
Authentication, Authorization and Accounting with Ethereum
Blockchain

Mukesh Thakur

Master’s Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, September 13, 2017

Faculty of Science Department of Computer Science

Mukesh Thakur

Authentication, Authorization and Accounting with Ethereum Blockchain

Computer Science

Master’s Thesis September 13, 2017 66

AAA, Ethereum, Blockchain

Over past decade cloud services have enabled individuals and organizations to perform different
types of tasks such as online storage, email services, on-demand movies and TV shows. The
cloud services has also enabled on-demand deployment of applications, at cheap cost with
elastic and scalable, fault tolerant system. These cloud services are offered by cloud providers
who use authentication, authorization and accounting framework based on client-server model.
Though this model has been used over decades, study shows it is vulnerable to different hacks
and it is also inconvenient to use for the end users. In addition, the cloud provider has total
control over user data which they are able to monitor, trace, leak and even modify at their
will. Thus, the user data ownership, digital identity and use of cloud services has raised
privacy and security concern for the users.

In this thesis, Blockchain and its applications are studied and alternative model for
authentication, authorization and accounting is proposed based on Ethereum Blockchain.
Furthermore, a prototype is developed which enables users to consume cloud services by
authenticating, authorizing and accounting with a single identity without sharing any private
user data. Experiments are run with the prototype to verify that it works as expected.
Measurements are done to assess the feasibility and scalability of the solution. In the final
part of the thesis, pros and cons of the proposed solution are discussed and perspectives for
further research are sketched.

ACM Computing Classification System (CCS):
Computer systems organization

Architectures
Distributed architectures

Cloud computing

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

1.1 Problem Statement . 2
1.2 Methodology . 2
1.3 Related work . 3
1.4 Outline . 4

2 AAA by Cloud Provider 4
2.1 Authentication . 6

2.1.1 Username and Password 6
2.1.2 Public Key Infrastructure 7
2.1.3 Biometrics . 7
2.1.4 Multi-Factor . 7

2.2 Authorization . 8
2.2.1 XACML . 8
2.2.2 OAuth 2.0 . 8

2.3 Accounting . 9
2.4 Potential Vulnerabilities . 10

2.4.1 Account Hijacking . 10
2.4.2 Distributed Denial of Service attack 11
2.4.3 Man-in-the-Middle attack 11
2.4.4 Data Breach . 11
2.4.5 Malicious Insiders . 12

2.5 Drawbacks . 12

3 Blockchain 13
3.1 Terminology . 14

3.1.1 Peer-to-Peer Network 14
3.1.2 Block . 15
3.1.3 Blockchain . 16
3.1.4 Distributed Blockchain 17
3.1.5 Smart Contracts . 17

3.2 Cryptography . 17
3.2.1 Cryptographic Hash Function 17
3.2.2 Hash Pointer . 18
3.2.3 Digital signature . 18
3.2.4 Merkle Tree . 19

3.3 Distributed Consensus . 20
3.3.1 Proof-of-work . 21
3.3.2 Proof-of-stake . 22

3.4 Architecture . 23
3.5 How blockchain works . 25
3.6 Potential Vulnerabilities . 26

ii

3.6.1 The 51% attack . 26
3.6.2 Sybil attack . 27
3.6.3 Identity theft . 27
3.6.4 System hacking . 27
3.6.5 Illegal activities . 28

4 Blockchain Applications 28
4.1 Bitcoin . 28

4.1.1 Transactions . 29
4.1.2 Scripting Language . 31
4.1.3 Bitcoin Network . 31
4.1.4 Advantages . 31
4.1.5 Vulnerabilities . 32

4.2 Namecoin . 32
4.3 Ethereum . 33

4.3.1 Ethereum Blockchain and Account 34
4.3.2 Transactions and Messages 34
4.3.3 Smart Contracts . 35
4.3.4 Decentralized Autonomous Organization 35
4.3.5 Vulnerabilities . 36

5 Rational Behind Choice of Technology 36

6 Prototype Design 38
6.1 Need for Prototype . 38
6.2 Software Architecture . 38
6.3 Flow diagram . 40

7 Prototype Implementation 42
7.1 Hardware Components . 42
7.2 Software Components . 42

7.2.1 Ethereum wallet . 42
7.2.2 geth . 43
7.2.3 Docker . 43
7.2.4 Ethereum explorer . 44

7.3 Prototype Environment . 45
7.4 Smart Contract Implementation 46

7.4.1 Solidity . 46
7.4.2 Mortal contract . 47
7.4.3 Provider contract . 47

7.5 Executing the Prototype . 48

iii

8 Prototype Testing 50
8.1 Setup and Execution . 50
8.2 Measurement and Results . 51

8.2.1 CPU and Memory . 52
8.2.2 Blockchain Time . 53
8.2.3 Transaction Cost . 53

8.3 Analysis of Results . 54
8.4 Security Analysis . 55

9 Discussion 56

10 Conclusion and Future work 57
10.1 Conclusion . 57
10.2 Future work . 59

References 60

iv

1 Introduction
Most of us access cloud services almost on daily basis. For example, we
use web-based email systems such as Gmail, Outlook, Yahoo! to exchange
messages with each other. We use social networking sites like Facebook,
LinkedIn and Twitter to share information and get connected to friends.
There are on-demand services like Netflix and Hulu to watch TV and movies.
Cloud storage services such as Google Drive, iCloud and Dropbox store
digital media such as photos, videos and documents. Cloud services are
used by enterprises to deploy their applications and services for the purpose
of reducing the operational cost and improve cash flow. For example, The
Uber, ride-sharing service and social news website Reddit use Amazon Elastic
Compute Cloud (EC2) to provide their services. Netflix uses the Amazon
Web Services to host their services. Github, a code hosting site is deployed
on Rackspace. Thus, it is obvious that cloud services have become an integral
part of everyday business.

The cloud services are provided by cloud providers who have primary
responsibility of authentication, authorization and accounting (AAA) frame-
work. This framework is needed for providing on demand, scalable, elastic,
reliable and redundant cloud services [74]. The AAA framework is based
on client-server model where the providers develop and maintain client and
server services respectively for the users. The users interacts with client
application that communicates to centralized servers with request-response
method over the Internet. The user must register with the provider to
create her digital identity. In this process the user has to provide private
sensitive user data, such as firstname, lastname, username, phone number,
email and bank or credit card details. These user data are saved on the
centralized server across multiple data center. Also, the user has to create
multiple digital identities across multiple providers to access their services
respectively. Study shows from a user experience perspective, this process of
creating multiple digital identity is inconvenient and cumbersome because the
user has to repeat same registration process again and again and remember
multiple passwords for different services. These user data are vulnerable to
hacking [46, 30]. Also, the centralized servers of the providers are primary
targets for hackers.

According to ZDNet in 2016 [26]: Tumblr, a social blogging site suffered 65
million accounts hacks. Yahoo!, one of the leading email providers, announced
over billion accounts getting compromised by the hackers. LinkedIn, the
leading professional network site suffered $117 million account hacks. Weebly,
the web designing giant got 43 million user data stolen and Society for
Worldwide Interbank Financial Telecommunication (SWIFT) global financial
message system had $81 million financial loss because of hacking. The
providers might also share the user data to other outside organization without
user consent. National Security Agency (NSA) tapped into tech giant such

1

as Apple, Google, Facebook, Amazon Web Services (AWS) to monitor user
activity [41]. These issues have triggered a big debate on user data privacy
and users are becoming more concerned about security and privacy of their
digital identity.

To address privacy, we designed and developed a prototype (proof-of-
concept) using blockchain technology. The prototype could authenticate,
authorize and accounting without requiring users to share their private data
to the providers. The authentication is done by Ethereum blockchain. The
immutable blockchain ledger verifies and ensures that the users, transactions,
messages are legitimate. Authorization is done by smart contracts which
are written and deployed to blockchain. Cryptocurrency ether is used for
accounting. The prototype aims to provide self-contained digital identity
system to the user. At the same time it provides a common distributed,
decentralized identity backend where cloud providers can deploy their own
authorization logic and validate the user identities. The prototype feasibility
was tested with multiple users and providers where CPU and memory usage,
blocktime and transaction costs are measured. We present the result and
analyze them. Finally, the security aspects are described and discussed.

This thesis is dealing with a prototype system. The main objective of the
thesis is to understand how blockchain works and how it can be integrated
with existing cloud providers system and if is feasible to implement the
concept. The target is to test if the prototype is able to prove the feasibility
of the concept or architecture with pre-defined test cases.

1.1 Problem Statement

We state our problem as follows. How a cloud user can have self-contained
user data ownership and use multiple cloud provider services as well as pay
invoices without sharing her private data. The system must be transparent,
distributed, decentralized, easy-to-use and almost impossible to get hacked.
In addition, anyone in the network should be able to verify transactions,
message, data but no one is able to access the content of transactions, message
or data except the owner.

1.2 Methodology

We selected Design Science research methodology in order to identify the
research problem and develop proof-of-concept for research problem. The
research problem was identified based on the extensive study of existing
technologies and standards for authentication, authorization and accounting
by the cloud provider. The solution was designed based on the research of
possible solutions of this problem using blockchain technology. The proof-of-
concept was designed and developed to support the solution design. Moreover,
the solution was tested and measurements were done to present the feasibility

2

of the solution. Finally, analysis was performed from theoretical and practical
point of view and further improvements and suggestions were presented for
the future work.

1.3 Related work

Blockchain is relatively new technology for authentication, authorization
and accounting compared to the existing AAA framework. There have been
multiple attempts, research and approaches to provide self-governed user
identity, authentication and authorization of the user against the different
cloud services and leverage the payment system of blockchain. Some of
popular solutions are bitid [49], nameid [47] and uPort [53].

Bitid is an open protocol which allows simple and secure user login
to cloud service by authenticating the user based on the public key and
blockchain network [49]. The authentication proves the identity of the user
to a service by signing a challenge. A cloud provider can use bitid to enable
blockchain login for their service. This eliminates the need of user registration
and username/password and gives data ownership to the user rather than
the cloud provider. A working prototype of this protocol can be checked in
here [50].

NameID is experimental technology based on Namecoin 4.2 and OpenID
[20] to provide unique, secure, decentralized and distributed digital identity
to the users. Namecoin is decentralized Bitcoin based technology which
allows a user to register names which can be associated with user data.
This data can be verified by everyone in the blockchain network but cannot
be forged or censored by unauthorized attackers and no one can retrieve
the data without user consent. OpenID is an open protocol that allows a
user to authenticate to multiple services without need of creating multiple
different identities and passwords. It provides one unique identity to the user
from some trusted identity provider which can be used to sign into other
OpenID-enabled services. According to OpenID Foundation: over billion
users, including technology giants like Google, Microsoft, Facebook, Sun,
Yahoo! support OpenID enabled user accounts. Thus, NameID combines
Namecoin and OpenID where Namecoin issues digital blockchain identity
and associate with user data (username, email, phone number) and OpenID
allows instant sign-in to over billion of OpenID enabled websites.

uPort [53] is a platform that provides blockchain based identity for the
user and easy-to-use method to interact with decentralized applications
or services. This platform allows end users to establish a digital identity
which can be used as user identity across multiple cloud services without any
passwords. It gives full control of sensitive user data to the user by allowing
user to own and control their digital assets, securely and selectively disclose
their data to counterparts to access digital service. Moreover, it allows the
user to digitally sign and encrypt documents, data, messages, transactions

3

and to send these over the blockchain network to interact with decentralized
applications. It is built on top of the Ethereum blockchain and has three
main components: smart contract, developer libraries and a mobile app. The
smart contract has the core logic to issue and recover user identity. The
developer library allows developers to integrate uPort to the third party
application in order to use uPort as identity provider. The mobile app issues
the identity to the user and provides identity/key management interface.

The solutions presented above provide self-sovereign identity to the user.
These solutions can be mostly used for authentication and authorization by
the cloud provider. However, a complete AAA solution from the provider
perspective which could authenticate and authorize a user to use cloud
resources and at the same time easily allow the cloud provider to write
and deploy the authentication and authorization logic is missing. Also,
the design on how accounting can be used for invoicing and payment is
missing. Thus, there is a clear need of a solution which could address
these challenges. This thesis provides a unique solution for a user and
cloud providers to leverage the advantages of blockchain. This solution
enables easy development and deployment of blockchain application for user
authentication and authorization. It also enables invoice payments without
giving credit card details. The solution is decentralized, distributes over
self-sovereign system with no single point of failure.

1.4 Outline

In this Section, the motivation, problem statement with research methodol-
ogy and related work are discussed. Section 2 describes the key concepts of
authentication, authorization and accounting along with possible vulnerabili-
ties. Furthermore, Section 3 covers the key concept of blockchain technology,
its architecture, how it works and its vulnerabilities. Section 4 describes
the most popular blockchain applications. Section 5 describes the reason for
selecting an Ethereum blockchain for implementing prototype and Section 6
describes the prototype design with software architecture and flow diagram.
Section 7 describes a prototype implementation with hardware and software
components along with its environment setup and actual implementation
and execution. Section 8 covers the testing of the prototype and finally, the
discussion is presented which is followed by the conclusion and discussion of
possible future work.

2 AAA by Cloud Provider
Cloud provider is the entity which offers cloud resources such as computing,
network, network storage, applications that can be rapidly provisioned with
minimal management effort and paid only for the resources consumed when
needed [55]. These resources form services which are categorized into three

4

models by the National Institute of Science and Technology (NIST) [55]:
software as a service (SaaS), platform as a service (PaaS) and infrastructure
as a service (IaaS). The cloud provider must have five key characteristics:
multi-tenancy or shared resources, massive scalability, elasticity, pay-as-you-
go and self-provisioning of resources [57, 55].

Authentication, Authorization and Accounting (AAA) is a framework
used by the cloud provider for controlling the access of cloud resources,
enforcing policies, auditing and measuring resource usage [74]. The cloud
provider must use this framework for effective resource, user, network and
security management. The AAA is based on client-server model [65] where
the cloud user interacts with client and server has the business logic necessary
for cloud resources, user, network and security management. Authentication
is a process of verifying the identity of the user and authorization is the
process of deciding whether a user has enough rights to use the requested
service. Accounting is the process of tracking the resource usage by the user
for billing, auditing, data analytics.

Figure 1: General AAA Architecture

Figure 1 shows the general AAA architecture with client-server model
where client is a web or mobile application and server host authentication,
authorization, accounting resources and services. The Figure 1 is divided
into two parts where the first part has a cloud user and the second part has
a cloud provider. The provider has the protected resource which requires

5

authentication and authorization from the user. The user interacts with the
provider with client application which sends the request to the server. The
server has authentication and authorization services. The authentication
service verifies the credential of the user. If verification is successful the
request is forwarded to the authorization service. Otherwise, an error is
returned and the user is redirected to the client application as shown in the
Figure 1. The authorization service determines the authority of the user.
If successful, the request is forwarded to the resource service that returns
the requested resource by the user. Otherwise, error is returned and user
is redirected to the client application. The accounting service intercepts
the request between client and server and does the metrics calculation and
audition as provisioned by the provider. The AAA are further described in
detail in the following subsections.

2.1 Authentication

Authentication is a mechanism by which a cloud provider identifies the
cloud user before granting access to the cloud resources [82, 30]. The cloud
provider enables the user to use the cloud services based on the credentials
provided during the registration [54]. The provider authentication can be
categorized into three categories: what-you-know (knowledge), what-you-
have (possession) and who-you-are (ownership) [82]. What-you-know means
something what the user knows about such as username and password, PIN
code and public keys. What-you-have is something what user possess such
as smart cards, identity card, e-tokens (identity information encrypted on
a flash card). Who-you-are means something that the user owns such as
biometric characteristics such as fingerprints and iris scan. Some of the most
used authentication methods are described in the next subsections.

2.1.1 Username and Password

Username and Password are the most used authentication method. A cloud
user first registers to the cloud provider with user data, such as username,
password, email, phone number, credit card details etc [30]. Once the
registration is complete, the user is able to access the cloud resources with
the username and password provided during registration. This method is
easy to implement for the cloud provider and is familiar to lots of users.
However, it is not very secure authentication method, since, the security of
this method depends on the length and characteristics of passwords. Even
if the password is complex, it can be stolen by guessing, brute force. For
example, around 21 million accounts were comprised by massive brute force
attack on Alibaba’s e-commerce site TaoBao [71]. Besides this, complex
passwords are difficult to remember, therefore users end up using the same
password for multiple cloud provider or use password manager which again

6

increases the chances of password attacks.

2.1.2 Public Key Infrastructure

Public Key Infrastructure (PKI) authentication is based on the cryptographic
private-public key generated by a cloud user where the private key remains
only with the cloud user while the public key is distributed to the cloud
provider [30]. The private key is used to prove the identity of the user.
The PKI is also used for the security protocols such as the Secure Socket
Layer (SSL/TLS) and Secure Electronics Transaction (SET) with an aim of
authentication and data confidentiality, data integrity and non-repudiation.
Compared to username and password authentication mechanism, this method
provides better security since private-public key is generated cryptograph-
ically and cannot be easily cracked. However, this method is not easy for
most of the basic cloud users since it requires knowledge of generating the
keypair and distributing to the cloud provider. Apart from that, in many
deployments there are chances to steal the private key and the hackers are
even able to crack it.

2.1.3 Biometrics

Biometrics authentication is one of the most advanced authentication method
which uses biometric such as a measurable behavioral trait or physiological
characteristics for user’s authenticity [82]. The behavioral traits are signature
recognition, voice recognition, keystroke dynamics and gait analysis. The
physiological characteristics, for example, are fingerprints, iris and retina
scans, face, finger, hand recognition. These characteristics or traits are unique
in every individual and thus the authenticity can be proved only by the owner.
Moreover, it is highly secure compared to other authentication methods as
it is very difficult to steal or crack the user characteristics. Biometrics
authentication is easy to use, avoids memorizing a password. There is no
need of any token and reduces user identity fraud. However, it is expensive
to implement as it requires a specific set of hardware and software as well as
the accuracy of this technology is still an issue.

2.1.4 Multi-Factor

Multi-Factor authentication is an advanced method of authentication which
uses combination of what-you-know and what-you-have or what-you-know
and what-you-are to provide authenticity of the user [30]. For example, the
user might user ATM card which is PIN or fingerprint protected. Similarly,
the user might login into website with a password and pass-phrase from
linked hardware (mobile) device. This method is also called two-factor
authentication. It is user friendly but requires higher deployment cost.

7

2.2 Authorization

Authorization is process of determining whether a cloud user has authority
to access the requested content or issue certain commands [42]. It is tightly
coupled with the authentication as the user must be authenticated in order
to get authorized. Authorization is required because in a cloud environment,
same physical resource might be consumed by different cloud users who
have different access control rights. Thus, cloud environment must have
policy to allow access to resources which belong to the user. The most
popular authorization system is eXtensible Access Control Markup Language
(XACML) and the most popular authorization framework is OAuth 2. These
are described in next subsections respectively.

2.2.1 XACML

eXtensible Access Control Markup Language (XACML) is one of the main
standards adopted for authorization system. It defines a declarative fine
grained attribute-based access control policy language [42, 34]. XACML has
four main components: Policy Administration Point (PAP), Policy Decision
Point (PDP), Policy Enforcement Point (PEP) and Policy Information Point
(PIP) [42, 68]. PAP creates and manages policies to common central reposi-
tory and PDP is responsible for storing and analyzing policy information
from user request. PEP is responsible for authorization decisions based
on policies stored in the common repository while PIP provides additional
attribute values such as action, resources. These components interact with
each other with XACML request-response protocols. The components are
deployed and managed by the cloud provider to their servers. Moreover,
XACML has three main elements: Rule, Policy and PolicySet [68]. Rule
is unit of the policy and PAP combines rules to form Policy and PolicySet
contains set of policies. Furthermore, PAP assigns certain role to the users on
registration when resource is requested. The role is checked against assigned
role from the repository by PDP. On success the user gets response with
attributes and is able to access resources otherwise the access to resource is
denied.

2.2.2 OAuth 2.0

OAuth 2.0 is authorization framework that allows a third-party application to
obtain limited access to a resource on behalf of resource owner and with owner
consent [43]. The access is requested by the client or third party-application
which can be a web service or a mobile application. For example, a web
service might use facebook login which basically allows the user (resource
owner) to use facebook credential to authenticate and authorize the user for
accessing the web service resources. This framework is successor of OAuth
1.0 and is used by companies like Facebook, Google and Microsoft [64].

8

OAuth 2.0 defines four roles: resource owner, resource server, client and
authorization server [51] [43]. Resource owner is an entity/person who grants
access to the a protected resource and resource server is a server which
hosts the protected resource. The client is an application which accesses
the resource on behalf of the user. The authorization server is the server
which issues the access token to the client after successful authentication of
the resource owner. This token acts as user identity and is valid for certain
interval of time, like 24 hours.

The authorization flow starts with trigger from resource owner who wants
to access the protected resources [51, 43]. The trigger is followed by client
(application) which asks authorization from the resource owner and returns
the authorization grant on success. On success, the authorization server
returns the access token and this access token is then sent to the resource
server which validates the token and on success returns the protected resource.
Thus, a resource owner (user) is able to access the protected resource without
providing credential to the client.

2.3 Accounting

Accounting is measurement of resources consumed by a cloud user during
certain interval of time [56, 59]. The resources measurement is amount of
computing, network or disk space consumed. Accounting is performed by
logging of session statistics and resource usage information and is used for
authorization controls, trend analysis, auditing and billing. Furthermore,
the common business model of accounting is pay-per-use basis where the
user periodically pays for the resource s/he has consumed. Pay-per-use basis
has resource accounting model which describes all the chargeable resources
of the provider and how billing charges are calculated over resource usage.
This accounting model is provider specific provided in their web-pages. This
accounting model can be used by the user to perform their weekly or monthly
or annual accounting estimates.

Accounting system is composed of three basic services: metering, ac-
counting and billing as shown in the Figure 2 [56]. The accounting system
intercepts the traffic between client and server as shown in the Figure 1. This
traffic is received by metering service which extract the relevant data required
for calculating resource usage. These relevant data are called metering data
which is forwarded to the accounting services as shown in the Figure 2. The
accounting service analyzes and computes the resource usage based on the
accounting model and generates accounting data. Finally, the accounting
data is used by billing service to generate billing data which is sent to the
user as receipt or invoice and the user pays this invoice using the credit card
information provided during their registration.

9

Figure 2: General Accounting Architecture

2.4 Potential Vulnerabilities

Although AAA framework has been used over a decade by cloud providers, it
has various major potential vulnerabilities such as distributed denial of service
(DDoS) attacks, brute force, man-in-the-middle (MITM), account hijacking
and data breach [35, 27, 42]. According to 2014 McAfee (a computer security
software company) report of Net Losses and the global cost of cybercrime,
there would be the global economic loss of between $375 to $575 billion
each year which is more than the national incomes of most countries and
governments [23].

2.4.1 Account Hijacking

Account Hijacking is an attack where a malicious user (attacker) is able
to retrieve a cloud user credential and use it on attacker’s favor [27, 42].
With this attack, an attacker can eavesdrop on the user transactions and
activity, modify their information, redirect to unauthorized sites and return
fabricated data. What makes this attack possible is that sometime the user
uses same credential into multiple cloud services which has weak password
and security. As a result, the attacker is able to use brute force or guess
user’s password and get access to their accounts. Likewise, an attacker can
even cause financial loss by modifying bank transactions and moving money
to attacker’s account. For example, Github was hit by massive password
guessing attack [37]. Similarly, according to Forbes, hackers hijacked phone
numbers and broke into email and bank accounts [73]. This attack can be
avoided mostly from the user end, by ensuring the user uses strong two-factor

10

authentication and cloud provider effectively detects unauthorized activities.

2.4.2 Distributed Denial of Service attack

Distributed Denial of Service is an attack where a group of compromised
malicious users flood a cloud provider with unnecessary request traffic. The
attack results in the denial of service for the legitimate user [35, 27]. The
unnecessary traffic might slow down or even crash and shut down the provider
services. The main intention of this attack is to disrupt the provider service
and prevent legitimate user from accessing the cloud services. So far, one of
the latest DDoS attack was on October 21, 2016 when Mirai botnet crippled
many of American sites such as Twitter, the Guardian, Netflix, Reddit,
CNN [84]. The cloud provider might use intrusion detection or prevention
system and increase the number of critical resources to prevent the attack.
However, it is almost impossible to avoid this attack since it is very difficult
for cloud services to differentiate between good and bad traffic.

2.4.3 Man-in-the-Middle attack

Man-in-the-Middle attack is an attack where a malicious user (attacker)
can intercept and modify the communication between two systems [24]. An
attacker listens to the traffic between user and cloud service and eventually
splits the original traffic into 2 new connections where one connection is
between user and attacker and another between the attacker and the service.
Thus, the attacker acts as a proxy and is able to read, insert and modify the
intercepted data. For example, a researcher from Chinese University of Hong
Kong has found flaws in OAuth 2.0 protocol which allow attackers to sign
into a billion mobile app accounts using MITM attack [86]. The possible
solution for this attack is to ensure the cloud provider encrypts all the data
over the network, user uses virtual private network and secure shell to access
their resources.

2.4.4 Data Breach

Data breach has been one of the primary cause of online cyber-theft, account
hijacking and fraud in cloud computing [35]. The primary reason for data
breach are the centralized servers of the cloud providers which creates a
honeypot for hackers where they are able to execute multiple cloud vulnera-
bilities such as phishing, denial-of-service, backdoors, spoofing, clickjacking,
MITM [35, 27]. Once, these exploits are successful, hackers can gain full or
partial access to user data and end up exposing user data to Internet. Some
of the recent breaches are: one billion Yahoo! accounts were compromised in
August 2013 [77], LinkedIn reported 117 million accounts details were sold on
data sharing website in a possible security breach [66]and hackers launched

11

attack against Sony’s PlayStation Network using Amazon EC2 service and
stole user data [35].

2.4.5 Malicious Insiders

Malicious Insiders are threats which occur because of lack of transparency in
the cloud provider process and policy compliance [27]. A cloud provider might
monitor their employees or users without their consent and grant access to
their data to third party organization. This leads to corporate espionage and
unnecessary surveillance of users. This threat can occur, both from inside
and outside of the organization. According to the 2012 CyberSecurity Watch
Survey 53% of threats were caused from outside organizations, 24% from
inside organization and 17% was unknown or unreported. So far, one of the
most alarming recent malicious insider threat was when NSA was able to run
Prism program which could monitor theoretically any users who belonged
to Giant cloud provider like Apple, Google, AWS, Facebook, Twitter [41].
Similarly, United State Domain Name Service Provider was able to shut
down Wikileaks.org for leaking confidential data [60]. The possible solution
to this threat is to ensure maximum level of transparency in information
security practices, compliance, processing, determining and reporting any
security breaches to the user.

2.5 Drawbacks

The major drawbacks of the current AAA framework are user data ownership
and high cost to deploy and operate AAA systems [35, 27]. The main
reasons behind these drawbacks are the AAA’s client-server architecture
adopted by the cloud providers and service level agreement (SLA). SLA is an
agreement between the cloud provider and the user which defines the terms
and conditions for the provisioning and delivery of the services including
security measures [29, 58]. Also with SLA, the right to use user data is
granted to the cloud providers. Hence, with client-server architecture the
user data gets saved to the central servers and with SLA the cloud providers
have full access to these data which they are able to monitor, trace, leak and
control at their will as described in section 2.4.5. This results to the potential
user data vulnerabilities and fraud as discussed in above Subsection 2.4.
Thus, though the data belongs to the user, it is eventually controlled by the
providers which is one of crucial issues of data privacy and security [52].

Moreover, the SLA requires the provider to guarantee no downtime in
the cloud services [29]. So, in order to achieve this, the provider has to
maintain data centers which would ensure almost 100% uptime for the cloud
services. The maintenance and operation of these data centers is expensive
as it requires lots of hardware for computing, network, storage, firewall as
well as cooling system with operations to ensure 24/7 support of the system.

12

Furthermore, the cloud provider has to maintain multiple servers to provide
fault-tolerant, distributed and decentralized system so that there is no data
loss and the system can be recovered on hardware or software fault. Thus,
the current AAA system is expensive to deploy and operate.

3 Blockchain
Blockchain is append-only digital decentralized, distributed ledger. It has
network of computers which maintain and validate transactions via consensus
with cryptographic audit trails. It was first described by Satoshi Nakamoto
in 2008 [61]. Satoshi primarily designed Blockchain as a foundation for
cryptocurrency technology such as Bitcoin 4.1. The core idea of blockchain
is fast, cheap, secure, reliable, transparent and trustworthy movement of
assets between two parties, without any trusted third party such as bank,
credit card company, notary [80]. The digital assets could be money, notary
documents, properties, contracts. For example, movement of assets is needed
for taxes, paying salary, bills, showing possession of particular documents.

Blockchain is based on distributed ledger shared by all the participants in
the network and on consensus protocol by which the majority of participants
agree on a conclusion [80]. Each created transaction is verified and validated
by the majority of participants in the network. The transaction is chained
together on spending basis and added to ledger which can never be erased.
The ledger is not owned by a central authority or central servers. Rather it
is distributed to nodes (computers in the network) over the decentralized
network. So, all the nodes on the network have an exact same copy of the
ledger. It can be viewed, verified and validated by anyone in the network
at any given time. Moreover, the transaction can be even traced to the
genesis of transaction block. This essentially removes the dependency to a
centralized server and decreases the chances of fraud.

Blockchain can be either private or public. Public blockchain is unpermis-
sioned, allowing anybody to use it. An example is the bitcoin blockchain 4.1.
Private blockchain is permissioned and created for a closed group of people
working in a certain organization or supply chain. For example, a supply
chain company might use private blockchain for their transactions.

Blockchain users range from enthusiast to financial and commercial
enterprises. According to survey by World Economic Forum’s (WCF) Global
Agenda Council, currently $20 billion global gross domestic product (GDP)
has been held by Blockchain [45]. But, WCF suggests there is going to
be a significant increase in Blockchain growth. So far, blockchain has been
very popular in financial, commercial sectors and has gained rapid growth in
developing countries.

Financial sector companies such as Nasdaq, Axoni, Deloitte, Finetch, The
Linux Foundation, IBM are leveraging the secure, reliability, transparency

13

and the ability to remove the middle man for their advantages [36]. Nasdaq is
using blockchain to record private security transactions. Axoni is managing
the post trade for credit default swaps along with Depositary Trust and
Clearing Corporation. Deloitte is working with startups and customers
to develop Smart Identity for banking client. Linux Foundation has an
open source collaborative project called Hyperledger for business. IBM has
various open source projects and is building the foundation of standardized,
production grade digital ledger. Finetch startup backed by 40 global banks
is developing a standardized architecture for private ledgers that could
significantly cut the cost and time to settle transactions.

In the commercial sector, Everledger and Factom have been actively
working with blockchain [36]. Everledger is focused on identity and legitimacy
of objects with blockchain. It uses immutable history of transactions and
consensus process to provide trust of transactions to its customers. It provides
distributed ledger of diamond ownership, which assists in the prevention of
fraud in the supply chain. Simlary, Factom is working on securing data with
blockchain. It has been funded by U.S Department of Homeland to capture
the data from border devices. Moreover, it is working on numerous projects
in China to build smart cities. These cities are integrating blockchain with
electronic data, notary services, financial transactions to ensure the integrity
of data.

In developing countries, on one hand the blockchain can be used for
fast and reliable transfer of money from abroad [80]. On the other hand, it
can be used to develop trust transactions. Word bank and United Nation
(U.N) have initiated various projects for digital identity to be used for land
registration and finances for small and medium sized enterprise. Beside these,
numerous leading universities such as as MIT [78], Princeton [62], Berkley [4]
are researching and supporting blockchain. There is also W3 [5] blockchain
community which ensures the guidelines for message formats, public-private
blockchain, side chain and evaluates new technologies related to blockchain.

3.1 Terminology

This subsection describes about basic terminologies used in blockchain
technology. These terminologies are Peer-to-Peer (P2P) network, block,
blockchain, distributed blockchain and smart contracts.

3.1.1 Peer-to-Peer Network

Peer-to-peer (P2P) is distributed network architecture [75] where each par-
ticipating node (computer) share its hardware resource such as computing,
storage capacity, network links with each other. Moreover, these resources
are used to provide services like content and file sharing and are available to
all nodes directly without need of any central server. Besides this, at given

14

time, a node can be consumer as well producer of the resources. Furthermore,
it is also used for anonymising routing of network traffic, parallel computing,
distributed file storage, media sharing.

Blockchain uses P2P network architecture to ensure distributed, decen-
tralized networking with no single point of failure [62, Chapter 5]. It has two
types of peers in the network: member peers and validator peers. Member
peers consume the blockchain services while validator peers are special peers
which consume the blockchain services as well as validates and verifies the
new transactions in the blockchain at the cost of financial benefit. These
special peers are called miners. Each miner has exact same copy of the
transaction history across network and has specific responsibility to maintain
and propagate the new transaction block across the network. The first miner
to successfully validate the block and propagate the result across network
gets financial reward.

3.1.2 Block

A block is a single unit in the blockchain (described in subsection 3.1.3) [78]
which is building block of blockchain and is composed of transactions with
meta-data as shown in Figure 3. A miner (described in 3.1.1) collects the
valid data (transactions) of certain time interval to form a block and calculate
the cryptographic hash. However, this hash has to be specific format such as
the hash must have leading four zeros as shown in the Figure 3. In order to
get this specific type of hash, the miner has to randomly guess an arbitrary
number which outputs the hash with four leading zeros. This arbitrary
number is called number used once or number once (nonce) and the block
with nonce is called signed block else it is unsigned. Also, the process of
finding nonce is called mining.

Figure 3: Block

A sample block is shown in Figure 3 where a block has a block number,

15

nonce, data and hash. The block number #1 is the unique id of that block
and Nonce 72608 is random arbitrary number guessed to find the specific
format of the hash. Finally, the Data is the user digital data which is empty
in this case and the Hash is the digital fingerprint of the data.

3.1.3 Blockchain

Blockchain is a data structure with linked lists of hash pointers [85]. It is a
chain of blocks where each block has a hash pointer to the previous block.
This hash pointer allows to verify and validate the digest of previous data.
If any value in the chain is changed the digest of that block and the hash
pointer of following blocks will change. Thus, this creates tamper-evident
log which cannot be changed. Moreover, the hash pointer can be followed
till the very first block called the genesis block of blockchain.

Figure 4: Blockchain

A sample blockchain is shown in figure 4 where two blocks are chained
together to form a blockchain. Here, each block has a block number, nonce,

16

data, previous block hash and current block hash. Moreover, Block #1 is
the genesis block of the blockchain and the hash of previous hash pointer is
null (00
00) integer while Block #2 as shown in figure 4 is the second block of the
blockchain which has the hash pointer of the previous block.

3.1.4 Distributed Blockchain

Distributed Blockchain is blockchain distributed over P2P blockchain nodes
where all the nodes have an exact copy of blockchain. Thus, if one entry in
blockchain is modified and re-mined, the resulting hash becomes different
compared to other nodes. As a result, this transaction will get invalidated
since other nodes will invalidate this copy. However, a miner could the-
oretically modify one blockchain entry and re-mine all hashes entry over
distributed nodes if it has more computational power than other miners
combined.

3.1.5 Smart Contracts

Smart contracts are self executing autonomous computer programs that get
executed based on condition defined by programmer [36]. These contracts
are capable of facilitating, enforcing and executing agreements between two
parties using blockchain. Unlike traditional contracts, where a third party
(bank, notary) is required, smart contracts enable independent business
between anonymous parties with cheaper fees. For example, one can pay
room rent automatically at the end of month without involving a bank in
between.

Smart contracts have various possible applications such as trading or
loaning of properties, stock or bond trading in distributed markets [36]. More-
over, it can be also used for autonomous transparent digital voting system or
autonomous digital notary contract system. In this context, companies like
Ethereum, Codius are enabling smart contracts using blockchain to support
these applications.

3.2 Cryptography

This subsection describes about the basic cryptography technologies used in
the blockchain. They are cryptographic hash function, hash pointer, digital
signature and Merkle tree.

3.2.1 Cryptographic Hash Function

Cryptographic hash function is a mathematical function that takes any input
string (data) of any length and outputs fixed sized alphanumeric string [62,
Chapter 1]. The output string is called hash value or digest or digital

17

fingerprint or checksum. Moreover, the output is of fixed length and unique.
The function always produces the same hash from the same data despite the
number of times recalculated. The hash cannot be reversed to get the input
data and therefore, it can be used to check the integrity of data. Thus, it is
also known as one way hash function.

The hash function has three main properties, namely: collision free, hiding
and puzzle friendly [62, Chapter 1]. Collision free means it is extremely
unlikely to find two different messages that have the same hash. For example,
the hash of a string x and the hash of string y are always different, despite
how many times it is calculated. Hiding means it is infeasible to find x from
given hash of x and puzzle friendly means it is easy enough to calculate a
hash of given data.

Blockchain uses Secure Hash Algorithm (SHA) such as SHA-2/SHA-256
which was developed by the National Security Agency (NSA) in 2001 to
replace its predecessor SHA-1 to prevent collision attacks [38]. The latest
SHA-1 collision attack was reported by Google, which proved two different
documents can have same SHA-1 hash signature [76]. Furthermore, SHA-2
is widely used algorithm and so far no vulnerability has been reported. The
following is an example, of SHA-256: hash of hello is
2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824.

3.2.2 Hash Pointer

Hash pointer is a pointer to where data is stored along with digest of that
data [62, Chapter 1]. In other words, it is just a hash that is used to reference
another piece of known information which can be used to verify the data
digest (data has changed or not). The hash pointer can be used to build
data structures like blockchain (described in 3.1.3) which is a linked list of
hash pointers and Merkle tree (described in 3.2.4) which is a binary tree of
hash pointers.

3.2.3 Digital signature

Digital signature is another building element of the blockchain. It uses
public-key cryptography to provide the integrity, nonrepudation (obligation
of message sent and received by the parties) and authenticity of a message
and its source [81]. It has similar properties as a manual signature which can
be issued only by the issuer and which is verifiable by other users. A message
signed with a digital signature can be verified by other users, but the message
can be signed only by signature owner. Beside this, digital signatures
are created using public key cryptography. Public key cryptography or
asymmetric cryptography uses a key which is a combination of public and
private key. The private key is saved only by the owner while the public key
is distributed to the other users. The other users can encrypt the message

18

with the owner’s public key and the message can only be decrypted by the
owner with his/her private key.

Blockchain uses digital signature algorithm such as elliptic curve digital
signature algorithm (ECDSA) to generate digital signature [40]. It has three
steps to create, sign and verify message with digital signature [81]. The
secret key (sk) and public key (pk) are generated by generateKeys method
which takes key size as a parameter. The sk is kept only by the owner and
pk is distributed over blockchain nodes. The message is signed by using
the sk. The sign method takes sk and message as input and generates the
signature of the message. This signature can be verified with nodes using
verify method which take pk, message and signature as input. If it returns
true the message is verified otherwise it is invalidated. Thus, the public
key ensures the message has been created by the signature owner and with
message verification, user identity is verified. Hence, the public key is used
as user identity in the blockchain.

Using distributed blockchain, the users do not need to provide social
security number, phone number, email to any central server or authority.
They can create their digital identity themselves and distribute their public
key to the distributed network. This provides distributed decentralized
anonymous identity management to the users. However, in the distributed
blockchain all the nodes have copies of all the transactions as described in
section 3.1.4. This means a node can see all the history of all transactions.
Thus, a node can observe the history of the user transaction and might be
able to link or guess the real world identity. Therefore, blockchain provides
pseudoanonymity rather than real anonymity.

3.2.4 Merkle Tree

Blockchain uses P2P network where each peer must have same copy of
data and new data must be propagated and verified across the network [62].
Propagating and verifying data over P2P network is time consuming and
computationally expensive. Therefore, Merkle tree is used which instead of
sending data only the hash of the data is sent and the receiver peer checks
the hash against the root of the Merkle tree which allows secure and efficient
verification of larger data structures as well as ensures data integrity. Merkle
tree or hash tree is binary tree of hash pointers 3.2.2 which ensures all the
peers/nodes must have same undamaged, unaltered, legitimate data and if a
data is changed in one node, changes must be propagated to every node.

Merkle tree is composed of a large number of blocks containing data or
transactions as shown in the Figure 5 [32]. These blocks form the leaves of
the Merkle tree and the transaction blocks are grouped into pairs of two
where each pair has hash pointers respectively which eventually, make the
next level up of the tree. Moreover, this process is repeated until the single
block is reached as shown in the Figure 5 and the single block is called root

19

Figure 5: Merkle Tree

hash or the root of the tree.
A model of Merkle tree and basic concept on how root hash is formed

is illustrated in figure 5. It has four transactions TX1, TX2, TX3 and TX4
at the bottom where each of the four transaction data pass through a hash
function to generate four unique hashes. Moreover, pairs of hashes are then
combined and passed though hash function which generates two unique
hashes and the two hashes are then combined and again passed to hash
function which generates one unique hash which results in the root hash
forming complete Merkle tree.

Merkle tree allows detection of any changes to any data within the
transaction of block by simply rerunning through the process of transaction
and comparing the result of original hash [62, Chapter 1]. If a malicious user
tries to change or swap a transaction at the bottom, it will cause changes in
the hash of node above, and so on and finally change the root of the tree. In
other words, the hash of the block becomes different resulting completely
new block which becomes invalid block. Now, this new block needs to be
propagated to the other peers. Since, the data of this block is different, other
peers can easily invalidate it by comparing with their own hash. Therefore,
any changes to any hash of Merkle tree eventually lead to an inconsistent
tree.

3.3 Distributed Consensus

Distributed Consensus is the backbone of blockchain (distributed ledger
system) [62]. Blockchain uses distributed consensus protocol to reach an
agreement on which transactions should be added to the distributed ledger.

20

No single node or authority can decide which transaction should be added
to the ledger. Rather majority of honest nodes in the network participate to
reach consensus. This protocol allows to connect devices to work together as
a group and in case some node fails, it is still able to reach consensus. Miners
solve complex mathematical problem to reach consensus. There are cases
when two miners might solve the mathematical problem at almost same time.
This results to fork in the blockchain. In this case, the longest branch of the
blockchain is selected and others are discarded. Hence, the protocol ensures
fault tolerance with built in redundancy and decentralized governance of the
transactions.

3.3.1 Proof-of-work

Proof-of-work was first introduced in 1999 by Miguel Castro and Barbara
Liskov [33] as the solution to The Byzantine general problem [72, 63]. The
Byzantine general problem can be described as follows. A group of generals of
the Byzantine army surround the enemy city and are allowed to communicate
with each other only via messengers. Therefore, to conquer the battle, they
have to reach consensus on a battle plan. However, the problem is that one
or more generals might be traitors, hence, they might lose the battle. The
question is how many traitorous generals can the army have and still function
as a unified force. Similarly, in a distributed system, it can be studied as
how many faulty nodes there can be and still reach the consensus. The
solution to this problem was proposed with practical Byzantine fault tolerant
(PBFT) algorithm [33]. This algorithm suggest secure and fast exchange of
message between general to reach consensus. These messages are secured,
fault-tolerant and resilient.

Blockchain proof-of-work was first proposed by Satoshi Nakamoto in 2008
to address the double-spending problem [61]. A double-spending problem
is a case where a user tries to use the available cryptocurrency more than
once. This problem can be solved in a distributed system using proof-of-work
where the P2P distributed timestamp server generates a hash of proof-of-
work. This form a record that cannot be changed without redoing the
proof-of-work. As long as, the majority of CPU is controlled by honest nodes,
they reach common agreement forming the chain of honest consensus. This
chain is longer than dishonest consensus chain as described in Subsection 3.3.
Hence, the honest nodes out-space attacker and proof-of-work ensures the
cryptocurrency is spent once.

Proof-of-work reach consensus and add a block to blockchain [72]. A
block is added to blockchain after nodes achieve consensus on the solution
to a complex mathematical problem which is solved by nodes with repeated
random guessing. The first node to solve this problem and broadcast to the
network gets the financial reward while other nodes update their ledger since
the problem has been solved. They start validating new transaction to get

21

financial reward. The solution of the mathematical problem is difficult to
find, it is very easy for other nodes to validate the solution. The situation is
identical to number locked bag where it requires multiple repeated random
guess to find the correct number sequence of a number locked bag. But, once
the sequence is found it is very easy for others to validate by checking if the
lock can be unlocked with the correct sequence number.

Proof-of-work has some known issues [62]. For example, lots of compu-
tational power is wasted to calculate possible solution which leads to high
energy cost for miners and eventually ends up being expensive. Also, only
nodes with high computational power can participate in mining. As a result,
only limited miners are able to participate in the mining which goes against
the idea of decentralization and hence increase the chances of 51% attack
(described in Subsection 3.6.1). Besides this, in future miners will get only
transaction fees form the users. It will decrease the numbers of miners and
this implies that the difficulty to solve the computational challenge will
decrease. It follows that the system becomes more vulnerable to 51% attack
(described in Subsection 3.6.1). The alternate to proof-of-work is to use
proof-of-stake.

3.3.2 Proof-of-stake

Proof-of-stake is a consensus algorithm proposed in 2012 [72] as an alternative
algorithm to proof-of-work. It is used to validate a block of transactions in
the blockchain network and has a mechanism to punish the nodes that do not
follow the consensus protocol. A miner has to bet or put stakes of predefined
amount of digital assets for consensus outcome. Unlike proof-of-work, this
algorithm chooses randomly a miner from mining pool and the chosen miner
is required to solve a simple mathematical problem. Then, if the miner
successfully solves the problem an interest or bonus is given on their stake.
Otherwise, next miner is chosen randomly. Hence, there is no race to solve
the mathematical problem to get economic incentive.

The main advantages of proof-of-stake over proof-of-work are reduced
energy consumption and more decentralization resulting decrease in chances
of 51% attack [72]. Since, proof-of-stake has only a simple mathematical
problem to be solved, miners do not need high end computers to participate
in the mining. Rather a less powerful computer is enough. So, far less energy
is wasted and there is no fierce competition on building nodes with high
computational power to get economic incentive. Moreover, almost any node
can participate in mining. Thus, proof-of-stake consumes less energy and
motivates wider participation in mining, which increases the decentralization
of the blockchain.

22

3.4 Architecture

The generalized software architecture of the blockchain is shown in the
Figure 6 [69]. The architecture is divided into four layers: Application, RPC
API, Peer Service and Consensus Layer as shown in the Figure 6.

Application Layer has the blockchain applications which enable users to
interact with blockchain network. The blockchain applications are blockchain
wallet or blockchain key management software such as ledger wallet [14]
which provides blockchain identity to the user by creating public/private
key-pair where public key is shared to the network and private key remains
only with the user. Moreover, a transaction is created in this layer. The
transaction contains sender’s digital signature, value of the transaction and
receiver’s public key as shown in the Figure 6. This transaction is signed by
pass-phrase protected sender’s private key which creates the unique identifier
of the transaction called transaction hash. Depending on the security measure
taken by the sender it can also be biometrics (fingerprint, iris) or password
protected. Thus, this layer on one hand ensure data integrity of transaction
and on other hand provides anonymity to the users. Moreover, the user
private keys remains only with the user and no personal data (firstname,
lastname, email, phone number) is shared to the network.

Other blockchain applications are web applications such as BitInfoCharts
[7] and Blockchain info [3] which provides cryptocurrency statistics as well as
interface where any user can query and view transactions. Beside these, the
user can develop their own blockchain applications using RPC API Layer.

RPC API Layer is a communication layer between Application Layer
and Peer Service layer as shown in the Figure 6. It has the communication
and access rules of the blockchain which are pre-defined by the blockchain
network. These rules define the endpoint of the database, personal, network,
admin, personal, metrics and debug API interfaces of the blockchain. It also
sets the rules about which API are exposed to the Application Layer from
Peer Service Layer as well as who can access the application. These rules
depend on the blockchain environment setup, either development or testing
or production. Blockchain specifically uses JSON-RPC API which is simple,
transport agnostic, stateless, light-weight remote procedure call [21]. Thus,
the Application Layer is able to access only those APIs which are allowed by
the RPC API Layer. Furthermore, there are various peers requesting and
sending data from blockchain network. There are special nodes called miners
that form the Peer Service Layer as shown in the Figure 6.

The Peer Service Layer is the core of the blockchain which performs
all the computing necessary for validation and verification of transactions
and blocks. Each node has copy of the transaction history which can be
verified till the first transaction. This makes the blockchain decentralized,
distributed, fault tolerant and resilient since there is no single point of failure
and data is distributed over multiple nodes. Moreover, a node in this layer

23

Figure 6: Blockchain Architecture [69]

validates if the new transaction received from the Application Layer is of
right format, is signed by sender digital signature, is feasible (has enough
balance to perform transaction). The node also authenticates the sender by
checking his digital signature. Finally, the node creates a new block based
on the validation and structural rules defined on the Consensus Layer.

The Consensus Layer validates the structure of block created by the
node. The block must have a valid block hash, previous block hash, nonce
and merkle root as shown in the Figure 6. The block hash is the unique
identifier of the new block, previous block hash is the hash pointer to the
previous block, nonce relates to proof-of-work and it is result of the solution
of mathematical puzzle set by consensus layer. Finally, Merkle root enables
verification of all the transaction till first transaction. The node gets financial

24

reward for the proof-of-work and the new block is immediately broadcasted
to the network where other nodes updates their own ledger resulting to
consensus on the network. Thus, the consensus layer makes the blockchain
transparent, immutable audit trail. If one transaction is changed on one
node, all other nodes must update this change and re-mine the blocks. Hence,
the digital ledger cannot be manipulated and fraud is very difficult.

3.5 How blockchain works

Blockchain work flow has five steps which are Transaction Definition, Trans-
action Authentication, Block Creation, Block Validation and Block Chaining
as shown in the Figure 7 [39, 45]. Transaction Definition is the model of
the transaction pre-defined by the blockchain network. It has sender dig-
ital signature, the transaction payload and receiver’s public key which is
cryptographically signed with sender’s pass-phrase protected digital key as
shown in the Figure 7. Transaction Authentication is the process by which
the nodes validate if the A has the asset, enough balance to send the asset
and is authenticated to move the asset. Block Creation is process of creating
block by a node from the transaction pool where transaction are grouped
together based on the creation time. Block validation is process of validating
the block by checking if it has previous hash and nonce which provides
the proof-of-work. Block Chaining is process of adding the block to the
blockchain once the nodes reach on the consensus.

An example of blockchain work, is shown in the Figure 7 where User A
transfers a digital asset to User B. The asset can be money or smart contract.
In this case, first both users create their digital identity [25] with blockchain
wallet. A needs his/her private key and B’s public key in order to create
Transaction Definition. A receives B’s public key either by scanning B’s
blockchain address QR code or B send the public key to A via email. A creates
the transaction which is signed with his/her private key and broadcasts to the
blockchain network. This transaction is received by a node which validates
and verifies the authenticity of A [72]. If validation fails, transaction is
discarded, otherwise it is grouped together with pending transactions from
transaction pool and a block is created. This block is propagated to the
other nodes and once the network reaches the consensus on block it is added
to blockchain and this block becomes permanent after sufficient subsequent
blocks get added to the blockchain. Finally, the transaction is confirmed and
asset moves from A to B. Furthermore, depending on the blockchain network
it might take 2 minutes to 10 minutes for transactions to be confirmed. For
example: Bitcoin 4.1 takes on average 10 minutes while Ethereum 4.3 takes
2 minutes to confirm the transactions.

25

Figure 7: How Blockchain works [39]

3.6 Potential Vulnerabilities

Blockchain is faster and cheaper than centralized system because of its
decentralized distributed design. Although, it is reliable and secure because
of its consensus protocol, cryptography and anonymity, it still has several
potential vulnerability such as the 51% attack, sybil attack, identity theft
and code-based attack.

3.6.1 The 51% attack

A 51% attack is when a miner or a mining pool controls 51% of blockchain
network computation resources [85]. As a result, they can dominate the
validation and verification of transactions as well as they can change the
content of blockchain. Moreover, they could invalidate the valid blocks,
create and confirm their own fraudulent blocks eventually quicker than the
rest of honest miners which could result to double spending. Besides this,
the attackers can change the consensus rule, steal assets from others and
even prevent cryptocurrency generation.

So far no bad incident has happened with 51% attack although on
July 2014, mining pool ghash.io held more than 51% of bitcoin blockchain
network [79]. But, shortly after other miners moved out of this mining
pool, hence any tragedy was avoided. This attack can be prevented using

26

proof-of-stake consensus algorithm.

3.6.2 Sybil attack

Blockchain does not have a central authority to administer identities of the
participants [62]. As a result, attacker can create multiple copies of itself,
which might look like separate participants though they are all controlled
by the same node. The attacker can try to fill the network with its clients.
So, other nodes are likely to connect only to attacker nodes. The attacker
can then refuse to relay blocks and transactions from others, disconnect
the connecting node from the network or relay only blocks created by itself.
This attack can be avoided by only trusting the blockchain with the most
proof-of-work since it cannot be easily faked because of the significant mining
power requirement.

3.6.3 Identity theft

Although blockchain provides the ownership of the user identity, this digital
identity is backed up by the private key that must be kept safely. If the
private key is stolen or device storing the private key gets hacked, the victim
will lose all its digital assets as well as its digital identity. Moreover, this
digital identity cannot be recovered and it will be almost impossible to
find the culprit. There are various applications to encrypt and sync the
private keys across various devices to recover the private key. But if these
applications have some malicious codes or if they get hacked then again the
user ends up with identity theft. Apart from that, synchronizing the keys
across multiple devices increases the chances of getting hacked.

Besides this, with the rise of quantum computing it may become possible
to crack the cryptographic keys used by blockchain technology [36].

3.6.4 System hacking

Blockchain records or data cannot be easily modified or altered. However,
the code-base and system which implements blockchain can be modified
because, depending on the company or organization, the blockchain code-
base can be based on open source [85]. For example, the most popular
blockchain applications Bitcoin and Ethereum are open source. Therefore,
any user can contribute to the development of these applications and if these
contributers provide vulnerable code or there is human-error in the code-base
because of the contributor, it might possibly end up in the production system
which in turn might cause system hacking. Beside this, a company can
fork the blockchain code-base for their own use. If this code-base is poorly
maintained, or outdated, it might end up getting hacked. In March 2014,
MtGox Tokyo based bitcoin exchange got hacked and 700 millions worth
of bitcoin were stolen [85]. Similarly in 2016, hacker exploited software

27

vulnerabilities of Decentralized Autonomous Organization (DAO)(described
in Subsection 4.3) and stole 50 million worth of ether (cryptocurrency used
in Ethereum blockchain).

3.6.5 Illegal activities

The pseudoanonymity, immutable transaction and decentralized property
of the blockchain makes it difficult to monitor and track transactions on
blockchain [36]. Moreover, the technology itself is in the early stages of
production and the essential regulations for using blockchain application are
on early stages. Hence, the system can be misused for money laundering,
illegal movement of funds. For example, Silk Road, a website to buy and sell
illegal drugs used bitcoin for its payments [44].

4 Blockchain Applications
Blockchain can be used in different application domains such as as financial,
non-financial, insurance, Internet of Things (IOT), health-care, Internet,
cryptocurrency [36]. Some of the financial applications are Medici, Block-
stream, Bitshares and non-financial applications are Stampery, Ascribe,
Block Notary. Everldger is Insurance application and IOT Filament, ADEPT
platform are IOT applications. Examples of Internet applications are Name-
coin, Ethereum. Examples of Cryptocurrency applications are Namecoin,
bitcoin. Some of the most popular applications such as bitcoin, Namecoin
and Ethereum are described below.

4.1 Bitcoin

Bitcoin is the most popular application developed on blockchain. It was
first proposed by Satoshi Nakamoto in 2008 in the paper ’Bitcoin: A Peer-
to-Peer Electronic Cash System’ that describes a P2P method of sending
electronic cash from one person to another without involving any trusted
third party [31]. The electronic cash is termed as cryptocurrency. It relies
on public-key cryptography to identify users, hashcash algorithm for proof-
of-work to detect double spending and consensus algorithm to reach the
common agreement on blocks getting added to blockchain.

Bitcoin was developed to address the current financial challenges [62,
Chapter 1]. The current finance system is strongly tied with trusted third
parties such as banks, credit card companies who relay and process the
financial transactions. The trusted third parties validate, safeguard transac-
tions and persist the transaction history which later can be used as proof
of financial transactions to avoid frauds. However, the economic collapse
in 2008 has shown that these trusted parties can create economic bubble
resulting to disasterous economic consequences [70]. Moreover, the trusted

28

third parties are expensive for users to maintain transactions. If the trusted
third party is corrupted or hacked users lose their assets. Apart from these
issues, user data is owned by trusted third party who can misuse and share
it to organizations like National Security Agency (NSA) which may track
users.

Bitcoin has been most successful cryptocurrency in the history [31]. The
first bitcoin block was mined in January 3, 2009 and on January 9 2009 bitcoin
v0.1 was released. The first financial transaction was done in May 2010 where
a user bought a pizza with 10,000 bitcoins. Since then, the financial value of
bitcoin has exponentially increased compared to fiat currency. The current
(May 13, 2017) value of one bitcoin, is equal to $1,716.72 [7]. Nevertheless, it
was not until December 2013 when the value of a bitcoin skyrocketed and one
bitcoin was equal to $1,100 which caught attention of mainstream investors.

Bitcoin uses P2P networks instead of trusted third party to execute
transactions between two users over the Internet [31]. It relies on digital
signatures based upon public-key cryptography as described in Section 3.2.3
to establish trust instead of utilizing trusted third party. Each user has set
of cryptographic private and public key where the public key broadcasts to
all the users in the network while the private key is safely kept by user. So,
the user identity remains pseudonymous. However, everyone in the network
can see certain Bitcoins were transfers from user A to B.

A bitcoin is sent to the public key of the receiver. This creates a transac-
tion which is protected with the private key of the sender. This is done in
such a way that the sender has to prove the ownership of the transaction
using his private key and this transaction is verified by miners (described
in Section 3.1.1) using sender’s public key. Miners ensure the sender has
enough bitcoin balance to spend and that the bitcoin is owned by the sender.
Moreover, each transaction is broadcasted to all the nodes. After verification
and validation the block is recorded to blockchain.

A user can start using bitcoin by creating bitcoin identity. This is done
by downloading bitcoin wallet and creating bitcoin account and Bitcoin can
be exchanged from fiat currency using bitcoin exchanges such as Bistamp,
Bitsquare, Kraken [67, Tab Exchanges].

In addition, the user can develop Bitcoin application like Namecoin
(described in Subsection 4.2) by forking the bitcoin core code and modifying
it to support own business/use case.

4.1.1 Transactions

Many transactions take place at a given time and any node can collect
unconfirmed transactions to form block and broadcast these blocks to the
network [31]. Also, the transactions are not ordered on the basis of creation
due to propagation delay in P2P network. Therefore, the transactions at
given time are grouped together to form block. This block is chained with

29

previous block using previous block hash as described in Section 3.1.2. The
block is added to blockchain after miners have solved a complex mathematical
problem. The first miner to solve this problem or in other words to be able to
generate proof-of-work, broadcast the solution to the network. The average
computational effort required for the proof-of-work is high. However, the
validation is simple and it is done by executing a single hash function. The
difficulty of the problem is adjusted such that, the problem is solved on
average every 10 minutes. The miners get financial reward for proof-of-
work. This reward was 50 bitcoin in the beginning and it gets halved every
four years to ensure limited supply of bitcoin with steady decreasing rate.
As a result, the maximum number of Bitcoins will be generated by 2140.
Occasionally more than one block will be solved at the same time leading to
several possible branches of blockchain, out of which only the longest branch
is considered to be valid.

Every bitcoin transaction has three parts, metadata, inputs and outputs
as illustrated the figure 8 [62, Chapter 3]. The first part is metadata which has
lock time (time to add the transaction to the blockchain), size of transaction
and SHA-256 hash of entire transaction. The hash serves as a global unique
transaction ID as shown in the Figure 8. The second part is Input which is
an array reference to previous transactions with previous transaction hash
and its index. It also has scriptSign which contains a signature and the
public key as shown in the Figure 8. Finally, the third part is Output which
is also an array that has instruction for sending bitcoin to the receiver public
key [31].

Figure 8: Bitcoin Transaction [62]

Moreover, the Output has an integer value which represents number of
cryptocurrency to be sent and scriptPubKey that specifies the ECDSA hash of

30

the public key and a signature validation routine which represents conditions
under which this transaction can be redeemed [31]. This cryptocurrency is
measured in bitcoin and the smallest unit of bitcoin is called satoshi where
108 satoshi is equal to one bitcoin. Output also has a short script snippet:
scriptPubKey as shown in the Figure 8 that specifies the ECDSA hash of
the public key and a signature validation routine which represents conditions
under which this transaction can be redeemed. To successfully redeem the
transaction the sciptSig and the scriptPubKey must be executed successfully
in the order.

4.1.2 Scripting Language

Bitcoin uses bitcoin scripting language which has been specifically designed
and developed for Bitcoin with room for only 256 instructions [31]. The
bitcoin has less than 200 commands called opscodes. It is stack based
programming language with support for cryptographic operation such as
hashing data and verifying signatures. The design of language is ad-hoc,
non-Turing, which means it does not have the ability to compute arbitrarily
powerful functions and every instruction is executed exactly once in a linear
manner. It has no loop support because the miners have to execute scripts
submitted by arbitrary participants avoiding any infinite loops. Once the
script is executed, there are only two possible outcomes. Either it executes
successfully with no errors and transaction is valid or there is an error while
the script is executing. In the latter case, the whole transaction will be
invalid and is not accepted to the blockchain.

4.1.3 Bitcoin Network

Bitcoin transaction can be executed on three networks, main-net, test-net
and private-net [31]. Main-net is the main Bitcoin production network
where bitcoin is required for transactions. Test-net is also public Bitcoin
network but has different genesis block than main-net and has been reset
three times. Test-net does not require real bitcoin and is useful for testing
bitcoin applications before deploying to main-net. Main-net and test-net are
developed and maintained by Bitcoin core developers while private-net can
be deployed by a developer for individual use or company to support their
own use case. In addition, mining in the private-net is faster than test-net
since there is less users and transactions compared to test-net or main-net.

4.1.4 Advantages

Bitcoin technology has several advantages over existing financial systems
which uses a client server architecture where users are registered to the
central server and the central server owns the user data [62, Chapter 3]. The
Bitcoin technology is secure since transactions are secured by public-key

31

cryptography and trust is established in P2P manner. It is cheaper because
the transactions are broadcasted immediately over P2P network and they
are propagated as fast as possible to other nodes. Also, the intermediate cost
of handling transactions is lower than existing financial system transaction
costs. Beside these, the network also makes the transactions distributed and
immutable, permanently saved to the distributed ledger. This ledger makes
it easier to detect frauds and prove the ownership of the transactions.

4.1.5 Vulnerabilities

Bitcoin has several vulnerabilities (discussed in Subsection 3.6) and limita-
tions such as it is not fully scalable since there is only limited (around 21
million) Bitcoins. It is time consuming to get the transactions confirmed as
new blocks are added every 10 minutes to blockchain. Therefore, it takes an
hour to get six new blocks added to the blockchain and this is the number of
blocks needed before transaction get confirmed.

Bitcoin blockchain size has increased from 50GB to 120GB [7] and it
is increasing all the time. Also, the computational power in order to solve
the mathematical problem is exponentially increasing all the time. As a
result, only certain nodes with high computational power can become miners
which in fact defies the principle of distributed system. The energy cost of
computational is getting higher all the time. If the hackers steal the user
private key, they can steal the identity of user which cannot be recovered
and the user loses all her bitcoin. For example, in February 2014 Mt. Gox,
the world third largest Bitcoin exchange got 850,000 bitcoins stolen and thus
the company had to declare bankruptcy [85].

4.2 Namecoin

Namecoin is an alternative cryptocurrency (alt-coin) based on BitDNS pro-
tocol with intend to enable censor-resistance domain name system outside
the control of any single entity [46]. The system uses blockchain to manage
domain name lookup instead of central authority like Internet Corporation
for Assigned Names and Numbers (ICANN) [19]. The latter requires of
much trust on a central authority and represent a single point of failure.
Namecoin was the first fork of the bitcoin code-base with its own blockchain.
It uses Bitcoin core features such as proof-of-work, block creation time and
transactions operations with additional features of a name/value store. The
name/value store is a blockchain transaction database where user can store
arbitrary identity data such as username, email address or website identity. It
has been primarily used for the website identities and it enables registration
and domain-name resolution for top-level domain (TLD) .bit.

Namecoin squares Zooko Traingle, meaning it makes it possible to have
domain name which is human-readable, decentralized and authenticated [46].

32

Human-readable means a user can pick a name. Decentralized means there
is no central trusted party or single point of failure. Authenticated means a
strong sense of ownership using cryptographic keypair. Until 2011, designing
a system which would exhibit all these three properties was impossible.
However, Namecoin was the first system to provide naming system that
offered all three properties.

Namecoin cyptocurrency is called namecoin and its unit is represented
by NMC. Furthermore, a user can register for .bit TLD at dotbit.me [22]
with very a small fee of 0.01 BTC or 5 or 20 NMC at the time of writing.
Moreover, similar to bitcoin, Namecoin is also limited to 21 millions coins.
The first Namecoin block was mined in April 2011 [46] and as of the time
of writing over 327,299 block (which equals to 13,347,132 NMC) have been
mined [7, Namecoin tab].

Based on Namecoin, various applications such as OneName and Block-
stack has been developed. OneName utilizes the Namecoin blockchain to
record data about its members [46] while Blockstack provides similar features
with Bitcoin blockchain and introduces separation of control and data plane
and additional support of deploying decentralized server-less applications [28].

4.3 Ethereum

Ethereum is the second most popular blockchain application. It was developed
to address the weaknesses of the bitcoin. The weaknesses are bitcoin script
that has the limit of small instructions and is non-Turing complete. The
script is more centered toward bitcoin use case [32]. Developing applications
using Bitcoin script requires developers to fork the bitcoin core code-base
and add the logic for their own use cases. The forking is time consuming
and difficult to maintain. Thus, to address these challenges, Ethereum was
developed. The Ethereum provides a platform for programmers to build
applications on top of the blockchain called an Ethereum blockchain. It was
first proposed in late 2013 by a Bitcoin programmer named Vitalik Buterin
in the Whitepaper ’Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform’. This thesis proposes Turing-complete
programming language for writing scripts (smart contracts) and Ethereum
Virtual Machine (EVM) to execute the smart contracts and transactions.

An Ethereum user can create smart contracts and upload them to the
Ethereum Blockchain with a small fee. Other Ethereum users can access
these contracts by remote procedure calls provided by Ethereum Application
Program Interface (API) [62]. The contracts can store data, send transactions
and interact with other contracts. The contracts are executed in bytecode.
Once contracts are uploaded to the blockchain, they are stored, executed
and interpreted by EVM. EVM requires a small amount of fees to execute
transactions. These fees are called gas and the amount of gas depends on
the size of instruction. The longer the contract instructions, the more gas is

33

required. In addition, Ethereum has own cryptocurrency called ether and it
is presented by the abbreviation ETH. Ether is a type of token that powers
applications on the decentralized Ethereum network. The smallest unit of
ether is Wei. One ether is equal to 1018 Wei. Users can use the Ethereum
exchange to change the physical or normal money to ether. At the time of
writing (May 13, 2017), exchange value of 1 ether was equal to $86.59 [7].

4.3.1 Ethereum Blockchain and Account

Ethereum blockchain is similar to the bitcoin blockchain with certain differ-
ences in the architecture [32]. The differences are listed as following. The
Ethereum blockchain contains a copy of both the transaction list and the
most recent state. The block creation time is every 12 seconds. Ethereum
blockchain uses GHOST protocol to reach consensus branch with proof-of-
work called Ethash. The proof-of-work has been planned to be switched to
proof-of-stake. Minimum 6 confirmations are required to approve a transac-
tion and a miner gets 5 ether as financial reward which does not half, unlike
in bitcoin.

A user needs an account to use Ethereum blockchain [32]. An account
has four fields, nonce, ether balance, contract code and storage. The nonce
ensures a transaction is processed only once. Ether balance is the amount of
money a user has. Contract code contains smart contracts which deployed
by the user to the EVM. EVM provides environment to execute the contract
and persistent storage for saving data. Ethereum accounts are of two types,
externally owned and contract account. The externally owned account is
created by user and controlled by private key. The contract account is
controlled by the contract code. The accounts generate transactions and
messages.

4.3.2 Transactions and Messages

The transaction is a data package signed by sender. It stores data to be sent
from an externally owned account or external actor [32]. The transaction
contains recipient address, digital signature of the sender, ether amount to
be sent to the receiver, data field, startgas and gasprice. Receipt address is
receiver public key address and digital signature is used to authenticate the
sender. The data field is an optional field and has no function by default.
However, it can be used by virtual machine that has opcode (operation code)
with which a contract can access the data. Startgas and gasprice are to avoid
any accidental infinite loops which might drain computational power. Each
transaction has requirement to set a limit of computational steps required to
execute a code. The fundamental unit of this computational step is called gas
and each computational step requires 1 gas. Moreover, there is a fee for every
5 gas spent and the fee is one ether. Every transactions must specify upfront

34

how much gas it is willing to spend. If the execution runs out of gas it will
halt the transaction and consume all the gas. Therefore, it is important to
provide enough gas for transaction executions. Ethereum by design is not
suitable for computationally heavy contracts as the creation and execution
of contracts get very expensive. Creating and executing a contract requires
ether, but querying a contract does not require any ether. For example,
assume a contract has instruction to register and list user. Then registering
user requires ether but listing user does not require any ether.

Unlike transactions, messages are produced by the contract account
instead of external owned account [32]. Messages are produced when a
contract sends information to the other contract which executes the CALL
opcode. The messages only live in the Ethereum execution environment.
Similar to transactions, messages also has sender, receipt, ether to be sent,
data field and startgas value.

4.3.3 Smart Contracts

Smart contract is the key component of Ethereum. It is a self executing
autonomous program that lives in the Ethereum execution environment. It
gets executed once triggered by a message or a transaction. It possesses its
own ether balance [32]. The smart contract code executes until it reaches
an error or STOP or RETURN instruction. These codes have access to
three types of space: stack, memory and storage to store data. The stack is
last-in-first-out container where values can be pushed and popped. Similarly,
memory is an infinitely expandable byte array. Storage is long term key/value
pair. Unlike stack and memory which reset after computation ends, the
storage persists the data for the long term.

The smart contract is written either using solidity [83] or serpent [48].
Once a program is written using one of these languages, it can be deployed
in Ethereum Blockchain using either Mist or Ethereum wallet [9]. Mist and
Ethereum wallet is application developed by ethereum foundation. This
application allows developers/users to create accounts and ethereum appli-
cations. Mist and Wallet application also allows users to test and deploy
their ethereum applications to the network (further discussed in Section 11).
Furthermore, like in Bitcoin (as described in Subsection 4.1), the contract
can be deployed in either main-net or private-net or test-net.

4.3.4 Decentralized Autonomous Organization

Ethereum smart contract and blockchain provide unlimited potential to
develop a wide range of decentralized applications (Dapps). Examples
are, own cryptocurrency, decentralized autonomous organization (DAO)
and decentralized storage system [32]. The own version of cryptocurrency
can be used by companies for their internal purposes. The DAO provides

35

decentralized human-less venture capital platform. This platform can be used
by investor to invest on startups. The investment is transparent, distributed
and decentralized. Decentralized file storage allows users to rent their unused
hard drives. Some of the real world applications are Weifund, Uport and
Provenance. Weifund leverages smart contracts to provide an open platform
for crowd-funding campaigns in Ethereum Ecosystem. Uport provides a
platform for users to take complete control over their identity instead of giving
the control to the government institutions. Provenance enables tractability
in the supply chain business by tracing the product history so that consumers
can make informed decisions when they buy products.

4.3.5 Vulnerabilities

Although Ethereum is secure and decentralized it has its own weaknesses. The
Ethereum code-base is open source and maintained by group of developers [18].
So, if there is a bug in the code-base or technical flaw, hackers could easily
exploit it. For example, in April 2016 The Decentralized Autonomous
organization (DAO) was developed by hard fork (no backward compatibility)
from Ethereum with the objective to provide decentralized human-less venture
capital. But, in May 2016, the vulnerability in the DAO code resulted in
loss of $50 million worth of ether.

5 Rational Behind Choice of Technology
As discussed in Subsection 2.4 and 2.5, the current AAA (described in
Section 2) has various vulnerabilities and limitations. These vulnerabilities
have caused user data hijack and breaches, identity theft and financial loss.
These issues are becoming more common and frequent. This has sparked
the security concerns over the current AAA framework. The end-users are
becoming more concerned about their digital identity and privacy. Beside
these issues, repeated user registration across different services is inconvenient.
Multiple registrations increases the vulnerabilities of the user data. Thus,
an alternative solution is required to address these challenges.

As discussed in Section 3.1.3, Blockchain is technology based on the P2P,
consensus protocol and digital signatures. The P2P network is the blockchain
network which is by design decentralized, distributed with no single point of
failure. The consensus protocol ensures that a transaction (user A sends $1
to user B) happens only once. This transaction is added to public distributed
ledgers which cannot be reverted. Also, anyone in the network can validate
and verify this transaction. This makes the system transparent and reliable.
The user issues their identity with public-private key cryptography. This
identity uses digital hash algorithm which is almost impossible to be cracked
by current technologies. Moreover, the user’s identity as well as data signed
by the user can be verified and validated by anyone in the network. But

36

the transactions signed by the private key can be only viewed by the owner.
Thus, blockchain ensures the user identity is uncrackable and the user has
complete ownership of user data as well anonymity over the network.

Therefore, blockchain decreases the chances of hacking as the data is
not shared with the central server. The user data is kept by the user and
that data is protected by the latest hash algorithm. This hash algorithm
is most advanced hash algorithm and has not been cracked yet. It is easy
to use blockchain technology across multiple services. Moreover, user data
is only with the user and not sent to central server. These features give
the data ownership to the user than service providers. Blockchain also
decreases the chances of the user data breach. The breach is only possible
with user consent or carelessness. The providers cannot share data with
third party organizations as they do not have user data and no control
over their data. This technology has its own vulnerability as described in
Subsection 3.6. Also, it is not scalable compared to the current system
because of the transactions time. But, despite these drawbacks, it is more
secure, easy-to-use, trustworthy, reliable, fault-tolerant than the current AAA
system as described in Section 2.

It is difficult to develop the applications for blockchain (e.g. bitcoin
blockchain) because of the technical depth and architecture. The blockchain
architecture is different than most of the existing AAA systems [36, 80].
The technology is in the early stages of the development and lacks the
proper development instructions and support. A developer needs to clone
the whole blockchain repository and develop the application on top of it with
blockchain scripts which is cumbersome and difficult to deploy as described in
Subsection 4.1. The user also has to maintain the blockchain and ensure it has
the latest changes. The blockchain application must be modified according to
these new latest blockchain changes. The blockchain was primarily designed
for the Bitcoin. Thus building other types of application based on this design
is difficult and challenging.

Ethereum Blockchain is the blockchain platform. It has been designed
to develop the blockchain applications on top of the Ethereum blockchain
using smart contracts [32, 10]. The smart contracts are written using high-
level solidity language. The language is easy to learn and write. It is
alike Javascript scripting language. The contracts can be easily deployed
to private, test or main network. It is interpreted by the Ethereum Virtual
Machine. Therefore, on one hand, Ethereum platform hides most of the
technical depth of the blockchain and allows the developer to concentrate on
writing his application logic while, on the other hand, it makes the application
deployment painless. The large Ethereum community provides active support
for the possible issues. For these reasons, Ethereum Blockchain was selected
for the prototype development and testing.

37

6 Prototype Design
The design of prototype is described in this section. The reasoning behind
the design and development of prototype as well as the software architecture
is explained. It is worth noting that, this prototype is a very basic proof
of concept with no strictly defined expectations and the result may vary
depending on the which blockchain network is selected.

6.1 Need for Prototype

As described in the Section 1.1, the goal of this thesis is to develop a proof-of-
concept on how cloud providers could use one common identity backend to
authenticate and authorize users. The proof-of-concept should also provide
ownership of user data to the users rather than to cloud providers. The users
should be able to pay their invoices without sharing their private financial
data.

The actual need of prototype comes from cloud providers having their
own identity backends. These identity backends are a single point of failure.
They are also vulnerable to different types of attacks and back-door of user
data leaks as described in Subsection 2.4. Thus, cloud providers need one
common distributed decentralized backend. This backend can authenticate
and authorize cloud users with no single point of failure and decrease the
possibility of attacks and user data leakages via back-doors.

Another essential purpose of the prototype is the cloud users data owner-
ship. The user data is currently owned by cloud providers once cloud users
register for cloud services. Thus, cloud users need a system for their data
ownership. The users should be able to use multiple cloud providers with
same identity without sharing their private data. This ensures users are able
pay their invoices without sharing their user data.

6.2 Software Architecture

The software architecture presented in the Figure 9 shows the complete
solution on how the cloud providers could leverage Ethereum blockchain
technology for a common identity backend. The solution also presents how
cloud users could use blockchain technology for data ownership and pay their
invoices without sharing their private financial data. Developing the complete
solution as shown in the Figure 9 is out of scope for this thesis. However, the
whole complete solution has been discussed from the architecture perspective.
Most crucial parts: implementing smart contracts to the blockchain network
was implemented and relation between providers, blockchain, smart contract
and users was described in detail.

The software architecture has four types of participants : infrastructure
providers, cloud providers, Ethereum Blockchain network and a user as

38

shown in the Figure 9. Infrastructure providers are providers which provide
infrastructure services such as computing, storage, network to the cloud
providers. Cloud providers have the business logic, how to consume and
expose the infrastructure services to the end users. In some cases, such
as Amazon Web Service (AWS) [1], IBM Bluemix [13], Google Cloud [6],
Microsoft Azure [16] cloud provider also provides infrastructure services.
Each cloud provider has their own smart contract as shown in the Figure 9,
with sets of instruction about how to authenticate and authorize end users.
Ethereum Blockchain network provides distributed, decentralized identity
backend for the cloud providers. Finally, there is an end user who consumes
the infrastructure services through cloud providers’ Application Program
Interface (API) [2].

Figure 9: Prototype: Architecture diagram

For simplicity, a user, two infrastructure services 1 and 2 as well as two
cloud providers 1 and 2 with their respective smart contracts are considered
as shown in the Figure 9. Additionally, the figure can be easily extended
for multiple users by adding more users with their own Ethereum wallet,

39

described in subsection 11.
Infrastructure services interact with their respective cloud providers as

shown in the Figure 9. Each cloud providers define their authentication and
authorization logic with smart contracts. These contracts are deployed to the
Blockchain network via their respective API. The user creates their identity
with the Ethereum wallet that generates set of private and public key. The
wallet stores the private key while deploys the public key to the Ethereum
network. Now, the users can access the infrastructure service through the
cloud provider API which authenticates and authorize the user with the
Blockchain network as shown in the Figure 9.

Multiple cloud providers connect to common identity backend as shown
in the Figure 9. The users also connect to the same identity backend. In
order for the user to use cloud service, s/he is able to leverage the blockchain
for identity without providing any private information to the cloud providers.
Also, a user does not need to register for new cloud provider in order to use
their services. According to this architecture any cloud provider can basically
integrate or connect to the existing infrastructure provider and offer their
services without requiring users to register with their services.

6.3 Flow diagram

The flow diagram of the complete solution described in the above section 6.2
is shown in the Figure 10. The flow diagram describes how a cloud user
interacts with a cloud provider smart contract which is deployed to the
blockchain network. For simplicity, we assume that cloud resources are used.
As discussed above, cloud resources are out of scope of this thesis. The
key components in the figure are the smart contracts deployed by the cloud
provider and a user able to make transactions using the smart contract in
the blockchain network.

The cloud user must be authenticated and authorized to access the cloud
resources as well as to pay the invoice in cryptocurrency. There are two types
of authentication. The cloud user and cloud provider both are authenticated
against the blockchain to use cloud resources and execute the transactions
respectively. The cloud user authenticity is proved recovering the cloud
user public key from the message signature which is signed with cloud user
private key. The cloud provider authenticity is proved as all the transactions
executed by the cloud provider are signed with the cloud provider private key.
These signatures are by default verified by the blockchain before executing the
transactions. Hence, this ensures, on one hand, the cloud user is legitimate
user and only the right cloud provider is able to run the transaction. The
cloud provider authorizes the user by checking if the user address is valid and
exists on the blockchain. If the answer is positive, the cloud provider adds
the user to its blockchain address database and marks the user as authorized
to access its resources. Furthermore, only public key of the cloud provider

40

as well as the public key of the cloud user is distributed to the blockchain.
Hence, the prototype maintains the anonymity of the user and provider.
Additionally, the user is able to pay the invoice with the cryptocurrency
without providing their bank details.

Figure 10: Prototype: Flow diagram

First the cloud provider deploys the contracts to the private blockchain
network with ethereum wallet as shown in the Figure 10. Meanwhile, a cloud
user creates his/her digital identity using ethereum wallet as shown in the
Figure 10. Now, the user can access cloud resources for the purposes such
as creating a virtual machine, storage etc. If the user is authenticated and
authorized, s/he is able to access the resources. Otherwise, the user needs
to do the action registerToProvider. On successful authorization, the user
can access resource. The user identity still needs to be verified. On success,
the prototype proves the authenticity of the user and the user is authorized
and authenticated to access the resources as shown in the Figure 10. The
cloud providers keep the track of its resource usage by the user. Eventually
the provider sets the debt to the user using setDebt method. The user is
able to pay this debt in ether with payDebt method. Furthermore, the user
can also de-register or unsubscribe from the cloud provider. This deactivates
user from cloud provider and the user needs to register again to access the

41

resource.

7 Prototype Implementation
This section describes the hardware and software components required for
implementing the prototype. It also describes the smart contracts, prototype
environment setup and how the prototype was executed. The main idea is,
after reading this section, it would be possible to setup the development
environment and execute the prototype.

7.1 Hardware Components

The prototype was developed and tested on MacBook Pro, Mid 2010 com-
puter [15]. The computer has 2,4 GHz Intel Core 2 Duo processor, 8 GB
memory and operating system macOS Sierra version 10.12.3. All the soft-
ware components described in Subsection 7.2 were downloaded and executed
manually in this hardware.

7.2 Software Components

This section describes the software components used for prototype develop-
ment and testing. The components are Ethereum wallet, geth, docker and
Ethereum explorer.

7.2.1 Ethereum wallet

An Ethereum wallet is wallet software developed specifically for Ethereum
blockchain using javascript scripting language. It is developed and maintained
by Ethereum Foundation [9]. The wallet allows a user to create ethereum
blockchain identity, manage their accounts and ether. The user can create
multiple identities as well as multisig account with the wallet. Multisig
account is an account where one account is associated with more than one
private key. It is similar to shared account in the current banking sector. The
wallet is connected to blockchain network with blockchain API endpoints.
Furthermore, the wallet ensures that each contract is compiled and validated
as well as authenticated before deployment.

An Ethereum wallet version 0.8.9 is shown in the Figure 11. It has
navigation and view section. The navigation section has wallet, send and
contracts tabs. The view section shows the content associated with selected
navigation tab. The wallet tab shows accounts overview, wallet contracts
and latest transactions items in the view section as shown in the Figure 11.
The account overview item shows the list of accounts. The wallet contracts
item shows the list of deployed contracts. Latest transactions show latest five
transactions as shown in the Figure 11. The send tab is used to send ether

42

Figure 11: Ethereum wallet

to another account. Contracts tab is used to create and execute contracts.
Apart from these, the navigation section also shows connected blockchain
network (private-net), active miner (0), total blocks (1,293) mined, last block
time (an hour) and total ether (6,465.00 ETHER) for the user.

7.2.2 geth

geth is software developed and maintained by Ethereum Foundation [10]. It
is a command line interface to run full Ethereum node. This Ethereum node
connects either to main-net, test-net or private-net. The geth is used to mine
ether, transfer ether between addresses, create contracts, send transactions,
debug transactions, explore block history and monitor node.

7.2.3 Docker

Docker is open-source container run-time software designed to create, deploy
and run applications [8]. It differs from virtual machines (vms) in that split a

43

piece of hardware to be shared among different users and appear as separate
server or machine. Docker virtualizes the operation system, splitting it up
into virtual compartments to run container applications. Hence, instead
of creating the whole operating system, it allows applications to use the
host Linux kernel and only requires the application be shipped with its
dependencies and libraries. The docker reduces the size of the applications
and makes it easier to ship. Thus, this allows a piece of code to be put into
smaller, easily transportable pieces that can run wherever Linux is running.

7.2.4 Ethereum explorer

Ethereum explorer is a lightweight web application. It connects to private
blockchain API endpoints and visualizes blocks and transactions [11]. It
also allows to search blocks, transactions, address from the blockchain. The
explorer web interface shows the total blocks and latest list blocks, number
of transactions in the block, size of the block and block creation time. The
block numbers when selected give more detailed information about block
such as numbers of confirmations, gas used, nonce, size, miner, difficulty,
data, gas limit and transactions.

Figure 12: Ethereum explorer

44

An Ethereum explorer is shown in figure 12. The top navigation section
has the search field to query transaction, addresses and block as mentioned
above. The body section shows the latest block 1307 and list of the blocks
with block number (1307-1297). These blocks have 0 transactions, size of
each block is 538 bytes and the block creation times varies from 1 second to
8 seconds as shown in the Figure 12.

The Ethereum explorer shown in figure 12 has been modified to meet the
prototype need. First it runs in the docker container and the time stamps
have been changed from Unix to Coordinated Universal Time (UTC) for
readability. Also the footer of the page has been modified to be fixed at the
bottom of the web-page.

7.3 Prototype Environment

The software components 7.2 were downloaded manually on the server
(computer) 7.1. It was executed with commands listed in the list 1. These
commands started the private developer blockchain node, blockchain console,
Ethereum wallet and Ethereum explorer respectively.

The private developer blockchain node was started with custom flags:
dev, interprocess communication path (ipcpath), remote procedure call (rpc),
rpcapi, rpcaddr and rpccorsdomain as shown in the list 1 [10]. The dev
flag pre-configures the private network with debug flags. The ipcpath sets
the location of ipc pipe which enables ipc communication between clients
(blockchain console, explorer, wallet) to share blockchain data. The ipcpath
flag is only for local clients communication with the server and is not visible
outside this node network. The rpc flag starts the http-rpc server (blockchain
server) and it exposes the list of APIs such as database, web3, eth, personal
and net. The rpcaddr sets the blockchain server address to localhost on
which other clients connect to the blockchain. The rpccorsdomain enables
cross origin request of the explorer domain to the blockchain server. Finally,
the stdout of the command was redirected to the ethereum.log for persistence
logging and further analysis as described in Subsection 8.3.

45

1 # Start private developer blockchain node
2 $ geth --dev --ipcpath $HOME/Library/Ethereum/geth.ipc --datadir

$HOME/.ethereum --rpc --rpcapi="db,eth,net,web3,personal" --rpcaddr
localhost --rpccorsdomain "*" &> ethereum.log

↪→

↪→

3

4 # Blockchain node console
5 $ geth --dev attach
6 # Start mining
7 $ miner.start()
8 # Stop mining
9 $miner.stop()

10

11 # Start Ethereum wallet
12 $ /Applications/Ethereum\ Wallet.app/Contents/MacOS/Ethereum\ Wallet --rpc

http://localhost:8545↪→

13

14 # Ethereum explorer
15 # Build Ethereum explorer docker image
16 $ docker build -t private-blockchain-explorer:0.1 .
17 # Start explorer container
18 $ docker run -it --rm -p 8000:8000 -v "$(pwd)":/app

private-blockchain-explorer:0.1 npm start↪→

Listing 1: Prototype environment setup

The blockchain node console was started with command on line 5 as
shown in the list 1. The command attached the interactive console to
developer private blockchain node. The interactive console enabled starting
and stopping of mining with commands 7 and 9 respectively. The Ethereum
wallet was started with rpc flag which connected to the private blockchain
node. Finally, the docker image of the Ethereum explorer was built with its
dependencies (nodejs) and was run on port 8000. The explorer was accessible
to the browser on http://localhost:8000.

7.4 Smart Contract Implementation

The core of the prototype is in the smart contracts developed in Solidity
language. There are two types smart contracts, Provider and mortal. These
smart contracts define the set of rules/instructions about how a cloud user is
able to interact with cloud provider and how the cloud provider authenticates
and authorizes the users.

7.4.1 Solidity

Solidity is high level, object oriented programming language developed and
maintained by Ethereum Foundation. It has been designed for writing smart
contracts [83]. Smart contracts contain self-enforcing business logic which
is compiled to byte-code and executed on the Ethereum virtual machine.

46

Currently, solidity is the primary language in Ethereum to develop smart
contracts. It provides an easy interface to build Ethereum applications by
hiding the complexity of blockchain.

7.4.2 Mortal contract

Contracts in ethereum are by default immortal, which means that once
created is created to blockchain, contract owner has no special privileges.
Thus, usually contracts inherit the properties of mortal contract which allows
the contract owner to kill the contract when no longer needed [9].

In this prototype, the mortal contract has onlyOwner modifier and kill
methods. The onlyOwner modifier allows only the contract owner to execute
the specified methods. The kill function sends a suicide signal to the contract
address which makes the contract useless when the contract is no longer
needed. The kill function has onlyOwner modifier which means that only
the contract owner can execute it.

7.4.3 Provider contract

Provider contract is the main contract of the prototype. The contract
has four functions: registerToProvider, verifyUser, setDebt, payToProvider
and unsubscribe. Also, the contract inherits kill function from the mortal
contract.

The registerToProvider function registers a user to the cloud provider who
has created the contract. The user must have valid blockchain address which
is passed as parameter to the registerToProvider function. The verifyUser
function ensures the authenticity of the user. It requires message hash,
signature of the message and the user address as the parameters from the
user. The message hash is obtained by hashing a random message/text with
ethereum method web3.sha3 (input). This hash is then signed with the user
private key which is protected by the user’s paraphrase. The setDebt sets
the debt to the user who has already been registered for the cloud provider.
This function also requires user address and 256 bit unsigned integer as debt
value. The payToProvider allows the registered user to pay the debt, set by
the provider. The unsubscribe function de-registers the registered user who
has paid all the debt to the cloud provider. Finally, the kill function allows
the cloud provider to kill the contract when it is no longer needed.

47

1 // address: variable type that store ethereum address
2 // mapping: map User object to variable users
3 mapping(address=>User) public users;
4

5 // User object
6 struct User{
7 // user active or not, if subscribed or unsubscribed
8 bool active;
9 bool verified;

10 uint lastUpdate;
11 // ether currency needs to be 256
12 uint256 debt;
13 }
14

15 // a user is registered with default vaules
16 function registerToProvider(address _userAddress) onlyOwner{
17 // Creates a User struct and saves in storage
18 users[_userAddress] = User({
19 active: true,
20 verified: false,
21 lastUpdate: now,
22 debt: 0
23 });
24 }

Listing 2: Provider contract

A snippet of the Provider contract is shown in the listing 2. A public
users address is defined. This address is mapped to the User object as
shown in the listing 2. The User object has four fields: active, verified,
lastUpdate and debt. The active field represents if user is active (subscribe)
or not (unsubscribe). The verified field shows if the user has verified his/her
authenticity. The lastUpdate field shows when the user was last time active.
The debt field shows the amount of money the user is supposed to pay to
the cloud provider. The registerToProvider function takes _userAddress
as input parameter and has onlyOwner modifier. In addition, this function
saves the user object with default values of true, now and 0 for fields active,
lastUpdate and debt respectively.

7.5 Executing the Prototype

The prototype was executed on one server (computer as described in Sub-
section 7.1) with a single instance of private developer blockchain, miner,
ethereum explorer and wallet. A cloud provider account, cp1 and a user
account user1 were created. The mining was started and the cloud provider
account got the ether. The cp1 deployed mortal and provider contracts
(PROVIDER) from contracts tab in the wallet. The cp1 was prompted for
password before creating the contracts. Once the contracts were created, the

48

cloud provider navigated to PROVIDER contract as shown in the Figure 13.
The contract has two columns: read from contract and write to contract.
Read from contract reads the contract properties from the blockchain as
shown in the Figure 13. It has four sections: Provider name, Description,
Owner and Users. Provider name displayed the name of the provider, descrip-
tion displayed the description of the provider set before creating the contract.
The owner field shows the cloud provider who deployed the contract. The
users section has the input field address which takes a user address as input
parameter as shown in the Figure 13. If the user address is supplied to
the user input field, the wallet shows if the user was Active, Verified, Last
Update and Debt state.

Figure 13: Contract Execution

The cp1 manually executed the Register To Provider function with user
address as shown in the Figure 13. As soon as this transaction was mined

49

the user section Active field changed from NO to YES, verified field was set
to NO, Last Update timestamps was set to now and Debt to 0. Then, the
cp1 executed the second function Verfiy User, which basically checks the
authenticity of the user by recovering the user public key from the message
signature and comparing it with the user public key provided by the user.
If the two public keys match the user is authenticated and verified field is
updated to YES. Now the cloud provider can execute Set Debt to the user
which basically set the Debt to the user and Debt amount was displayed on
the user section once mined. The cp1 executed the Pay To Provider function
with the provider address and debt amount which basically pay the debt
from user account to the provider account. Finally, if the user had no debt
the unsubscribe function de-registered the user from the cloud provider.

8 Prototype Testing
This section describes the method used for testing the prototype. It describes
the possible test cases to analyze how well the expectation of the problem
statement described in Subsection 1.1 can be met.The section also describes
the setup and execution of prototype testing. Moreover, measurements and
results are presented along with analysis of results and security aspects.

8.1 Setup and Execution

The test was set up and executed from the cloud provider perspective. The
setup and execution was similar to the Prototype Environment (described in
Subsection 7.3) and Executing the Prototype (described in Subsection 7.5)
respectively with some differences. The differences are following: two cloud
provider accounts cp1, cp2 and two users account u1, u2 were created.
PayToProvider, unsubscribe functions which are only accessible to registered
and verified users were considered as cloud provider resources for simplicity.
This setup was executed three times with listed test cases 3 to validate
how well we meet the expectations of the problem statement described in
Subsection 1.1. The performance of the system was measured. The test
setup was manual since it required various manual triggers. However, it was
easy to visualize and follow the authentication, authorization and accounting
scenarios with blockchain.

In order to test, according to test cases 3, same copy of the provider
and mortal contracts were deployed by each cloud provider cp1 and cp2
respectively. First, cp1 executed Pay To Provider functions to u1 as well as
u2 and the registration failed, since these users were not registered with the
provider and had no access to protected functions. Also, when a wrong user
address(fake user) was provided for registration, error was displayed. After
u1 was registered to cp1, she had access to Pay To Provider and unsubscribe

50

• Only authenticated and authorized user can access cloud resources.

• Cloud provider is able to authenticate and authorize users against
blockchain.

• Cloud users are able to pay invoice without sharing any bank or credit
card details.

• Cloud provider is authenticated to execute the transactions on the
blockchain.

• A cloud user can use same identity across multiple cloud providers.

• A cloud user or provider both are anonymous on the network.

Listing 3: Test cases

functions. The cp1 was able to set debt to the u1 and the u1 was able to
pay the debt in ether.

The cp2 registered u1. The u1 could access the protected functions of cp2.
The cp2 was able to Set Debt to u1 and u1 paid the debt to cp2. Eventually,
the u1 unsubscribed (de-registered) from both cloud providers cp1 and cp2.
If the debt was paid the unsubscirbe was successful. Otherwise, the u1
could not unsubscribe. Hence, these use cases proves only authenticated
and authorized user can access cloud resource and cloud provider was able
to authenticate and authorize users with blockchain. The cloud user was
able to register to multiple cloud provider(u1 and u2) with same address
and pay invoice without sharing any bank or credit card details. All the
transactions were visible in the ethereum explorer. These transactions had
hashed user id. Thus, it was difficult to associate which user triggered the
specific transaction. Therefore, this ensured cloud providers as well as users
were anonymous on the network.

The above setup and execution was replicated in three sets. Each set
with two cloud provider and two users and CPU, memory, blockchain time
and transaction costs were measured. These measurements and results are
described in details in the next section.

8.2 Measurement and Results

As mentioned in previous section 8.1, the test setup was executed in three
sets and the measurements were done in three sets. During each set, the
minimum and maximum hardware resources usage, blockchain time and
transaction costs were recorded. The mean value of minimum values were
calculated as shown in the tables below 1 2 3 4 represented by avg:min.
Similarly, the mean value of maximum values were calculated as shown in

51

the tables below 1 2 3 4 represented by avg:max. Finally, the mean values
of the average minimum and maximum were calculated and represented by
overall average as shown in the tables below 1 2 3 4.

8.2.1 CPU and Memory

The hardware resources are CPU and memory used by private ethereum
blockchain, ethereum wallet and ethereum explorer process. The CPU and
memory usage for blockchain are amount of CPU and memory used by the
blockchain miner to create, save transactions and reach consensus among
nodes as well as send confirmations to other nodes. The CPU and memory
usage by ethereum wallet is CPU and memory used by the wallet process
to query, send, receive and display transactions on its interface. The CPU
and memory usage by the explorer process is the CPU and memory used to
query blockchain and display the transactions and block informations on the
web interface.

Table 1: CPU usage
avg:min(%) avg:max(%) overall average(%)

Blockchain 59.10 109.10 84.10
Wallet 2.20 14.53 8.36
Explorer 0.36 1.60 0.98

The CPU usage of blockchain, ethereum wallet and explorer is shown in
the table 1. The overall average CPU usage of blockchain was 84.1% where
59.1% and 109.1%(the value is more than 100% because 100% refers to
full usage of single core and the device has multiple cores) were average
minimum and maximum of three sets. The overall average wallet CPU usage
was 8.36% and ranged from average 2.2% to 14.53% as shown in the table 1.
The overall average explorer CPU usage was 0.98% and ranged from average
0.36% to 1.6%. Thus, blockchain is a CPU hungry process with the highest
overall average CPU usage while explorer has the lowest CPU usage.

Table 2: Memory usage
avg:min(%) avg:max(%) overall average(%)

Blockchain 4.80 6.16 5.48
Ethereum Wallet 0.93 9.43 5.18

Explorer 0.06 0.36 0.21

The memory usage of blockchain, ethereum wallet and explorer is shown
in the table 2. The overall average memory usage of blockchain was 5.48%

52

where 4.8% and 6.16% was average minimum and maximum respectively.
The average wallet memory usage was 5.18% and ranged from average 0.93%
to 9.43%. The average explorer memory usage was 0.21% and ranged from
average minimum 0.06% to maximum 0.36% as shown in the table 2. Thus,
though the blockchain required more memory capacity compared to wallet
and explorer process, it is not a memory intensive process.

8.2.2 Blockchain Time

The blockchain time consist of block creation, consensus and first confirmation
time. The block creation time is the time taken by node to aggregate the
transactions at the specific time and to create blocks. The consensus time is
the time taken by nodes to propagate the block created, to validate it, to
reach consensus and add to add to blockchain. The first confirmation is the
time taken by the network to propagate the consensus to other nodes and to
update their respective blockchain.

Table 3: Blockchain Time

avg:min (seconds) avg:max (seconds) overall average (seconds)
Block Creation 2.67 15.00 8.83

Consensus 4.16 18.66 11.41
First Confirmation 6.28 22.01 14.09

The overall average time to mine and create a block was 8.83 seconds
where 2.67 and 15.00 was average minimum and maximum seconds as shown
in the table 3. The overall average time to reach consensus for the block was
11.41 seconds where 4.16 and 18.66 were average minimum and maximum
time respectively. The first confirmation of the transaction took, on overall
average 14.09 second where the minimum was 6.28 seconds and maximum
was 22.01 seconds as shown in the table 3. Thus, there was no big difference
between block creation time and confirmation time because there was one
miner node only. And this small difference was due to other process on the
computer using the network resources.

8.2.3 Transaction Cost

The transaction cost consist of transaction creation and execution cost.
The transaction creation cost is amount of ether required to execute a
smart contract. The transaction execution cost is amount of ether required
to execute smart contract function. The cost of the transaction creation
depends on two factors, the length of contract and the type of transaction
creation method. Longer the contract, more expensive is the cost and shorter

53

the contract, cheaper is the cost. Faster the transaction creation method,
the more expensive is the cost and slower the transaction creation method,
the cheaper is the cost. The cost of transaction execution dependent on type
of execution method, amount and number of input parameters. Faster the
execution method, more expensive is the transaction and slower the execution
method, the cheaper is the transaction. Similarly, more and longer the input
parameter, the most expensive is the transaction and less and shorter the
input parameter, cheaper is the transaction. In this prototype, we selected
the simple or moderately complex transaction creation and execution method
was selected.

Table 4: Transaction Cost

avg:min (ether) avg:max (ether) overall average (ether)
Transaction Creation 0.00118302666 0.00226240666 0.001722716
Transaction Execution 0.00087342 0.0029366 0.00190501

The costs of the transaction creation and execution are shown in table 4.
The overall average transaction creation cost was 0.001722716 ether where
0.00118302666 and 0.00226240666 was average minimum and maximum
respectively. The overall average transaction execution cost was 0.00190501
ether where 0.00087342 were minimum and 0.0029366 maximum as shown
in table 4. The mortal contract was cheapest(0.00118302666 ether) and
provider contract(0.00226240666) was most expensive. Similarly, Set Debt
function was the cheapest(0.00087342) while Pay to Provider function was
the most expensive(0.0029366).

8.3 Analysis of Results

The result of the test showed that one user was able to use two cloud providers
with the same user account (address). A user did not need to share any
private data except public key to the blockchain network to use cloud services.
The cloud providers were able to authenticate and authorize the users against
the blockchain network. Moreover, a fake user which did not exist on the
blockchain network or with the wrong address was unable to register to the
cloud provider. Also, only registered user had access to the cloud resources
and a user could pay to the cloud provider in cryptocurrency without sharing
any bank or credit card details. All the transactions were accessible to any
blockchain user and she was able to verify it. Users were anonymous as
only public key was shared with the network. Finally, a user could easily
de-register from the cloud provider. Hence, this prototype achieves the
expectation of the problem statement stated in section 1.1.

In addition to the above findings, it is obvious the blockchain mining

54

is a CPU hungry process and requires more CPU for faster performance.
The transaction length should be kept short to keep the transaction cre-
ation and execution cost lower. The transaction should be executed with
moderate transaction execution type to keep the cost lower. However, the
most expensive transaction costs are very small compared to the existing
transaction costs which are required by current bank or financial system.
Thus, blockchain solution is cheaper, reliable solution for cloud provider
compared to existing authentication, authorization and audition solutions.

It is important to emphasize that these results would be different from
the private-net, test-net and main-net. The setup was strictly made for
the prototype only. However, the prototype ideas of using one account
and registering to multiple cloud providers, cloud provider authenticating,
authorizing with blockchain network and the user being able to pay their
invoice without sharing their bank or credit card detail would still work.
This is because, the blockchain works essentially the same way as it was
setup for the prototype with difference in the scale and costs.

During tests it was noticed that the transaction costs and block creation
and execution time would vary every time the mining was restarted. This is
because, blockchain requires some hours before it stabilizes block creation
and also the developer private ethereum blockchain is designed rather for
faster testing than accuracy.

8.4 Security Analysis

The prototype proposed in this thesis is a proof-of-concept. Though it
inherits the default properties of blockchain such as decentralized consensus,
immutable transaction, data security, proof-of-work; it is not distributed
and decentralized since it is deployed on one node. However, the setup can
be easily deployed on the private-net with multiple nodes or on test-net
or main-net. This will make the prototype decentralized and distributed.
The prototype inherits the generic blockchain vulnerabilities described in
Section 3.6 and has also its own set of weaknesses such as malicious smart
contract and public key misuse.

Using the prototype, any node on the network can write their own
set of smart contracts, deploy to the network and become cloud provider.
Although this approach is secured, transparent compared to client-server
architecture 2, it has no protection against malicious smart contracts. The
prototype system could cheat user for fake cloud services. There is no
specification or organization to set the rules to become cloud providers.
Thus, faulty nodes might deploy faulty contracts and try to cheat user
with their fake services since there is no mechanism to identify which cloud
provider provides non-fake cloud services. This issue can be solved by first
formalizing a common set of requirements to become cloud provider and a
common set of specifications on how to write and deploy smart contract to

55

become cloud provider. Moreover, these specifications would be deployed
to escrow account and each cloud provider must be registered to the escrow
account which would ensure the requirements of cloud provider are met. If
the requirements are met, cloud provider can offer services else the cloud
provider is not allowed to offer any services. In case cloud providers violate
the specification, the escrow account would charge penalty for it.

The current prototype assumes all the users are honest users. However,
in the real world, there are many malicious users who could basically take
the public address of the other user and send a request to the cloud provider
to register them as a user. Thus, a malicious user could misuse other user’s
public key. This issue can be solved by adding a layer of authenticity, which
would ask for user credentials when they try to register and use the cloud
provider services or cloud provider could maintain a user session with separate
user database mapping with blockchain users.

In addition to the above issues, the current prototype system has no
backup and account syncing across multiple devices. So, if the hardware
gets corrupted or crashes the contracts and accounts cannot be recovered.
Thus, for all the cloud provider and users, it is highly recommendable to use
main-net and cloud provider as well as users must backup and sync their
accounts across multiple devices.

9 Discussion
The solution presented in this thesis can be deployed by individual devel-
oper to small or enterprise business for providing an AAA solution. The
solution requires minimal hardware changes and cost as it works on the
existing hardware and though the process is CPU hungry as described in
Subsection 8.2.1, it does not require several servers compared to existing
AAA solutions. The solution by design is distributed, decentralized and
fault-tolerant which decreases the deployment and maintenance costs.

Despite several advantages of this solution over existing AAA solution
as described in Subsection 2, there are various considerations that should
be taken into account before deploying the new solution to the production
environment by the cloud provider. First, this solution requires fundamental
architectural changes to the existing AAA solution which is a major change.
The cloud provider must add support for blockchain authentication, autho-
rization and accounting to their existing cloud services. Also, cloud users
must be blockchain users. In other words, cloud providers and users must
have blockchain wallet, account and registered to the blockchain network.
Beside these architectural changes, it is recommended to keep the contract
short. The contracts should be deployed and re-deployed only when needed
as described in Subsection 8.3 and if the contract is re-deployed the services
(applications) must be migrated to use new contracts.

56

The blockchain core is under heavy development, so the cloud provider
must update accordingly with blockchain changes to avoid any downtime
in production systems. For example, during prototype development, the
contract which worked with ethereum blockchain version 1.5.0 broke with
version 1.5.5. If the blockchain core changes such as changing from proof-
of-work to proof-of-stake, it will change how the miners reach consensus in
the network. Moreover, an outdated blockchain core might be vulnerable
and applications might end of getting hacked. This hacking might cause the
providers and users to lose their digital assets as described in Subsection 3.6.
Thus, cloud provider must have mechanisms to keep the blockchain core
updated and at the same time must update contracts in order to avoid any
downtime in the production system.

The solution does not include how to revoke the registered users or how
to arrange user management with access control. The user management and
access control are crucial for the cloud services to differentiate between the
user level such as admin, site admin, developer and members. So, cloud
provider still needs to maintain separate databases for user management with
mapping to the registered blockchain users. The logic of user management,
access control and revoking users should be outside smart contract since the
contracts should be short as described in Subsection 8.3.

The prototype presented in this thesis is not scalable, as from test, the
current average consensus time is 11.41 seconds and even, if this prototype is
deployed in main-net, it would theoretically take on average 12 second [32].
This makes it unsuitable for cloud providers such as Google, who processes
on average 40,000 search queries per second [12].

Using the proposed solution, any user in the blockchain network can
become a cloud provider by deploying smart contracts. So, there should be
a mechanism and process to ensure the services offered by the provider are
legitimate and cannot close their account when they wish. For these cases,
the provider should be registered to an escrow account. This will ensure
the services provided by the provider are legitimate. Otherwise a penalty is
charged to them. A common structure to write smart contracts should be
agreed and also followed to ensure that the provider complies and is able to
provide basic AAA to the users.

10 Conclusion and Future work
This section summaries the overall thesis research and implementation. It
also recommends possible future work in this area.

10.1 Conclusion

Implementation of the AAA concept with Ethereum blockchain or blockchain
in general is in very early phase. This thesis has proposed an AAA solution

57

based on Ethereum blockchain and made contribution in the area of AAA
for the cloud environment. The problem has been solved and goal has been
achieved.

The architecture of proposed solution consists of three main components:
Ethereum wallet, smart contracts and Ethereum blockchain. Ethereum wallet
is responsible for authentication of the user against Ethereum blockchain
by creating private-public key. The public key is distributed across the
blockchain network and private key is kept secret with the user and it is
pass-phrase protected. This key-pair acts as user identity where the network
is able to verify and validate user authenticity by user’s public key. The
smart contracts have the core logic of user authorization and the assisting
logic of authentication as well as accounting and de-registration of user. The
contracts in-charge are the cloud providers who develop and deploy it to the
blockchain.

Finally, the Ethereum blockchain is the core of the system which acts as
the AAA backend. It ensures all the transaction between users, providers
and resources are validated and verified and creates the transactions block
which is added to the blockchain after the network reaches the consensus.
As soon as block is added to blockchain, this change becomes permanent to
the network and is broadcasted and propagated to other nodes. This change
cannot be undone or duplicated. Hence, it insures the users are legitimate and
authorized. The contract transactions are immortal, anonymous, distributed
and decentralized. These transactions can be verified by anyone in the
network but cannot be decrypted by anyone than the owner.

A prototype of AAA has been implemented in order to demonstrate
the feasibility of the proposed solution. It demonstrates minimal necessary
feature set to accomplish the solution. Basic smart contracts are implemented.
These contracts authenticate and authorize the user with the blockchain.
The contracts also allows to pay invoices. Only authenticated and authorized
users are able to access the cloud resources and all the transactions are
broadcasted to network. The transactions were immutable once added to
blockchain. The prototype proved a user with one identity can use multiple
cloud services and pay invoices without sharing any private user data. The
prototype also demonstrated that the solution is CPU hungry process and
has low memory usage. The solution can be easily deployed and used from
small business to large enterprise with existing hardware at minimal cost.
The biggest cost is writing and maintaining the contracts logic by developers.
Also, the solution has no single point of failure and ensures user data privacy,
anonymity at same time as transactions transparency.

Through this research a solution is provided for building cloud-based
decentralized, distributed AAA system with blockchain. This solution aims
to provide more secure and easier solution compared to the existing AAA
framework with existing hardware resource at minimal costs with privacy
and user data ownership in the mind. Also, this solution cannot be easily

58

hacked and it is easy to use. Further work/research is needed to improve the
technology and test it in the cloud environment.

10.2 Future work

As a prototype, AAA with Ethereum Blockchain is merely rock solid. Since
the objective of this thesis was just to develop and test basic proof-of-concept,
there are a lot of features and improvements to be done. The remaining
components from the architecture diagram 6.2: API could be developed and
a real cloud resource could be added to complete the solution. In addition,
proper testing environment could be also used for precise usage, blocktime
and cost analysis as well to automate the development and execution process.

The web interface for the end users could be develop. The end users
could use this web interface to register and de-register to the cloud providers.
To support this web interface, an API would be developed which would
interact with blockchain API and contract methods without any need of
Ethereum wallet. In this case, Ethereum wallet would be only be required
for authentication to blockchain. This would decrease the manual effort of
executing contracts and provide user friendly interface to the end users.

Finally, the system could be tested with real cloud infrastructure such as
openstack [17] or devstack (openstack package for local setup) for real cloud
resources and executed on the blockchain main-net to find actual run-time.
The real costs of using cloud services such as AWS could be compared and
analyzed against this prototype.

59

References
[1] Amazon web services (aws) - cloud computing services. https://aws.

amazon.com/, visited on 18-02-2017.

[2] Application programming interface - wikipedia. https://en.wikipedia.
org/wiki/Application_programming_interface, visited on 18-02-
2017.

[3] Blockchain. https://blockchain.info/, visited on 13-03-2017.

[4] Blockchain at berkeley. https://blockchain.berkeley.edu/, visited
on 22-01-2017.

[5] Blockchain community group. https://www.w3.org/community/
blockchain/, visited on 22-01-2017.

[6] Compute engine - iaas | google cloud platform. https://cloud.google.
com/compute/, visited on 18-02-2017.

[7] Crypto-currencies statistics. https://bitinfocharts.com/, visited on
03-02-2017.

[8] Docker - build, ship, and run any app, anywhere. https://www.docker.
com/, visited on 19-02-2017.

[9] Ethereum wallet and mist. https://github.com/ethereum/mist/
releases, visited on 10-02-2017.

[10] Geth · ethereum/go-ethereum wiki · github. https://github.com/
ethereum/go-ethereum/wiki/geth, visited on 27-02-2017.

[11] Github - etherparty/explorer: A lightweight ethereum block explorer.
https://github.com/etherparty/explorer, visited on 19-02-2017.

[12] Google search statistics - internet live stats. http://www.
internetlivestats.com/google-search-statistics/, visited on 04-
03-2017.

[13] Ibm bluemix - cloud infrastructure, platform services, watson, & more
paas solutions. https://www.ibm.com/cloud-computing/bluemix/,
visited on 18-02-2017.

[14] Ledger. https://www.ledgerwallet.com/, visited on 13-03-2017.

[15] Macbook pro (13-inch, mid 2010) - technical specifications. https://
support.apple.com/kb/sp583?locale=en_US, visited on 20-05-2017.

[16] Microsoft azure: Cloud computing platform & services. https://azure.
microsoft.com/en-us/, visited on 18-02-2017.

60

https://aws.amazon.com/
https://aws.amazon.com/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://blockchain.info/
https://blockchain.berkeley.edu/
https://www.w3.org/community/blockchain/
https://www.w3.org/community/blockchain/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://bitinfocharts.com/
https://www.docker.com/
https://www.docker.com/
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/ethereum/go-ethereum/wiki/geth
https://github.com/etherparty/explorer
http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
https://www.ibm.com/cloud-computing/bluemix/
https://www.ledgerwallet.com/
https://support.apple.com/kb/sp583?locale=en_US
https://support.apple.com/kb/sp583?locale=en_US
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/

[17] Openstack open source cloud computing software. https://www.
openstack.org/, visited on 28-03-2017.

[18] What is ethereum? a step-by-step beginners guide. http://blockgeeks.
com/guides/what-is-ethereum/, visited on 09-02-2017.

[19] Icann, 1998. https://www.icann.org/, visited on 10-02-2017.

[20] What is openid? | openid, 2005. http://openid.net/get-an-openid/
what-is-openid/.

[21] Json-rpc 2.0 specification, March 2010. http://www.jsonrpc.org/
specification, visited on 18-01-2017.

[22] dotbit.me, 2012. https://dotbit.me/, visited on 10-02-2017.

[23] Net losses: Estimating the global cost of cybercrime, June 2014.
https://www.mcafee.com/us/resources/reports/rp-economic-
impact-cybercrime2.pdf, visited on 27-03-2017.

[24] Man-in-the-middle attack - owasp, August 2015. https://www.owasp.
org/index.php/Man-in-the-middle_attack, visited on 22-03-2017.

[25] Blockchain enigma. paradox. opportunity, 2016. https://www2.
deloitte.com/content/dam/Deloitte/ch/Documents/innovation/
ch-en-innovation-deloitte-what-is-blockchain-2016.pdf,
visited on 21-01-2017.

[26] These were the biggest hacks, leaks and data breaches of 2016 - page
7 | zdnet, 2016. http://www.zdnet.com/pictures/biggest-hacks-
security-data-breaches-2016/7/, visited on 26-03-2017.

[27] Aich, A. and Sen, A.: Study on cloud security risk and remedy. Interna-
tional Journal of Grid Distribution Computing, 8(2):155–166, 2015.

[28] Ali, M., Nelson, J., Shea, R., and Freedman, M. J.: Block-
stack: A global naming and storage system secured by blockchains.
In 2016 USENIX Annual Technical Conference (USENIX ATC
16), pages 181–194, Denver, CO, 2016. USENIX Association,
ISBN 978-1-931971-30-0. https://www.usenix.org/conference/
atc16/technical-sessions/presentation/ali.

[29] Aljoumah, E., Al-Mousawi, F., Ahmad, I., Al-Shammri, M., and Al-
Jady, Z.: Sla in cloud computing architectures: A comprehensive study.
8(5):7–32, October 2015. http://www.earticle.net/article.aspx?
sn=257181.

61

https://www.openstack.org/
https://www.openstack.org/
http://blockgeeks.com/guides/what-is-ethereum/
http://blockgeeks.com/guides/what-is-ethereum/
https://www.icann.org/
http://openid.net/get-an-openid/what-is-openid/
http://openid.net/get-an-openid/what-is-openid/
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
https://dotbit.me/
https://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
https://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/innovation/ch-en-innovation-deloitte-what-is-blockchain-2016.pdf
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/innovation/ch-en-innovation-deloitte-what-is-blockchain-2016.pdf
https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/innovation/ch-en-innovation-deloitte-what-is-blockchain-2016.pdf
http://www.zdnet.com/pictures/biggest-hacks-security-data-breaches-2016/7/
http://www.zdnet.com/pictures/biggest-hacks-security-data-breaches-2016/7/
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
http://www.earticle.net/article.aspx?sn=257181
http://www.earticle.net/article.aspx?sn=257181

[30] Balaram, V. V. S. S. S.: Cloud computing authentication techniques: A
survey. International Journal of Scientific Engineering and Technology
Research (IJSETR), 06(03):0458–0464, January 2017, ISSN 2319-8885.

[31] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and
Felten, E. W.: Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy,
pages 104–121, May 2015.

[32] Buterin, V.: Ethereum: A next-generation smart contract and decen-
tralized application platform. Technical report, Florida, USA, 2013.
https://github.com/ethereum/wiki/wiki/White-Paper.

[33] Castro, M. and Liskov, B.: Practical byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst., 20(4):398–461, November
2002, ISSN 0734-2071.

[34] Chadwick, W. D. and Fatema, K.: A privacy preserving authorisa-
tion system for the cloud. Journal of Computer and System Sciences,
78(5):1359 – 1373, 2012, ISSN 0022-0000. http://www.sciencedirect.
com/science/article/pii/S0022000011001644, {JCSS} Special Is-
sue: Cloud Computing 2011.

[35] Chou, T.: Security threats on cloud computing vulnerabilities. Interna-
tional Journal of Computer Science & Information Technology, 5(3):79,
June 2013.

[36] Crosby, M., Nachiappan, Pattanayak, P., Verma, S., and Kalyanaraman,
V.: Blockchain technology beyond bitcoin. Technical report, Berkeley,
CA, USA, oct 2015.

[37] Ducklin, P.: Github hit by massive password guessing attack – naked se-
curity, June 2016. https://nakedsecurity.sophos.com/2016/06/16/
github-hit-by-massive-password-guessing-attack/, 27-03-2017.

[38] Eastlake, 3rd, D. and Hansen, T.: Us secure hash algorithm 1. Rfc 4634,
RFC Editor, July 2006. https://tools.ietf.org/html/rfc4634.

[39] Froystad, P. and Holm, J.: Blockchain: Powering the inter-
net of value. Technical report, EVRY Labs, August 2015.
https://www.evry.com/globalassets/insight/bank2020/bank-
2020---blockchain-powering-the-internet-of-value---
whitepaper.pdf.

[40] Gallagher, P.D.: Fips pub 186-4 digital signature standard. Technical
report, Gaithersburg, MD., USA, July 2013.

62

https://github.com/ethereum/wiki/wiki/White-Paper
http://www.sciencedirect.com/science/article/pii/S0022000011001644
http://www.sciencedirect.com/science/article/pii/S0022000011001644
https://nakedsecurity.sophos.com/2016/06/16/github-hit-by-massive-password-guessing-attack/
https://nakedsecurity.sophos.com/2016/06/16/github-hit-by-massive-password-guessing-attack/
https://tools.ietf.org/html/rfc4634
https://www.evry.com/globalassets/insight/bank2020/bank-2020---blockchain-powering-the-internet-of-value---whitepaper.pdf
https://www.evry.com/globalassets/insight/bank2020/bank-2020---blockchain-powering-the-internet-of-value---whitepaper.pdf
https://www.evry.com/globalassets/insight/bank2020/bank-2020---blockchain-powering-the-internet-of-value---whitepaper.pdf

[41] Greenwald, G. and MacAskill, E.: Nsa prism program taps in to user
data of apple, google and others, June 2013. https://www.theguardian.
com/world/2013/jun/06/us-tech-giants-nsa-data, visited on 18-
03-2017.

[42] Hakobyan, D: Authentication and authorization systems in cloud envi-
ronments. Master’s thesis, Stockholm, Sweden, 2012.

[43] Hardt, D. and Ed.: The oauth 2.0 authorization framework. Rfc 6749,
RFC Editor, October 2012. https://tools.ietf.org/html/rfc6749.

[44] Hong, N.: Silk road creator found guilty of cybercrimes, Feb
2015. http://www.marketwatch.com/story/silk-road-creator-
found-guilty-of-cybercrimes-2015-02-04-151035739, visited on
22-01-2017.

[45] Hutt, R.: World economic forum, 2016. https://www.weforum.org/
agenda/2016/06/blockchain-explained-simply/, visited on 09-01-
2017.

[46] Kalodner, H., Carlsten, M., Ellenbogen, P., Bonneau, J., and Narayanan,
A.: An empirical study of namecoin and lessons for decentralized names-
pace design. 2015.

[47] Kraft, D.: Nameid: Your crypto-openid, 2013. https://nameid.org/,
visited on 24-03-2017.

[48] Krug, J.: Serpent. https://github.com/ethereum/wiki/wiki/
Serpent, visited on 10-02-2017.

[49] Larchevêque, E.: Bitcoin address authentication protocol (bitid), August
2016. https://github.com/bitid/bitid/blob/master/BIP_draft.
md, visited on 24-03-2017.

[50] Larchevêque, E.: Bitid open protocol - demonstration site, August 2016.
http://bitid.bitcoin.blue/, visited on 24-03-2017.

[51] Leiba, B.: Oauth web authorization protocol. IEEE Internet Computing,
16(1):74–77, Jan 2012, ISSN 1089-7801.

[52] LeRoux, Y.: Privacy concerns in the digital world, Octo-
ber 2013. http://www.computerweekly.com/opinion/Privacy-
concerns-in-the-digital-world, visited on 02-04-2017.

[53] Lundkvist, C., Heck, R., Torestensson, J., Mitton, Z., and Sena,
M.: Uport: A platform for self-sovereign identity. Technical report,
October 2016. http://whitepaper.uport.me/uPort_whitepaper_
DRAFT20161020.pdf.

63

https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://tools.ietf.org/html/rfc6749
http://www.marketwatch.com/story/silk-road-creator-found-guilty-of-cybercrimes-2015-02-04-151035739
http://www.marketwatch.com/story/silk-road-creator-found-guilty-of-cybercrimes-2015-02-04-151035739
https://www.weforum.org/agenda/2016/06/blockchain-explained-simply/
https://www.weforum.org/agenda/2016/06/blockchain-explained-simply/
https://nameid.org/
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/bitid/bitid/blob/master/BIP_draft.md
https://github.com/bitid/bitid/blob/master/BIP_draft.md
http://bitid.bitcoin.blue/
http://www.computerweekly.com/opinion/Privacy-concerns-in-the-digital-world
http://www.computerweekly.com/opinion/Privacy-concerns-in-the-digital-world
http://whitepaper.uport.me/uPort_whitepaper_DRAFT20161020.pdf
http://whitepaper.uport.me/uPort_whitepaper_DRAFT20161020.pdf

[54] Marcon, A. L., Santin, A. O., Stihler, M., and Bachtold, J.: A
(rmuconABC) resilient authorization evaluation for cloud computing.
IEEE Transactions on Parallel and Distributed Systems, 25(2):457–467,
Feb 2014, ISSN 1045-9219.

[55] Mell, P. M. and Grance, T.: Sp 800-145. the nist definition of cloud
computing. Technical report, Gaithersburg, MD, United States, 2011.

[56] Mihoob, A., Molina-Jimenez, C., and Shrivastava, S.: Consumer-centric
resource accounting in the cloud. Journal of Internet Services and
Applications, 4(1):8, 2013, ISSN 1869-0238. http://dx.doi.org/10.
1186/1869-0238-4-8.

[57] Mohamed, M. E., Abdelkader, H. S., and El-Etriby, S.: Data security
model for cloud computing. Journal of Communication and Computer,
10(08):1047–1062, August 2013, ISSN 1548-7709.

[58] Morin, J. H., Aubert, J., and Gateau, B.: Towards cloud computing
sla risk management: Issues and challenges. In 2012 45th Hawaii
International Conference on System Sciences, pages 5509–5514, Jan
2012.

[59] Murphy, A.: Accounting in the cloud. Accountancy Ireland, 43(3):56–57,
June 2011.

[60] Mutton, P.: Wikileaks.org taken down by us dns provider, De-
cember 2010. https://news.netcraft.com/archives/2010/12/03/
wikileaks-org-taken-down-by-us-dns-provider.html, visited on
18-03-2017.

[61] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical
report, Bitcoin org, 2008.

[62] Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S.:
Bitcoin and Cryptocurrency Technologies. Princeton University Press,
feb 2016.

[63] Nelson, M.: The byzantine generals problem. Dr.Dobb’s Journal, 33(4):30–
36, April 2008.

[64] Nouriddine, M. and Bashroush, R.: A performance optimization model
towards oauth 2.0 adoption in the enterprise. In Proceedings of the 7th
International Conference on Global Security, Safety & Sustainability
(ICGS3), 2011. http://roar.uel.ac.uk/1531/.

[65] Oluwatosin, H. S.: Client-server model. IOSR Journal of Computer
Engineering, 16(1):67–71, Feb 2014, ISSN 2278-8727.

64

http://dx.doi.org/10.1186/1869-0238-4-8
http://dx.doi.org/10.1186/1869-0238-4-8
https://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
https://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
http://roar.uel.ac.uk/1531/

[66] Perez, S.: 117 million linkedin emails and passwords from a
2012 hack just got posted online | techcrunch, May 2016. https:
//techcrunch.com/2016/05/18/117-million-linkedin-emails-
and-passwords-from-a-2012-hack-just-got-posted-online/,
visited on 21-03-2017.

[67] Project, B.: Bitcoin. https://bitcoin.org/en/, visited on 09.01.2017.

[68] Rissanen, E.: eXtensible Access Control Markup Language (XACML)
Version 3.0. Technical report, January 2013. http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[69] Rodrigues, E.: The blockchain architecture in a nutshell. Technical
report, Linkedin, September 2016. https://www.linkedin.com/pulse/
blockchain-architecture-nutshell-eder-rodrigues.

[70] Salsman, M. R.: The financial crisis was a failure of government,
not free markets, September 2013. https://www.forbes.com/
sites/richardsalsman/2013/09/19/the-financial-crisis-was-
a-failure-of-government-not-free-markets/#2e29917c51c3,
visited on 04-04-2017.

[71] Seals, T.: Massive brute-force attack on alibaba affects millions - infos-
ecurity magazine, Feb 2016. https://www.infosecurity-magazine.
com/news/massive-bruteforce-attack-on/, visited on 27-03-2017.

[72] Seibold, S. and Samman, G.: Consensus immutable agree-
ment for the internet of value. Technical report, June
2016. https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/
kpmg-blockchain-consensus-mechanism.pdf.

[73] Shin, L.: Hackers are hijacking phone numbers and breaking into
email, bank accounts: How to protect yourself, December 2016.
https://www.forbes.com/sites/laurashin/2016/12/21/hackers-
are-hijacking-phone-numbers-and-breaking-into-email-and-
bank-accounts-how-to-protect-yourself/#abb71b5360f7, visited
on 27-03-2017.

[74] Spence, D., Vollbrecht, J., Gommans, L., Gross, G., and Laat, C.
de: Generic aaa architecture. Rfc 2903, RFC Editor, August 2000.
http://www.ietf.org/rfc/rfc2903.txt.

[75] Stefan, D. B., Farzad, S., Yasir, M., and Bessam, A.: A peer-to-peer
architecture for remote service discovery. Procedia Computer Science,
10:976 – 983, 2012, ISSN 1877-0509. http://www.sciencedirect.com/
science/article/pii/S1877050912004905.

65

https://techcrunch.com/2016/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-just-got-posted-online/
https://techcrunch.com/2016/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-just-got-posted-online/
https://techcrunch.com/2016/05/18/117-million-linkedin-emails-and-passwords-from-a-2012-hack-just-got-posted-online/
https://bitcoin.org/en/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.linkedin.com/pulse/blockchain-architecture-nutshell-eder-rodrigues
https://www.linkedin.com/pulse/blockchain-architecture-nutshell-eder-rodrigues
https://www.forbes.com/sites/richardsalsman/2013/09/19/the-financial-crisis-was-a-failure-of-government-not-free-markets/#2e29917c51c3
https://www.forbes.com/sites/richardsalsman/2013/09/19/the-financial-crisis-was-a-failure-of-government-not-free-markets/#2e29917c51c3
https://www.forbes.com/sites/richardsalsman/2013/09/19/the-financial-crisis-was-a-failure-of-government-not-free-markets/#2e29917c51c3
https://www.infosecurity-magazine.com/news/massive-bruteforce-attack-on/
https://www.infosecurity-magazine.com/news/massive-bruteforce-attack-on/
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf
https://assets.kpmg.com/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf
https://www.forbes.com/sites/laurashin/2016/12/21/hackers-are-hijacking-phone-numbers-and-breaking-into-email-and-bank-accounts-how-to-protect-yourself/#abb71b5360f7
https://www.forbes.com/sites/laurashin/2016/12/21/hackers-are-hijacking-phone-numbers-and-breaking-into-email-and-bank-accounts-how-to-protect-yourself/#abb71b5360f7
https://www.forbes.com/sites/laurashin/2016/12/21/hackers-are-hijacking-phone-numbers-and-breaking-into-email-and-bank-accounts-how-to-protect-yourself/#abb71b5360f7
http://www.ietf.org/rfc/rfc2903.txt
http://www.sciencedirect.com/science/article/pii/S1877050912004905
http://www.sciencedirect.com/science/article/pii/S1877050912004905

[76] Stevens, M., Bursztein, E., Karpman, P., A., Albertini, Markov, Y.,
Bianco, P. A., and Baisse, C.: Google online security blog: Announcing
the first sha1 collision, February 2017. https://security.googleblog.
com/2017/02/announcing-first-sha1-collision.html, visited on
04-04-2017.

[77] Thielman, S.: Yahoo hack: 1bn accounts compromised by
biggest data breach in history, December 2016. https:
//www.theguardian.com/technology/2016/dec/14/yahoo-hack-
security-of-one-billion-accounts-breached, visited on 18-03-
2017.

[78] Tucker, C. and Catalini, C.: Blockchain research at mit. http:
//blockchain.mit.edu/, visited on 22-01-2017.

[79] Tuwiner, J.: Bitcoin mining centralization. https://www.
bitcoinmining.com/bitcoin-mining-centralization/, visited
on 22-01-2017.

[80] Underwood, S.: Blockchain beyond bitcoin. Commun. ACM, 59(11):15–
17, oct 2016, ISSN 0001-0782.

[81] Wang, L., Ohta, K., and Kunihiro, N.: Near-collision attacks on md4:
Applied to md4-based protocols. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E92.A(1):76–86,
2009.

[82] Weaver, A. C.: Biometric authentication. Computer, 39(2):96–97, Feb
2006, ISSN 0018-9162.

[83] Wood, G.: Solidity. https://github.com/ethereum/wiki/wiki/The-
Solidity-Programming-Language, visited on 10-02-2017.

[84] Woolf, N.: Ddos attack that disrupted internet was largest of
its kind in history, experts say | technology | the guardian, Oct
2016. https://www.theguardian.com/technology/2016/oct/26/
ddos-attack-dyn-mirai-botnet, visited on 21-03-2017.

[85] Xu, J. J.: Are blockchains immune to all malicious attacks? Financial
Innovation, 2(1):25, 2016, ISSN 2199-4730.

[86] Yang, R., Lau, W. C., and Liu, T.: Signing into one billion mo-
bile app accounts effortlessly with oauth2. 0. Technical report,
2016. https://www.blackhat.com/docs/eu-16/materials/eu-16-
Yang-Signing-Into-Billion-Mobile-Apps-Effortlessly-With-
OAuth20-wp.pdf.

66

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
https://www.theguardian.com/technology/2016/dec/14/yahoo-hack-security-of-one-billion-accounts-breached
http://blockchain.mit.edu/
http://blockchain.mit.edu/
https://www.bitcoinmining.com/bitcoin-mining-centralization/
https://www.bitcoinmining.com/bitcoin-mining-centralization/
https://github.com/ethereum/wiki/wiki/The-Solidity-Programming-Language
https://github.com/ethereum/wiki/wiki/The-Solidity-Programming-Language
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.blackhat.com/docs/eu-16/materials/eu-16-Yang-Signing-Into-Billion-Mobile-Apps-Effortlessly-With-OAuth20-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Yang-Signing-Into-Billion-Mobile-Apps-Effortlessly-With-OAuth20-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Yang-Signing-Into-Billion-Mobile-Apps-Effortlessly-With-OAuth20-wp.pdf

	Introduction
	Problem Statement
	Methodology
	Related work
	Outline

	AAA by Cloud Provider
	Authentication
	Username and Password
	Public Key Infrastructure
	Biometrics
	Multi-Factor

	Authorization
	XACML
	OAuth 2.0

	Accounting
	Potential Vulnerabilities
	Account Hijacking
	Distributed Denial of Service attack
	Man-in-the-Middle attack
	Data Breach
	Malicious Insiders

	Drawbacks

	Blockchain
	Terminology
	Peer-to-Peer Network
	Block
	Blockchain
	Distributed Blockchain
	Smart Contracts

	Cryptography
	Cryptographic Hash Function
	Hash Pointer
	Digital signature
	Merkle Tree

	Distributed Consensus
	Proof-of-work
	Proof-of-stake

	Architecture
	How blockchain works
	Potential Vulnerabilities
	The 51% attack
	Sybil attack
	Identity theft
	System hacking
	Illegal activities

	Blockchain Applications
	Bitcoin
	Transactions
	Scripting Language
	Bitcoin Network
	Advantages
	Vulnerabilities

	Namecoin
	Ethereum
	Ethereum Blockchain and Account
	Transactions and Messages
	Smart Contracts
	Decentralized Autonomous Organization
	Vulnerabilities

	Rational Behind Choice of Technology
	Prototype Design
	Need for Prototype
	Software Architecture
	Flow diagram

	Prototype Implementation
	Hardware Components
	Software Components
	Ethereum wallet
	geth
	Docker
	Ethereum explorer

	Prototype Environment
	Smart Contract Implementation
	Solidity
	Mortal contract
	Provider contract

	Executing the Prototype

	Prototype Testing
	Setup and Execution
	Measurement and Results
	CPU and Memory
	Blockchain Time
	Transaction Cost

	Analysis of Results
	Security Analysis

	Discussion
	Conclusion and Future work
	Conclusion
	Future work

	References

