmbuild in compiling the software and creating an RPM package out of the matching source files. In 

Appendix 1, we have attached an example base for a spec file for one of internal packages that need 

to be built from git sources. The most important parts of the spec files are listing the dependencies of 

the package, compiling instructions and listing files to store. 

There are two kinds of dependencies to be listed for a package: build dependencies and runtime de-

pendencies. We would argue that listing finding out the dependencies of a package is the most time-

consuming part of creating a spec file. Build time dependencies are easily found out as you proceed 

to test the correctness of your spec file. However, the runtime dependencies can be quite elusive if 

they have not been listed correctly in some documentation beforehand. This is an example where a 

good test coverage can come in handy. Running most of the functionality of a package should unveil 

external packages needed for it to operate correctly. Otherwise, some feature of the software compo-

nent may be unusable due to missing a needed library for example. 

Overall, the spec files are quite simple to create. Often programs already follow configure – make – 

make install [Wil03] installation process. This makes it easy to compile them and therefore also easy 

to specify their installation procedure into the spec file. Sometimes there are additional steps like cop-

ying additional configuration files to target locations. More of often than not this is also quite simple 

to handle. 

Listing the result files is also a fast task especially if you have previous experience with the package 

in question. By convention, the files are built into a specific build directory where they will be col-

lected from as specified. You can even store all the result files in the RPM just see the full list. You 

can then choose the ones you actually need to have included and then modify the spec file to match 

the decisions. 

The spec files should be stored under a same git group in their respective repositories. When following 

our guidelines, the group is already configured into rcppkg. This way, component developers do no 

need to touch the rcppkg configuration. Only if one wants to take rcppkg in use on a different project, 
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and replace our spec files, will rcppkg require additional configuration. 

To take rcppkg use locally, you only need to: 

1. install the dependencies 

2. install rcppkg 

3. set up certificates for Koji authentication  

You are then set to use any of the commands that we have provided. 

We have now provided a way to easily and efficiently develop, build and install RPM packages. Soft-

ware developers will be able to enjoy the benefits of software packaging, without having to focus on 

the complexities involved. 

 

3.5 Implementation challenges 

As we have phrased it before, adding a new package to be maintained with rcppkg should only include 

minimal effort. We want it to be limited to creating a spec file for the package. This step cannot be 

avoided, but can be assisted by offering guidelines. However, even this might not as simple as it 

sounds. There are hundreds of packages that need to be added if we want to be able to manage the 

complete software products that we are working on. Manually creating spec files for all of these pack-

ages would obviously take a lot of time and effort. 

One possible approach we have looked into, is reusing the spec files from Fedora. This way we should 

have the dependencies and files to be included already defined. Some tweaks might still be needed in 

order to make the spec files compatible with rcppkg. We would possibly also need to do some other 

changes, such as removing Fedora-specific patches that we do not want to use. Obviously, this ap-

proach is viable only for the open source packages that we use. 

When it comes to our own subsystems, we need to create spec files from scratch as currently these do 

not exists at all. We have already created example spec files for our internal packages in order to start 

testing developer workflow with rcppkg properly. We must be able to test the whole scale of function-

ality we have promised. Both open source and internal packages should be supported. 

When starting to use rcppkg in a larger scale, we should definitely look into possible ways to automate 

creating minimal spec files for the packages. A lot of resources could be saved this way. Then again, 

when dividing the work between all the subsystem developers, the task seems a lot less demanding. 

We also faced some challenges due to most of our internal source code not being public. Because of 

this, we need to be able to set up ssh keys [YCB99] for git access. It sounds simple enough, but due 

to many different tools being used, the correct configuration becomes much harder. 

As Koji uses mock to build the packages in a chroot environment, we need this chroot environment to 
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contain the keys. The challenge here is that Koji is creating configuration used by mock automatically 

and we are yet to find out the proper way to change this. One approach would be to directly change 

Koji source code. Offering better chances to modify the created build roots would become handy in 

general. For now, we have settled with adding ssh keys to be included alongside the spec files to get 

on with the testing. 

Dependencies on our internal packages prove to offer additional challenges as well. When depending 

on open source packages, the dependencies are easily installed in the chroot environment using dnf 

[Fus17b]. When it comes to internal packages, currently we have to manually add the packages to a 

dnf repository after building them. This is the only way for the dependency resolver to find them. This 

is another caveat and we should find a way to overcome it by having our build system automatically 

include them in the used repositories. 

We considered four different solutions to solve the problem of retrieving source code with restricted 

access:  

• Configure mock to bind mount .ssh directory from root home to chroot home 

• Include source code in the spec file repositories 

• Change Koji to read entire confguration  

• Modify mock source code to copy ssh configuration from root home to chroot home 

The first option seemed the most natural and that is what we started investigating first. However, this 

turned out harder than expected to achieve due to different layers in play. After further studies, we 

found out that the same problem had been encountered on other projects [Hea12] as well. Through 

this, we found out that chroot initialization will clear the .ssh directory, rendering this approach invalid 

for us to pursue further. 

Including spec files with the source code was something that we had tried to avoid from the start. Our 

aim was to be able to keep the source code completely unaffected when taking these new tools into 

use. This approach would also require us to make further changes to rcppkg that would render its code 

much more complicated. For example, we already have different behavior for cloning open source 

packages and internal packages. If we were to include the spec files in the source repositories for our 

internal packages, we would also have to change the code to find the correct way to find the spec file 

for each package. We consider this to be close to a last lifeline to be used and decided to find another 

way to complete this task. 

Modifying Koji was definitely an option that we considered strongly. Having even wider possibilities 

to configure our chroot environment in the could be useful. However, testing our system showed that 

we had no need to any other configuration changes. Having to provide configuration files was an extra 

step that we did not want to take needlessly. 

Finally, we decided to modify source code of mock. We now have a version of mock that copies the 
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ssh private key and the known_hosts file from root home to chroot home [Kor17]. This way we can 

avoid modifying our git repository structure, while still keeping our continuously required efforts min-

imal.  

We first were afraid that this approach would hurt the setup simplicity of our tool. If users would have 

to install this modified version of mock on each machine they want to use rcppkg on, the required 

setup effort would increase a lot. This would surely make many users hesitant about the benefits of 

our tools. Luckily, this is not the case. 

The reason that modified mock only needs to be installed on the Koji server is that there is no need 

for builds happening on the user’s machine to clone restricted repositories. When attempting a local 

mockbuild, the source code will be copied from the user’s working directory. Only when executing a 

release build, will the source code be fetched from a remote repository. Thus, a standard version of 

mock on user’s own machine is enough. 

The biggest caveat in this approach is that we cannot support different user accounts. If rcppkg is taken 

into wider use, we would most likely be willing to monitor who has executed the builds. This would 

require us to again make source code changes to mock. 
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4 Containerization 

Linux containerization is an important modern virtualization technology. This makes the subject 

highly relevant for our work as well. When taking new tools into use, we already want to be prepared 

for possible changes that face us in the future. 

Using containers can roughly be divided to two different categories: packaging complete operating 

systems and packaging single applications [Ris17]. Different technologies are designed for these use 

cases. Operating system containers such as Linux containers [Can17] are used for the former and 

application containers such as Docker for the latter. 

We will follow the existing research and focus on Docker containers. It is a project started in 2013 

[Mer14] that aims at packaging applications by utilizing Linux containers. The aim of the project is to 

avoid the “dependency hell” situations between packages by placing the required dependencies along-

side the application in the container. This container can then be used to run the application on any 

platform that supports Docker containers [Mer14]. 

Containers are a much more lightweight approach to virtualization than virtual machines [VMw06]. 

It has also been shown that computational performance on them exceeds that of virtual machines 

[Joy15]. Containers run directly on the host operating system. Virtual machines on the other hand are 

used to execute the entire software stack, starting from the operating system. This causes their over-

head to be small and allows them to shut down and boot up quickly [Mer14]. On the downside, some 

security issues might arise as they are not as strongly isolated from the host as actual virtual machines 

are. 

Containers have been utilized to great lengths to provide some of the most stable services we have 

ever seen. Their use seems to be widening all the time. New users are adopting the usage of containers 

and new use cases are being invented. For example, there even is an operating system that runs Docker 

as the initialization service (pid 1) [Ran17]. All applications run on top of it are applications started 

by Docker. 

 

4.1 Microservices 

Microservices is a prominent architectural approach that has been utilized by many renown enterprises 

such as Google [KBB16] and Netflix [SZY16]. This approach has been developed to at some point 

entirely replace previous architectures such as client-server model. The qualities required from high-

end IT services are constantly changing. As the user base keeps growing, answering to increasing 

demand of attributes such as scalability, reliability and efficient use of resources [SZY16] is what 

microservices architecture attempts to offer.  

There is one main reason to the strength of this architecture. It is the inherent division of the system. 
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Software can be seen to gain in robustness as there is no single point of failure and scaling is more 

efficient as it can be conducted only on the services that demand it [SHD16]. Having separate, simple 

and lightweight services to deploy keeps the operating environment very flexible. This is needed as 

the cases when operational context of the application stays exactly the same, are rare [OEC16]. The 

new requirements set by customers must be met rapidly. However, developing of these separate ser-

vices is more complicated [LZX16].  

The challenges in design and implementation of these services is what we must battle against in our 

research. If the creating the applications that compose our system is going to become even more chal-

lenging, we should make sure that the development processes are made easier in return. Adopting 

lighter processes that restrict developer work is essential. We should also be able to automate as much 

of the software delivery process as possible. Luckily flexibility of containers helps us in achieving this 

as well. 

As the name implies, separate microservices are small, independent services [New15]. The variety of 

microservices in a system can be large. They are not tied to using the same techniques. It has been 

shown in [New15] that microservices operating as a part of the same application can use different 

programming languages and can also answer to different performance requirements. 

The approach can also be seen to enable adopting DevOps [PZA17]. As stated in [SZY16], micro-

services help in being able to update running software frequently without disruptions as the updates 

can be completed in parts. Currently rolling updates can be offered by booting up instances side by 

side, but this approach allows this to be achieved within a single running system. It could also be stated 

that containers enable microservices approach. According to [KBB16], in this approach, applications 

are composed from simple parts that are each deployed within a separate container. Linking these 

separate parts together then offers the full functionality of the application. 

Applying microservices architecture to existing software is no simple task. Monolithic legacy appli-

cations that we have in abundance in the telecommunications industry are often far from this single 

responsibility principle embracing architecture. Two major challenges are identified in [ECA16]:  

• How to handle dividing the system into smaller parts? 

• How to define the correct dependencies while retaining the previous functionality? 

In [SZY16] the progress of dominant software architectures is examined. They start from client-server 

architecture evolving all the way through to microservices.  Their goal is to identify the biggest caveats 

that implementing microservices causes. 

• Coordination between different development teams is difficult as microservices should be de-

veloped independently [SHD16] 

• Need to ensure that no coupled microservices are created 

• Amount of communication through networks is required 
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• May cause requirement to increase network security 

• Data storages need to be split out for different services to access them 

• Monitoring will be more expensive as processes are highly distributed 

• Figuring out the optimal size and number of services is very challenging 

They have also acknowledged the requirement to use lightweight communication methods as the 

amount of traffic is high. As we previously mentioned, the security of containers can be seen as some-

what of an issue. However, as stated in [Fet16] the underlying systems will never be completely secure. 

That is why an application should, running inside a container or not, take care of its own security. 

There are modern ways to achieve this such as allowing applications to keep their state stored in en-

crypted memories [Fet16]. This way not even privileged users will be able to access its runtime without 

proper means. It is noted in [ECK16] that in addition of not relying on the underlying system, appli-

cations must also question the integrity of their peer services. Any other part of the system should be 

seen as possibly malicious. 

 

4.2 Containers in rcppkg 

In addition to previously mentioned utilities of rcppkg we are also looking into implementing “con-

tainer-build”-command for it. The adoption of containers is increasing rapidly and we do not want our 

tools to be left obsolete once the transition truly starts. The basic functionality is already present in the 

underlying python class, rpkg. When developing application to be ran inside containers, you often 

want to follow single responsibility principles [Mer14]. This is possible as containers are computa-

tionally so cheap to use.  

There is two venues that the container-build could be used for:  

1. Packaging software into containers instead of RPMs 

2. Installing software into containers instead of virtual machines that we currently use 

There seems to be strong opinions in favor of using Docker container packaging when delivering 

applications [Moc15]. With true microservices, the used components could solely be minimal contain-

ers that are based on some minimal base image such as Alpine [Alp17]. Before this will be realized in 

practice, the containers can be used as a replacement for VMs when possible. With this division there 

would be two steps: 

1. Move software to run on containers 

2. Break the software in the container to multiple containers 

After this, the second step would be repeated until there is only a single service present left running in 
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each container. 

When setting up the container-related Fedora release engineering tools, it will be important for us to 

make sure that both of these cases are supported. Step one will be simple as often developers can just 

define a package manager to install software into the container that they want to build. In step two, 

when we want to strip down containers from everything that is not needed, additional challenges may 

arise. 

Unfortunately setting up full support for building Docker images in rcppkg requires more than just 

some minor code tuning in our python subclass. We need to set up a new plugin [pba15] into our Koji 

deployment. This seems like a relatively easy task. According to the documentation, with some minor 

configuration changes we should be able to integrate this plugin with our current Koji build system 

without disturbing the current functionality. 

If previously mentioned steps were enough, container building would be in use shortly, however there 

is additional component that will have to be taken into use. Koji plugin koji-containerbuild uses a 

build system called OpenShift [Red17a] to create the container images. There is an open source ver-

sion [ope17b] available, that we can start taking into use without higher level management decisions. 

RedHat offers a supported version of this software that is one possibility to look at if it proves useful 

[Ris17]. Getting to know this tool and actually deploing it successfully is what constitutes the biggest 

challenge for us before being able to integrate Docker container building into rcppkg. 

Similarly to building RPMs, developers will be able to commit their changes to version control and 

then build a new release version of the package with a single command. Dockerfiles are simple to 

create and modify so teaching the package developers to make changes in them instead of spec files 

should not be too much of an issue. Still, the adoption of containers must start from the architecture 

side, only then could this functionality of our developer tool truly be useful. 

 

4.3 Docker build configuration 

Previously, when building RPM packages, we used spec files to guide the build process. Now that we 

are moving onto implementing container build, we must use Dockerfiles [Doc17a] to specify how the 

container should be built. 

Dockerfiles consist of instructions and arguments. Instructions are pre-defined commands to notify 

the build process of what its arguments should be used for. Instructions are places in the start of the 

lines and they are usually written in upper case letters to be able to easily separate them from the 

arguments. Here are some of the most commonly used instructions that we have come across while 

getting to know Dockerfiles:  

• FROM 
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• ENV 

• RUN 

• LABEL 

• USER 

• WORKDIR  

• ADD 

FROM- instruction is used to define the image to be used as a basis for your container. The rest of the 

build process depends a lot on your choice of container platform. This instruction must be present in 

every Dockerfile. ENV can be used to set environment variables into the container and these can then 

be used in the Dockerfile to assist in defining the build process as well. With the RUN-instruction you 

can specify shell commands to be run inside the container. This is an essential part of the build process 

as we will often be using a package manager to install the needed packages with the help of RUN. 

LABEL can be used to specify additional metadata to be added into the container image. Form of key-

value pairs should be used here. WORKDIR specifies the path to the working directory to be used for 

running your shell commands and USER determines the user under which the commands should be 

executed. Finally, ADD-instruction can be used to add local or remote files to be included into the 

container image. 

 

4.4 Implementing container-build for rcppkg 

Again, we were able to adapt the command implementation from rpkg superclass with minimal effort. 

Due to our endeavors to keep the spec files separate from the source code, we had to adjust finding 

the correct git version to build. When building on the Koji sever, this is needed to format the checkout 

URL properly for the server to use in fetching the Dockerfiles. 

As mentioned before, our spec files will not be used at all in the process of building Docker images. 

Dockerfiles are used to configure what should be installed into the container. To explore this build 

system as a proof of concept, we have defined a minimal Dockerfile with the following instructions: 

FROM, RUN, LABEL, WORKDIR. We will be using Fedora as a base image and install one internal 

RPM package with dnf as an experiment to test the functionality of container-build in rcppkg. LABEL-

instruction is required to define some information for the OpenShift build system. Without this infor-

mation, the resulting Docker images cannot be published on Koji. 

We have set up a local Docker container to run the OpenShift server, as setting up a proper OpenShift 

server would likely take a lot more time. Evaluating the functionality of a full OpenShit deployment 

is also out of the scope of this paper. Thus, we will choose a simple approach to achieve the needed 

functionality with minimal effort. 
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In between OpenShift and rcppkg resides Koji, which we have now configured to support building 

containers. Achieving this was relatively easy, installing the koji-containerbuild [pba15] plugin was 

achieved simply with python-setuptools [Pyt2017]. After the installation we just had to modify two 

Koji configuration files to inform it to look for this plugin and enable the it to locate the plugin cor-

rectly.  

After getting the connection working between our host system, in this case the Koji server, and the 

OpenShift build system running inside a Docker container, we ran into some additional trouble. 

OpenShift build system utilizes a container management tool called Kubernetes [Lin17b]. This is a 

tool that we have seen used in some demos, but no have no hands-on experience with at all. 

Configuring Kubernetes to function properly proved quite challenging. Luckily our other thesis work-

ers who are conducting work that revolves around containers have more experience on the subject. 

With our combined efforts we were finally able to get closer to getting the containerized OpenShift 

deployment to function. 

At the start of the build process, a separate container is deployed to handle the build in question. This 

container will replace the mock buildroots that were used with RPM builds. To offer the qualities 

required from buildroot container, it has to include atomic-reactor [pro17]. Atomic-reactor is a python 

library that assists in building the container image. That is the most important requirement and the 

buildroot image can be customized if needed. 

Creating a Docker image that contained atomic-reactor and fulfilled our other requirements proved 

quite difficult. There are atomic-reactor images available on the internet to be pulled and used directly, 

but we could not take this approach. We were forced to implement some code changes into the atomic-

reactor library, so we had to build the image ourselves. Often customizing the image can be easily 

achieved, but as we were forced to again modify another open source component, the task seemed 

needlessly complicated. 

The need for atomic-reactor changes was caused by trouble with submitting result image into Koji. As 

the build name was always already being used by the process calling the Openshift client, build process 

was not able to reach completion. Koji will deny processes that are trying to publish results under 

already existing names. We implemented a small workaround to fix this for now and published the 

code in case it is needed again [nip17]. 

Next, we had to make changes to the basic Dockerfile [Doc17b] used for building the atomic-reactor 

image. We had to copy the Koji certificates and configuration into the image to be able to communicate 

with Koji. We also had to change /etc/hosts [hos17] file inside the image to allow the ip of our Koji 

server to be determined properly inside the buildroot container. That was harder than expected as 

modifying this file isn’t allowed by Docker. We had to use a workaround [Wor15] to be able to proceed 

with our implementation. 

After this, there were only a few final modifications we had to make to get this full process working. 
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We set the line ‘Environment="NSS_STRICT_NOFORK=DISABLED"’ into the systemd [sys16a] 

service file [sys16b] of Koji daemon, to make it trust our OpenShift server. Then we just had to add 

atomic-reactor as a content creator into the Koji database and allow the user that we conduct the builds 

with to use this build method. Now, we were able to execute complete Docker builds and download 

our created test image from Koji. 

As we have seen, the task of taking container build functionality into use proved quite difficult. This 

was caused by the fact that there are so many different components used in this build process. It also 

seemed quite hard to find information regarding these components. They all are still actively being 

developed, so we expect to find out easier ways to achieve what we want in the future when they are 

used by an even wider audience. 

It should also be noted that the system that we have set up should be used strictly for test purposes. 

Many points of authentication have been disabled for convenience so it is not secure enough to use in 

production. 
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Figure 1: This figure shows the flow of container image build that is initiated via rcppkg and carried out 

by Koji and OpenShift. The squares represent different states that the build will move through before 

reaching completion. The arrows represent what action is carried out by the system when moving to the 

next state. 

 There are many different open source tools used here and the build process is quite complex. As an 

overview, Figure 1 illustrates the execution flow of “rcppkg container-build” from start to finish. The 

colors indicate which part of the build process the components are used in. 

 

4.5 Using container-build 

While setting up support for container-build was demanding, the usage itself is as easy as the other 

rcppkg commands. To clarify, in order to use container-build command, no additional setup is needed 
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to be completed by the developer using rcppkg. It is enough that the Koji server maintainers make the 

needed changes to be able to fulfill the container build request. 

If rcppkg is already installed on the system, similarly to RPM builds, just one command is enough: 

“rcppkg container-build” 

As with previous commands, this should be issued inside a source directory that is supported by 

rcppkg. In addition, there should be a Dockerfile present in the rcppkg spec file repository of the 

component in question. However, in production use we would likely to implement own git group for 

storing the Dockerfiles and possible other files needed for successful builds. 

After finishing the build, user can head to the Koji dashboard on a web browser and check whether 

his/her build has been successful. In case of success, there is a download link available, where user 

can get the newly built Docker image. After download this tarball can be loaded into Docker by issuing 

“$ docker load <tarball name>”. 

We have also included a Docker registry to be ran in the Koji server within a container. This registry 

will offer no persistent storage but will be enough for our testing purposes. All images built will be 

stored in the Docker registry too. From here, it is even simpler to load them for your local usage. 

Simple “$ docker pull <koji server URL>:5000/<package name>” will be enough to acquire the image 

and start using it. Uploading the images automatically to a docker registry would definitely be the 

image delivery approach that we would use in real use cases. 

 

4.6 Challenges 

We have now successfully set up container build functionality for our Koji server. While this deploy-

ment is far from being viable for production use, it adequately fulfills our needs for evaluating this 

build approach. We can start producing container images in larger amounts for the packages we have 

chosen to test building RPMs with. 

In addition to the biggest reason, lack of authentication, our build system has many other weaknesses 

that would prevent direct cloning of this environment to real use. Some of these may not be issues in 

practice but they all should still be kept in mind. 

Firstly, there are some limitations which images we will be able to build. Currently building an image 

that does not contain ‘/bin/rpm’-executable will always fail. We have not examined this closely as it 

is not a issue for our tests, but in production use, the feature could prove annoying. The build system 

is derives from building RPMs so there must still be Koji processes in place, that use RPM function-

ality for various tasks. 

We will also be unable to use scratch images with this build system. Scratch images are completely 
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blank Docker images that can be built upon. These can be very useful when attempting to build mini-

mal container images that do not contain anything unnecessary. I can see this very well being the case 

for us, as we are always trying to ensure that our systems are as compact as possible. 

The previously mentioned caveat arises from the fact that the base image is pulled separately before 

the build in our atomic-reactor buildroot. Scratch images cannot be pulled, they can be only built on. 

This is why their usage is not possible without modifications. 

The problem with initial Koji build failing is also still present. When a user starts a container image 

build, there will be a Koji build for carrying out the image creation, followed by a separate build for 

importing and tagging the created image to the Koji server. What we have noticed is that the former 

of these will always fail. This is due to Koji expecting a build having RPMs in its resulting files. No 

practical downsides should follow from this but it certainly is not a good practice to fail builds without 

real reason in production build systems. Many false alarms and needless debugging sessions could 

very well follow. 

Even though these caveats are not too big and must not weight too much in our evaluation, we see 

these as clear signs of the immaturity of utilizing Koji to build containers. Taking the basic RPM build 

functionality in use was much more straight forward. This is of course also affected by the fact that 

there was lesser amount of different systems used. 

After testing our container-build utilizing Koji and getting to know OpenShift platform, we are ready 

to discuss its viability. While the use cases of Koji should still be evaluated from different perspectives, 

currently the need for this tool in our project seems minimal. 

As we are moving towards containerization, we are also attempting to embrace DevOps principles as 

much as we can. A big part of this is moving towards automated deployments. We are aiming to auto-

mate the build process as much as possible and minimize the actions needed by users. In this scenario, 

there should be no need for a manually issuing official builds. In that sense, using manual build com-

mands does not fit in the picture. 

Users will in most cases want to test their code before pushing it, but this needs to be looked into 

separately in any case. Our command container-build has been designed for releasing builds and not 

for testing.  

While this command is useful, the build process seems overly complex. We strongly think that when 

if true automated deployment practices would be embraced, there would no longer be need to utilize 

Koji. OpenShift can clearly be useful, but in this case having Koji server as part of the build process 

does not offer enough benefits anymore. 

It seems to us that using Koji for this purpose this goes against what we are trying to achieve, simplic-

ity. Already setting up this build system was exceedingly complex. No doubt it would take no time 

from an expert or even from us from now on, as we have now done this before. Still, if we take a look 

at Figure 1, we can clearly see how many different components we would need to use. Simply the 
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maintaining the number of components would encumber more effort on us. It is clear that they will 

have to offer clear value for the maintenance to be worth it. 

The biggest reason to use Koji for building containers, would be continuity.  Having developers use a 

new command in a software they have experience on is often more tempting than learning to use new 

software tools. 

We are not certain this would be proper basis for choosing our operating environment. Decisions 

should be made on based on best overall available tools, not the easiest adopted one. Usability and 

ease of learning is essential but as we question the need for a manual step that Koji would help us 

simplify, even this loses value. 

When this issue becomes timely, we should look into how can the users best test their code locally, or 

is this kind of functionality even needed anymore. As the used technologies are becoming more ad-

vanced, our supporting processes should also reflect them. 

In the end, automated deployments are far in the future for the telco industry. Especially when we are 

slowly starting to implement software that is run on containers we can likely utilize these features of 

Koji and rcppkg. Having a few components here and there that are deployed as containers certainly 

does not offer incentive to move to another build and deployment system. 

With closer examination, more implementation by the upstream developers and proper setup, con-

tainer-build could very well offer useful utility. We must wait to see how the containers will be taken 

into use and attempt to offer our support in this regard.  
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5 Storing open source code 

Use of external packages has been on the rise for a long time, as cost and time of development process 

can be cut greatly [Cla92]. We have already existing version control repositories in use for our own 

packages. Packaging out internal subsystems was tackled quite easily as it is clear how the source code 

is and will be stored in the future. However, there is a lot of open source software that we use as part 

of our products. 

Most of the open source packages will compiled directly from the upstream source code, with possibly 

a few internal patches applied to them. Thus, there is no sense creating new git repositories for each 

of them and having to merge the code every time there is a new release. This would result in a lot of 

manual labor as there are hundreds of these packages in use. 

At the start of this paper, we mentioned that the operating system that we will be using on the next 

version of our platform, is yet to be decided. This seems like a great opportunity to look into the 

foundations of the operating system’s build process. In this chapter, we are going to briefly examine 

how the source code is stored right now, and how could we improve on the storage method. In case of 

transitioning into a new operating system, there will surely be package and version changes that we 

face. 

 

5.1 NetLinux solution 

At the moment, NetLinux stores all sources of its upstream packages in a single directory on an internal 

server. In other words, all the versions of all the packages are stored in a single remote directory. Build 

process fetches the packages from the repository and uses md5 hash [Riv92] to validate the down-

loaded package. 

This storage approach has multiple weaknesses, most importantly lack of structure and long term us-

age. 

Storing all of the packages in a single directory is bad idea from the point of view of a human actor. 

While building the system, a compilation script will have no trouble picking a specified source tarball  

from the directory. However, when a person wants to examine the stored packages or find a specific 

one to download manually, problems can arise. Scrolling through different versions of different pack-

ages or finding the exact spelling of the filename to be searched for can take time. A clear structure is 

always useful when storing software components. Currently the number of packages is small in com-

parison, so the problems are not big. However, this could very well change in the future. 

Maintaining the package base can also get quite complicated in the long run. There is no automatic 

functionality in place to assist in getting new or deleting old packages. This is why, in the long term, 

the amount of storage resources would most likely keep increasing over time. With no automated 
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maintenance processes in place, designated personnel would have to carry out screenings of the pack-

ages from time to time. Also, the lack of structure would become even bigger problem as the number 

of packages to scramble through would increase. 

One might also wonder why do we want to store the open source packages ourselves. Why do we not 

just create the spec files and fetch the source packages from the Internet? Even outsourcing software 

storage has been widely used approach [Man14]. Firstly, we must be able to have control over the 

source code. For example, we cannot risk any public source code repositories letting in possible at-

tackers that could cause security holes in our systems. Secondly, we must be able to control the avail-

ability of our source code. We cannot trust in a third party keeping their servers operational as much 

as we want. Another possible issue to consider is possible slowness or breakage when connecting to 

the Internet. We want to be able to guarantee ourselves that the source code will be accessible at all 

times or as close to that as possible. 

 

5.2 Existing solutions 

A huge Debian source code collection has been gathered in [CaZ17] to be available for download and 

analysis [Zac15]. This collection is far larger than the one we are dealing with, consisting of over 

30,000 packages [Zac15] but we might well be able to draw guidelines from their ways of maintaining 

the source base. 

Packages released with current and past Debian releases have been placed in debsources at the time of 

creation. In addition to this, debsource is able to get live updates of package updates [CaZ14]. This 

model, kind of a developer – intermediary – user interaction is very common nowadays, according to 

the authors. In this case Debian works as an intermediary packaging open source software for its users 

to simplify installation. Users can simply run apt-get commands to install compiled packages from 

Debian repositories. Similarly, we have an intermediary, currently a single directory, as a place of 

storage for open source packages. Users do not have to figure out the correct website the upstream 

releases are posted to, but instead can trust on Debian forwarding the correct sources when needed. 

This dataset has been created to enable research on a large set of open source software. Research on 

macro-level software evolution is scarce, not because of lack of interest, but because of various big 

challenges involved [CaZ14]. 

There is multitude of functionality available in debsources. Packages can be sorted by names or by 

groups, code search can be performed in browser and there even is an automated garbage collection 

functionality for unused packages [CaZ14]. 

For Fedora, there is a source package repository collection available under http://pkgs.fedo-

raproject.org/repo/pkgs/. Arch Linux has listed its packages to be easily downloadable from 

https://archlinuxarm.org/packages. 

http://pkgs.fedoraproject.org/repo/pkgs/
http://pkgs.fedoraproject.org/repo/pkgs/
https://archlinuxarm.org/packages
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5.3 Questions regarding our storage approach 

As stated, we do not want to set up git repositories for most of the open source components. Currently, 

almost all of the open source components used in our project are stored as tarballs with git repositories 

set up only for only a few of them. These are components that we are making many own modifications 

for. Therefore, it would be quite messy to handle these modifications by applying large amounts of 

patches every time. 

In our operating systems, we have far fewer packages in use than most flavors of these widely used 

open source distributions. This, is why we feel like there is no need for sorting mechanisms for ac-

cessing the sources. Most likely sorting the packages by their name will be enough in most cases to 

allow users to easily locate what they are looking for. From the ones covered in the previous section, 

this can be considered to resemble the Arch Linux approach most closely. 

The ideas from more complex source package management systems we would like to utilize are auto-

matic updates and automatic garbage collection. 

We do not want to implement a completely automated approach into pulling new sources. This could 

lead to possible security vulnerabilities and a maintaining source code that we will not be using for a 

long time. What we want to examine is a possible notification system for new updates on used pack-

ages. How much would this decrease the work load of our OS developers? Could a system like this be 

relied on? Is this even needed or is manual learning of available updates enough in our case? 

Garbage collection for unused packages is something that we would like to implement to avoid bloat-

ing the package base of our source storage in the long term. The size of stored components keeps 

increasing rapidly [VoD13]. We do not want to have full source history stored. Nor do we have a real 

need to archive all the past sources. We only want to store the ones that are still being used. This is to 

ensure we can access them for development and debugging. 

The interesting question here is how do we determine which versions of packages are still needed? 

Under what conditions should a tarball be deleted to avoid cluttering the storage space? 

 

5.4 New storage approach 

What we want to achieve, is help developers themselves in accessing the source code of all compo-

nents in use. In addition to allowing build systems to access sources, software repositories are main-

tained exactly for this reason. There has to be a place where different human actors can easily access 

the software code [SiS14]. Accessing is divided into two categories in [SiS14]: browsing and retriev-

ing. Retrieving is made quite easy with our different tools assisting. Therefore, browsing is what we 
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mainly want to improve on here. 

Changing our storage approach to contain one directory for each package, under which all of its ver-

sions reside, has other benefits besides simplifying package browsing. We could easily include in-

house documentation of the package with the sources, without cluttering the package directory with 

all different packages’ files. 

By taking a look at Fedora source package storage, we can quickly see that many additional files are 

often stored. These include test packages, some installation scripts and documentation. It is clear that 

we cannot utilize our source storage like this, while there is no directory structure present at all. 

In [Man14], software maintenance projects are considered to be divided into three phases:  

• Transition 

• Steady-state 

• Preventative 

The first phase contains moving the application from previous vendor to the new maintainer. This 

would often contain information exchange and guidance between the parties. This is not the case for 

us as components have also previously been in our use and are familiar. What we need to figure out 

is, do we want to automate this procedure. For now, we will not pursue fully automating package 

source retrieval and updating. This could save little time, but the used approach should be carefully 

reviewed to make sure that the acquired source code is correct and trustworthy. However, utility tools 

to make fetching new sources simpler would be beneficial. 

In steady-state phase, software maintainer will be resolving different problem situations related to the 

software. Often this contains answering some tickets on different topics like access to the software or 

possible bug reports [Man14]. 

Moving to the final phase happens by maintainer acquiring extensive knowledge about the software 

package by performing related duties in the previous state. This phase resembles steady-state a lot, but 

can be considered to dive a lot deeper into the software with lesser effort. This is made possible by the 

expertise the maintainers have acquired from continuous experience dealing with the packages in 

question. 

These phases are not that clear in our case, but are useful to keep in mind. External software maintain-

ers of software [Man14] can have for example a lot more demanding transition phase. They also often 

have very strict contracts about ticket answer times and assigned responsibilities on fixing possible 

bugs in the software. 

We could construct a documentation approach that would move us a bit closer to the external software 

maintenance lifecycle. In each open source package’s directory, we could make small notes specific 

to us about the package. One of the most important things to note would be an internal contact that 

has better-than average knowledge about the package. 
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Currently, when encountering problems with open source packages, our developers are often puzzled 

about the next steps to take. Getting answers from the open source community can take time and they 

will not have knowledge about the special circumstances that we operate on. Having a few internal 

specialists assigned to each package would help our developers taking the first steps after encountering 

problem situations. When this information would be easily accessible side-to-side with the source 

code, moving forward with troubleshooting could happen a lot faster. 

Other useful things that this documentation could be used for:  

• System-specific installation guides 

• Links for upstream bug reporting 

• Information concerning Nokia-specific changes, for example internal installation paths, our 

systems’ use cases 

When it comes to automatically removing the old sources that are not used anymore, this is something 

that we would like to implement. Having our storage usage grow indefinitely is not desirable, as having 

too many files to complicate users’ view is not. We will leave this as a future project to be kept in mind 

for now. 

We have also started storing spec files in a larger scale to an internal VCS. The goal has been to re-use 

Fedora spec files. This has been possible for many packages (120?), but many more require some 

manual inspection before being viable. 

We have attempted to clone Fedora spec file repositories directly, so we are also using their “sources”-

files that list the names of source files to download before starting compilation. This caused the first 

of the most common difficulties. In our internal storage, where our source file fetching pointed to, 

there were only source code tarballs available. Many of the “sources”-files listed also some additional 

files like tests and patches. 

When starting this process, we stuck with our current source package storage, as there is much work 

to be done in any case. This caused many errors, as builds failed due to files not being found. Manual 

intervention was needed here to correct the “sources”-files to only use source packages, since they are 

the only ones available. 

Second of our major challenges was version difference between Fedora rawhide packages and source 

packages available in our repositories. There were cases where either one was ahead of the other and 

in many cases an older package wasn’t even available in our repository. These cases need to be exam-

ined more closely to find out which version we actually want to use, or do we even have a choice 

because of possible compatibility issues. 

In addition to these previously mentioned obstacles, we also encountered some build failures due to 

things like being unable to fulfill requirements (gcc version being the dominant one), missing static 

libraries and test failures. 
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In the next chapter, we will examine more closely how we adapted our storage approach to our new 

build process. While experimenting with a new, Fedora-based, operating system, we decided to also 

attempt moving towards upstream way of storing the source. 
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6 Reusing Fedora code base 

We have started to examine the possibility of reusing open source spec files created for Fedora. The 

next iteration of our cloud is still at quite early stages, so the ties to its underlying operating system 

are still quite weak. The platform has already had test builds conducted on top of Fedora cloud image. 

There should not be massive Fedora specific changes that would cause need for rewriting. For these 

reasons, we can see moving directly to using Fedora packages to build our operating system to be 

viable. We can save a terrible amount of work hours when providing an automated way to achieve this 

task. Writing spec files for possibly hundreds of OS packages would require collaboration of many 

software teams to accomplish. We aim to be able to build the entire OS from scratch without any 

outside help. 

As we have mentioned in this paper, whatever operating system we decide to go with in the future, we 

need to be able to control the sources and the build process. In practice, this means we need to build 

around 200 packages that are needed for the basic cloud platform image that we are going to be testing 

with. Creating spec files and moving the source packages for such a large number of packages sounds 

like a marathon. Reusing Fedora spec files as best we could and automating most of the source copying 

and build processes was the reason that we were able to accomplish our goal with limited resources. 

The developer tools that we have created during our research, along with new functionality designed 

to assist in this task, proved very valuable for achieving our goal. 

Our current operating system has been attempting to keep its packages up to date with upstream with 

minimal delay. We have not had a long release cycle where release is frozen over time while carefully 

choosing the right versions. This is the convention in many open source distributions, and Fedora is 

not an exception. Instead, we publish regular releases of constantly evolving package base. 

Often application developers can be slow to adopt new operating system features even if they are 

offered. The main reason to attempt to keep the operating system up to date has been that we want to 

avoid backporting patches. When critical updates are released, NetLinux developers have preferred to 

update the package instead of backporting patches into a version that has been released in our previous 

iteration. 

Following this approach, we have decided to use the spec files of master branch, rawhide Fedora. Here 

most of the packages are newer versions than the ones used in NetLinux. However, if we decide to 

take this newly built operating system into use after evaluation, we may start adopting the Fedora 

release cycle. Having an operating system upstream where we can pull backported patches would ease 

the load of backporting patches. 

In the following chapters, we will present how we have overcome the challenges of moving huge 

amounts of source code and rebuilding the packages internally. 
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6.1 Command for fetching source packages 

We have made our own implementation for yet another rpkg command. This command, ‘rcppkg new-

sources’, serves two purposes. First, it will greatly assist us in handling this massive source fetch 

operation. In later stages, the command would become quite useful in maintaining our new operating 

system. New versions of upstream packages are constantly being released. Thus, we need an efficient 

way of updating our packages before rebuilding them. 

 Again, we have attempted to make use of the functionality already provided by the underlying python 

superclass, rpkg. It offers functionality to parse the ‘sources’ file that lists source file names and their 

hashes in different formats (<hash> <name> or <hash type> (name) = <hash>). We utilize this function 

to find out the names of the files that we need to have present for building successfully using the 

current spec file. 

Once we have the list of files that we need, we must find them from Fedora source package repository. 

There are two types of paths used there: <package base URL>/<file name>/<hash>/<file name> and 

<package base URL>/<file name>/<hash type>/<hash>/<file name>. 

As there are different forms for the paths and the hashes that are part of them are obviously different 

for each file, we have decided to opt for a recursive approach. This way we can easily track down all 

the full URLs for the files that we are looking for. For each filename, we start the search from URL 

<package base URL>/<file name>. In each call of our recursive function, we find the list of files under 

that URL by getting index.html and parsing it from there. If we find a file that matches the name of 

the file we are looking for, the full path will be added to an array that will be returned by the function. 

Otherwise, the search will continue by looping through the found files and appending them one by one 

to the current URL before calling the function again. 

Once we have found all the URLs of our all our source files, we will start fetching them to a temporary 

directory on local host. We start by forming the same directory structure, that is present on the Fedora 

repository, under the temporary directory. Then we copy the files to our local host before moving the 

entire temporary directory to the internal package storage residing on a remote server. 

Now we have all the needed source files needed for building this package in our internal storage. With 

one command, we are able to automatically fetch all needed files. By checking the needed sources 

from the ‘sources’-file, we also avoid storing unnecessary files. If we were just to fetch all the files 

present in the Fedora source repository, we would store many old source versions that we certainly 

would have no use for. 

When it comes to package maintenance, updating packages becomes extremely easy. First, the admin-

istrator will merge the spec file updates from Fedora repositories to matching internal spec file repos-

itories. Then, ‘rcppkg new-sources’ will be run to fetch the possible new sources for each updated 

package. Now, new version of the package is ready to be built. 
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In the next chapter, we will look more closely into how we utilized this command in building Fedora 

packages internally on a larger scale. 

An added benefit here is that we actually get the storage format we were discussing before. We now 

have own subdirectory for each of the packages’ sources. How much additional benefit we can obtain 

from this in practice, will be seen in the future. For now, we are satisfied that the structure will greatly 

assist in the source mirroring process. The sources are now also much more easily browser by human 

actors. 

 

6.2 Process of taking packages into use internally 

Utilizing our collection of package maintenance tools, the process of taking an external package, that 

is present in Fedora repositories, becomes extremely simple. We can clearly separate four different 

steps that are needed: 

10 Mirror Fedora spec file repository of the package into our internal git repository, under the spec 

file group that we have created. At this stage, you could also for example make changes to the 

spec files or patches if some Nokia-specific modifications are required. 

11 Use ‘rcppkg new-sources’ to fetch the source packages indicated by the ‘sources’-file in match-

ing spec file repository from Fedora storage to our own. 

12 Add the package to Koji for the tag that you are building to. This can be handled by issuing a 

single command to a shell that is authorized to use our Koji server: ‘koji add-pkg --owner <user 

on Koji serve> <tag that we want to add the packge to> <package name>’. 

13 Run ‘rcppkg build’ for the package. 

We have formed a list of open source packages that we want to be included in our distribution. Using 

this list, we have written a script that will import the sources of each of these packages into our own 

storage and build an RPM for us. The script will simply loop through the package list and for each 

package, it will perform the four essential steps listed above. Now we can just leave it running for the 

night and see how we have hundreds of packages available internally in the morning. Doing all this 

manually would be extremely cumbersome and time consuming. Figure 2 depicts this full process of 

building listed Fedora packages internally. 
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Figure 2: The process of importing a package from Fedora to internally control. The steps from 1 to 4 

present different stages in the process required to implement and publish changes for a software component. 

Arrows in the figure present the direction of process flow and the actions that are being carried out. 

After running such a huge job, we obviously have to examine the results. How was our migration able 

to perform? Most of the package builds succeeded, but there were also many errors that we had to 

track down and solve. 

First thing that we noticed was that the disk that our build roots were created had insufficient space. 

For example, building Linux kernel failed due to filling the whole disk and not being able to continue. 

This was easily solved by setting our build root directory to a disk that had plenty of space available 

for even a large amount of builds. 

A common cause of failure was that Koji was executing the build with root user. As building with root 

user is bad practice, many packages had some sort of check in place that caused the build to fail in 

case it was being run as root. Again, this issue was easy to fix by configuring Koji to opt for a non-

privileged user. 

Some less favorable steps we had to take were disabling tests or building debug RPMs for some pack-

ages. We took this shortcut in order to start testing with our new OS build process from start to finish. 

Making sure that all tests that should be successful, are successful, should be our next priority after 

we find the time for it. 

As our Koji had been configured with Fedora 25 repositories, there were some unmet dependencies 

when building rawhide packages. We started by building rawhide versions of these missing depend-

encies to be used, we were able to overcome the issues and proceed. This approach, however, would 
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return to punish us later as we will find out. 

Another similar, but not exactly the same issue was that dependants of packages that we had built were 

sometimes unable to build because they needed an older library to succeed. For example, initially, we 

had built version 1.63 of boost. There were many packages that were fetched from the public reposi-

tory and wanted to use boost 1.60 libraries, as that was what had been in use at the time of Fedora 25. 

Their builds would obviously not succeed, as long as their requirements were not met. The hard ver-

sion requirement caused our newer version to not be accepted. 

As the number of version issues began to grow, we configured Koji to prioritize a rawhide dnf repos-

itory when resolving dependencies. This revealed a number of compatibility issues that we had not 

taken into account. Python abi (application binary interface) version changes in between and conflict-

ing pkgconfig versions forced us to rebuild some of our packages to be able to finish building our list 

of packages. 

 

6.3 Building OS images 

Having built all the packages that we wanted to include in our new operating system, we were to 

proceed to building the OS itself. 

We have been given a kickstart [Red17b] file that we can use for building the operating system image. 

With this kickstart file and a small script to initialize the build with correct parameters, we were good 

to go. The kickstart file is actually where we copied the packages that we need so part of the contents 

were familiar to us already. There were some differences, as Fedora has own naming conventions for 

packages. However, with a bit of modification were able to create a list that contained only names that 

were found in Fedora repositories. 

The kickstart file had to be configured with an URL where to install the packages from. To be able to 

do this successfully, we had to create a dnf repository from our packages. We had been instructed to 

use mash [pag17] for this. This way we had a yum repository containing the packages we had just 

built up in no time. 

There was just one failure during the process that had to be corrected here. This was to change the 

repository location, as it had been configured to place the repository on the root disk. This had not 

been an issue before since the number of packages had been much smaller during earlier testing. As 

with kernel compilation, the operation was unable to complete, as the disk was filled completely before 

even getting close to finishing. 

After configuring the newly built dnf repository into our kickstart file, we attempted building the OS 

for the first time. This resulted in a quick failure. After examining our first attempt and comparing our 

package repository to another one, the cause was evident. We must also include a boot media for the 
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build to use in the repository that we are building from. Copying specific files from a repository that 

had been used for building via kickstart before, resolved this issue. 

Next, we faced an isse with dnf groups of our repository. The kickstart file that was provided for us 

required the dnf repository to contain two groups, core and cloud-server-environment. These two 

groups are used for building the Fedora cloud base image. We proceeded to create a configuration file 

that held the group data and recreated our repository. 

Now it seemed as the biggest challenges were over, but in fact there was still problems to be tackled. 

Our build was failing and the debug information given by Koji was quite minimal. The only debug 

data that we are given on installation failures like this, is a screenshot of the screen at the time of 

failure. In this case it was not useful for us as it just indicated that software installation had failed and 

asked if we want to proceed. The installation fails in this case because Koji installation must be fully 

automated. No input can be given, so the build will time out and fail. 

We then turned to investigate our package list. Quickly, we noticed that the package list was very 

lacking when used for building a repository. Yes, it listed all the packages that we needed, but their 

dependencies had not been listed. This means that we had not built those packages at all and therefore, 

there was no way they would be found from our new dnf repository. We had to proceed to finding out 

the missing dependencies for all of our packages and recreating our repository. 

This task was started by utilizing a script that we wrote to find unique dependencies. The script iterated 

through all of our packages, searched their dependencies and then searched for providing package for 

each of these dependencies. The output contained require RPMs names. As one package can contain 

multiple subpackages, we had some manual work ahead of us. Our build system needed the package 

names instead of RPM names to function properly. After the scripts completion we still had to manu-

ally scramble through the list, replacing the RPM names with the corresponding package names. 

As we were proceeding with this build, we noticed there were still issues with pkgconfig versions as 

many packages had been built with the Fedora 25 packages fulfilling dependencies. After moving to 

rawhide base repository, these builds no longer succeeded. There were conflicts between pkgconf, that 

was installed by the dependencies and pkconfig, that part of the packages were still using. Thus, we 

decided it was best we rebuilt the whole package base against rawhide repository, track down and 

correct these issues, in order to make sure that there were no more version mismatches left. 

This sounds like a huge time investment, but thanks to the available tools and ready-written scripts, 

this task was easily completed and we were able to continue with our OS image build. In fact, we 

created a whole new build target and tag to Koji in order to have a clean start. This way we made sure 

there were no leftover packages as we had added some packages that were not actually necessary 

during development. 

After the complete rebuild of packages, the next step was again to attempt to build an OS image out 

of them. And again, we faced similar failure. It was clear that we were not able to capture all of the 



48 

required dependencies with our script. We decided to investigate the issue in a more manual manner, 

to ensure our success. 

We utilized virt-install to do test build with the same kickstart file and the same repository that we had 

created earlier. It is clear that this way, we are not able to determine Koji related issues. We were 

confident that this was not an issue in this case. We had successfully completed image builds with the 

same kickstart file when building from public repositories. Thus, the most likely cause for failures was 

the repository that we had created. 

The image build again failed and expected an input from us, just as when building with Koji. However, 

now we were able to examine the system more closely. We dived into the logs of the system and 

quickly found a long list of missing packages that prevented our installation. After writing these down, 

we proceeded to build the newly found dependencies. 

We soon found out that attempting to find out rest of the dependencies was a very poor decision. The 

dependency chain seemed to continue endlessly, there was no sense trying to do all this manually. We 

changed back into the automated approach, and executed manual installations every once in a while, 

to see how many dependencies the installation is currently missing. When there were only a few de-

pendencies left, we were able to pinpoint them with virt-install and complete the task at hand. 

In the end, there were even more dependencies missing than there were packages in our OS installa-

tion. The kickstart contained a list of around 200 packages with some additional packages defined by 

the default dnf groups included in Fedora installation process. The dependencies that we tracked down, 

turned out to include over 300 separate packages. 

We had in no way anticipated that the number of missing dependencies would be so large. For this 

reason, we believe that our way of handling this task was far from ideal. The end result could have 

been accomplished with far less effort if approached correctly. We were expecting a relatively small 

number of missing dependencies and the missing packages that were listed for us after each OS instal-

lation attempt stayed quite small after a while. This lead us to believe that we were really close to 

having built all the required packages. Due to this, we did not attempt to take steps to achieve greater 

automation for the process. Almost all the way through, we were convinced that there was only a few 

more packages to go. 

For future reference, it should definitely be kept in mind that this kind of dependency tracking should 

not be attempted manually, nor in steps, as we have done here. An automated process should be de-

veloped, so that the amount of man hours can be kept low. One simple possibility is to use the script 

that we utilized as a basis. However, instead of exiting after looping through one round of dependen-

cies, the script should keep running until such an iteration is executed that no additions at all are made 

to the list. This way we will have to do close to no manual effort at all, as long as the dependencies 

are listed correctly in the system that the script is being run on. Repository version differences can 

cause some packages to be left out causing a bit of manual intervention to again be applied. Still, this 
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will be very minimal in comparison to what we have done. 

 

6.4 The results 

Finally, after struggling to build the needed dependencies, we were able to successfully build an OS 

image from internally built packages. By using the same kickstart file that Fedora uses and adding the 

packages that we want to include, we were able to test the new qcow2 image. 

By mimicking the Fedora build configuration, we were able to run the test image using qemu without 

larger issues. The operating system booted up fine with only one service failing, systemd-vconsole-

setup.service. We suspect that this is due to the qemu arguments that we used and should be easily 

fixed when needed to be able to take the images into real use. 

We are now able to build Fedora images completely separately from the public resources. This enables 

the possibility to actually productize the operating system and possibly replace the currently used 

NetLinux all together. However, there will be many challenges ahead of us in porting the required 

functionality. Most likely the biggest being that we are using Fedora rawhide package base, our image 

will be well ahead in terms of software versions. A lot of adaptations will be needed to be able to 

compile and run the current platform software on the Fedora rawhide image that we have built. 
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7 Development platform 

We want to offer our developers a modern way to complete their programming tasks. Currently the 

development environment is usually completely separated from the platform where the developed ap-

plication will be launched. We want to offer better tools to execute software development on the plat-

form. This makes your workflow leaner, as you do not have to move the code around to be able to test 

it in its native environment[HHA08]. 

Software development was previously carried out on centralized environments. Then, with the popu-

larity of personal computers the transition was made towards a distributed fashion where each devel-

oper was in change for their own environment [Cla92]. Now, we often complete our work in between 

these two approaches. Developers are offered with easy-to-setup platforms that contain different de-

velopment tools for them to use. This is the approach we would like to implement for our native de-

velopment platform as well. 

To comply with what DevOps suggests, unifying development and production environments will be 

an important step. With the new tools and operating system, achieving this will be much easier and 

the results will be a lot better. 

 

7.1 Approach 

As opposed to our previous work, we do not aim to control all the source code. We want to use the 

same core operating system packages as we are using in our production environments. These will 

obviously be compiled from the same sources as in our products. However, we do not have to control 

those parts of the development environment that will never be used in production. We can just utilize 

readymade RPMs from upstream repositories.  

This way we can achieve the greatest amount of customizability. If we were to build every package 

ourselves, we would soon find ourselves swarmed in work. As people have different preferences on 

what kind of development tools and desktops to use, we would have to maintain a huge package base 

that would offer us no direct benefit into our products. 

The reasons why we want to maintain the source code, do not apply for development packages. De-

velopment environments are in no way as critical. New features and bug fixes do not have to be in-

cluded instantly. Not offering all the optimal approaches is not a big deal. We can safely take the route 

that will cater to the widest variety of needs. 

Most importantly, it will now be simple to use the production VM that we will provide and install a 

graphical user interface on top of it from Fedora RPMs. The required efforts to achieve this with 

NetLinux would be enormous, as it does not contain a package manager at all. 
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To be able to benefit from unifying the platforms, we must make sure that those packages that are used 

in production, will be used as they are in the provided development platforms. Outside sources can 

then be used for installing additional software that the users’ personally like to use. 

As we are still based on Fedora rawhide, the constant updates will yield the platform quite unstable 

and as such not very desirable to be used by developers. However, we plan on creating stable releases 

of our Fedora fork for production use in the future. At this point, it will also be a highly viable option 

for developers to adopt to be used daily. 
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8 Package update management 

While we have already covered most of the tools needed to achieve the proposed workflow, we are 

still missing the final touch. Our own dnf repositories are still being created manually and the OS 

images need to be built from within the Koji server.  

For the developers to be able to complete the full process from making code changes to releasing a 

new platform image, we must offer a better way to take the final steps. Luckily, there exists a suitable 

tool for this purpose in the Fedora release engineering software family. 

Bodhi [Red17c] is an update management software that is part of the Fedora build system. It offers a 

web user interface that can be used for adding, updating and removing packages in dnf repositories.  

The features offered by Bodhi include automated testing, notifications of new packages and highlight-

ing security updates. These are features that should be utilized in every large software project and 

Nokia obviously has own ways of providing the listed services. However, in many cases the used tools 

are outdated and not nearly as effective to use as they should be in modern times. What we want to 

achieve, is better integration among tools used in our build process. Placing these services in a single 

place and offering an easily approachable user interface to operate them offers great benefits. Users 

will no longer have to familiarize themselves with multiple different tools and software maintenance 

tasks can be achieved with higher effectiveness. 

Packages that have been added to Bodhi, will move through four different stages during the time they 

are present:  

• PENDING 

• TESTING 

• STABLE 

• OBSOLETE 

Before adding a new package, developers will be able to indicate what is the purpose of the new 

version and whether it fixes any known bugs. When the addition is detected by Bodhi, it will initially 

be tagged as PENDING. In this stage it the package will be simply waiting to be moved onto the next 

step, TESTING. Once the package has been pushed to an “updates-testing”-repository it will become 

usable by the end-users. Now, this package can be pulled and installed by the early adopters that are 

willing to participate in testing the newest releases. These testers can then give comments on the new 

release and vote on its viability via a “karma”-system. This means simply giving the package either a 

plus or a minus vote based on the conducted testing. After getting enough positive karma, a package 

can be tagged as STABLE and transferred into the main repository. This is the main repository, where 

most users will fetch their updates from. If package gets so much negative feedback that it seems to 

not be viable to be used, it can also be deleted from the system at this stage. At the end of the lifecycle 
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of a package release resides the OBSOLETE stage. Once a newer version of the package is tagged as 

STABLE the old stable package will be marked as OBSOLETE and will no longer be available in the 

main repository. 
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9 Corporate context 

What we want to do, is to be able to make use of the achievements of open source community. This 

way we can avoid redoing a lot of work that has already been completed elsewhere. Open source 

software usually operates in a very loose environment. This makes the circumstances very different 

from ours. Many boundaries and guidelines are enforced on our development practices, environments 

and processes. 

There are a lot of things that have to be kept in mind, when transferring software between such differ-

ent operating environments. In this chapter, we are going to sum up our notions about the special 

requirements our working environment sets for us. What are the major differences between open 

source projects and corporations’ internal projects. What are the steps that we need to take to adapt the 

software to specific corporate requirements? 

 

9.1 Storing source code internally 

As we have stated, we must store all the used source code in internal repositories. Whether we are 

handling in-house software or common open source components, they all must be located withinin our 

own servers. 

Most open source components are stored as tarballs and possible internal changes are applied to them 

from patch files before compiling them. This practice is the most convenient one, as there is usually 

no major changes that need to be implemented. Upstream pull requests are also often created for the 

patches. For this reason, most of the patches are temporary as they will be merged to an official release 

at some point. Still, there are also cases when the changes are too specific, so upstream will not accept 

them into their releases. 

The proprietary software developed in-house is of course stored in various version control systems. 

These repositories are what the developers conduct most of their work on. There is no real alternative 

for this storage method on actively developed packages. There must be an efficient way to track the 

development process. This is achieved by always storing a clear history of the implemented changes 

for each package. 

Open source Linux distributions either just fetch the used source packages from the specific upstream 

storage or use own storage where source packages are copied from upstream. Each upstream project 

stores their own code in the place of their choosing where everyone can access this code. Therefore, 

when building an open source distribution, if the first approach is being used, source code is being 

pulled from all around the web. This approach is out of the question for us. 

Large, profit-making projects need to ensure high availability of the software repositories that are used 

for storing source code. Corporate build processes need to be reliable to achieve continuous integration 
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[Tho17]. In the future, the requirements may very well evolve towards continuous delivery which by 

no means lessens the availability requirements. 

Enterprises also have to be able to ensure that the used code cannot be tampered with. The security of 

our software is essential in upholding customer trust and the quality of our products. Possible points 

of unauthorized entry into our software products must be minimized. Obviously, security is essential 

for any party. Still, the effects of vulnerabilities can be much more devastating for software products 

of corporations than those of open source projects. 

Various projects can also gain other benefits from storing code internally. It can make it possible for 

the build systems to rely on convention, rather than configuration. Reducing the time and effort to set 

up software on new environments can be beneficial in many ways. The amount of work required from 

developers to integrate new software components to the build system can also be reduces.  Any time 

saved can always be used elsewhere.  

Internal storing is how the software sources are handled currently as well, but we need to be aware of 

these things when implementing new tools. We have already taken in use a proposal for a new storage 

method. The requirements that must be met have to be clear before conducting evaluations that help 

choosing the right approaches for the tools that are being developed. 

 

9.2 Accessing proprietary source code 

In the open source community, any code is incorporated in the projects, can be checked out anony-

mously. In other words, no authentication methods are required to be set. This can apply many corpo-

rate components as well. While all the product source code is stored internally, a lot of it can be fetched 

without any credentials. Especially the open source packages are often handled this way. However, in-

house subsystems usually need to be protected from unauthorized access. Copyrights need to be pro-

tected and competitors must not be allowed to access the source code of proprietary software. 

Corporate repositories often reside within internal network so there is no direct threat towards stealing 

code from them. Still, adding an extra layer of security by requiring authentication, even when re-

questing access from within the internal network, is a good additional security measure. It should also 

be noted that if no authentication was required anyone with access to the internal network could pull 

the sources. For example, an outside consultant could get access to information that is not related to 

his work. This, conducted either intentionally or unintentionally, poses a threat of unwanted parties 

acquiring private source code. 

When cloning internal [Pro17] repositories in automated scripts, ssh key authentication should be set 

up on the system that you want to clone the code to. When checking out repositories manually, internal 

credentials need to be given in case of cloning via https. As we want our supporting tools to be auto-

mated and simple to use, required user interaction should be attempted to be kept to a minimum. This 
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is why, the tools that are created for automation, should be able to utilize ssh keys. Having to input 

credentials multiple times a day can become taxing. 

There is no way, that we could avoid the need of offering support for authorization in the tools that we 

are developing. Even if the source code would not be stored in internal repositories, many outsourced 

components would have to be. The owners of these components definitely would not like their clients 

leaking proprietary software that they provide. 

What we also need to keep in mind, is that we must support checking out code from multiple locations 

with many different access methods. We must be able to handle git repositories as well as tarball stored 

on webservers and fetched via wget. In addition to these differences, there are different approaches to 

parsing the source location, depending on the package. 

Usually, finding out the right fetching method is not hard at all to achieve. In most cases, it is enough 

to use some specific configuration files to issue authentication information to be used. At worst, we 

have to make code changes to some of our tools just to support authenticated code checkout. However, 

at the moment, users’ existing authentication methods, are enough. 

This keeps the required amount of job minimal. So far, we have had to make changes related to this 

requirement only to tools used in our build system. If we were to face making changes to developer 

tools, the convenience of our approach could suffer. 

Clearly this characteristic of our own environment is not very challenging to overcome. However, it 

affects many parts of our build system. We must be aware of this and keep it in mind throughout the 

implementation of new features. 

 

9.3 Source package control 

Software products almost never use the latest versions of open source packages. There are always 

stability concerns in adopting newly released packages and sometimes the teams responsible just might 

not have time to update every package they would want to. 

Another thing that we must account that sometimes even different file extensions cause trouble. For 

example, there are many packages that are packaged in tar.gz format on our internal storage but Fedora 

spec files are configured to use tar.bz2. These cases are easy to fix by reconfiguring the name in spec 

files and recalculating the checksum. Still, with this high number of packages, any extra work required 

for each of them, turns into a lot of work.  

Different packages also have different conventions and use additional source file in addition to the 

source code. In these cases, we again must modify the configuration files before building and add extra 

files into our spec file repository. Were we to control the package repository, adding packages and 

structuring them conveniently would be easy. 
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Thus, trying to compile the same packages that NetLinux uses, with Fedora rawhide spec files becomes 

challenging. Depending on the case, we may need to use an older Fedora release for that package or 

make manual changes. 

One thing that causes a bit of extra effort for us is that we do not control the source used for building 

packages. The sources are stored on a web server, and fetched for builds. We might have a chance of 

examining some packages and updating them according to our needs. However, as we have progressed 

with creating Koji builds for new packages, it has become evident that the version differences are 

widespread. Updating packages on this scale is not possible for us. The team that is hosting the source 

package repository would not like to see that many new tarballs suddenly emerging. 

These are issues that we were also able to overcome by reimplementing the source package storage. 

Using Fedora source files directly obviously ensures that the versions and file names are exact 

matches. 

One challenge here is that as we are attempting to present a new operating system to be used with our 

cloud product, we should attempt to maintain versions are in use in the old system (NetLinux). Sur-

prising problems can arise from updating packages and more so when issuing version changes for over 

a hundred packages at once. Integrating the same applications to run on top of the new operating 

system could become a nightmare. 

After initially following the package versions used by NetLinux, we decided to move on to using 

Fedora rawhide versions. With this decision, we also accepted the fact that we will not be using these 

tools for the current platform. At this point the decision was made to aim at composing a new operating 

system to be one option to be used in the next version of our platform. 

The decision that we were allowed to take into use our own, structured source package repository 

helped us immensely in building all the necessary packages. However, the possibility of not being able 

to control the used versions should be kept in mind. There are often differing opinions and we will not 

always be able to do exactly what we want.  
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10 Discussion 

In this chapter, we will briefly discuss what this work implies in practice. We will iterate through the 

research questions presented in the beginning of the paper and try to clarify how we have addressed 

the related issues and what remains to be solved. 

Serving as a basis to the other research topics we have attempted to find answers for the research 

questions 03 and 05. We have summarized the findings related to research question 03 in chapter 9, 

but additional information can be found throughout the paper. Before jumping to building the new 

operating system, we spent some time on researching the possibilities on how to store the needed 

building blocks in chapter 5. While this was only a brief glance into research question 05, it proved 

quite useful in our work. 

We have created a simple image to offer a clear picture of the new developer workflow that we aim to 

offer. As seen in Figure 3, we propose a workflow of three different steps. Currently steps one and two 

are most easily approachable. These steps are no doubt the most commonly repeated ones, so we want 

to offer the best support for them. 

Using rcppkg, developers are able to implement, test and publish changes to RPM packages with min-

imal effort. They are free from worrying about necessary initial steps such as setting up RPM build 

environment, acquiring build dependencies or finding the correct source and spec files. We have stored 

a source code dump of current state of rcppkg to github [rcp17]. While we have removed some parts 

and the commit history to ensure no protected information is leaked, this should offer a fair basis for 

usage in any operating environment. 

With our work on the tool set, we have also approached the likely future requirements. In our attempts 

to provide answers for research question 03, we have taken the first steps towards container build 

functionality with the same tool set that we use for building RPMs.  

Step three still requires manual effort. A developer must access the Koji server, mash new dnf reposi-

tory and issue a “koji image-build”-command. This is simple enough, but there is still room for im-

provement to streamline our image delivery even more. 

The previously mentioned process is our view for solving the problems related to research questions 

01 and 02. We believe that with the proposed tool set developers with be able to conduct their work 

much less manual effort. Our take on the research question 08 can be found along the progress we 

have made towards the developer tools, written down in the previous chapters. 

We need to work on getting our own Bodhi deployment operational before our tool set is complete. 

However, our testing has proved promising and we are already building functional platform images 

for demo purposes using our new tools. 

Our initial demo image included Fedora cloud base packages and a chosen set of subsystems from the 



59 

upcoming 2.0 iteration of the cloud platform. We wanted to just include the essential core services. 

This way we were able to keep the services up and running in their new operating environment without 

too many issues. 

We will continue to build more needed functionality into our new Fedora based image. We will need 

to start by recompiling Linux kernel with internal configuration and build more internal subsystems 

into RPMs to be able to offer the full functionality of the platform at some point. We also want to have 

the existing test packages built and in use as soon as possible to be able to validate our image all 

through the way of including more and more platform functionality. 

In addition to providing the new Fedora image, we have laid out the groundwork for the transition 

towards it’s full blown usage. We have tried to find the answers for research question 06 and make the 

necessary preparations, so that the operating system could be adopted with as little disturbance as 

possible. Our target for the near future is to provide all the required platform services on top of the 

internally built Fedora image. 

 

Figure 3: The developer workflow that results from using the tools introduced in this paper. Parts 1, 2 and 

three represent the three distinct tasks required from a developer to be able to implement and release code 

changes to a software package. The states enclosed in the squares can be considered the most vital actions 

needed to accomplish the task at hand and the arrows represent interaction between the actions carried out 

by the developer. 

To be able to find the answers to research questions 07 and 09, we turned to the state of the art DevOps 

research. By examining the recent developments and trying to find the best practices has been the main 

focus in preparation for attempting to figure out how we will approach the issue. 
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According to DevOps guidelines, similar environments should be used for both development and pro-

duction purposes. Previously this has not been possible for us. NetLinux has proved quite difficult to 

adopt for day-to-day use and thus people have not been willing to start using it for development. If we 

are able to push this Fedora operating system into production, adopting it for development should not 

be an issue. With a small amount of effort, we can offer desktop packages and start building images 

that include graphical user interface and some essential development tools. 

A huge issue that we have discussed during this paper, has been offering different flavors of the oper-

ating system. All different user of our platform, have been provided with the same OS packages. With 

the current build process, changing this would require immense efforts. With our proposed tools, cre-

ating the optimal OS image for each use case will become easy. When the build process is configured 

via kickstart files, the only thing you have to do, is to modify the package list there. This is a task that 

pretty much anyone is able to complete, but clearly, decisions on what packages to include, should be 

made carefully. 

In addition to setting up and taking in use Bodhi, we are still facing the need to deploy our Koji server 

on a better platform. Currently it is running on a development virtual machine where processing per-

formance, disk space and availability are quite limited. Before we can offer our new build tools to 

wide developer use, we must acquire resources to be able to offer better service. 
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11 Conclusions 

During this research, we have been able to implement solutions to most of the problems that we set 

out to solve in the beginning. As a basis, we have examined what things we need to take into account, 

when taking into use the new build system and developer tools. The goal of most of our tasks has been 

to start adopting DevOps practices in one way of the other. We offer a developer tool that allows users 

to interact with the basic functionality of the Koji build system easily, while supporting the needed 

version control systems that the developers interact with daily. We have tested the basic setup needed 

for building containers with the same tool set that we are introducing. Two future lines of research 

have also been listed. These should be looked into as soon as we handle the more pressing matters at 

hand. 

Most importantly, we have internally built a Fedora image and started including the cloud platform 

packages on top of it. With this work, we are rapidly moving towards being able to replace the current 

NetLinux distribution with Fedora that we have built. 

We have also taken in use a new source code storage for storing the open source packages that we are 

using. The new directory layout has proven to be more than adequate to fulfill our ambitions for easy 

adoption and better structure. Along the way, we have come across special requirements that we face 

while implementing systems for internal developer use. These are listed and discussed in a dedicated 

chapter of this paper to make it easy for us return to examine them when implementing new build 

system features and tools to be used. 

The first development task that we took on during this research was implementing a development tool 

to offer a simple way for changing, testing and publishing code. As we started with this project, we 

have been able to utilize the developer tool while working on the implementation of other parts of the 

build system. This has allowed us to constantly keep evaluating and improving the tool and its avail-

able features. We have been making changes to adapt to new features elsewhere in the build system, 

fixing bugs that we have located while operating the tool and cleaning up the code. We are confident 

that the core features work well and a few other users have already tested the tool on a few scenarios. 

Still, before packaging rcppkg to be available for development use, we would like to conduct a little 

wider testing on it. It is likely that we at least have to improve on error checking and user interaction. 

We have set up the minimal deployment for building containers and demonstrated the process of cre-

ating Docker images with rcppkg. While this functionality is not as mature as the other topics discussed 

in this paper, we are confident that laying out the basics will help us in the future. Should we opt to 

keep using Koji build system while using containers for production deployment, the developer tools 

are already present and groundwork has been done to handle the initial setup of the build environment. 

Right now, this topic will most likely be left to the background while we focus on offering support for 

adopting the newly built Fedora and the build tools discussed in this paper. When packaging applica-

tions into containers for deployment starts to become timely, we will surely come back to examine the 
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viability of using the combination of Koji and OpenShift. 

Creating a new source code storage proved vital in building the packages needed to offer the internally 

built Fedora cloud base image. Because of this decision, we were able to directly reuse almost all of 

the needed spec file repositories. Without the simple automation that the mirroring has enabled us to 

achieve, we would surely have needed much more time to be able to build the hundreds of packages 

that we now have available. The new directory structure that we have placed the packages in allows 

us to better grasp the large package base that is already present. We look forward to see if we will 

utilize the new tree structure in more ways. 

The differences in setting up the discussed build tools in a corporate environment versus an open 

setting have proven to be surprisingly small. There has really been no major obstacles to overcome. 

The smaller challenges that we have come across in taking tools into internal use have been quickly 

resolved and documented in this paper. We admit that the resolutions of the problems are not optimal 

in all cases and should be examined before setting up an environment to support production builds. 

For now, the current workarounds will work just fine as long as we keep in mind the additional steps 

that we need to take whenever setting up new build hosts. 

Testing the Fedora image that we have built has yielded very positive results during the early phases. 

At the moment, a single failing OS level service is present and this has been marked as a release 

blocker for Fedora 26 so we expect to see an upstream fix shortly. It is also not relevant for the cur-

rently installed platform services and does not even emerge on all deployment platforms. For these 

reasons, we have not looked more closely into the bug ourselves and have continued to work on in-

cluding more internal platform subsystems in our image. The initial testing has not yet revealed any 

major problems in changing the underlying operating system. Most of the test cases that have been 

run on top of the Fedora cloud platform deployment have succeeded. The currently failing test cases 

are known to also fail when the platform is built on top of NetLinux. We are very pleased with the 

current state of the Fedora based platform and will keep on striving towards being able to use this OS 

for official builds. 

We would also like to note that with the tools and means introduced in this thesis, it is quite simple to 

create a Fedora fork of your own and keep maintaining it with minimal effort. The biggest challenge 

will be setting up a personal Koji server because we have not covered this topic here. A good start will 

be provided by koji-setup of Russian Fedora project [Rus17]. This was used as a basis for our internal 

deployment. 
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12 Future work 

Of the two topics left for later implementation, one should prove really simple and the other quite 

demanding. Offering the internally built Fedora operating system for development purposes should 

not take too much time. The people that are continuing on this task, will be able to take the production 

Fedora image that we have built and simply install the needed development tools on top of it by using 

dnf. Most time should likely be spent on finding out what development tools and desktop environments 

to offer for the users to choose from. Setting up Bodhi to offer the simple update management and 

image building functionalities, will most likely require a lot more effort. The available documentation 

is limited to say the least. If we do not account for luck, achieving a production-ready setup will consist 

of mostly reading the source code and taking small steps forwards through trial and error. Additionally, 

it still is not clear what other software tools we need to include in our setup from the Fedora release 

management family, to be able to offer full Bodhi functionality. Thus, it is hard to determine the re-

quired amount of effort beforehand. However, it is clear that this task will not be completed over night 

and it should be left for a time when we have more resources available. 
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Appendix 1. Basic spec file for building a git maintained package 

Here is a basic template for a spec file that can be used to build an RPM directly from git 

source code. It should be noted that our tools follow certain conventions and thus some 

of the fields must contain specific information. The “Source”-field should be set as seen 

here. This way the tarball can be located after it has been created by the scripts in our 

build system. We have also utilized the “URL”-field to specify the location to clone the 

source code from. This differs from the Fedora conventions, but we found the approach 

to work well when followed correctly. 

Name:           example 

Version:        0.1.1 

Release:        1%{?dist} 

Summary:        This package demonstrats basic spec file structure 

Group:          Platform/Examples 

License:        Nokia License 

URL:            git@example.github/RCPPKG_spec_files/example.git 

Source:         %{name}-%{version}.tar.gz 

BuildRequires:  libtool 

Requires:       findutils 

 

%description 

This spec file will be included in my thesis to demonstrate 

the structure of a spec file that we will use for internally  

controlled packages. Fedora spec files will differ in a few  

fields as we will follow certain conventions to keep the spec  

file as simple as possible while supporting building from git. 

 

%package devel 

Summary:        Development files for %{name} 

Group:          Development/Libraries 

Requires:       %{name}%{?_isa} = %{version}-%{release} 

 

%description devel 

The %{name}-devel package contains libraries and header files for 

developing applications that use %{name}. 

 

%prep 

%setup 

 

%build 

./autogen.sh 

%configure --disable-static 

%make_build 

 

%install 

%make_install 



2 

 

%files 

%{_libdir}/examplelibs.so* 

%{_libdir}/examplelog.so* 

 

%files devel 

%{_libdir}/pkgconfig/examplelibs.pc 

%{_libdir}/pkgconfig/examplelog.pc 

%{_includedir}/%{name}/*.h 

%{_libdir}/examplelibs.so 

%{_libdir}/examplelog.so 
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Appendix 2. Script used for mirroring listed Fedora spec file 

repositories 

With this bash script, we were able to fetch the spec file repositories into the spec file 

group within our internal gitlab. 

#!/bin/bash 

 

# Based on original script written by Petr Hruska 

# that mirrors a single Fedora repository 

 

GROUP_ID=1234               # Insert GitLab group ID of our spec file group 

DESTINATION_TAG=dist-foo    # Insert tag that you want to tag the packages to 

 

while read PACKAGE 

do 

 

if ! git clone --bare https://src.fedoraproject.org/git/rpms/$PACKAGE.git ; then 

        echo "Clone repo $PACKAGE failed" 

        exit 1 

fi 

pushd $PACKAGE.git 

if ! gitlab project create --name $PACKAGE --public True --namespace-id $GROUP_ID ; then 

        echo "Create $PACKAGE in gitlab failed" 

        exit 1 

fi 

if ! git push --mirror <GITLAB_URL>:<SPEC_GROUP_NAME>/$PACKAGE.git ; then 

        echo "Mirror $PACKAGE to gitlab failed" 

        exit 1 

fi 

 

popd 

rm -rf $PACKAGE.git 

if ! git clone <GITLAB_URL>/<SPEC_GROUP_NAME>/$PACKAGE.git ; then 

        echo "Clone repo from IT GIT $PACKAGE failed" 

        exit 1 

fi 

if ! koji add-pkg --owner kojiadmin $DESTINATION_TAG $PACKAGE ; then 

        echo "Creating package in koji failed" 

        exit 1 

fi 

 

rm -rf $PACKAGE 

done < packages.txt 

 

exit 0 
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Appendix 3. Script used for building listed packages internally 

We utilized the following script in building the required software packages with the least 

possible effort. Separately issuing source fetch and build commands for each package 

would be cumbersome. With the provided automation, we were able to leave the build 

running for a night and come back in the morning having RPMs ready to be installed. 

#!/bin/bash 

 

while read PACKAGE 

do 

 

if ! git clone <GITLAB_URL>:<SPEC_GROUP_NAME>/$PACKAGE.git ; then 

        echo "Clone $PACKAGE failed" 

        exit 1 

fi 

 

cd $PACKAGE 

rcppkg new-sources 

rcppkg build 

 

cd .. 

rm -rf $PACKAGE 

 

done < packages.txt 
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Appendix 4. Script used for tracking down package dependencies 

This is the script that we utilized to track some of the missing runtime dependencies. A 

lot of effort was put into being able to locate all the required packages for completing our 

image build and the script proved helpful in reducing the amount of time spend on the 

task. 

#!/bin/bash 

 

while read PACKAGE 

do 

        dnf repoquery --requires $PACKAGE >> reqs.txt 

done < PACKAGES_LEFT 

 

sort -u reqs.txt > reqs_sorted.txt 

rm reqs.txt 

 

while read REQ 

do 

        dnf whatprovides $REQ | grep fc25 >> provs.txt 

done < reqs_sorted.txt 

 

rm reqs_sorted.txt 

sort -u provs.txt > provs_sorted.txt 

rm provs.txt 

 

while read PROV 

do 

        echo $PROV | cut -d '.' -f 1 | rev | cut -d '-' -f2- | rev >> MISSING_PACKAGES 

done < provs_sorted.txt 

 

rm provs_sorted.txt 

sort -u MISSING_PACKAGES > MISSING_PACKAGES_SORTED 

rm MISSING_PACKAGES 

 


