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Tasks such as data compression and prediction commonly require choosing a probability
distribution over all possible sequences. To achieve an efficient prediction strategy, the chosen
distribution should be a good approximation of the true distribution underlying the data.
Similarly, an efficient compression strategy should assign shorter codes for more probable
sequences. In particular, a compression strategy that minimizes the code-length can be shown
to minimize the often-used logarithmic prediction loss. However, the optimal strategy requires
knowing the true distribution which is not available in most applications.

In universal compression or prediction we assume that the true probability distribution
is not known but belongs to a known class of distributions. A universal code is a code that
can compress the data essentially as well as the best distribution in the class in hindsight.
Similarly, a universal predictor achieves low prediction loss regardless of the distribution.
We call a universal code minimax optimal if it minimizes the worst-case regret, i.e. excess
code-length or prediction loss compared to the best distribution in the class.

In this thesis we assume the known class to be discrete memoryless sources. The minimax
optimal code for this class is given by the normalized maximum likelihood (NML) distribution.
However, in practice computationally more efficient distributions such as Bayes mixtures have
to be used. A Bayes mixture is a mixture of the probability distributions in the class weighted
by a prior distribution. The conjugate prior to the multinomial distribution is the Dirichlet
distribution, using which asymptotically minimax codes have been developed. The Dirichlet
distribution requires a hyperparameter that dictates the amount of prior mass given to the
outcomes. The distribution given by the symmetric hyperparameter 1/2 has been widely
studied and has been shown to minimize the worst-case expected regret asymptotically.

Previous work on minimax optimal Bayes mixtures has mainly been concerned with large
sample sizes in comparison to the alphabet size. In this thesis we investigate the minimax
optimal Dirichlet prior in the large alphabet setting. In particular, we find that when the
alphabet size is large compared to the sample size, the optimal hyperparameter for the
Dirichlet distribution is 1/3. The worst-case regret of this mixture turns out to approach
the NML regret when the alphabet size grows and the distribution provides an efficient
approximation of the NML distribution. Furthermore, we develop an efficient algorithm for
finding the optimal hyperparameter for any sample size or alphabet size.
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1 Introduction
In tasks such as prediction and data compression, choosing a probability
distribution over all sequences is commonly required. For example, consider
the problem of predicting the next observation xn+1 given a sequence of past
observations x1, x2, . . . , xn. If we have access to a prediction strategy that
assigns probabilities to the different possibilities of the next observation, we
can use it to predict the most probable one.

The prediction problem was initially studied by Laplace who considered
the question “What is the probability that the sun will rise tomorrow?” in
the 18th century [19]. Given that the sun has risen k times in the past,
he derived the formula (k + 1)/(k + 2) for the probability of the sun rising
tomorrow. The more general Laplace’s rule of succession gives probability
(k + 1)/(n+ 2) for an event with k occurrences in n trials in the past.

Optimal prediction can be linked to optimal compression. In particular, a
good prediction strategy under the logarithmic loss is also a good compression
strategy. To compress a sequence x1, . . . , xn of symbols we can assign codes
for each of the symbols such that more probable symbols get shorter code-
lengths. If we know the true distribution of the data, Shannon showed that
expected code-length of essentially entropy can be achieved [30], and that
entropy is the lower bound for the expected code-length.

However, in most cases the true distribution is not known. In universal
compression we assume that the true distribution is unknown but belongs to
a known class of distributions. A universal code is a code that can compress
the data efficiently regardless of which distribution in the class was used
to generate the data. Similarly, in universal prediction we can achieve low
prediction loss no matter which distribution is the true distribution.

In this thesis we focus on the most often studied class of distributions,
i.i.d. distributions over sequences of length n drawn from an alphabet of size
m, also known as discrete memoryless sources. The Laplace estimator turns
out to be a universal predictor for this class. However, it is not optimal
in the sense that there are universal predictors that have lower worst-case
regret. Here regret means excess logarithmic loss or code-length compared
to the best model in the class in hindsight. The minimax regret problem is
to find the universal predictor or code that minimizes the regret in the worst
case. Minimax optimality is a strong performance guarantee and ensures
that the regret is minimal even in the worst cases.

The optimal solution to the minimax regret problem for the class of
discrete memoryless sources is known as the normalized maximum likelihood
(NML) distribution [31]. The NML distribution has been used in for example
code-lengths in model selection with the minimum description length (MDL)
principle [12]. The MDL principle advocates choosing the model that results
in the shortest total code-length for the model and the data encoded using a
universal code, such as the NML distribution, for the model.

1



Using the NML distribution is often infeasible in practice in tasks such
as prediction and data compression since they require calculating conditional
probabilities. For the NML distribution, obtaining the conditional probabil-
ities takes exponential time. Therefore, other distributions such as Bayes
mixtures that come close to the performance of the NML distribution in the
worst case have been studied. In a Bayes mixture a weighted mixture of
the probabilities is taken in the assumed class of probability distributions
which is parametrized by some parameter set. The weights in the mixture
are given by a chosen prior distribution on the parameters.

The conjugate prior for the multinomial model is the Dirichet distribution.
Krichevsky and Trofimov suggested [18] using the Bayes mixture with a
Dirichlet prior Dir(1/2, . . . , 1/2) to minimize the expected regret. The
resulting prediction strategy is similar to Laplace’s rule of succession and
assigns probability (k + 1/2)/(n+ 1) for an event with k occurrences in n
trials in the past. Laplace’s rule can be derived similarly by considering as
the prior the Dir(1, . . . , 1) distribution, which is the uniform distribution.

Xie and Barron showed [42] that while the Krichevsky-Trofimov estimator
achieves lower worst-case regret than Laplace’s estimator, it is not asymptot-
ically minimax. That is, its worst-case regret does not necessarily converge
to the minimax regret as the sequence length grows. Instead, Xie and Barron
showed that the Krichevsky-Trofimov estimator modified by adding mass to
the boundaries of the probability simplex is asymptotically minimax. Later
Watanabe and Roos proved [38] that a Bayes mixture with a Dirichlet prior
dependent on the sequence length achieves asymptotic minimaxity.

The previous results require that the sample size of the data grows faster
than the alphabet size. In recent years large alphabet methods have been
gaining more attention [43]. The alphabet size can be larger than the sample
size or even infinite in application areas such as natural language processing,
population estimation, genetics [8] and Bayesian network structure learn-
ing [32]. Images can also be considered as data associated with a large
alphabet where each pixel can take on 224 different values.

Various strategies for data compression on large alphabets have subse-
quently been proposed. Universal codes of i.i.d. distributions over infinite
alphabets have infinite regret [15] since describing the symbols that appear
in the sequence requires an unbounded number of bits. Therefore the work
on universal compression of large alphabets has focused on subclasses of i.i.d.
distributions such as envelope classes [2, 6] and patterns [23, 26].

However, as codes for these subclasses target a different distribution,
their code-lengths are not directly interchangeable with code-lengths for i.i.d.
distributions and thus they are not useful in for example model selection. A
coding distribution for the i.i.d. class is still needed to calculate a target min-
imax distribution. Therefore such distributions have recently been proposed
for large alphabets [45]. Distributions for i.i.d. classes can also be extended
to models that incorporate context such as Markov sources [44].

2



In this thesis we investigate the optimal Dirichlet prior for the Bayes
mixture when the size of the alphabet is large compared to the sample size.
We also consider the problem of finding the optimal hyperparameter for any
given value of the sample size n and the alphabet size m. More specifically,
the contributions of this thesis are as follows:

• We prove that the Dir(1/3, . . . , 1/3) prior is the minimax optimal
Dirichlet prior for the Bayes mixture when the alphabet size m is
large compared to the sample size n. Furthermore, we prove that this
property holds not only asymptotically, but also derive a finite bound
for it. In particular, we prove that it holds when m > 5

2n+ 4
n−2 + 3

2 .

• We prove results on the asymptotic behavior of the 1/3-mixture. These
asymptotic results prove that the worst-case regret of the 1/3-mixture
converges to that of the NML distribution when m increases. This
result also gives a constant-time approximation of the NML regret that
is accurate for large values of m.

• We compare the worst-case regret of the 1/3-mixture numerically to the
worst-case regrets of other distributions. The numerical experiments
suggest that the 1/3-mixture can be preferable to the 1/2-mixture or
the Bayes procedure given by the asymptotic formula of Watanabe
and Roos already when the alphabet size is large but not larger than
the sample size. These comparisons also extend the comparisons of
Watanabe and Roos [38] for larger alphabets.

• We present an algorithm for calculating the optimal hyperparameter
α with ε precision for any n,m in time O(log (min {n,m}/ε)), which
is an improvement to the brute-force exponential time algorithm and
to an algorithm that works in time O(min {n,m}/ε) using previously
proven results [38]. This algorithm makes it practical to calculate the
optimal hyperparameter efficiently for any feasible values of n and m.

This thesis is structured as follows. In Section 2 we present the mathe-
matical preliminaries needed for understanding the rest of the thesis. We
also motivate the minimax regret problem by introducing its connection to
data compression, prediction and model selection. In Section 3 we introduce
Bayes mixtures and review previous work involving them in the context of
universal compression. Finally, we derive an efficient algorithm for finding
the minimax optimal Bayes procedure with a Dirichlet prior.

In Section 4 we review previous work on large alphabet methods and then
derive the optimal Dirichlet prior for the Bayes mixture for the large alphabet
case. Furthermore, we prove properties on the asymptotic behavior of the
1/3-mixture. In Section 5 we compare the worst-case regrets of different
distributions numerically. Finally, Section 6 discusses the implications of the
results of this thesis and suggests possibilities for future work.
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2 Preliminaries
This section describes preliminaries needed for understanding the rest of this
thesis. In particular, we introduce the relevant mathematical concepts. We
also motivate the problem of finding the minimax optimal distribution by
describing its relation to coding, prediction and model selection.

2.1 Mathematical preliminaries

We denote both probability distributions and their corresponding probability
mass functions by lower case letters p, q, . . . . The expectation of random
variable X where the expectation is taken over the variable X and the
relevant distribution is p, is denoted by EX∼p[X]. The subscript is omitted
when it is clear from the context.

We define the entropy [9, p. 14] of a random variable X as

H(X) = E[log2
1

p(X) ] =
∑
x∈X

p(x) log2
1

p(x) ,

where the quantity − log2 p(X) can be seen as the amount of information
content or surprise contained in the random variable X. The less probable
an outcome is, the more surprising it is. Here the base 2 of the logarithm
means the entropy is measured in bits. When the subscript is omitted, we
refer to the natural logarithm and measure the entropy in nats.

The relative entropy or Kullback-Leibler (KL) divergence [9, p. 19] is
often used as a measure of difference between probability distributions. The
KL divergence between probability distributions p and q is defined as

DKL(p ‖ q) =
∑
x∈X

p(x) log2
p(x)
q(x) .

Particularly, DKL(p ‖ q) = 0 if and only if p = q. However, the KL divergence
is not a proper distance measure as it is not symmetric.

The multinomial distribution is a generalization of the binomial distri-
bution for any number of possible outcomes. That is, for each of n trials
there are m possible outcomes. Formally, we define a multinomial model
with parameters θ = (θ1, . . . , θm) with

p(xj |θ) = θj ,
m∑
j=1

θj = 1.

Now the probability of outcomes x1, . . . , xm having counts n1, . . . , nm such
that

∑m
j=1 nj = n, is given by

p(n1, . . . , nm) = n!
n1! · · ·nm!θ

n1
1 · · · θ

nm
m .
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The conjugate prior for the multinomial distribution is the Dirichlet
distribution. Here a prior distribution is called a conjugate prior if the prior
and the posterior are from the same distribution. The Dirichlet distribution
Dir(α1, . . . , αK) is characterized by the vector (α1, . . . , αK) of hyperparame-
ters. In the symmetric case we denote α = α1 = · · · = αK . Intuitively, these
hyperparameters denote how much prior probability is given to each category.
The probability mass function of the Dirichlet distribution is given by

Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
i=1

xαi−1
i ,

where Γ is the gamma function

Γ(z) =
∫ ∞

0
xz−1e−x dx,

which extends the factorial function for all real numbers. That is, the gamma
function satisfies the equation Γ(z+ 1) = zΓ(z). In particular, for all natural
numbers n, we have Γ(n) = (n− 1)!. The logarithm of the gamma function
can be approximated using Stirling’s approximation [29]

log Γ(z) = z log z − z + 1
2 log 2π

z
+ ε(z),

where 1/(12z + 1) < ε(z) < 1/(12z).
The logarithmic derivatives of the gamma function also play an important

role in this thesis. We define the mth order polygamma function as the
(m+ 1)th derivative of the logarithm of the gamma function:

ψ(m)(x) = dm+1

dxm+1 log Γ(x)

The 0th order polygamma function ψ(0) is known as the digamma function
and shortened as ψ. The digamma function satisfies the important property

ψ(x+ 1) = ψ(x) + 1
x
.

The logarithm of the gamma function is an example of a convex function.
A function f is convex if its second derivative is non-negative. Intuitively,
a line between any two points on a convex function is always above the
function. Correspondingly, a function f is called concave if −f is convex.
We call a function f quasiconvex if for any two points x, y we have

f(λx+ (1− λ)y) ≤ max {f(x), f(y)},

where 0 ≤ λ ≤ 1. That is, the function evaluated between two points does
not give a higher value than either of the two points do. If it always gives
a lower value, we call the function f strictly quasiconvex. In particular, all
monotone functions and functions that decrease up to a point and increase
from that point on are strictly quasiconvex.
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2.2 Compression and prediction

In data compression we want to find for given data a representation that is
as short as possible. Suppose the data is a sequence of symbols, which can
be for example characters or words. A symbol code defines a representation
for each of the possible symbols. Ideally such a code would assign shorter
representations for more probable symbols.

Formally, a symbol code C is a mapping C : X 7→ {0, 1}∗ from the
alphabet X to all bitstrings. The extension C∗ of a code C is the con-
catenation C∗(x1, . . . , xn) = C(x1) · · ·C(xn) of n symbols. We call a code
uniquely decodable if its extension is a one-to-one mapping. The Kraft-
McMillan inequality [9, p. 107] states that integers l1, l2, . . . can represent
the code-lengths of a uniquely decodable code if and only if they satisfy

∞∑
i=1

2−li ≤ 1.

This result allows the unification of code-lengths and probabilities. Namely,
for any code lengths l1, l2, . . . there exists a probability distribution q such
that q(x) = 2−`(C(x)) and for any probability distribution q there exists a
uniquely decodable code with code-lengths given by `(C(x)) = − log2 q(x).
If the sum of the probabilities is less than one, it is possible to make the
code-lengths shorter. Thus for simplicity we assume that the sum is one.

Let the true probabilities of the symbols be described by the probability
distribution p and we specify code-lengths using a distribution q. The
expected code-length is now

E[`(C(X))] =
∑
x∈X

p(x) log2
1

q(x)

=
∑
x∈X

p(x) log2
p(x)

p(x)q(x)

=
∑
x∈X

p(x)
[
log2

1
p(x) + log2

p(x)
q(x)

]
= H(X) +DKL(p ‖ q).

The Gibbs inequality [22, p. 34] states that DKL(p ‖ q) ≥ 0, where equality
stands if and only if p = q. Thus the expected per-symbol code-length is
lower-bounded by the entropy and the optimal code-lengths are given by

`(C(x)) = log2
1

p(x) .

Example 1. Let the possible symbols be X = {a, b, c, d} with probabilities
p(a) = 1/2, p(b) = 1/8, p(c) = 1/4, p(d) = 1/8. The optimal codeword lengths
are then `(C(a)) = 1, `(C(b)) = 3, `(C(c)) = 2, `(C(d)) = 3. A possible code
with such lengths is C(a) = 1, C(b) = 000, C(c) = 01, C(d) = 001.
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In practice code-lengths have to be integers. One possible way to avoid
this issue is to simply round the lengths upwards to the next integer. However,
this method can in the worst case double the size of the coded sequence as
each symbol can incur a maximum of one bit extra length.

An often better solution is to code the data in blocks of length n. We
denote a sequence x1, x2, . . . , xn as xn where each xi is a member of an
alphabet X of finite size m. The code-length of each block is then given by

log2
1

p(x1, . . . , xn) = log2
1

p(xn)

and the rounding up has to be done only once for each block, thus incurring
in the worst case a maximum of one extra bit per block.

However, block codes still have problems. Namely, they still incur an
extra bit per block and cannot be decoded instantaneously. Arithmetic
coding [40] represents sequences as intervals [a, b) ⊂ [0, 1). A narrower
interval requires more bits to describe. Each symbol divides the interval into
smaller sub-intervals whose lengths are based on the conditional probabilities

p(xn+1|xn).

Arithmetic coding allows instantaneous coding and can spread the extra
bit from rounding across the whole sequence. For the rest of the thesis, we
ignore the integer requirement and allow code-lengths to be non-integer.

The quantity − log2 p(xn) and conditional probabilities also occur in the
context of prediction. Assume that we have a sequence of observations xn and
we wish to predict the next observation xn+1 based on the past observations
xn. When xn+1 occurs we measure the loss by log2 1/p(xn+1|xn) which
equals zero if and only if p(xn+1|xn) = 1. A good predictor should now
minimize the often-used cumulative logarithmic loss (log-loss)

n−1∑
k=0

log2
1

p(xk+1|xk)
= log2

1
p(x1, . . . , xn) ,

where

p(x1, . . . , xn) =
n−1∏
k=0

p(xk+1|xk).

As we want small code-lengths and a small cumulative log-loss, a good
compressor is also a good predictor. Namely if we can compress the data
well, we have learned something meaningful from it.

The logarithmic loss has been used for example in online learning [10].
Sequential prediction minimizing the log-loss can also be connected to maxi-
mizing benefits in the stock market [7]. Finally, we note that there exists a
similar connection between gambling and compression [42].
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2.3 Universal coding

We can achieve optimal code-lengths only if we know the true distribution
for the symbols. We can always estimate the probabilities upon seeing the
data. However, in situations such as when the sequence length is very large
or the sequence cannot be stored this might not be feasible. Thus it is
desirable to have a one-pass algorithm that compresses the data by learning
the distribution of the symbols [9, p. 427].

We assume that the true distribution is unknown but belongs to a known
class of distributions P. Universal compression methods compress the data
well no matter which distribution in P the data is generated from. If we
do not put any restrictions on the class of distributions, there is always a
probability distribution that compresses the data to one bit.

For a distribution q, we define its regret relative to the sequence xn as the
excess code-length or log-loss compared to the distribution that maximizes
its probability in hindsight:

regret(q, xn) = max
p∈P

[
log2

1
q(xn) − log2

1
p(xn)

]
= max

p∈P
log2

p(xn)
q(xn)

The most often studied class is the class of discrete memoryless sources or
i.i.d. distributions which we adapt in this thesis. For this class, we have the
parameter θ = (θ1, . . . , θm) such that p(x|θ) = θx. The maximum likelihood
parameter θ̂ is defined as the parameter that maximizes the likelihood
pθ(xn) = p(xn|θ(xn)). Thus the shortest code-length or least log-loss in
hindsight for data xn is achieved by the maximum likelihood model:

min
θ∈Θ

`(Cθ(xn)) = min
θ∈Θ

log2
1

pθ(xn) = log2
1

pθ̂(xn)

We can now define the regret for the class of i.i.d. distributions as

regret(q, xn) = log2
1

q(xn) − log2
1

pθ̂(xn) = log2
pθ̂(x

n)
q(xn) .

Note that the maximum likelihood distribution cannot be used for coding as
the sum of its probabilities exceeds 1 in all but trivial cases and thus it does
not define a proper probability distribution.

A universal code (or a universal model) is a sequence of distributions
q1, q2, . . . such that the per-symbol regret diminishes to zero for all possible
sequences xn as the sequence length n approaches infinity:

lim
n→∞

1
n
regret(qn, xn) = 0

A weaker condition is that 1
nDKL(pθ ‖ qn) 7→ 0 for all θ ∈ Θ. That is, the

per-symbol Kullback-Leibler divergence to every distribution pθ in P shrinks
to zero as the sample size increases. Thus, the universal code is in a sense
never too far from any of the distributions in the class P (Figure 1).
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q

pθ3pθ1

pθ2

Figure 1: The universal model q is never too far away from any of the
distributions pθ in the class P.

Since there can be many possible universal models we are left with the
choice of which one to use. The minimax regret problem is to find the
universal code q that minimizes the worst-case regret

min
q

max
xn∈Xn

regret(q, xn),

where the minimum is taken over all possible probability mass functions.
Such minimax methods have been shown to be robust with respect to different
data generating mechanisms [11, 21].

Alternatively, we can seek for the universal code q that minimizes the
expected worst-case regret or redundancy

min
q

max
pn

EXn∼pn [regret(q,Xn)] ,

which is equivalent to minimizing the worst-case KL divergence

min
q

max
pn

DKL(pn ‖ q).

It is clear from the definition that the worst-case redundancy is always lower
than the worst-case regret. In this thesis we mainly consider the worst-case
regret as it is a stronger guarantee of performance — the performance is
almost optimal for all possible cases and not just on average.

Finally, we say that the procedure q is asymptotically minimax if

max
xn

regret(q, xn) = min
p

max
xn

regret(p, xn) + o(1),

that is, the worst-case regret of q converges to the minimax value when n→∞.
Watanabe and Roos proved [38] that for the class of memoryless sources, no
asymptotically minimax strategy can be horizonless. Here horizonless means
that the strategy does not depend on the length of the sequence.
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2.4 Normalized maximum likelihood

Shtarkov proved [31] that the distribution that achieves minimax regret is
the normalized maximum likelihood (NML) distribution

pNML(xn) =
pθ̂(x

n)
C

,

where
C =

∑
xn∈Xn

pθ̂(x
n)

is a normalizing constant known as the Shtarkov sum. The sum is replaced
by the corresponding integral in the continuous case. It was later proven [28]
by Rissanen that the NML distribution also minimizes the expected regret.

A prohibiting factor in using the NML distribution is that calculating
the normalizing constant involves summing over an exponential amount of
possible sequences. However, for certain models the calculation can be done
efficiently. In particular, Kontkanen and Myllymäki showed [16] that for
discrete memoryless sources, calculating the regret can be done in linear time.
They showed that if we denote the Shtarkov sum of this class with sample
size n and alphabet size m as Cmn , then Cmn satisfies the recursive formula

Cmn = Cm−1
n + n

m− 2C
m−2
n .

The base cases C1
n and C2

n can be calculated in O(n) time and thus the
Shtarkov sum Cmn can be calculated in time O(n+m).

The asymptotic growth of the quantity Cmn was studied by Orlitsky and
Santhanam [24] in different asymptotic settings:

i) m = o(n):
logCmn ∼

m− 1
2 log n

m

ii) m = Θ(n):
logCmn = Θ(n)

iii) n = o(m):
logCmn ∼ n log m

n
.

More precise asymptotics were studied later by Szpankowski and Wein-
berger [36]. From the definition of NML it follows that

regret(pNML, x
n) = log2C

m
n .

In particular, the value of the regret does not depend on the sequence xn and
as the regret grows at a logarithmic rate, the per-symbol regret diminishes
to zero as n approaches infinity making NML a universal code.

10



Even though the NML distribution can be calculated in linear time, its use
with arithmetic coding and other applications where sequential predictions
are needed is problematic as computing the conditional probabilities takes
exponential amount of time. In particular, computing all the conditional
probabilities pNML(xn+1|xn) up to n takes O(mn) time.

2.5 Model selection

The NML distribution has been successfully used for model selection with the
minimum description length (MDL) principle [12], a modern formalization of
Occam’s razor. It asserts that given a choice of different models, one should
choose the model that yields the shortest description of the data while also
taking into account the complexity of the model.

In model selection, given a choice of models, that is, a set of probability
distributions, we have to find the model that best fits the data. This has
to be done by balancing goodness-to-fit such as to prevent overfitting. For
example, given a choice of different order polynomials we have to choose the
order of the polynomial that fits the data well. The higher degree polynomials
naturally fit the data better but do not generalize as well.

The old-style MDL principle chooses the model and its parameter such
that they minimize the combined code-length of the model, the parameter θ
and the data encoded using the parameter θ:

M̂MDL = arg min
θ,M

`(M) + `(θ) + log2
1

pθ(xn)

This criterion naturally balances goodness-to-fit, as more complex models
often yield shorter descriptions of the data but an increase in the number
parameters requires longer description length for the parameters.

Modern versions of the MDL principle state that given a choice of different
model classes, one should choose the model class M that yields the shortest
combined description length of the model class and the data xn encoded
using a universal code for the model class:

M̂MDL = arg min
M

`(M) + `(xn;M).

For example, using the NML distribution gives the code-length

`NML(xn;M) = log2
1

p(xn|θ̂(xn),M)
+ log2

∑
xn

p(xn|θ̂(xn),M).

The MDL principle has been applied to a wide variety of problems includ-
ing linear regression [35] and image denoising [27]. The NML distribution
has found use with MDL in for example histogram density estimation [17]
and Bayesian network structure learning [34, 32].
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3 Mixture codes
In this section we define the Bayes mixture for the multinomial model and
review previous work on examining minimax optimal hyperparameters for the
mixture. Furthermore, we develop an algorithm for computing the optimal
hyperparameter for the multinomial Bayes mixture with given precision
in logarithmic time. This makes calculating the optimal hyperparameter
feasible for any reasonable parameter values.

3.1 Mixture codes for memoryless sources

Given a class P of distributions parameterized by some parameter set Θ,
if W is a distribution on Θ, we can construct a new distribution pBayes by
taking a weighted mixture over the distributions in P:

pBayes(xn) =
∑
θ∈Θ

p(xn|θ)W (θ),

where the sum is replaced by an integral in the continuous case. This is
called a Bayes mixture or the Bayesian marginal likelihood [5].

Such Bayes mixtures can be shown to be universal codes [12, p. 176].
In certain exponential families Bayes mixtures are asymptotically minimax
for both the worst-case and the expected regret [37]. Even exact representa-
tion of the NML distribution is possible with Bayes mixtures using signed
mixtures [3], but requires high computational complexity.

The corresponding conjugate prior for the class of discrete memoryless
sources is the Dirichlet distribution. In the symmetric case it takes the form

q(θ|α) = Γ(mα)
Γ(α)m

m∏
j=1

θα−1
j ,

where α > 0 is a hyperparameter and m is the alphabet size. We now get
the probabilities for the sequences xn by taking the weighted mixture with
respect to the Dirichlet prior by integrating over the parameter space:

pB,α(xn) =
∫

Θ

n∏
i=1

p(xi|θ)q(θ|α) dθ = Γ(mα)
Γ(α)m

∏m
j=1 Γ(nj + α)
Γ(n+mα) ,

where nj is the number of occurrences of symbol j in the sequence xn. The
sequential predictions can now easily be calculated as

pB,α(xn+1|xn) = pB,α(xn+1)
pB,α(xn) = k + α

n+mα
,

where k is the number of times the symbol xn+1 occurs in xn. This means
that all predictive probabilities up to n can be calculated in time O(nm).
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The choice of α dictates the amount of prior mass given to each of the
symbols. For example, assuming that α = 1, the prior is the Dir(1, . . . , 1)
distribution, which is the uniform distribution. Using this as the prior gives
the Laplace estimator, for which the sequential predictions take the form
(k + 1)/(n+m). Plugging in m = 2 gives Laplace’s rule of succession.

The regret of the Laplace estimator is largest for sequences containing
very few ones or zeros. Using the Dir(1/2, . . . , 1/2) prior puts more mass
to the boundaries of the probability simplex. This modifies the mixture
by giving larger weight to the distributions that achieve short code-lengths
on the critical sequences. The choice α = 1/2 is called the Krichevsky-
Trofimov estimator [18] and corresponds to the Jeffreys prior used in Bayesian
statistics, where it is used as an uninformative prior. The Krichevsky-
Trofimov estimator minimizes the expected regret asymptotically [41].

However, the Krichevsky-Trofimov estimator is not asymptotically min-
imax. In particular, Xie and Barron showed [42] that the regret of the
Krichevsky-Trofimov estimator is higher than the minimax regret by a non-
vanishing amount on the boundaries of the probability simplex. Xie and
Barron modified the Krichevsky-Trofimov estimator to be asymptotically
minimax by adding extra mass to the boundaries of the probability simplex:

q
(n)
MJ(θ) = εn

2

{
δ

(
θ − 1

n

)
+ δ

(
θ − 1 + 1

n

)}
+ (1− εn)b1/2(θ),

where δ is the Dirac delta function, b1/2 is the density function of the
Beta(1/2, 1/2) distribution and εn = n−1/8 as recommended by Xie and
Barron. Notably this procedure depends on the sequence length n as no
horizonless procedure can be asymptotically minimax.

Roos and Watanabe proved [38] that a simpler Bayes procedure with the
sequence length-dependent hyperparameter

αn = 1
2 −

log 2
2

1
logn

achieves asymptotic minimaxity. This strategy has lower computational
complexity and it achieves smaller worst-case regret than the method of
Xie and Barron [38]. Figure 1 shows the optimal α as a function of n when
m = 2 along with the asymptotic formula αn given by Watanabe and Roos.
Notably the asymptotic formula converges to the optimal α as the sequence
length n increases. Thus both the optimal and the asymptotic prior converge
to the asymptotic value 1/2 at a logarithmic rate.

Example 2 (The sunrise problem). Consider a situation where the sun has
risen ten times this year. The Krichevsky-Trofimov estimator gives probability
95.5% for the sun rising tomorrow, while Laplace’s rule of succession gives
91.7%. For a horizon of 11 days, the asymptotic formula of Watanabe and
Roos gives the probability 96.7%, and 96.0% for a horizon of 365 days.
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Figure 2: Optimal α and αn given by the asymptotic formula of Watanabe
and Roos as a function of n when m = 2.

3.2 Computation of the optimal hyperparameter

The formula given by Watanabe and Roos is asymptotic and thus it differs
from the optimal α especially for small sample sizes as can be seen in Figure
2. Furthermore, the differences become greater as m increases as will be
shown in Section 5. Even small differences in the hyperparameter α can be
crucial in for example Bayesian network structure learning [33].

More specifically, if we consider the Bayes mixtures pB,α defined previ-
ously, we would like to find α > 0 such that

max
xn

regret(pB,α, xn) = max
xn

log p(x
n|θ̂(xn))

pB,α(xn)

is minimized. Since there are an exponential number of possible sequences
xn, computing the optimal α at ε precision (e.g. ε = 10−3) by considering
all possible sequences takes exponential time.

In this section we present an algorithm that can compute the optimal
α with ε precision in O(log (min {n,m}/ε)) time where n is the sample size
and m is the alphabet size. This algorithm makes it practical to calculate
the optimal α fast for any typical values of n and m. The first step is the
following lemma proved by Watanabe and Roos [38] which narrows down
the number of possible worst-case sequences considerably:
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Lemma 3. The possible worst-case sequences xn in

max
xn

log p(x
n|θ̂(xn))

pB,α(xn)

have l non-zero counts (l = 1, 2, . . . ,m), each of which is
⌊
n
l

⌋
or
⌊
n
l

⌋
+ 1 and

all the other counts are zeros.

Thus there are only O(min {n,m}) possible worst-case sequences. Since
the count vector of each possible worst-case sequence contains at most two
different elements, we can evaluate the regret in constant time. Thus we can
find the optimal α with ε precision in time O(min {n,m}/ε) by considering
all α on a grid with length ε intervals. This can be further reduced to
O(min {n,m} log (1/ε)) by using the following lemma:

Lemma 4. The function

max
xn

log p(x
n|θ̂(xn))

pB,α(xn)

is unimodal as a function of α on the interval (0,∞).

Proof. We first consider the regret for a fixed xn. Taking the derivative with
respect to α, we obtain

∂

∂α
log p(x

n|θ̂(xn))
pB,α(xn) = − ∂

∂α
log pB,α(xn).

Levin and Reeds proved [20] that the derivative of log pB,α with respect to
α has at most one zero on the interval (0,∞) and if this happens at a finite
α, the corresponding zero has to be a local maximum. Therefore the regret
for any xn as a function of α is either decreasing, increasing or decreases up
to a point and increases from that point on.

All monotone functions and functions that decrease up to a point and
increase from that point on are strictly quasiconvex. Furthermore, the
maximum of strictly quasiconvex functions is strictly quasiconvex. Therefore
as a function of α the worst-case regret is strictly quasiconvex. Since a
strictly quasiconvex function is strictly unimodal, the claim follows.

Since the regret function is unimodal, we can optimize it with an algorithm
such as golden section search [14] in time O(log (1/ε)) on the fixed-length
interval (0, 1/2). However, as there are O(min {n,m}) possible worst-case
sequences and the regret for each of them can be evaluated in constant time,
each evaluation of the function to be optimized by golden section search
takes time O(min {n,m}). Therefore the optimal hyperparameter α can be
found in time O(min {n,m} log (1/ε)) with ε precision.
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We now describe a way to evaluate the search for the worst-case sequence
in time O(log(min {n,m})), yielding an O(log(min {n,m}/ε)) algorithm.
Here we assume that memory and variables can be accessed in constant time,
and arithmetic operations, logarithms and the gamma function can also be
evaluated in constant time. We first note that the regret of a sequence xn
can be written as

regret(pB,α, xn) =
m∑
j=1
{nj lognj − log Γ(nj + α)}+ κ,

where κ is a quantity that does not depend on the count vector (n1, . . . , nm).
Here nj is the number of times the symbol xj appears in the sequence xn.
For convenience, we allow the counts to be any non-negative real numbers
as long as

∑m
j=1 nj = n. We also denote any sequence with a count vector

consisting of a symbols with count x, b symbols with count x+ 1 and the
remaining m− b− a symbols with count zero as xna,b.

Consider now the following function, which represents the difference in
regret by replacing x/y y counts in a count vector with a single x count:

hα(x, y) = x log x
y
− log Γ(x+ α) + x

y
log Γ(y + α) + (1− x

y
) log Γ(α).

This function has the following properties which can be verified by straight-
forward calculations:
• hα(x, x) = 0

• hα(x, y) = −x
yhα(y, x)

• ahα(x, y) + bhα(x+ 1, y) = regret(pB,α, xna,b)− regret(pB,α, ync,0),
where c = n/y. A key observation is described in the following lemma:
Lemma 5. The second derivative

∂2

∂x2hα(x, y)

has at most one zero.
Proof. Taking the second derivative, we have

∂2

∂x2hα(x, y) = 1
x
− ψ(1)(x+ α).

Using the inequality (ψ(1)(x))2 +ψ(2)(x) > 0 given by Batir [4], we can prove
that the second derivative has at most one zero since the derivative

d

dx

(
x− 1

ψ(1)(x+ α)

)
= ψ(2)(x+ α)
ψ(1)(x+ α)2 + 1

is positive, meaning that the function x− 1/ψ(1)(x+ α) is increasing from
−1/ψ(1)(α) < 0 and thus has at most one zero coinciding with the zero of
the second derivative ∂2

∂x2hα(x, y).
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Since limx→0+
∂2

∂x2hα(x, y) =∞, we have that the function x 7→ hα(x, y)
is either convex on the whole interval or convex up to an inflection point and
concave from that point on. Suppose now that for a given α, we would like
to find an integer y such that hα(x, y) ≤ 0 for all other integers x. Intuitively
this means that swapping a count nj = y in the count vector to any other
counts such that their sum is y would lower the regret.

Since the point at which the function x 7→ hα(x, y) switches from convex
to concave (if such a point exists) is not dependent on y, we can separately
find y1 such that hα(x, y1) ≤ 0 for all integers x on the convex interval and
y2 such that hα(x, y2) ≤ 0 for all integers x on the concave interval. We
consider first finding such integer y2. The following lemma states that if y2
is the smallest integer on the concave interval for which hα(y2 + 1, y2) < 0,
then hα(x, y2) < 0 for all other integers x on the concave interval:

Lemma 6. Let c be such that x 7→ hα(x, y) is concave for all x ≥ c.

• If there exists a smallest integer c ≤ z < n such that hα(z + 1, z) < 0,
then hα(x+ 1, x) < 0 for all x ≥ z + 1. Furthermore, hα(x, z) < 0 for
all c ≤ x ≤ z − 1 and z + 1 ≤ x ≤ n.

• If such integer z does not exist, hα(x, n) < 0 for all c ≤ x ≤ n− 1.

Proof. Assume first that there exists a smallest integer z such that z ≥ c
and hα(z + 1, z) < 0. Now let x ≥ z + 1. Since x 7→ hα(x, y) is concave
and hα(z, z) = 0 as well as hα(z + 1, z) < 0, we must have hα(x, z) < 0 and
therefore hα(z, x) > 0. Since also hα(x, x) = 0, by concavity of the function
x 7→ hα(x, y) we must have hα(x+ 1, x) < 0.

Since hα(z, z) = 0 and hα(z + 1, z) < 0, by concavity hα(x, z) < 0 for all
x ≥ z + 1. Now assume hα(z − 1, z) > 0. Thus hα(z, z − 1) < 0 which is a
contradiction since z is the smallest integer such that hα(z + 1, z) < 0. Thus
by concavity hα(x, z) < 0 for all x ≤ z − 1.

For the final part, we have that hα(n, n−1) > 0 and thus hα(n−1, n) < 0.
By the fact that hα(n, n) = 0 and the concavity of the function t 7→ hα(t, n),
we have hα(x, n) < 0 for all c ≤ x ≤ n− 1.

Note that from the above lemma we also get that if such y2 does not exist,
then hα(x, n) < 0 for all integers x on the concave interval. Furthermore, as
Lemma 6 states that if y2 is the smallest integer for which hα(y2 + 1, y2) < 0,
then hα(x+ 1, x) < 0 for all x ≥ y2 + 1, we can find y2 in time O(logn) by a
binary search like routine (Algorithm 1). This algorithm returns the first
integer z on the range [start, end] such that f(z) is true, assuming that
f(end) is true and f(y) is true also for all y > z.

The following lemma verifies that if y2 is such that hα(x, y2) < 0 for all
other integers on the concave interval, then the regret of sequences with
counts vector consisting of only integers that are in a sense near to y2 achieve
higher regret compared to all other sequences:
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Algorithm 1
1: function bin(f, start, end)
2: z, b← start− 1, end
3: while b ≥ 1 do
4: while not f(z + b) and z + b ≤ end do
5: z ← z + b
6: end while
7: b← bb/2c
8: end while
9: return z + 1

10: end function

Lemma 7. Let k and c be such that t 7→ hα(t, k) is concave for all t ≥ c
and x, z ∈ N, y ∈ R be such that c ≤ x < x+ 1 ≤ y < z < k and hα(t, k) < 0
for all c ≤ t ≤ k − 1 and there exist sequences xna,b, ync,0, znd,e . Then

regret(pB,α, xna,b) < regret(pB,α, znd,e).

Now let c ≤ k ≤ z < z + 1 ≤ y < x and hα(t, k) < 0 for all t ≥ k + 1. Then

regret(pB,α, xna,b) < regret(pB,α, znd,e).

Proof. Since hα(z, k) < 0, we have hα(k, z) > 0. Using the fact that
hα(z, z) = 0, we have hα(y, z) < 0 by concavity of the function t 7→ hα(t, k).
Thus we have hα(z, y) > 0. Now also hα(z + 1, y) > 0 as otherwise
hα(k, y) < 0 and thus h(y, k) > 0, which is a contradiction. Thus

regret(pB,α, znd,e)− regret(pB,α, ync,0) = dhα(z, y) + ehα(z + 1, y) > 0.

Again, by concavity we have hα(x, y) < 0 and hα(x+ 1, y) ≤ 0. Therefore

regret(pB,α, xna,b)− regret(pB,α, znd,e) < regret(pB,α, xna,b)− regret(pB,α, ync,0)
= ahα(x, y) + bhα(x+ 1, y) < 0

The other part follows from a similar argument.

In particular, let there be the sequences `1na1,b1 , `2
n
a2,b2 , . . . , `t

n
at,bt

, where
`1 < `2 < · · · < `t. Furthermore, let `c be the largest `i such that x 7→ hα(x, t)
is convex for all x ≤ `c and `d be the smallest `i such that `d ≥ y2 ≥ c.
Then the above lemma states that for the sequences with `i > `c, the highest
regret is achieved by a sequence corresponding to `d−2, `d−1, `d or `d+1.

The following lemmas verify that in the convex region the highest regret
is at the boundaries of the interval. That is, the highest regret is achieved
by a sequence corresponding to `1, `2, `c−1 or `c. The proofs of the lemmas
are the same as for Lemma 6 and Lemma 7, except using the fact that if
x 7→ hα(x, k) is convex, then x 7→ −hα(x, k) is concave:
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Lemma 8. Let c be such that x 7→ hα(x, y) is convex for all x ≤ c.

• If there exists a smallest integer 1 ≤ z ≤ c such that hα(z + 1, z) > 0,
then hα(x+ 1, x) > 0 for all x ≥ z + 1. Furthermore, hα(y, z) > 0 for
all z + 1 ≤ y ≤ c and 1 ≤ y ≤ z − 1.

• If such integer does not exist, hα(x, c) > 0 for all 1 ≤ x+ 1 ≤ c.

Lemma 9. Let c be such that t 7→ hα(t, k) is convex for all t ≤ c and
x, z ∈ N, y ∈ R be such that x+ 1 ≤ y < z < k ≤ c and hα(t, k) > 0 for all
t+ 1 ≤ k ≤ c and there exist sequences xna,b, ync,0, znd,e. Then

regret(pB,α, xna,b) > regret(pB,α, znd,e).

Now let k ≤ z < z + 1 ≤ y < x ≤ c and hα(t, k) > 0 for all k + 1 ≤ t ≤ c.
Then

regret(pB,α, xna,b) > regret(pB,α, znd,e).

These lemmas lead to Algorithm 3. Given n,m and α, the function F
finds the maximum possible regret. On line 16, the algorithm uses the BIN
routine to find the smallest integer x such that the function x 7→ hα(x, y)
is concave. On the next line, the algorithm uses BIN to find the smallest
integer x in the concave region such that h(x+ 1, x) is negative. The result
is saved into the variable y, matching y2 in the previous discussion. On line
18, the variable q is set as the smallest ` such that ` ≥ y and there exists a
sequence `na,b for some a, b ∈ N0, matching `d in the previous discussion.

The functions PREV and NEXT find for a given x the previous (next) y such
that there exists a sequence yna,b for some a, b ∈ N0. Using these functions,
the maximum regret can be found on lines 19–24 by considering all the
possible cases mentioned previously. The regret for each case is calculated
in constant time by Algorithm 2. Since there can be multiple count vectors
that consist of the integers k and k + 1, the sign of hα(k, k + 1) is calculated
on line 2. It is easy to verify that if hα(k, k + 1) < 0, then the count vector
with the maximum amount of k counts should be preferred, and the count
vector with the maximum amount of k + 1 counts otherwise.

The MINIMAX function on line 27 uses golden section search to minimize
the maximum regret F(n,m,α) on the fixed-length interval (0, 1/2]. Since
the BIN routine works in time O(logn) and all other operations are constant
time operations, this yields a O(log (n/ε)) time algorithm. However, both of
the binary searches can also be performed by considering only the numbers
bn/mc, bn/(m− 1)c, . . . , n as possible inputs for the function f , which takes
O(logm) time. Thus the total time complexity is O(log (min {n,m}/ε)). For
example, on a computer with a 2.3 GHz Intel Core i5-7360U processor, a C
implementation of the algorithm can return the optimal α for n = m = 260

in 4 ms at ε = 10−3 precision and in 7 ms at ε = 10−9 precision.
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Algorithm 2
1: function Regret(n,m, k, α)
2: if hα(k, k + 1) > 0 then
3: y, x← n− kbn/kc, (n− y(k + 1))/k
4: else
5: x, y ← (k + 1)dn/(k + 1)e − n, (n− xk)/(k + 1)
6: end if
7: l← xk log k + y(k + 1) log (k + 1)− n logn
8: b1 ← log Γ(mα)−m log Γ(α)− log Γ(n+mα)
9: b2 = x log Γ(k + α) + y log Γ(k + 1 + α) + (m− x− y) log Γ(α)

10: return l − b1 − b2
11: end function

Algorithm 3
1: function f(n,m,α)
2: function prev(k)
3: if k ≤ 1 then
4: return 0
5: end if
6: r ← bn/kc+ 1
7: return bn/rc
8: end function
9: function next(k)

10: if k ≥ n then
11: return n
12: end if
13: r ← d(n− k)/(k + 1)e
14: return bn/rc
15: end function
16: p← bin(f(x) := 1/x− ψ(1)(x+ α) < 0, 1, n)
17: y ← min (n,max (bn/mc,bin(f(x) := hα(x+ 1, x) < 0, p, n)))
18: r, q, u← bn/yc, bn/rc,−1
19: for t ∈ {q,next(q),prev(q),prev(prev(q)),
20: prev(p),prev(prev(p)), bn/mc,next(bn/mc)} do
21: if max (1, bn/mc) ≤ t ≤ n then
22: u← max (u,regret(n,m, t, α))
23: end if
24: end for
25: return u
26: end function
27: function minimax(n,m, ε)
28: return gss(f(α) := f(n,m,α), 0, 1

2 , ε)
29: end function
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4 Large alphabet coding
In this section we first review previous work on universal compression on large
alphabets. For large alphabets in comparison to the sample size, we prove
that the minimax optimal Bayes mixture is given by the hyperparameter
α = 1/3. We also prove asymptotic properties of the 1/3-mixture which
show that the worst-case regret of the 1/3-mixture approaches that of the
NML distribution as the alphabet size increases.

4.1 Related work

For data compression on very large or even infinite alphabets, universal
compression of i.i.d. distributions has traditionally been avoided. This is due
to a result proved originally by Kieffer [15], which states that as the alphabet
size grows unbounded, so does the regret. This holds even when the length
of the sequence or the block-length is allowed to grow with the alphabet size.
Thus progressively larger sample sizes are needed to achieve a given target
level of regret as the alphabet size increases.

Therefore, recent work on universal compression on large alphabets has
mainly focused on algorithms such as Lempel-Ziv that avoid the problems
of large alphabets by converting the alphabet into a smaller one [9], or
universal compression on subclasses of i.i.d. distributions. Examples of such
distributions include envelope classes [2, 6] and patterns [23, 26].

The pattern of a sequence represents the relative order in which its sym-
bols appear. For example, the pattern of abracadabra is 12314151231. The
probability of a pattern ψ is the sum of the probabilities of all sequences whose
pattern is ψ. Acharya et al. prove [1] that for the class of all distributions
over patterns of length n induced by all i.i.d. distributions, the worst-case
regret is bounded by n1/3(logn)4. Thus the average regret diminishes to
zero as the sequence length increases regardless of the alphabet size.

However, as patterns target a different distribution, codes based on
patterns are not directly interchangeable with codes for i.i.d. distributions.
Thus for example in model selection it is still needed to calculate a target
minimax distribution for i.i.d. sources. Furthermore, in situations where
both the sequence length and alphabet size are known, asymptotic results
hold less weight. Distributions for coding i.i.d. distributions can also be
extended to models such as Markov sources that incorporate context [44].

Yang and Barron propose [45] a distribution for universal coding of i.i.d.
distributions for all different setups of the sample size and the alphabet size.
The distribution is based on Poisson sampling and tilting. Using Poisson
sampling makes the counts independent. In addition, the length n is allowed
to be variable, which considers a larger class of distributions. However, the
distribution can also be used for fixed sample size coding and prediction by
conditioning on the sample size.
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The coding distribution proposed by Yang and Barron, called the tilted
Stirling ratio distribution, is given by

pStirling(xn) = puniform(xn|n1, . . . , nm)Qa(n1, . . . , nm),

where
Qa(n1, . . . , nm) =

m∏
i=1

Pa(nm) =
m∏
i=1

nni
i e
−ni

ni!
e−ani

Ca
.

Here Ca is a normalizer
∑∞
k=0 k

ke−(1+a)k/k! and a > 0 is a tilting parameter
whose optimal value depends only on the ratiom/n. The normalizer converges
exponentially to zero and can in practice be computed by cutting the sum
at k large compared to 1/a. In practice the tilting parameter has to be
optimized by considering a grid of possible parameter values.

This distribution is slightly suboptimal for coding sequences of fixed
length n as the coding distribution assumes the sample size is not known.
Thus the above distribution assigns a probability to all finite-length sequences.
However, Yang and Barron prove that the worst-case regret is asymptotically
near the minimax regret in both cases n = o(m) and m = o(n), although
the worst-case regret does not converge to the minimax regret. Additionally,
these results assume that the tilting parameter a has been optimized.

When conditioned on the sequence length n, the tilted Stirling ratio
distribution allows exact computation of the NML distribution by

pNML(xn) = Qa(n1, . . . , nm)
Pma (n) ,

where

Pma (k) =
k∑

k′=0
Pa(k′)Pm−1

a (k − k′)

is them-fold convolution of Pa(n). This convolution can be calculated in time
O(mn2). Although this is inferior to the linear-time algorithm by Kontkanen
and Myllymäki, the conditional distributions of the NML distribution can
be calculated faster than in exponential time through this method. However,
in practice even this time complexity is often infeasible.

Yang and Barron extend this distribution for coding Markov sources [44].
In a Markov source each symbol is generated according to a probability
that depends on the symbol’s context (a sequence of symbols preceding it).
This allows taking dependencies between the symbols into account. These
contexts can be modeled by a context tree that determines the set S of
possible contexts. Yang and Barron describe a greedy algorithm for choosing
the context set such as to minimize the worst-case coding cost

log 1/Q(X|S) +D(S),

where Q(X|S) =
∏
s∈S Qas(ns1, . . . , nsm) is the probability of the data given

the tree and D(S) is the cost of coding the tree itself. Here nsi is the number
of times the symbol i occurs such that its context is s.
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4.2 Mixture codes for large alphabets

We now consider finding the minimax optimal Dirichlet prior for the Bayes
mixture defined in Section 3 in a large alphabet setting. As the sample
size n grows, we know that the optimal hyperparameter α converges to the
asymptotic value α = 1/2 when the alphabet size is fixed. However, in this
section we prove that the minimax optimal hyperparameter is α = 1/3 when
the alphabet size is large compared to the sample size. The worst-case regret
of pB,1/3 turns out to approach the regret of the NML distribution when m
increases, as we will see in Section 4.3.

We prove this result by showing that there is always a sequence whose
regret is decreasing as a function of α and a sequence whose regret is increasing
as a function of α when m > 5

2 + 4
n−2 + 3

2 . Furthermore, the regrets of these
sequences intersect at the point α = 1/3. Finally, as no other sequence
has higher regret at this point, the point α = 1/3 has to be the minimax
point. This is illustrated in Figure 3 which shows the regrets of the possible
worst-case sequences when n = 10,m = 30.

0.20 0.25 0.30 0.35 0.40 0.45 0.50

12

13

14

15

16

re
gr

et

Figure 3: Regrets of the possible worst-case sequences as a function of α
when n = 10,m = 30. A vertical line is shown at the minimax point α = 1

3 .

We start by proving that when m ≥ n and α = 1/3, all sequences where
each symbol can occur at most twice have the same regret. This requires
first proving the following lemma:
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Lemma 10. For k ≥ 2, the function

f(k) = k log k − k log 3− log Γ(k + 1
3) + log Γ(1

3)

satisfies f(k) ≤ 0, where equality holds if and only if k = 2.

Proof. The derivative of f is

f ′(k) = log k3 − ψ(k + 1
3) + 1.

Using the inequality ψ(1)(k) > 1/k + 1/(2k2) (e.g. [13]), we can show that if
k > 2/3, we have

f ′′(k) = 1
k
− ψ(1)(k + 1

3) < 0.

Furthermore, since f ′(2) < 0, the derivative f ′ must also be negative for all
k ≥ 2 and therefore f is decreasing. The claim holds since f(2) = 0.

Lemma 11. Let m,n be integers such that m ≥ n and xn be a sequence
where all the symbols are different. Then for all sequences yn we have

regret(pB, 1
3
, xn) ≥ regret(pB, 1

3
, yn),

where equality holds if and only if no symbol in yn occurs more than twice.

Proof. Let yn be a sequence with at least one symbol occurring more than
once. In particular, there is a symbol j that occurs nj > 1 times. Let zn be
any sequence corresponding to the count vector of yn except that nj and
nj − 1 zeros have been replaced by nj ones. Now, using Lemma 10 we have

regret(pB, 1
3
, yn) = regret(pB, 1

3
, zn)− nj(1 log 1− log Γ(1 + 1

3))

− (nj − 1) log Γ(1
3) + nj lognj − log Γ(nj + 1

3)

= regret(pB, 1
3
, zn) + nj log nj3 + log

Γ(1
3)

Γ(nj + 1
3)

≤ regret(pB, 1
3
, zn),

where equality holds if and only if nj = 2. Since any count vector can be
transformed into (1, 1, . . . , 0, 0, . . . ) by repeatedly replacing elements in the
count vector by ones, the claim holds.

Lemma 12. Let m,n be integers such that m ≥ n and xn be a sequence
with all symbols occurring at most once. Then

regret(pB,α, xn)

is decreasing as a function of α.
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Proof. The count vector corresponding to xn is (1, . . . , 1, 0, . . . , 0), where we
have n ones and m− n zeros. The regret of pB,α is given by

regret(pB,α, xn) = log p(x
n|θ̂(xn))

pB,α(xn) = n log (1/n)− log pB,α(xn).

Taking the derivative with respect to α, we obtain

∂

∂α
regret(pB,α, xn) = − ∂

∂α
log pB,α(xn)

= m(ψ(n+mα)− ψ(mα))− n

α
.

Repeated application of the identity ψ(n+ 1) = ψ(n) + 1
n gives

m(ψ(n+mα)− ψ(mα))− n

α
= m

(
n−1∑
k=0

1
mα+ k

)
− n

α

=
n−1∑
k=0

(
1

α+ k
m

− 1
α

)
≤ 0

for all positive α. Thus the regret corresponding to the sequence xn is always
a decreasing function of α.

Lemma 13. Let m,n be natural numbers such that m ≥ n and 0 < α < 1.
Then

mψ(n+mα)−mψ(mα) > 1
2α + 1

2(α+ 1) + 2m(n− 1)
2mα+ n− 1 .

Proof. We can first write

mψ(n+mα)−mψ(mα) =
n−1∑
k=0

1
α+ k

m

.

Now applying the trapezoidal rule∫ N

1
f(x) dx <

N∑
k=1

f(k)− 1
2(f(1) + f(N)),

where f is a convex function, we have
n−1∑
k=0

1
α+ k

m

>
1
2

(
1
α

+ 1
α+ n−1

m

)
+
∫ n−1

0

dx

α+ x
m

>
1
2

( 1
α

+ 1
α+ 1

)
+
∫ n−1

0

dx

α+ x
m

= 1
2α + 1

2(α+ 1) +m log
(

1 + n− 1
mα

)
.

25



Using the inequality
log (1 + x) ≥ 2x

2 + x

valid for x ≥ 0, we get

1
2α + 1

2(α+ 1) +m log
(

1 + n− 1
mα

)
≥ 1

2α + 1
2(α+ 1) +

2mn−1
mα

2 + n−1
mα

= 1
2α + 1

2(α+ 1) + 2m(n− 1)
2mα+ n− 1 .

Lemma 14. Let m,n be natural numbers such that n > 2 and

m >
5
2n+ 4

n− 2 + 3
2 .

Then the regret of a sequence where each symbol occurs twice (and one symbol
occurs once if n is odd) is an increasing function of α when α ≥ 1/3.

Proof. Assume first that n is even and let xn be a sequence with counts
being (2, . . . , 2, 0, . . . , 0), that is, there are n/2 twos and the rest m − n/2
counts are zeros. Taking the derivative we obtain

∂

∂α
regret(pB,α, xn) = − ∂

∂α
log pB,α(xn)

= mψ(n+mα)−mψ(mα) + n

2 (ψ(α)− ψ(2 + α)).

For this to be positive, from Lemma 13 we have the inequality

1
2α + 1

2(α+ 1) + 2m(n− 1)
2mα+ n− 1 − n

( 1
2α + 1

2(α+ 1)

)
> 0,

from which we can solve

m >
(2α+ 1)(n− 1)

2α

for 0 < α < 1, n > 2.
Now assume that n is odd and take xn to be a sequence with counts

(2, . . . , 2, 1, 0, . . . , 0), that is, (n− 1)/2 symbols occur twice and one symbol
occurs once. Taking the derivative again gives

∂

∂α
regret(pB,α, xn)

= mψ(n+mα)−mψ(mα) + n− 1
2 (ψ(α)− ψ(2 + α))− 1

α
.
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Again, from Lemma 13 we get the inequality

1
2α + 1

2(α+ 1) + 2m(n− 1)
2mα+ n− 1 − (n− 1)

( 1
2α + 1

2(α+ 1)

)
− 1
α
> 0,

from which we can solve

m >
(n− 1)(2α(n− 1) + n)

2α(n− 2)

for 0 < a < 1, n > 2. Since

(n− 1)(2α(n− 1) + n)
2α(n− 2) >

2α(n− 1) + n

2α >
(2α+ 1)(n− 1)

2α ,

if m satisfies the bound for the odd case, the bound for the even case is
also satisfied. Clearly this bound is decreasing as a function of α. Plugging
α = 1/3 into the bound, we have

m >
5
2n+ 4

n− 2 + 3
2 .

Therefore if m satisfies the above bound, the derivative is positive for all
α ≥ 1/3 and the regret is growing for all α ≥ 1/3.

We are now ready to prove the main result which states that the Dirichlet
prior which minimizes the worst-case regret is the Dir(1/3, . . . , 1/3) distribu-
tion when n > 2 and m > 5/2n+ 4/(n− 2) + 3/2:

Theorem 15. Let m,n be natural numbers such that n > 2 and

m >
5
2n+ 4

n− 2 + 3
2 .

Then
arg min

α
max
xn

regret(pB,α, xn) = 1
3 .

Proof. We denote
f(α) = max

xn
regret(pB,α, xn).

From Lemma 11, we have f(1/3) = regret(pB,1/3, xn) = regret(pB,1/3, yn),
where xn is a sequence where each symbol is different and yn is a sequence
where each symbol in the sequence occurs twice (and one symbol occurs once
if n is odd). Using Lemma 12, we have f(α) ≥ regret(pB,α, xn) > f(1/3) for
all α < 1/3. From Lemma 14, we know that f(α) ≥ regret(pB,α, yn) > f(1/3)
for all α > 1/3 when m > 5/2n+ 4/(n− 2) + 3/2. Therefore the function f
is minimized at the point α = 1/3.
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We note that the above bound is quite tight, as can be seen in Figure 4.
In particular, the bound given for m will converge to 5

2n+ 3
2 , while numerical

results show that the optimal ratio of m/n converges to between 2.1 and 2.2.
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Figure 4: The ratio m∗/n as a function of n where m∗ is the smallest m for
which α = 1/3 is optimal.

4.3 Asymptotic properties of the 1/3-mixture

The following theorem states that the worst-case regret of pB,1/3 grows
asymptotically at the same rate as the regret of the NML distribution when
n grows asymptotically slower than m:
Theorem 16. If n = o(m), the worst-case regret of pB,1/3 grows as

n log m
n

+ 3
2
n(n− 1)

m
+O

(
n3

m2

)
.

Proof. When n = o(m), by definition there is a m0 such that m ≥ n for all
m ≥ m0. Then for pB,1/3 the worst-case regret occurs when xn is a sequence
where all the symbols are different. Thus

max
xn

regret(pB, 1
3
, xn) = − log Γ(m3 )− n logn− n log Γ(1 + 1

3)

− (m− n) log Γ(1
3) +m log Γ(1

3) + log Γ(n+ m

3 )

= − log Γ(m3 )− n logn− n log 1
3 + log Γ(n+ m

3 ).
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Applying Stirling’s approximation and using the identity

log
(
m

3 + n

)
= log m3 + log

(
1 + 3n

m

)
,

we have

max
xn

regret(pB, 1
3
, xn) =

(
m

3 + n− 1
2

)
log

(
1 + 3n

m

)
+ n log m

n
− n+ o(1).

Using the Taylor expansion log (1 + x) = x− x2

2 + x3

3 − · · · results in

max
xn

regret(pB, 1
3
, xn) = n log m

n
+ 3

2
n(n− 1)

m
+O

(
n3

m2

)
.

We note that this result matches exactly the growth-rate of the NML
regret in the case n = o(m) as given by Szpankowski and Weinberger [36]. In
particular, if n is fixed and m grows, the worst-case regret of the 1/3-mixture
will converge to the regret of the NML distribution.

It also directly follows from Theorem 16 that the NML regret can be
approximated in constant time by the worst-case regret

n log 3
n

+ log Γ(n+ m

3 )− log Γ(m3 )

of the 1/3-mixture when m is large compared to n. This approximation
is compared to the regret of the NML distribution in Table 1 for different
values of n and m. In particular, the approximation converges to the exact
value of the NML regret as m increases towards infinity.

Table 1: Regret values for various values of n and m.

n m approx logCmn

50
100 60.555 60.004

1000 153.292 153.276
10000 265.282 265.281

500
1000 609.691 603.928
10000 1533.550 1533.379

100000 2652.883 2652.881

5000
10000 6101.034 6043.158

100000 15336.133 15334.406
1000000 26528.893 26528.873
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We can also prove that when m is fixed and n grows, the difference
between the worst-case regret of the 1/3-mixture and the NML regret will
converge to a constant. We use the following lemma which characterizes the
worst-case sequences of pB,1/3 when n ≥ 2m:

Lemma 17. If n ≥ 2m, the worst-case sequences of pB,1/3 have each element
occurring n/m times (ignoring integer constraints).

Proof. We first note that when ignoring the constraint of the counts being
integers, the proof of Lemma 1 by Watanabe and Roos [38] shows that the
worst-case sequences of pB,α are maximally uniform, i.e. have l non-zero
counts (l = 1, 2, . . . ,m), each of which is n/l.

Consider now the function h 1
3
(x, y) from Section 3. Taking the first and

second order derivatives, we have

∂

∂x
h 1

3
(x, y) = log x

y
− ψ(x+ 1

3) + 1
y

log
Γ(y + 1

3)
Γ(1

3)
+ 1 =: g(x, y)

∂2

∂x2h 1
3
(x, y) = 1

x
− ψ(1)(x+ 1

3).

As in the proof of Lemma 10, we have 1/x−ψ(1)(x+ 1
3) < 0 for x > 2/3 and

thus x 7→ g(x, y) is decreasing for x > 2/3. Since we can numerically verify
that g(2, 2) < 0, we have g(x, 2) < 0 for all x > 2 and thus also x 7→ h 1

3
(x, y)

is decreasing for x > 2. Since h 1
3
(2, 2) = 0, we have h 1

3
(x, 2) < 0 and

h 1
3
(2, x) > 0 for all x > 2. Now by concavity h 1

3
(y, x) < 0 for all y > x ≥ 2.

Thus for all y > x ≥ n/m ≥ 2,

regret(pB, 1
3
, yna,0)− regret(pB, 1

3
, xnb,0) = ah 1

3
(y, x) < 0,

and the regret is maximized when x is minimized, that is, x = n/m.

Theorem 18. If m = o(n), the worst-case regret of pB,1/3 grows as

m− 1
2 log n

2π + log
Γ(1

3)m

Γ(m3 )m
m
6

+O
(
m2

n

)
.

Proof. When m = o(n), by definition there is a n0 such that n ≥ 2m for
all n ≥ n0. From Lemma 17, we know that the maximum regret is then
achieved by a sequence where each element has count n/m. Thus we now
have the maximum regret

−n logm− log Γ(m3 ) +m log Γ(1
3) + log Γ(n+ m

3 )−m log Γ( n
m

+ 1
3).
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Applying Stirling’s approximation gives(
m

6 − n
)

log
(1

3 + n

m

)
+
(
m

3 + n− 1
2

)
log

(
m

3 + n

)
− n logm

+ log
Γ(1

3)m

Γ(m3 ) −
m− 1

2 log (2π) + o(1).

Using the identity

log
(1

3 + n

m

)
= log n

m
+ log

(
1 + m

3n

)
and applying the Taylor expansion log (1 + x) = x− x2

2 + x3

3 − · · · we have
(
m

6 − n
)

log
(1

3 + n

m

)
= −n log n

m
+ m

6

(
log n

m
− 2

)
+O

(
m2

n

)
.

Similarly, using the identity

log
(
m

3 + n

)
= logn+ log

(
1 + m

3n

)
and applying the Taylor expansion for log (1 + x), we have(
m

3 + n− 1
2

)
log

(
m

3 + n

)
= n logn+ 1

6((2m− 3) logn+ 2m) +O
(
m2

n

)
.

Putting these together, the worst-case regret is

m− 1
2 log n

2π + log
Γ(1

3)m

Γ(m3 ) −
m

6 logm+O
(
m2

n

)
.

Theorem 18 proves that when m is fixed and n increases towards infinity,
the difference of the NML regret and the worst-case regret of pB,1/3 will
converge to within a constant that depends only on m. This can be seen
from the asymptotic form of the NML regret as given by Xie and Barron [42]:

m− 1
2 log n

2π + log
Γ(1

2)m

Γ(m2 ) + o(1).

In comparison, the worst-case regret of the Krichevsky-Trofimov estimator
is asymptotically given by

m− 1
2 log n

π
+ log

Γ(1
2)m

Γ(m2 ) + o(1).
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5 Experiments
In this section we present numerical results evaluating the regret of the
1/3-mixture for different settings of the sample size and the alphabet size.
We also evaluate the regrets of other distributions for comparison.

5.1 Regret as a function of the sample size

We compare the worst-case regrets of the tilted Stirling ratio distribution
and the Bayes mixture with different Dirichlet hyperparameters: 1/2, 1/3,
optimized and the asymptotic formula given by Watanabe and Roos. We first
calculated the worst-case regrets when m is fixed and n increases. In Figure
5 the alphabet size is fixed as m = 20. The regret of the NML distribution is
subtracted to make the comparison clearer. It can be seen that the worst-case
regret of the tilted Stirling ratio distribution is higher than that of any of
the Bayes mixtures. Naturally the optimized Bayes mixture always has the
lowest worst-case regret amongst the Bayes mixtures.

It can be seen that the 1/3-mixture achieves lower worst-case regret
than the Krichevsky-Trofimov (α = 1/2) mixture. Neither is asymptotically
minimax but both will converge to within a constant of the NML regret. As
both the asymptotic formula and thus also the optimized Bayes mixture are
asymptotically minimax, they will eventually converge to the NML regret.
However, this convergence is quite slow as can be seen in Figure 5.
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Figure 5: Worst-case regret differences from NML regret when m = 20.
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When the alphabet size grows, the worst-case regret of the tilted Stirling
ratio distribution gets closer to the NML regret. In particular, Figure 6
shows that when m = 200, the worst-case regrets of the tilted Stirling
ratio distribution and the optimized Bayes mixture are comparable. The
1/3-mixture achieves lower worst-case regret when m is large compared to n.
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Figure 6: Worst-case regret differences from NML regret when m = 200.
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Figure 7: Worst-case regret differences from NML regret when m = 2000.
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When m = 2000 (Figure 7), the tilted Stirling ratio distribution is close
to NML. However, it will never actually converge to it, while the asymptotic
Bayes mixture will. It can be seen that the 1/3-mixture achieves lower
worst-case regret than the asymptotic formula until roughly n = 9000.

5.2 Regret as a function of the alphabet size

Next, we calculated the worst-case regrets when n is fixed and m grows. In
Figure 8, n is fixed as n = 100. The worst-case regret of the 1/3-mixture is
always lower than the worst-case regret of the tilted Stirling ratio distribution
and converges to the NML regret as m grows. The 1/3-mixture also achieves
lower worst-case regret than the mixture given by the asymptotic formula
already when m > 60 and is optimal for m > 200.

We also calculated the worst-case regrets for n = 1000 (Figure 9), for
which the tilted Stirling ratio distribution achieves the lowest worst-case
regret except for small m. However, the 1/3-mixture will converge to zero
eventually, unlike the tilted Stirling ratio distribution. The 1/3-mixture
again achieves lower worst-case regret than the asymptotic formula when
m > 400 and is optimal for roughly m > 2000.

For the worst-case regret of the 1/3-mixture to achieve lower worst-case
regret than the tilted Stirling ratio distribution requires large m. This is
seen in Figure 10, which shows the largest m such that the worst-case regret
of the tilted Stirling ratio distribution is lower than that of the 1/3-mixture
as a function of n. For example, m has to be around 150000 for n = 10000.

0 50 100 150 200 250 300

m

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

re
gr

et
 d

iff
er

en
ce

 fr
om

 N
M

L

tilted Stirling
Bayes = 1/3
Bayes = 1/2
asymptotic Bayes
optimized Bayes

Figure 8: Worst-case regret differences from NML regret when n = 100.
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Figure 9: Worst-case regret differences from NML regret when n = 1000.
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Figure 10: Largest m as a function of n such that the worst-case regret of
the tilted Stirling ratio distribution is lower than that of the 1/3-mixture.

35



6 Discussion
In this thesis, we showed that the Bayes mixture can be an efficient universal
code for the class of i.i.d. distributions and has the advantage of being fast
to compute, even when optimizing the hyperparameter α. The minimax
optimal hyperparameter for the Bayes mixture was shown to be 1/3 when
the alphabet size is large compared to the sample size. The asymptotic
properties of the 1/3-mixture show that as n is fixed and m approaches
infinity, the worst-case regret of the 1/3-mixture approaches that of the NML
distribution. This also results in a constant-time approximation of the NML
regret for large m. In numerical experiments the 1/3-mixture achieves lower
worst-case regret than an earlier proposed tilted Stirling ratio distribution
when n is small or m is very large compared to n.

We also devised an algorithm that can compute the optimal hyperparam-
eter efficiently for any sample size and alphabet size. This algorithm can
be useful in all applications for universal coding on i.i.d. distributions, such
as compression, prediction and gambling [42]. The choice of α is important
if we wish to achieve as low regret as possible even in the worst case, and
can be important in for example Bayesian network structure learning [33].
Certain choices of α achieve asymptotic minimaxity and thus approach the
optimal worst-case regret when the sequence length increases.

Possible application areas for the 1/3-mixture include natural language
processing and Bayesian networks as both can involve large alphabets. The
1/3-mixture provides a universal coding distribution whose worst-case per-
formance is almost optimal when the size of the alphabet is large. Even
though compression and probability estimation by add-constant rules on
large alphabets have traditionally been avoided [25], the 1/3-mixture can be
useful in for example model selection where its regret can be calculated in
time not dependent m, or by allowing approximation of the NML regret in
constant time. Furthermore, we note that the optimality of the 1/3-mixture
holds not only in the limit, but for all values of n as long as m exceeds the
derived bound. The minimax optimality of the Dir(1/3, . . . , 1/3) prior can
also serve as a theoretical justification for choosing the hyperparameters in a
model with Dirichlet priors when the alphabet size is large.

There are several questions remaining for future work. One possibility is
to study whether α = 1/3 also minimizes the worst-case redundancy when
the size of the alphabet is large compared to the sample size. Furthermore,
it could also be useful to derive an asymptotic formula similar to the one
proposed by Watanabe and Roos, but including a dependency on m yielding
improved finite-sample performance for larger values of m. Finally, the
behavior of Bayes mixtures should be studied in the large alphabet setting
as building blocks in models that incorporate context. In particular, an
algorithm similar to the context-tree weighting algorithm [39] which uses the
Krichevsky-Trofimov estimator could be developed for large alphabets.
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