
Date of acceptance Grade

Instructor : Prof. Sasu Tarkoma

Advisor : Oscar Novo

Using Blockchain Technology and Smart Contracts for Access
Management in IoT devices

Rupsha Bagchi

Helsinki May 8, 2017

UNIVERSITY OF HELSINKI
Department of Computer Science

Faculty of Science Department of Computer Science

Rupsha Bagchi

Using Blockchain Technology and Smart Contracts for Access Management in IoT devices

Computer Science

May 8, 2017 80 pages + 9 appendices

Internet of Things, Blockchain, Ethereum, Smart Contracts, Device Management, Docker

The Internet of Things is a proliferating industry, which is transforming many homes and businesses,
making them smart. However, the rapid growth of these devices and the interactions between these
devices, introduces many challenges including that of a secure management system for the identities
and interactions of the devices. While the centralized model has worked well for many years, there
is a risk of the servers becoming bottlenecks and a single point of failure, thereby making them
vulnerable to Denial-of-Service attacks.

As a backbone of these interactions, Blockchain is capable of creating a highly secure, independent
and distributed platform. Blockchain is a peer to peer, distributed ledger system that stores all the
transactions taking place within the network. The main purpose of the servers that form a part of
the distributed system is to provide a consensus, using various consensus algorithms, on the state
of the blockchain at any given time and to store a copy of all the transactions taking place.

This thesis explores the Blockchain technology in general and investigates its potential with regard
to access management of constrained devices. A proof of concept system has been designed and
implemented that demonstrates a simplified access management system using Ethereum Blockchain.
This was done to check whether the concept can be applied at a global level. Although the latency
of the network depends on the computing power of the resources participating in the Blockchain,
an evaluation of the proof of concept system has been made, keeping in mind the smallest device
that can be involved in the consensus process. Docker containers have been used to simulate a
cluster of the nodes participating in the Blockchain, in order to examine the implemented system.
An outline of the various advantages and the limitations of Blockchains in general, as well as the
developed proof of concept system, has also been provided.

ACM Computing Classification System (CCS):
C.2.0 [General]: Security and Protection,
C.2.4 [Distributed Systems]: Distributed applications,
C.3 [Special Purpose and Application-Based Systems],
C.4 [Performance of Systems]: Reliability, availability, and serviceability,
C.5.3 [Microcomputers]: Portable devices,
H.3.4 [Systems and Software]: Distributed Systems

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Research Questions and Objectives 4

2 Methodology 5

3 Blockchain Technology 8

3.1 Architecture . 9

3.1.1 Network Architecture . 9

3.1.2 Nodes . 10

3.1.3 Transactions . 10

3.1.4 Blocks . 12

3.1.5 Merkle Trees . 14

3.1.6 Mining . 17

3.2 Consensus Mechanisms . 18

3.2.1 Proof of Work . 19

3.2.2 Proof of Stake . 19

3.2.3 Proof of Burn . 20

3.2.4 Delegated Proof of Stake . 20

3.3 Double Spending . 20

4 Blockchain Implementations 22

4.1 Bitcoin . 22

4.1.1 The Bitcoin Network . 22

4.1.2 Transactions and Scripting language 23

4.1.3 Stale and Orphaned Blocks 23

4.2 Ethereum . 24

4.2.1 Ethereum Accounts . 25

iii

4.2.2 GHOST protocol . 26

4.2.3 Smart Property and Smart Contracts 28

4.2.4 Ethereum Mining . 31

4.3 Main differences between Bitcoin and Ethereum 34

4.4 Other Implementations . 35

4.4.1 Systems built on the Bitcoin blockchain 36

4.4.2 Systems built on the Ethereum blockchain 38

4.4.3 Independent blockchain systems 38

5 Management of Internet of Things Devices 41

5.1 IoT Protocols and Standards . 41

5.2 Constrained Application Protocol (CoAP) 42

5.3 Constrained Objects Language and CoAP Management Interface . . . 42

5.4 Lightweight M2M (LWM2M) . 43

5.4.1 Device Management Implementations for IoT using LWM2M . 45

5.5 IoT on Blockchains . 46

6 Design and Implementation of Proof of Concept 47

6.1 Rationale behind choice of technology 47

6.2 Architecture . 48

6.2.1 Data flow in the system . 50

6.2.2 Component: Contract Creator 51

6.2.3 Component: Manager . 52

6.2.4 Component: Client . 52

6.2.5 Component: Smart Contract 54

7 Evaluation 58

7.1 Test Methodologies . 58

7.1.1 Functional Testing . 58

7.1.2 Non Functional Testing . 59

iv

7.2 Test Environment . 59

7.2.1 Hardware . 59

7.2.2 Docker Containers . 59

7.2.3 Testbed configuration . 60

7.3 Latency and Throughput Evaluation 60

7.4 Security Analysis . 64

7.4.1 Malicious Clients . 64

7.4.2 Malicious External Smart Contracts 64

7.4.3 Sybil Attack . 65

7.4.4 Timestamp Hacking . 65

7.5 Limitations of the system . 66

7.5.1 Block creation time . 66

7.5.2 Changes to the system . 66

7.5.3 Timestamp Dependence . 67

8 Discussion 68

9 Conclusion 74

10 Future Work 75

References 76

Appendices

1 Contract Creator function description

2 Smart Contract function description

3 Client libraries used

1

List of Figures

1 Design Science Research Process Model (DSR cycle) 6

2 Blockchain Network Architecture . 9

3 Transaction ownership chain . 11

4 Blocks in the blockchain . 12

5 Merkle Trees in blockchain . 16

6 Longest chain selection in Bitcoins 24

7 Ethereum GHOST protocol . 27

8 Simplified view: Deployment of smart contracts in the blockchain . . 29

9 Snapshot of mining console on Go Ethereum 33

10 Snapshot of DAG generation in mining console on Go Ethereum . . . 34

11 CoOL/CoMI architecture overview 43

12 Architecture of Lightweight M2M . 45

13 Overview of the system design . 48

14 Use case diagram for the actors . 49

15 Overview of how the different components interact 51

16 The front end of the Client . 54

17 Simplified architecture of the smart contract 55

18 Overview: How a rule is added to the smart contract 57

19 Effect of System resources on block creation time 63

20 Example: Sharding . 71

2

List of Tables

1 Fields in a transaction . 11

2 Structure of a Block . 13

3 Block Header structure . 13

4 Gas consumption for some operations 30

5 Overview: Some blockchain implementations discussed above 40

6 Functions of the components . 50

7 Relationship between System Resources and Block Creation Time . . 62

3

1 Introduction

Blockchains have been around for 9 years now, with the introduction of Bitcoins by
Satoshi Nakamoto. While there is still a lot to learn about the blockchain technol-
ogy and its potential, increasingly many people are starting to grasp the foundation
behind blockchains and realize that the use cases of blockchains lie beyond cryp-
tocurrencies. Some organizations such as Ethereum and Rootstock have created
decentralized application platforms on top of blockchains. The decentralised plat-
forms have the ability to run blocks of code, thereby giving an opportunity to build
decentralised software programs.

This thesis aims to investigate the potential of the Ethereum blockchains to power
constrained devices and to find out whether it is possible to implement the access
management aspect of it, at a global level. This is done through implementation and
evaluation of a simplified access management proof of concept over the Ethereum
blockchain. Chapter 6 dives deeper into the architectural and implementation as-
pects of the system built for this thesis.

1.1 Motivation

One potential use of blockchain is its application in the realm of Internet of Things
(IoT). Current IoT systems rely on centralized or brokered paradigms with huge
computational and storage capacities, also known as the client-server model. The
existing Internet of Things setups are therefore expensive, owing to the high costs
associated with cloud server infrastructure(s) and maintenance, as well as other
factors such as network equipment. Moreover, there is no existing platform that
supports communication between all devices, and also a lack of guarantee that the
services offered on cloud by different mobile device manufacturers are interoperable.
While the client-server paradigm has been instrumental in connecting generic devices
with each other for decades, it will not be able to support the challenges that stem
from the burgeoning growth of the IoT economy.

Making use of a standard peer-to-peer decentralized communication approach will
not only reduce the costs corresponding to maintenance and infrastructure of server
clusters, but will also share the processing and space requirements of a huge number
of devices on the IoT network, without sharing any additional resources. Blockchain
provides a solution that suits the need for such a platform. It is an immutable
ledger that is distributed among the participants registered on the Blockchain, and

4

therefore cannot be manipulated or require middlemen.

1.2 Research Questions and Objectives

Usually, centralized Authentication, Authorization and Accounting servers [AbW03]
have been used by the management systems to handle user requests for access to
different constrained device resources. While a centralized resource management
system is a good idea for private entities such as organizations, the Internet of Things
is designed to work as a global interoperable system, since various constrained mobile
devices can belong to different management communities during their lifetime. One
example of this is the different parts of a vehicle manufactured and assembled by
different organisations. Registering all the devices in a common blockchain would
allow customers as well as sellers to independently communicate with other devices
on the blockchain and be able to access the information over time. This in turn
would lead to increased trust and transparency.

This thesis aims to investigate how to make Identity and Access Management of IoT
devices more autonomous and distributed, without having to trust a single entity to
store all the data securely. There are distinct differences between the traditional way
device management processes are handled and using the blockchain as a database,
which this thesis attempts to show. The main research questions this thesis seeks
to answer are the following.

1. Is it possible to implement IoT device management, specifically in constrained
devices, on blockchains, on a global level?

2. What advantage does the use of blockchain bring to IoT?

3. What are the caveats and challenges of using blockchains for management of
constrained devices, specially considered at a global perspective, and how can
they be mitigated?

5

2 Methodology

This section describes the research methodology used to carry out the research for
the questions explained in the previous section Research Questions and Objectives.
The main technique was adopted from the main guidelines described in [VaK15],
which explains Design Science (DSR) as a research methodology usually used in
Computer Science. DSR is also extensively used in the fields of education, health-
care, and engineering.

This DSR methodology follows a process model, with specific sequential phases as
illustrated in Figure 1. The methodology involves a problem statement which is
investigated through the design of an artifact, which in turn is evaluated to assess
whether the initial problem was solved. The following paragraphs explain about the
different phases of DSR in more detail.

Awareness of Problem The methodology starts with a problem statement, the
awareness of which, may come from multiple sources such as a new development in
the industry or from a reference discipline. For instance, in this case, IoT devices
need to be managed globally in a more secure yet transparent way. The blockchain
technology can be made use of here.

6

Knowledge
Contribution

Design
Science
Knowledge

Awareness of
Problem

Suggestion

Development

Evaluation

Conclusion

Circumscription

Knowledge
Flows

Process
Steps

Outputs

Proposal

Artifact

Assessment

Discussion
and
Reflection

Figure 1: Design Science Research Process Model (DSR cycle)

Suggestion The suggestion phase follows after the awareness phase and includes a
proposal along with a tentative design of the proposed solution. The tentative design
also comprises of the specifications of the planned artifact. This phase, therefore, is
a creative step where new solutions can be visualised based on the combination of
existing and new solutions. In the case of this thesis, through researching the existing
IoT device management systems and blockchain technology, an attempt has been
made to implement a proof of concept that can facilitate device management over
blockchains.

Development In this phase, the tentative design proposed in the Suggestion phase
is further developed and implemented. During this phase, the proof of concept
system is realised based on the suggestions proposed in the previous phase.

7

Evaluation Once the artifact is implemented, it is analysed and evaluated using
various criteria as deemed implicit or as defined in the proposal. Evaluation of the
artifact can include various methods such as observing, testing or by the way of
experimenting. Deviations from the expected results are examined and discussed
about in the scientific document. Section 7.1 under the Evaluation chapter talks in
detail about various test methodologies, and the ones considered for this system.

Conclusion This phase is the supposed end of the research cycle, or the ending
point of a particular research effort. The results can then serve as a base for further
research or for development of a larger system.

8

3 Blockchain Technology

The introduction of Bitcoin [Sat08] in 2009 introduced a new era in the digital world.
It illustrated some novel approaches to computing such as decentralization, where
no one server holds control of the network, immutability, where data once written
can never be erased, as well as the ability to issue and transfer currency recorded
into an open ledger called the Bitcoin blockchain, without any third party. As
people started delving more into the blockchain technology underpinning Bitcoin,
they realized that the scope of blockchain itself can be extended to a much wider
range of applications. Theoretically, the transactions on the blockchain could be
used to represent more than money, e.g. complex agreements between two parties.

A few aspects of these solutions that should not be neglected, are the cost of the
services and the fact that too much control is given to the data administrators, or
middlemen. That is where blockchain technology is at an advantage. Blockchains are
immutable, and serve as ledgers that contain records of every transaction ever made
among participants in a given network, encrypted into blocks using a cryptographic
hash function SHA2561. The technology supports a feature called smart contracts
that validate whether terms are met by each party.

Blockchains have been classified into three main types according to the level of
access granted to the users participating in the network. [Gav14] categorizes it
into public blockchains, private blockchains and consortium blockchains. Public
blockchains are those that can be participated in and read by anyone; Consortium
or permissioned blockchains are ones where the miners are chosen in advance and
therefore are partly decentralised; and Private blockchains are those that can be
read by anyone but written to only by private parties such as organisations. In this
thesis, the intention of the larger system is mainly to have a mix of consortium and
public blockchains. The smaller proof of concept system this thesis uses however,
makes use of a private blockchain to test the system.

The subsequent sections delve into the details of how Blockchain Technology oper-
ates and the real world implementations of Blockchains.

1SHA256 stands for Secure Hash Algorithm 256-bit

9

3.1 Architecture

The network architecture of a Blockchain distributed network is peer-to-peer, and is
based on top of the network layer. Peer-to-peer network, also known as P2P, refers
to a group of computers acting as a node for sharing files within themselves. The
Blockchain, therefore, runs on a distributed network of servers, also known as nodes.
These nodes in the network serve the purpose of providing a consensus on the state
of the blockchain at any given time, and have a copy of the blockchain stored in
them. The fundamental application of the Blockchain is a transaction ledger, sort
of like a secure public ledger, that stores all the transactions that take place within
the network. This makes it a very secure and transparent decentralised system.

3.1.1 Network Architecture

Blockchain
overlay network

Blockchain
message
exchange

TCP model
Application
Transport
Internet

Network Access

Blockchain
overlay network

Blockchain
message
exchange

Message
 flow

Node A Node B

Data flow from left to right

TCP model
Application
Transport
Internet

Network Access

Figure 2: Blockchain Network Architecture

10

3.1.2 Nodes

The nodes or clients connected to the network in the Blockchain system are an es-
sential part of the system. They support various functions such as routing, mining,
storing the blockchain data and serving as a wallet. All nodes participate in ver-
ification and propagation of transactions, and are enabled with features including
discovering and maintaining connection with their peers. They also maintain a copy
of the ledger, or the blockchain, which contains data about all the transactions that
have ever happened, thereby eliminating the need of having a centralised server to
store it. Nodes can also act as Miners, and help verify and validate all the transac-
tions made by all the users. All miners are nodes, but all nodes are not necessarily
miners.

The nodes are mainly of three kinds namely, full nodes, simplified payment ver-
ification (SPV) clients and web clients. Web clients, usually called wallets, are
stored on third party servers and can be accessed through web browsers. SPV nodes
usually include clients that do not possess enough hardware capabilities like mobile
devices, or more constrained devices like embedded systems. These SPV nodes do
not need to store a copy of all the transactions in the blockchain, and instead store
only the block headers. These nodes have a slightly different way of verifying trans-
actions from the full nodes, since they do not keep a track of all the transactions
taking place on the blockchain. They depend on their peer nodes to provide the
transaction information they require, on an on demand basis. Full nodes, on the
other hand, are the nodes that store an up to date copy of the blockchain in its
entirety.

Once the nodes are connected to the Blockchain network, they start looking for other
peers to connect to, on a particular port over TCP. This process of node discovery
is also called as the discovery protocol.

3.1.3 Transactions

Transactions are data structures stored in files called blocks. They are not encrypted
and are typically linked to previous transactions, thus forming a chain. A digital
currency owner digitally signs the previous transaction with their public key and
a hash is created out of it. The owner of the previous transaction then signs the
hash with their private key. Figure 3 illustrates a simplified version of the ownership
chain, as explained in [Sat08]. In more complex cases, the number of inputs and

11

outputs can be multiple. A transaction contains a number of fields as shown in
Table 1.

Size Field Description
4 bytes Version Specifies which rules this transaction follows
1-9 bytes (VarInt) Input Counter How many inputs are included
Variable Inputs One or more transaction inputs
1-9 bytes (VarInt) Output Counter How many outputs are included
Variable Outputs One or more transaction outputs
4 bytes Locktime A Unix timestamp or block number

Table 1: Fields in a transaction

Block containing the transactions

Figure 3: Transaction ownership chain

Most transactions also include a fee that is paid to the miners to keep the blockchain
consistent and secure. These miners mine a block which records the transactions
on the blockchain and in return receive the transaction cost as an incentive. Most
wallets calculate these transaction fees automatically.

12

3.1.4 Blocks

Figure 4: Blocks in the blockchain

Figure 4 illustrates the linkage of blocks in the Blockchain. The blocks marked in
black show the current active blockchain. The ones marked in grey are called stale
blocks. A detailed explanation about this has been provided in Section 4.1.3. The
Blockchain is technically an ordered and timestamped linked list of blocks, that
provides a record of all the transactions that have ever happened. Each of these
blocks is linked to the previous one, i.e. its parent, through a unique hash. These
hashes are generated through the SHA256 hashing algorithm. In other words, the
header of each block contains a reference to its parent’s hash. This linking continues
all the way up to the first block in the blockchain, also known as the genesis block.
The genesis block is the leftmost blue block indicated in Figure 4.

A block can have multiple children simultaneously. Each child refers to the same
parent block’s hash. Ultimately, one of these child blocks becomes the part of the
main blockchain. This phenomenon is known as forking. This happens when mul-
tiple miners mine and verify different blocks at the exact same time. The blockchain
is also called immutable since it is an astronomical expense to recompute the hashes
of all the blocks starting from the genesis block. Table 3.1.4 describes the various
fields in a block along with their sizes. Table 2 further describes the structure of
a block header, explaining the different kinds of metadata associated with the blocks.

Since the block header is a part of the block, a complete block, including all the
transaction information, is much bigger in size than a block header. This is the
reason, SPV clients and wallets download just the header files of the blockchain while

13

Size (bytes) Field Description
4 Block Size The size of the block
80 Block Header Consists of several fields, as shown in Table 3
1-9 Transaction Counter Number of transactions included in the block
Variable Transactions Recorded transactions included in the block

Table 2: Structure of a Block

retrieving their desired block’s info from the full nodes connected to the network.
Table 3 shows the various fields included in a block header.

The merkle root field refers to the root of a merkle tree that stores the transaction
information in every block. A detailed explanation of Merkle trees is provided at
Section 2.1.5.

The timestamp, difficulty and nonce fields are connected to the transaction verifica-
tion process that the bitcoin miners compete for.

Size(bytes) Field Description
4 Version Software version
32 Previous Block Hash Reference to hash of the previous block
32 Merkle Root Hash of the root of the merkle tree containing

all the transactions included in the block
4 Timestamp Approximate time when the block was created
4 Difficulty Target Proof of work difficulty for the block
4 Nonce Proof of work counter

Table 3: Block Header structure

[Gav14] explains the validation process of the blocks and decision making pro-
cess that leads to the addition of a block to the blockchain, using the blockchain
paradigm. The process takes place in the following sequence. The system first checks
whether the previous block hash that the current block references to, is valid. The
time-stamp of the block is then checked, since its value needs to be greater than
that of the previous block and less than two hours into the future. The validity of
proof-of-work is then checked. If the state of the previous block when compared with
the list of transactions returns true, the new block is added on to the blockchain.

14

Block hash and height

There are two ways to identify a block. First, by its hash. This hash is computed
by the peer nodes in the network every time a block is generated. The hash could
be stored in a database included in the block’s metadata for faster indexing and
retrieval of the blocks from the disk. The second way to identify a block would be
by its height. The genesis block is at height 0. This method of identification is
not absolute because two or more blocks in the blockchain can have the same block
height, and it is also possible that two blocks of the same height have the same
parent.

3.1.5 Merkle Trees

Each block in the blockchain contains a Merkle tree, that stores the transaction
information. Merkle tree [And14], or a hash tree, is a data structure that helps
with verification and summarizing of large sets of data. They efficiently store all
the transactions in the block, and their root contains a hash of all the transactions
in the block. The merkle trees facilitate the SPV nodes to download just the block
headers and still be able to identify whether a transaction is included in a particular
block, by obtaining the small merkle path from a full peer node. Figure 5 illustrates
how merkle trees are used in transactions in a block on the blockchain.

Merkle Tree creation

Merkle trees are created in a bottom up manner by recursively using double SHA-256
Hash. Therefore, the leaves of a Merkle tree store hashes of the transactions pertain-
ing to a block, rather than the transactions themselves. The following code snippet,
which uses the bitcoin library, demonstrates how a merkle tree is constructed from
the ground up, as mentioned in [And14].

#include <bitcoin/bitcoin.hpp>

bc::hash_digest create_merkle(bc::hash_list& merkle)

{

if (merkle.empty())

return bc::null_hash;

else if (merkle.size() == 1)

15

return merkle[0];

while (merkle.size() > 1)

{

if (merkle.size() % 2 != 0)

merkle.push_back(merkle.back());

bc::hash_list new_merkle;

for (auto it = merkle.begin(); it != merkle.end(); it += 2)

{

bc::data_chunk concat_data(bc::hash_size * 2);

auto concat = bc::make_serializer(concat_data.begin());

concat.write_hash(*it);

concat.write_hash(*(it + 1));

assert(concat.iterator() == concat_data.end());

bc::hash_digest new_root = bc::bitcoin_hash(concat_data);

new_merkle.push_back(new_root);

}

merkle = new_merkle;

return merkle[0];

}

The above-stated snippet of code works in the following way. It creates a Merkle
tree from the leaf nodes and calculates SHA-256 hashes until the root of the tree.
The first if conditions checks if the list of transaction hashes is empty, and stops in
that case. Otherwise, the second condition is executed, and the hash list is evened
out. The code then loops two hashes, concatenates them and subsequently hashes
the combined hashes to form their parent node. Continuing in this fashion, the code
ends up with the root of the Merkle tree, which includes a hashed concatenation of
all the hashes of the transactions existing in the Merkle tree nodes and leaves.

16

Block 1 Transactions

Block 0 Header

Previous header
hash

Merkle root

H(hA|hB) H(hA|hB)

H(A) H(B) H(C) H(D)

B C DA

Block 2 Header

Previous header
hash

Merkle root

Block 1 Header

Previous header
hash

Merkle root

Merkle tree connecting block transactions to block header merkle
root

BLOCKCHAIN

Crypto hash
pointers

Digital
signatures

Figure 5: Merkle Trees in blockchain

Simply put, merkle trees are used to connect transactions to blocks in the case of
Blockchains. Every block header contains a single hash, i.e. the merkle root, which

17

in turn is the root of a merkle tree that contains all the transaction id hashes. It
has several layers of checksum that could, therefore, be used to validate individual
transactions or even verify a block. Since every merkle root contains a hash of all
the hashes of transactions in the block, it is not necessary to have a copy of the
entire tree. This also helps with pruning the blockchains, as we will discuss later in
the Discussion section.

3.1.6 Mining

There are two major benefits of mining for the blockchain network namely, validation
and verification of transactions. Mining also generates new digital currency coins to
the network, since these newly minted coins serve as the reward to the miner who
solves the next block in the blockchain.

The first step to mining is calculating the difficulty level of the blockchain. All the
full nodes connected to the blockchain network recalculate this difficulty level after
certain intervals. The level can either increase or decrease based on how long it
takes to generate the certain interval of blocks. In the case of Bitcoins, which was
the first implementation of blockchains, the interval is 2016 blocks. Thus, the full
nodes have to rehash the difficulty level after every 2016 blocks, which leads to an
average consensus time of 10 minutes. As the number of miners increase, the rate of
block creation also increases. This is turn, leads to an increase in the difficulty level,
since it pushes the rate of block creation down to the original time of 10 minutes,
in the case of Bitcoin.

The miner then downloads all the transaction and block information that happened
previously, and constructs a merkle tree out of them, eventually generating a merkle
root.

In order to form a block, a miner is free to choose the number of transactions they
want. The only limiting factor to that is the maximum block size. As an example,
in case of Bitcoins, the maximum block size is 1 MB, and so, depending on the
transaction size, a maximum number of transactions that occupy upto 1 MB space
can be accommodated in the block. In Ethereum, the maximum block size is not
in terms of the storage space it occupies, but rather in terms of the maximum gas
limit that it can allow. The role of gas and how it is calculated has been discussed
at length in Section 4.2.3. A detailed account of how mining takes place in the
Ethereum system is mentioned in Section 4.2.4.

18

The miner then generates the block’s hash from the block header values and then
compares the hash to the current difficulty level of the network. This hash is gen-
erated using one of the few consensus algorithms used in blockchain systems, which
we delve into, in Section 2.2.

The pseudo code below, where H(n) and H(b) refer to the difficulty level of the new
block and the existing block difficulty level respectively, shows the conditions that
a block must satisfy in order to be accepted.

If (H(n) > H(b)) && (Block accepted by the network)

Block is propagated and miner gets rewarded

else

Block is rejected

There can also be a possibility of two or more miners generating a block at the
same time. This leads to the formation of Stale and Orphan Blocks. Different
implementations of blockchains deal with these stale and orphaned blocks differently,
as will be discussed in Chapter 4 under the blockchain implementation section.

Solo and Pool Mining

There are two ways mining can be done on a blockchain network. The first being,
solo mining and the second, pool mining. As the name indicates, solo mining refers to
a single miner trying to generate blocks on the blockchain in exchange for rewards.
But owing to the increasing difficulty of generating blocks, and maintaining the
mining hardware costs, it is becoming increasingly difficult to mine alone. In case of
pool mining, the group needs to have an agreement on reward and risk distribution
for each miner. Every pool operates on their own set of rules, sometimes involving
extra "fees" for the pool operator.

3.2 Consensus Mechanisms

Consensus is a fundamental problem in Distributed Systems that requires two or
more agents to mutually agree on a given value needed for computational purposes.
Some of these agents may be unreliable, and therefore the consensus process needs to
be reliant. Thus, the need of consensus mechanisms is to facilitate secure updation

19

of a process or a state, in accordance with certain state transition rules, where a
distributed set has the right to perform the state transitions [Eth16].

The most commonly used consensus mechanisms in case of Blockchains are discussed
in this section.

3.2.1 Proof of Work

There are two kinds of rewards a miner can receive for mining a block. First being,
the transaction fees from all the transactions picked by the miner for the block
formation, and second, the new digital currency created with every block. To be
able to earn these rewards, the miners compete to solve a mathematical problem
called proof of work(PoW). PoW is a consensus algorithm, and is really a brute force
crack on a SHA256 hash algorithm. This works as a proof that the miner has used
some heavy duty computing resources. The exact condition is that the double hash
of every block must be less than the difficulty target[Eth16].

51% attack

Besides the fact that proof of work algorithm consumes a lot of energy, there is
another flaw to it called the 51% attack. If a single entity were to contribute to
more than 51% of the bitcoin network’s mining, they would be able to fully control
the network and modify the ledger according to their needs. While this attack is
theoretically possible, it would cost the miners an enormous amount of money as
well as computational power[ABC16].

3.2.2 Proof of Stake

As discussed earlier, PoW algorithm estimates how much of the network agrees on
the blockchain’s existing state at that point, using the difficulty and nonce fields.
This requires a lot of computational resources, which in turn requires a lot of expen-
ditures on the part of the miner. This is the main reason miners are compensated
with adequate digital currency, which are created whenever a block is mined and
added to the blockchain. Therefore, motivated by the problem of energy efficiency
and usage of a huge amount of computational resources, a consensus algorithm called
Proof of Stake was suggested.

In case of the proof of stake (PoS) algorithm, the consensus is achieved on how much

20

of the cryptocurrency agrees with the present state of the blockchain. PoS therefore,
requires the cryptocurrency owners to prove that they own a certain amount of
cryptocurrency which equates to their stake in the currency [But16]. The required
amount of coins (also known as the target) to be able to be a part of the proof of
stake network is usually set in advance by the network using a difficulty adjustment
process similar to that of proof of work.

3.2.3 Proof of Burn

Proof of burn[Ste14] is an alternative distributed consensus algorithm to PoW and
PoS. The idea is to destroy or burn some coins by sending them to an unverifiable
address on the blockchain network. This helps reduce the total supply of currency
on the blockchain and increase the value of the coins in circulation. Destroying
some of their currency would ensure that the miners get lifetime rights to mine,
since in this case the chances of being allowed to mine is a lottery among the owners
of destroyed coins. Therefore, the more burnt coins, higher are the chances of the
miner to win in the lottery. Different implementations of proof of burn handle the
lottery system differently. One such system that implements proof of burn in their
cryptocurrency system, is called Counterparty 2.

3.2.4 Delegated Proof of Stake

Delegated proof of stake(DPoS)[Org15] combines proof of work and proof of stake
characteristics and uses a decentralized voting system. The distinguishing factor in
DPoS is that the top 101 delegates are the ones securing and forging the network.
These delegates are determined by their stake in the network just as in proof of
stake.

3.3 Double Spending

One question that arises from the use of digital currency is that of double spending
[Sat08] i.e., currency counterfeit. Can the cryptocurrency owner be sure nobody else
is falsely claiming ownership to their coins? How would one know if the amount the
sender send, actually goes into the blockchain? Physical currency notes solve the
problem easily because the same note cannot be given to two different people at the

2Counterparty: For more information - http://counterparty.io

21

same time. For a virtual currency, the main issue seems to be that of synchronisation.
In case of Bitcoins, if a user attempts to spend the same bitcoin twice for example,
the miners reject both the transactions to prevent the same bitcoins from going
two separate ways. However, if the user does succeed in double spending, one of the
receiving parties does not receive any bitcoins. In this case, the accepted transactions
is included in the blockchain and is irreversible. Therefore, in effect, Blockchains
eliminate the issue of double spending.

22

4 Blockchain Implementations

This chapter talks discusses about various Blockchain implementations, with more
focus on the Bitcoins and Ethereum systems. The chapter is organized as follows.
Section 3.1 explains the Bitcoins system, Section 3.2 explains the Ethereum system
and Section 3.3 talks about some other well known Blockchain implemetations.
Table 5 gives an overview of the various blockchain systems discussed in this chapter
and their salient features.

4.1 Bitcoin

Bitcoin is a cryptographic currency (also known as a cryptocurrency), that serves as
a digital financial asset, and was created by programmer(s) under the pseudonym of
Satoshi Nakamoto. Bitcoin uses public key cryptography, peer to peer networking
and proof of work to make transactions and verify them.

The main idea behind proposing Bitcoins was not to rely in the trust of cen-
tralised banks, since they invest people’s money in the market with very little in
reserve[Sat08]. Therefore, Bitcoin focuses on providing total transparency. Every
time a bitcoin owner makes a payment, the transaction is broadcast over the network
and recorded in the blockchain forever, thereby making it an immutable transaction.

4.1.1 The Bitcoin Network

Bitcoin uses public key cryptography, peer to peer networking and proof of work to
make transactions and verify them. It was the first blockchain to be conceptualised
and implemented.

The Bitcoin system is programmed such that a new block is created once every 10
minutes. Even if a block were to get created in under the stipulated time of ten
minutes, albeit with a very small chance since it is very computationally expensive
to be able to do so, it can only happen for a very short time. The difficulty adjusts
itself until the block creation time becomes ten minutes again, which is usually
after every 2016 blocks in case of Bitcoins. The 10 minute block creation time, as
described in [Sat08], was chosen as a compromise between propagation time of new
blocks in large networks and the amount of work wasted due to chain splits. A faster
block creation time would mean that there could be more chances of many miners
mining a block at the same time, and that would lead to more forks. If a fork is

23

not a part of the longest chain, it becomes an orphan block. We discuss more about
orphan blocks in Section 3.1.3. The choice of ten minutes also takes into account,
the slow network speeds in many parts of the world.

4.1.2 Transactions and Scripting language

An interesting fact to note is that there are no balances in bitcoin, or rather there are
unspent transaction outputs (UTXO) in the blockchain. Whenever some bitcoins
are received, they are recorded as UTXO. The receiver then scans the blockchain
and adds up all the UTXO associated with their account, and figures out how
many they own. Thus, sending someone a bitcoin actually means creating a UTXO
corresponding to the receiver’s address, which they can spend. An output typically
consists of two fields namely, the amount and a locking script. A satoshi is the
smallest denomination of the amount that can be sent. The locking script sets out
conditions that need to be fulfilled in order to spend the UTXO.

The Bitcoin nodes follow a scripting system to validate transactions. It follows
a scripting language called Script. When a transaction is validated, an unlocking
script runs simultaneously with the UTXO’s locking script to verify whether the
condition that facilitates spending is satisfied. There are five standard transaction
scripts including pay to public key hash, multi signature, pay to script hash, public
key and OP_RETURN. OP_RETURN is the only transaction output that allows
any data not related to the transaction itself. This data cannot be spent, and can
be of 40 bytes. Needless to say, it does not form a part of the unspent UTXO
calculations for account balance.

4.1.3 Stale and Orphaned Blocks

Often during mining, there are many blocks that do not end up becoming a part of
the blockchain. There can be several reasons causing this phenomenon. Stale blocks
are those that have a preceding block, but are not a part of the main blockchain.
One possibility of a block turning out to be stale is when two miners produce valid
blocks simultaneously and one of them is propagated into the network slower than
the other one. The slower block ends up being discarded, and the more widely
accepted block becomes a part of the blockchain. This is more common when the
difficulty is low, which lets many miners solve the proof of work algorithm in a short
time frame. Such situations result in a conflict, and usually the computationally

24

longest chain wins. The length of a chain, in this case, is measured by the amount
of work it took to find an individual block in the chain. Figure 6 illustrates this
with an example. In this case, when block B3 is mined, the second chain, i.e. chain
B is chosen because it is longer.

Figure 6: Longest chain selection in Bitcoins

Orphaned blocks, on the other hand are those blocks that do not have a valid parent.
When a miner downloads an orphaned block, they first have to find and validate the
unknown/missing parent block, and then proceed to validate the former orphaned
block.

As many miners compete to generate blocks on the blockchain, the possibility of
having stale or orphaned blocks is quite high. The full nodes in the blockchain net-
work, keep such blocks in the memory, while trying to validate the ancestry of the
orphaned blocks. These blocks are evetually discarded and the rewards or the trans-
action fees associated with these blocks become unspendable. This phenomenon of
generation of orphaned blocks is also known as Chain Reorganization. The latest
version of the Bitcoin system, at the time of writing this thesis, does not generate
any orphan blocks anymore due to a recent change in their download mechanism3.

4.2 Ethereum

Ethereum was designed by a Bitcoin developer named Vitalik Buterin in 2013, who
wanted to build a platform to facilitate development of decentralised applications,
also known as DApps, on top of the blockchain. Ethereum has its own cryptocur-
rency called ether, and an internal currency to pay for computations and transaction

3Change in Bitcoin 1.0: http://bitcoin.stackexchange.com/questions/5859/what-are-orphaned-
and-stale-blocks

25

fees called gas. Ethereum uses PoW as its consensus mechanism, but plans to also in-
clude PoS mining according to the foundation’s development roadmap plans[But16].

The decentralised applications can be programmed with a built in Turing complete
language [Tel94] called Solidity [Eth16]. An advantage of turing complete languages
is the ability to have loops [Gre15], which help perform required operations multiple
times without writing too many lines of code. To make the execution more efficient,
the code written in Solidity is compiled into an alphanumerical bytecode and then
executed by the nodes participating in the blockchain. We discuss more about this
later in this chapter.

4.2.1 Ethereum Accounts

In Ethereum, an account is an object with a unique 20 byte address together with
state transitions. Transitions refer to the data and value transferred between two
accounts. There are two kinds of accounts namely, Externally Owned Accounts
(EOA), that work with private keys and contract accounts, that are generated
when a contract code is uploaded into the blockchain. EOAs do not contain any
code, and are meant for signing transactions to produce messages from these ac-
counts. Contract accounts act on those messages which usually result in activating
the contract code that these accounts contain. A contract is basically a software
application that exists in the execution environment and is triggered whenever a
message triggers its code. A contract account has its own contract memory that
allows the persistent variables of the contract to be stored.

An account contains the following information. A transaction counter, that ensures
a particular transaction takes place only once, balance of the account, contract code
if any, and its own memory which usually houses contract specific data structures
and the values stored in them. Ethereum uses Merkle trees to keep a track of all
the EOAs and contract accounts.

Difference between Transactions and Messages

[Eth16] says that a transaction in Ethereum is a signed data package that contains a
message to be sent from an EOA. Transactions contain the fields as described below:

• Transaction receiver

• Sending EOA’s signature

26

• Value of ether to be transferred

• Data field

• STARTGAS value, the maximum number of possible computational steps in
the transaction execution

• GASPRICE value, fees paid by the sending EOA for every computational step

The last two fields have been introduced in Ethereum transactions to prevent denial
of service attacks. The reason they decided to set a limit on the number of com-
putational steps for a transaction, was to avoid accidental infinite loops or resource
wastage in the code. As discussed earlier, the unit used to measure fees per compu-
tation is called gas. Certain operations that involve more computations or require
storing information as a part of the state involve more gas expenditure. This way
the attacker will need to pay an appropriate amount of gas for every resource they
utilize.

Messages and transactions are almost identical, except for the fact that messages
are produced by contract accounts, and that these messages exist only within the
execution environment. The fields that a message is comprised of are:

• Message sender (contract account)

• Message receiver

• Value of ether if needed

• Data field

• STARTGAS value

4.2.2 GHOST protocol

The main idea of Greedy Heaviest Observed Subtree (GHOST) [Eth16] was to
securely cut down the consensus time for the bitcoin blockchain. This protocol
tries to solve two problems. First, the problem concerning reduced security of the
blockchain. The current process involves a high possibility of having stale blocks,
and having a faster confirmation time would increase the stale rate much more. To
deal with this issue, the calculation must involve taking the stale blocks into account
when trying to calculate the heaviest chain. This means that the calculation of

27

the chain into which maximum amount of total work was done, includes the stale
descendants of the block’s parent. Due to this, it is possible to increase the rate of
transaction without compromising the security of the blockchain. In Ethereum, the
stale blocks are referred to as Uncles.

Figure 7: Ethereum GHOST protocol

Ethereum implement GHOST in a simplified way, wherein it goes only seven gener-
ations down. The way it has been defined in the Ethereum code is as follows.

1. A block should specify atleast one Parent and zero or more Uncles.

2. An Uncle of block A must have the following characteristics:

• Should be different from all uncles included in previous blocks and all
other uncles included in the same block.

• Cannot be an ancestor of block A.

• Should be a valid block header

• Should be a direct child of the kth generation ancestor of A, where

2 <= k <= 7.

3. For every uncle U in block A, the miner of A gets an additional 3.125%, and
the miner of U gets 93.75% of the standard mining reward.

According to [Eth16], Ethereum implements a limited version of the GHOST pro-
tocol due to two reasons. Firstly, an unlimited version would be too complex with

28

all the calculations involving which Uncle block is valid. Secondly, the unlimited
version of GHOST would make the miners greedy to mine the Uncle blocks, thereby
making them vulnerable to mining on possibly the chain of a public attacker. By
incentivising uncle mining, the Ethereum system acknowledges the energy spent on
the generation of stale blocks.

4.2.3 Smart Property and Smart Contracts

Smart contract [Sza97] is a theoretical concept developed in 1994 by Nick Szabo
to create self-enforcing and perpetual computer software aimed at replacing legal
contracts. According to his description,

"A smart contract is a computerized transaction protocol that executes the terms of a
contract. The general objectives are to satisfy common contractual conditions (such
as payment terms, liens, confidentiality, and even enforcement), minimize exceptions
both malicious and accidental, and minimize the need for trusted intermediaries.
Related economic goals include lowering fraud loss, arbitrations and enforcement
costs, and other transaction costs."

In effect, it means that a smart contract is a distributed contract that can serve as
an agreement between people and the blockchain without the requirement that both
parties trust each other.

Smart Property [Sza97], is property controlled using smart contracts. This property
could be a physical things such as a house or a box, or a non physical entity such
as market shares or even permissions to a file server. The main function of a smart
property is that it can be dealt with in a trustless way.

In case of Ethereum, smart contracts are objects that have their own Ethereum
accounts. These objects contain programs that can store data, make decisions,
communicate with other contracts via messages, or even send money to other ac-
counts. These contracts are established in the blockchain by their owners, but their
execution is taken care of by the Ethereum network. They exist in the blockchain
forever. Contracts are programmed in a turing complete language called Solidity. It
can be thought of as a database slot that one can query or alter by passing messages
to the contract to access its functions managing that database.

29

Smart contract code execution

By definition, a contract is a written or a spoken agreement between two or more
parties. But in the case of Ethereum, a smart contract is more like an applica-
tion containing instructions for itself, that is activated every time a transaction is
made to its corresponding Ethereum account. These instructions are written in a
scripting language supported by the cryptocurrency system which lets the smart
contract access desired transaction, message or other pertaining information on the
blockchain. The scripting language in the case of Ethereum is a high level Tur-
ing complete, stack based and object oriented language that is executable on the
Ethereum Virtual Machine (EVM). The EVM initially supported two languages,
Solidity and Serpent. But Serpent is not officially supported anymore. Solidity is
influenced by Javascript, C++ and Go languages, whereas Serpent is built to be
very similar to the Python programming language.

During the block validation process, each miner tries to verify the portion of the
smart contract code responsible for the transactions with respect to the current block
[Eth16]. Figure 8 shows how a smart contract resides in the blockchain network.

Smart
Contract

The block is then added to
the chain which records a
non reversible history of
transactions in the ledger

Miners verify the
transactionA node deploys the smart

contract to the blockchain

Transaction

Node

Figure 8: Simplified view: Deployment of smart contracts in the blockchain

30

Gas

It is the coded logic in the smart contract that enables transfer of currency or
data from one place to another, through conditional transactions. These conditional
transactions in the blockchain require a certain amount of computational effort,
depending on the type of operation, owing to the fact that the miner nodes in the
network are the ones responsible for computing the logic and altering the state of the
blockchain. In the Ethereum blockchain, the computational costs are determined by
the unit called Gasprice or gas price. Gasprice is usually set by the developer, and if it
is set within certain bounds, the transaction corresponding to that gas price may be
accepted by the miners. Each operation requires a fixed amount of gas e.g., 3 units
of gas for an ADD operation or 5 units of gas for a multiplication (MUL) operation.
Table shows an example of some important operations along with the proportional
gas units they consume.

Operation Gas units
PUSH 3
ADD 3
MUL 5
SUB 3
OR 3
AND 3

Table 4: Gas consumption for some operations

Every transaction needs to be supplied with enough gas, also known as startGas,
to support the computation costs and its storage. The residual gas is then given
back to the user who initiated the transaction. The wallets usually calculate the
amount of startGas to be supplied by themselves, without the user having to worry
about it. The user can also calculate an approximate amount of gas required for
the transaction. [Gav14] gives a detailed explanation of all the computations costs
and how they can be calculated in Appendix G of their document. For example, to
make a call to a smart contract on the blockchain, the calculation can be done in
the following way.

Gas Price/transaction = startGas + (operationgas*Gasprice)

In case the transaction runs out of gas before it is finished with all the operations,
the transaction is reverted and the corresponding transaction fee is still paid to the

31

miner.

Ethereum currency denominations

Ethereum has a metric system of currency denominations as units of ether, with one
unit of Wei being the smallest unit. Each denomination has its own unique name,
and some of them bear the names of prominent figures that have played a major
role in the development of technology. For example, 1 babbage equates to 1000 Wei
units.

4.2.4 Ethereum Mining

Ethereum uses a PoW system known as Ethash or Dagger-Hashimoto [DrB15], which
requires a dataset known as a Directed Acyclic Graph (DAG) [Jen96] in order to
verify the blocks. A DAG, is essentially a graph where a node can have multiple
parents. Every full network node in the blockchain is required to generate a DAG
file. The use of these directed acyclic graphs achievesmemory hard computation, yet
a validation that is memory easy. Memory hardness [But13] refers to the fact that in
order to validate a block through PoW, a huge number of computations as well as a
lot of memory are required. Memory easy validation means that lightweight clients
are able to efficiently validate blocks. This subsection focuses on the specifications of
this mining algorithm and the reason Dagger-Hashimoto was chosen for Ethereum.

As described in Section 3.2.1, in the case of Bitcoin, mining with PoW requires
computation of SHA256 hashes in order to build consensus and create blocks in the
blockchain. Many companies have built specialized hardware known as Application-
Specific Integrated Circuits (ASICs) to compute these SHA256 hashes. These hard-
ware serve no other purpose besides Bitcoin mining, and its dominance may lead to
problems such as skewed distribution of cryptocurrency, or even a 51% attack. Mem-
ory hardness tries to solve this problem by making the memory a limiting factor,
instead of CPU power. It can be argued that companies can now include terabytes of
memory into their ASIC devices. But the advantage of having a memory limitation
is that people who cannot afford ASIC devices, can add more memory cards to their
existing hardware to improve performance. The subsequent paragraphs give a de-
tailed description of the mining algorithm used by the current Ethereum blockchain
system.

The general outline of the steps that the algorithm takes is as follows.

32

1. A seed is calculated for each block. A seed of a particular block, is a hash that
is computed by scanning through all the parent blocks until the specific block.
The algorithm below, illustrated using python code, is used to calculate the
seed of a block.

def get_seedhash(block):

s = ’\x00’ * 32

for i in range(block.number // EPOCH_LENGTH):

s = serialize_hash(sha3_256(s))

return s

2. A pseudorandom cache is then computed from the seed obtained in the pre-
vious step. This cache is a 64 byte value of size 524288, and is computed by
performing two passes of RandMemoHash algorithm [Ler14].

3. A DAG is then generated from the cache, which is stored by full network
clients and mining nodes.

4. The DAG is used to mine the blockchain. It involves selection of random
slices of the DAG dataset, combining it with the nonce value, and obtaining a
hash. The Dagger Hashimoto algorithm specification explains how the DAG
is generated.

The pseudorandom cache, computed in step 2, is stored by lightweight clients. It
is used to verify desired blocks by regenerating the required pieces of DAG files
from the cache. The size of the cache starts at approximately 16 MB, because the
developers wanted to make it more resistant to ASIC hardware. The size of a DAG
dataset was set to around 1 GB, in order to have a larger memory value than which
the usual specialized memories are built. The cache size and the DAG size, both
grow in a linear way [Eth15].

Figure 9 shows a snapshot of the mining console logs on the Go language implemen-
tation of Ethereum. The hammer symbols indicate a block being mined, and the
lines beginning with ’Tx’ depict a transaction bring recorded from one account to
another.

33

Figure 9: Snapshot of mining console on Go Ethereum

Dagger Hashimoto algorithm specifications

This algorithm is a combination of two different algorithms namely, Dagger and
Hashimoto, invented by Vitalik Buterin and Thaddeus Dryja respectively.

Dagger Hashimoto uses a custom generated DAG data set, which gets updated
at frequent intervals based on the blockchain metadata. Currently, the DAG is
regenerated after the creation of every 30,000 blocks. The DAG is represented as
a two dimensional array or a matrix with the dimensions of n * 16, where n is a
large number greater than 16777186. The DAG has a depth of ten including the
root level, and can have 225-1 values in total. For the first eight levels, every node in
the DAG must have three parents that affect the value of the node. If the number
of nodes at a given depth is N, then the number of nodes in the next level must be
eight times larger than that i.e., 8N. For the ninth level, the value of each node in
the DAG is dependent on sixteen parents and the number of nodes in the ninth level
is two times that of the eighth level. The algorithm then pseudorandomly selects
eight nodes, adds the nonce value to the block headers and computes a hash out of
it. If the miner finds a nonce value less than 2256 divided by the difficulty amount,
the PoW is solved and a block is generated.

The following snippet, as defined in [But13], illustrates the algorithm. In the code
below, D depicts the block header value, N the nonce value, L is the depth and
spread(L) refers to the number of parents a node must have depending on the depth,
and || is the concatenation operator. The objective of the code here, is to find the
value of k, such that the value of the function eval(D,k) is less than 2256 divided by
the difficulty value.

spread(L) = 16

if L == 9

else 3

34

node(D, xn, 0, 0) = D

node(D, xn, L, i) =

with m = spread(L)

p[k] = SHA256(D || xn || L || i || k) mod 8 ^ (L - 1) for k in [0...m - 1]

SHA256(node(L - 1, p[0]) || node(L - 1, p[1])... || node(L - 1, p[m - 1]))

eval(D, N) =

with xn = floor(n / 2 ^ 26)

p[k] = SHA256(D || xn || i || k) mod 8 ^ 8 * 2

for k in [0...3]

SHA256(node(D, xn, 9, p[0]) || node(D, xn, 9, p[1])... || node(D, xn, 9, p[3]))

Figure 10 shows a snapshot of DAG generation on the mining console logs of Go
language implementation of Ethereum.

Figure 10: Snapshot of DAG generation in mining console on Go Ethereum

4.3 Main differences between Bitcoin and Ethereum

While both Bitcoin and Ethereum are based on the same fundamental idea of cryp-
tography and having a distributed ledger, there are distinct differences in their tech-
nicalities and the applications they are meant for. Both use a stack based languages,
but Ethereum has the advantage of also having a turing complete programming lan-
guage, as discussed earlier in Section 4.2. The consensus and block approval time

35

in case of Ethereum is about 15 to 17 seconds, which is much lower than that of
Bitcoin (10 minutes). The basic build of the proof of work algorithms that Ethereum
uses is a memory hard hashing algorithm called Dagger-Hashimoto, while Bitcoin
makes use of the SHA-256 hash algorithm. The economic models of the two are also
slightly different. The Bitcoin miners have their block creation rewards halved every
four years, whereas in case of Ethereum there is no such rule of reward reduction.
The way the transaction fees are levied are also very different. Ethereum uses the
concept of Gas based on the computational complexity of the operations performed,
and has a maximum value per block. For Bitcoins, the transaction fees is limited
by the block size.

However, from a general outlook, the applications and use cases Bitcoin and Ethereum
were built for are very different. The idea of Bitcoin was to replace real money with
cryptocurrencies without having to depend on central authorities to trust on, such
as banks and governments. Thus, Bitcoin was meant to be a transaction channel
and for the purpose of storing values. Ethereum, on the other hand, was meant to
act as a platform to build decentralized applications and contracts using its own
currency as a medium. The primary motivation for Ethereum was therefore, to be
a facilitator for the developers to build their own DApps.

4.4 Other Implementations

In the big picture, it can be observed that there are two main methods a blockchain
system can be built. The first being building a blockchain system by forking an ex-
isting system, and the second, building an independent system from scratch. Bitcoin
and Ethereum are examples of independent systems built from scratch. Building a
system from scratch is naturally pretty difficult to implement, despite some com-
panies such as Namecoin having had reasonable success with it. The drawback
such a system could have, would include communication issues between two or more
applications having independent blockchains of their own. Systems that fork an
existing independent blockchain system with alternative consensus rules are known
as Alt-coins or alternative coins.

Using the first method described above, building a system on top of Bitcoin has
the disadvantage of not being able to inherit the SPV system that Bitcoin uses.
The current systems built on top of Bitcoin that have lightweight clients rely on a
trusted server to provide them the blockchain data, which sort of defeats the purpose
of having a trustless decentralised blockchain. There are also systems that are built

36

on top of Ethereum, and target specific business needs.

4.4.1 Systems built on the Bitcoin blockchain

This section illustrates some of the blockchain implementations that were built as a
fork of Bitcoin.

Namecoin

Namecoin [KCE15] is the first fork of Bitcoin and uses the same proof of work
algorithm. The cryptocurrency system has the capability to store data in its own
blockchain transaction database. The function of Namecoin can be best described
as being a name register, or the equivalent of a DNS. They also have a domain name
.bit, but it is independent of ICANN, the governing body of domain names.

In decentralised protocols such as Bitcoin and Ethereum, the accounts have a hash
like identifier such as ’1AW29dp2ZCbqW5CiBCrhQYtHagUWy’. Such identifiers,
though are advantageous for the purpose of being obscure enough to not be imper-
sonated, are difficult to interact with. Namecoin solves the problem by introducing
the decentralised domain system and a first to file paradigm to prevent imperson-
ation, where the first person who registers the name succeeds and the others fail.

Colored coins

Colored coins[ABH12], serves as a protocol to let people create their own cryptocur-
rencies, or even digital tokens on the Bitcoin blockchain. A new cryptocurrency can
be issued by assigning a specific Bitcoin UTXO to a specific colour, and the users
of that particular cryptocurrency would then maintain wallets containing UTXO
outputs of a certain colour. They also have some special rules in case of mixed
colour inputs and outputs. Simply put, color in this case is an attribute of a certain
cryptocurrency, as well as its further applications. For example, certain colors could
be meant for proving ownership of a car.

Metacoins

Metacoin[Bit16] is an extension on top of the Bitcoin blockchain and therefore does
not inherit the SPV characteristics of the Bitcoin blockchain. Doing this provides a

37

relatively easy to implement and low development cost process to create a consensus
protocol with a possibility of having advanced features that cannot be implemented
in the Bitcoin framework itself. For example, a small Bitcoin can be "labelled" as
an ounce of gold, or a share in a company or even be counted as a score value in a
video game.

Cryptonite - Mini Blockchain

Cryptonite is the first implementation of the lightweightMini-Blockchain scheme[J.D14].
Their main intention of developing this cryptocurrency was to improve the scalabil-
ity problem faced by Bitcoins. The mini blockchain scheme includes a self contained
balance sheet system thereby eliminating the need to store transaction data perpet-
ually. As a result, the maximum block size can be made larger. Even though the
system has the advantage of being faster and less expensive, the drawbacks include
a weakened security and less flexibility.

MultiChain

MultiChain [Gre15], a fork of Bitcoin, is a customizable and private blockchain
service. Their main motivation behind building this software was to cater to large
financial institutions that were not interested in using public blockchains. The
multichain system also uses a randomised round robin method to add blocks onto
the blockchain, and has a configurable mining process.

Rootstock

Rootstock[Ler15], an open source platform, is very similar to Ethereum in terms of
creating smart contracts on a Turing complete smart platform, except that it utilizes
the Bitcoin ecosystem to do so. The advantages to this platform are that it exists as
a Bitcoin sidechain, and is backward compatible with the Ethereum virtual machine.
This means that all Ethereum contracts can easily run on Rootstock. Their biggest
advantage, however, is the fact that they can be merged mined with Bitcoin, thereby
making it as secure. A sidechain[BE15] is a separate blockchain, whose assets can
be transferred to and from the main blockchain, i.e. the Bitcoin blockchain in this
context. This is a promising platform because it proposes Ethereum with a Bitcoin
like security.

38

4.4.2 Systems built on the Ethereum blockchain

This section provides a brief description of some blockchain implementations forked
from Ethereum.

Eris

Eris industries (now called Monax Industries) is a blockchain application platform
that caters to financial institutions and helps them deploy private blockchains for
their needs. They have forked Ethereum and also employ other technologies and
wrapper tools that helped them become blockchain technology agnostic. They also
provide service tools around Ethereum Virtual Environment.

Hydrachain

Hydrachain [EB15] is an open source platform built on top of Ethereum, and
adds support for creating scalable permissioned (private or consortium) blockchains.
Their main distinguishable features are the introduction of accountable validators
and instant finality for private blockchains. Accountable validator refers to to a set
of registered that propose and validate the order of transactions in the hydrachain
distributed ledger. They use a byzantine fault tolerant consensus protocol that does
not work with the proof of work algorithm. [CML99] and [Vuk15] explain the prac-
tical byzantine fault tolerance protocol that Hydrachain follows, and how it does
not work with PoW. There needs to be a quorum by the validators that sign the
blocks, before the block is added to the blockchain. This allows for the block time
to be less than a second.

4.4.3 Independent blockchain systems

This section gives a brief description of Blockchain implementations built from
scratch.

Hyperledger

Hyperledger[Hyp16] is a project hosted by the Linux Foundation as a cross industry
collaborative project. The system was designed with the enterprise architecture in
mind with customizable networking rules that help different consensus protocols

39

operate. It borrows the UTXO and script based logic from Bitcoins and uses a
byzantine fault tolerant consensus protocol instead of the proof of work algorithm.
In general, it most likely is sort of an umbrella system that encompasses most
possible use cases to suit the blockchain industry.

Lisk

Lisk [KB16] is a platform for decentralized applications and sidechains programmed
in Javascript, and have a block time of approximately 10 seconds. They use DPoS
as their consensus mechanism. They also have their own academy videos[Fer16] that
teaches developers how to get acquainted with their system.

Their main idea is that every blockchain app, or the DApp equivalent of Ethereum,
has its own sidechain, which helps with the scalability issues that the Bitcoin and
Ethereum blockchains have been facing.

40

System Name Underlying System Salient Features
Namecoin

Bitcoin

Decentralised domain system.

Colored coins
A digital asset protocol that
can customise the asset to suit
specific needs.

Metacoins
A digital asset protocol that
adds functionality to the Bitcoin
protocol.

Cryptonite
A mini blockchain scheme with
its own balance calculator.

Multichain
A private blockchain system
for financial institutions.

Rootstock
A smart contract platform based
on Bitcoins.

Eris
Ethereum

A smart contract platform coupled
with service tools for ethereum
virtual machine.

Hydrachain
A smart contract platform with
accountable validators and instant
finality for private blockchains.

Hyperleger
Independent

An umbrella blockchain system to
facilitate maximum possible use
cases for the industry.

Lisk
A decentralised application platform
that makes use of sidechains for each
decentralised app created.

Table 5: Overview: Some blockchain implementations discussed above

41

5 Management of Internet of Things Devices

Ericsson estimates the number of connected IoT devices to be upto 28 billion by
20214. With the ever increasing array of communication protocols between IoT
devices, there is a requirement for a transparent, yet highly secure and reliable IoT
device management system. Other issues include tracking these billions of devices
as well as storing the metadata they produce.

Since this thesis involves creating a device management system for constrained IoT
devices, this chapter attempts to give an overview of various existing protocols and
standards, and some implementations that deal with constrained devices and their
management. Furthermore, the last section in this chapter attempts to introduce
what it means to use blockchains with IoT and how it can be done.

5.1 IoT Protocols and Standards

The term Internet of Things (IoT) was coined by Kevin Ashton in 1999, while pre-
senting at Proctor & Gamble. He proposed it as a link between radio frequency
identification and the Internet[Ash09]. Semantically, it refers to identifiable net-
worked objects or things, also called devices, virtual representations of which can
be connected to each other over the internet. In other words, IoT refers to a wide
variety of devices, including smart devices, systems and constrained devices, that
interact and automate processes in a networked society.

Due to so much potential in the IoT field and the growing number of devices each
year, solutions are being implemented in many areas, like supply chain, farming,
healthcare, home automation to name a few. But with the development, people
have come to realise the limitations that come from trying to make an overwhelm-
ingly large amount of devices, belonging to different corporations and communities,
communicate with each other.

Constrained Devices

Resource constrained devices or just constrained device, as mentioned in the IETF
standard [BEK14], are devices that run on very limited processing, power and stor-
age capabilities. Such networks display many constraints such as limited bandwidth

4Ericsson’s prediction on their annual report: http://www.ericsson.com/res/investors/docs/2015/ericsson-
annual-report-2015-en.pdf

42

or lossy channels. Continuous data retrieval from such devices is very challenging
owing to the tight limits on available power, processing resources and memory. This
thesis mainly makes use of CoAP as the application layer protocol, which we will
discuss about in the subsequent sections.

5.2 Constrained Application Protocol (CoAP)

CoAP [SHB14] is a lightweight User Datagram Protocol (UDP) based standard-
ised RESTful application layer protocol, for extremely resource constrained devices
in machine to machine(M2M)5 networks. It is designed to easily interface with
HTTP for integration with the Web while meeting specialized requirements such as
multicast support, very low overhead, and simplicity for constrained environments
[SHB14]. It also widens the horizons in terms of solving M2M specific problems such
as asynchronoous transfer, or reduction of message overhead, or resource discovery
of constrained nodes. Common applications for CoAP include smart energy and
smart building automation.

5.3 Constrained Objects Language and CoAP Management

Interface

The combination of Constrained Objects Language(CoOl) [VPS16] and CoAP Man-
agement Interface (CoMI) [SBV17] is a CoAP based management protocol that
uses Yet Another Next Generation (YANG) [Bjo10] modelling language to define
its resources. Thus, CoMI and CoOL are adapted to low power, lossy constrained
networked devices. Payloads for the information exchange are encoded using Con-
cise Binary Object Representation (CBOR) [BoH16] data format, which facilitates
extremely small code and message size.

The protocol is based on a client-server model. The client requests for the datas-
tore resources and the event stream resources. The server is the provider of these
resources. Figure 11 illustrates the protocol architecture. As per the standard, the
implementers are free to choose the appropriate form of transport pertaining to the
target applications.

5M2M communications is used for automated data transmission and measurement between
devices

43

CoAP client

CoOL/CoMI
client

Lower layers

CoAP Server

CoOL/CoMI
Server

Lower layers

Figure 11: CoOL/CoMI architecture overview

5.4 Lightweight M2M (LWM2M)

OMA Lightweight M2M is an important protocol from Open Mobile Alliance (OMA),
for the management of constrained devices. It usually runs on top of CoAP, and
therefore is compatible with any device working with CoAP as its transport proto-
col. The main function of the LWM2M protocol, is to provide a set of interfaces
that can monitor and manage constrained devices. The aim of this standard is to
facilitate a fast deployable client server system serving M2M services.

LWM2M architecture defines three main parts, a Bootstrap Server, a Client and a
Server. An LWM2M Bootstrap Server is a configuration server for the LWM2M
client before it is connected to an LWM2M server. It essentially helps the server
manage access control, keying and configuration of a client. LWM2M Clients are
usually constrained devices, and contain many LWM2M objects and their corre-
sponding resources. The task of an LWM2M Server is to manage the clients through
management commands e.g. execute read, update or delete commands for the re-
sources of a particular LWM2M client. The bootstrap server is supposed to configure
the access controls to connect a server to a client.

The Open Mobile Alliance (OMA) specification 6 lists four logical interfaces for the
6OMA specifications: http://openmobilealliance.org/

44

server and the client to communicate with each other. They are as follows.

• Bootstrap The client sends a request message to the bootstrap server, and
the server then accordingly performs a write and/or delete operation on the
client, in order to register or remove LWM2M servers.

• Client Registration A LWM2M client registers to one or more LWM2M
servers after it has been bootstrapped.

• Device Management and Service Enablement An LWM2M server can
send various commands to the client in order to perform actions on the re-
sources owned by those clients. The access control object, set during the
bootstrapping process, determines the policies or the set of actions the server
can take on a particular client’s resources.

• Information Reporting Clients can report information in the form of noti-
fications to the corresponding servers. This can be done due to the Observe-
notify [Har15] feature from CoAP.

An LWM2M server can carry out one or more operations, in order to manage the
clients and their corresponding resources. The resources of LWM2M clients are
grouped into various objects. The format of these objects is specified by the IP
Smart Objects (IPSO) Alliance 7.

Figure 12 depicts the architecture of LWM2M protocol.
7IPSO Alliance: http://www.ipso-alliance.org/

45

Management
Application

M2M Web
Application

LWM2M
Server

Objects

Client
Application

LWM2M Client

IoT Device

Management Platform

Figure 12: Architecture of Lightweight M2M

5.4.1 Device Management Implementations for IoT using LWM2M

Eclipse Leshan

Leshan8 is an open source Java implementation of OMA LWM2M server and client.
The project helps develop a customisable LWM2M client and server, and already
comes with a demo bootstrap server, LWM2M server and LWM2M client.

8Leshan project: https://github.com/eclipse/leshan

46

Eclipse Wakaama

Wakaama 9 is a C language implementation of the OMA LWM2M server and clients.
The project also provides some example demo applications that test the bootstrap
server, LWM2M server and client capabilities of Wakaama.

5.5 IoT on Blockchains

From a generic perspective, it can be said that a blockchain is an immutable ledger of
transactions. Through this, millions of IoT devices can be tracked thereby enabling
secure co-ordination and communication between devices. The fact that blockchain
is tamper proof and operates in a trustless environment, makes it extremely difficult
to manipulate.

One way to use IoT on blockchains, would be to consider each IoT device as a
blockchain node. Since the use of consensus algorithms in blockchains enable it
to operate in a trustless environment, the IoT devices would not need to trust
each other inherently. The devices can then co-ordinate with each other through
a common network, despite having been produced by different manufacturers, or
having incompatible softwares. If this can be done at a global level, then it would
result in a web based user centric behaviour, as opposed to the current behaviour
centred mainly around devices. But sometimes when IoT devices are constrained or
incapable of storing a copy of blockchain, depending on their capacity, it is possible
to either use them as lightweight clients, or have a higher capacity device as their
blockchain representative node.

This kind of an arrangement could lead to several use cases that are hard to acheive
at the current levels of interoperability between IoT devices. Some examples include
blockchain acting as a "phone-book" to let machines find each other10, creating a
verifiable record of the usage of industrial medical devices11 or a washing machine
becoming a semi-autonomous device capable of managing its own supply of deter-
gents and other parts12.

9Wakaama project: https://github.com/eclipse/wakaama
10Implemented by onename: https://onename.com/
11Implemented by tierion: https://tierion.com/
12Prototype implemented by IBM

47

6 Design and Implementation of Proof of Concept

This chapter describes the small scale prototype that was developed for the manage-
ment of constrained IoT devices. Section 6.1 describes why a certain implementation
of Blockchain was chosen to implement the prototype. Section 6.2 describes the ar-
chitecture and implementation of the system.

6.1 Rationale behind choice of technology

To be able to create a peer to peer distributed system in a trustless environment
and still guarantee security, were of paramount significance for the prototype. Other
factors such as ease of implementation through developer communities, and good
documentation, were also considered while choosing the technology for the proof of
work.

The creators of Bitcoin purposefully did not want to have loops in their scripting
system in order to make it deterministic. That makes it easier to know exactly how
a particular program ends. But for this project, it was important that we make
use of loops so that we can store pertinent data in certain data structures and then
iterate through the data. Therefore, Bitcoin was not chosen due to the absence
of support for loops, and a very rudimentary scripting language13. Ethereum, on
the other hand, uses a Turing complete language for development of decentralised
applications.

Bitcoin also has relatively limited storage capabilities and is intended only as a
cryptocurrency rather than being a decentralised application platform. The only
way data can be transferred between two Bitcoin accounts at the moment, is through
transactions. The data passed in such circumstances is public and therefore, is at a
risk.

Another advantage of Ethereum that was taken into account, while choosing the
technology to work with, was that the Bitcoin blockchain has a hard limit of 1
megabyte for a block size, whereas the Ethereum blockchain does not. However,
Ethereum does have a limit to how much total gas can be spent per block, which is
usually 1.2 times the exponential moving average. The main problem with having
smaller blocks is that it tends to clog the network with more smaller packets. The
gas limit on the Ethereum was more convenient to handle in comparison with the

13Bitcoin Script: https://en.bitcoin.it/wiki/Script

48

hard limit of 1 MB on Bitcoin blocks.

6.2 Architecture

The prototype that has been implemented for discussion in the thesis was designed
to mitigate the issues associated with management of a large number of constrained
IoT devices.

This part presents an overview of how the system is designed to work, high level
architectural design and implementation of a blockchain based access management
system for IoT devices. The basic application design is illustrated in Figure 13.

Public
Blockchain

Manager

Manager

Transaction/Query

Transaction/Query

Dev P

Dev B

Dev P can
access Dev B

For 90 minAccess

Manager

Dev Z
Dev T

Dev Z can
access Dev P

For 30 min

Private Network 1

Private Network 2

Private Network N

Figure 13: Overview of the system design

49

Since the IoT devices are largely constrained, they do not have the ability to store a
copy of the blockchain in their system, thereby not participating in the blockchain
network themselves. They instead, have an administrator node connected to the
network, that we call Managers. The second set of actors, called Clients are nodes
that do not have the rights to manage a certain device but want to query about
their states. Figure 14 presents the use case diagram showing the roles played by
the actors involved in the system.

Figure 14: Use case diagram for the actors

The system makes use of the Ethereum blockchain with a custom genesis block.
Ethereum nodes support a node discovery feature, also called the discovery protocol.
In this protocol, the nodes continuously try to find peer nodes to connect to, until
the criteria of the number of peers required, as specified by the –maxpeers flag, is
met. Another way for the peers to find each other, is by manually adding the identity
of the corresponding peer nodes. In the latter case, the nodes that are manually
connected are called Static nodes. In this system, we use the static connection to
avoid unpredictable situations.

50

Figure 13 illustrates different managers managing their own sets of constrained de-
vices, operating under their respective private networks and firewall configurations.
Before registering the constrained devices to the blockchain, the manager adds itself
as a manager on the blockchain, by broadcasting a registration transaction. Upon
verification of this transaction by the miners, it is added to the blockchain. The
constrained devices then send an identity registration message to their respective
managers, and in turn are registered in the blockchain by the manager by the way
of broadcasting a registration transaction. Now as shown in Figure 13, constrained
device Dev P, from Private Network 2 needs to access certain resources of Dev B
from Private Network 1. Dev B’s manager sends a transaction to the blockchain
announcing the rule "Dev P can access Dev B for 90 minutes". The miners check
the transaction, and a rule is established on the blockchain. Dev P can now access
Dev B.

6.2.1 Data flow in the system

The proof of concept created to address the characteristics of our system consists of
four separate components namely, the contract creator, the client, the manager and
the Ethereum smart contract. The functions of each component have been broadly
illustrated in Table 6. Figure 11 illustrates the block diagram showing how the dif-
ferent components interact.

Application Function

Contract creator
an API that compiles and deploys
the smart contract to the blockchain

Client
queries the smart contract and submits
requests for the Manager to approve

Manager
registers and deregisters device identity,
adds and deletes rules corresponding to
the device, and queries the smart contract

Smart Contract
includes the logic to store and remove
all the data and permissions based on
the role.

Table 6: Functions of the components

51

Contract
Creator

Verification by the miners
on the Blockchain network

Client

Manager

Blockchain

Smart
Contract

 Transaction

Call/Query

Transaction

Figure 15: Overview of how the different components interact

6.2.2 Component: Contract Creator

This application consists of a back-end written in NodeJS14. It can be hosted on
a webserver, or locally on a node that participates in the blockchain network.
JavaScript was chosen because the application was intended to be an application
programming interface (API) that can then be integrated with client. The main
motivation behind developing this application was to automate the smart contract
creation process.

The application takes the smart contract code as an input, compiles it and deploys
it to the blockchain network. This deployment is broadcast as a transaction in the
blockchain. The smart contract then goes through the validation process on the
network and when correctly verified, gets stored into the blockchain forever. The
detailed description of the functions used in the contract creator application have

14NodeJS: A server side JavaScript based framework. https://nodejs.org/en/

52

been described in Appendix 1.

6.2.3 Component: Manager

Managers are the main actors in the system. They have the ability to make changes
to the data stored on the smart contract memory. Depending on the permissions, a
manager can perform the following operations on the smart contract.

• Register and de-register (if needed) the identity of a constrained device to the
blockchain

• Add and remove rules corresponding to the devices they manage, to the
blockchain

• Query the blockchain

These operations are explained in detail in the smart contract subsection.

A manager is responsible for a certain set of devices, that it alone can register to the
blockchain. It also adds access rules corresponding to the devices it manages, such
as which constrained device can access a specific resource in a device it manages and
for how long, as illustrated in Figure 13.

All managers host a personal copy of the blockchain i.e., they act as full nodes.
They can store it in any kind of network accessible storage, privately hosted, on the
cloud, decentralised storage such as Swarm15 or IPFS16 or other types of storage.
For the sake of simplicity, it has been presumed that all managers also act as miners
in the system. This ensures the safety of the system in case of a malicious manager,
as will be discussed later in Section 7.4.1.

6.2.4 Component: Client

Clients include the managers that do not have access to a certain device, but want
to query the system about the manager of a specific constrained device, or want to
check whether one constrained device can access another one. The clients only have
sort of a read-only access and do not have the permission to modify the system on

15Swarm: A decentralised content distribution platform. More information at http://swarm-
gateways.net/bzz:/theswarm.eth/

16IPFS: A peer to peer distributed web storage system. More information at https://ipfs.io/

53

behalf of devices they do not manage. They can request for a rule to be deleted or
a manager to be deleted, which is approved by the manager.

The front end or the client, shown in Figure 16, uses a JavaScript library called
React17 and is needed to trigger the JavaScript back-end.

The back-end is a JavaScript file representing the client application in the proof of
concept. The client can be hosted on a webserver, or on a decentralised storage
such as Swarm or IPFS, or locally on a server that participates in the blockchain
network. It may be used by all the participants on the network to communicate with
the smart contract, on successful contract creation and deployment by the Contract
Creator. The client interacts with the smart contract memory through the Web3
library of JavaScript and can do the following things based on the permissions.

• Query if a device or a rule exists in the blockchain

• Query if a device has a certain manager

• Submit a request to delete a rule or manager corresponding to a device
17React: A JavaScript library for building user interfaces. https://facebook.github.io/react/

54

Figure 16: The front end of the Client

A description of the libraries used by the Client JavaScript can be found in the
Appendix 3.

6.2.5 Component: Smart Contract

As discussed earlier in Section 4.2.3, a smart contract is a distributed application
that is a part of the blockchain, and is therefore hosted on all the nodes connected to
the blockchain network. The smart contract has been coded in Solidity programming
language. The Solidity files end with a ".sol" extension and need to be converted into
the bytecode format for it to be understandable by the Ethereum Virtual Machine.

55

The Contract Creator component, described in Section 6.2.2, takes care of converting
the solidity code into a format that can be read by the EVM and deploys it into the
Ethereum blockchain.

On deployment, the smart contract is assigned an Ethereum contract address. If
any node in the Ethereum network wants to communicate with the smart contract,
they do so by passing messages to its address. The messages could be of the form of
a Transaction or a Call. Transaction messages are sent when the nodes require to
store information pertinent to identities or access information of a specific device.
A call is made when nodes want to query the state of a device at a given time. The
following paragraphs briefly explain some of the nuances of the Solidity program-
ming language and the functions of the smart contract. Figure 17 shows the general
architecture of the smart contract implemented for the prototype.

Figure 17: Simplified architecture of the smart contract

The implemented smart contract consists of a various functions corresponding to
certain features. The Manager component has access to all the features in the smart
contract, provided the actions performed by the manager are on behalf of the devices
it manages. The features have been explained in the following paragraphs.

The custom data type refers to the ’Struct’ data type defined in the solidity lan-
guage. The struct data type facilitates grouping of different data types together in
contiguous memory locations, thereby combining them to form a unified data type.
In this case, the constrained device information, the manager information, and the
rule details are stored in three different structs. When a registration transaction is

56

made, the registration information goes through certain checks based on the logic
of the smart contract, and is stored in the Data Store. Solidity uses a non iterable
data structure called Mappings to store data. Mappings are data types that are
declared as

mapping(Key_type=>Value_type)

Here the Key_type can be any low level data type in solidity. A Key_type cannot
include a mapping, a struct, a contract, a dynamically sized array, or an enum. But
the Value_type can include everything including other mappings. These Mappings
may be described as hashtables, except for the fact that the key type is not stored
in the mapping itself, rather the key type’s hash is used to look up the value.

The smart contract has several functions, a description of which can be found in
the Appendix 2. The subsequent sections provides an explanation of the main tasks
implemented by the smart contract.

Device Identity Registration and De-registration

The identity registration operations register a management node or a constrained
device into the system. This operation requires a public-key encryption system
to verify the identity of the nodes before adding them into the blockchain. On
verification of identities, the manager adds the devices it manages to the system
and itself as its manager, which in turn generates a transaction, thereby storing the
information to the blockchain upon verification by the miners. Both the operations
consume a certain amount of gas and a transaction fee for the miners.

If needed, the manager can also de-register itself or a device registered to it. It
may be noted however, that a manager can only de-register itself when it has no
corresponding constrained devices to manage.

Adding and Revoking Rules

The rule operations facilitate adding or removing some secure rules into the blockchain.
These rules involve granting or denying the access rights between two constrained
devices. The manager adds or removes the rules corresponding to the devices it
manages. These rules specify what resource a particular devices has access to, what
type of access it has and for how long. Typically, the access types vary between
read, write and both. A previously added rule can also be modified and updated.

57

The revocation of rules is also done by the manager, for the constrained devices it
manages. Both addition and revocation of rules generate a transaction charging a
certain amount of gas and transaction fee, which is then stored in the blockchain
upon verification by the miners. A depiction of how a rule is added to the smart
contract can be seen in Figure 18.

Smart Contract
memory

The block is then added to
the chain which records a
non reversible history of
transactions in the ledger

Miners verify the transaction

Manager adds a rule to the
blockchain

Transaction

Manager

Rule: Dev A can access
Dev B for 2 hours

Figure 18: Overview: How a rule is added to the smart contract

Querying the Blockchain

This operation queries whether one constrained device has access to certain resources
in another device. Any node connected to the blockchain network can access this
information in a read only manner. This operation is only meant to query the access
information, and does not send out a transaction every time a client queries. This
functionality in Ethereum is called Call. A Call request invokes a function in a
smart contract and gets a return value. This operation therefore, does not require
any gas or any sort of transaction fee, since it does not need to be mined.

58

7 Evaluation

This chapter presents the evaluation of the implemented proof of concept system.
The evaluation primarily refers to the assessment of the system to better under-
stand its capabilities, and to determine whether the system meets the expected
requirements.

This chapter is organised as follows. Section 7.1 introduces some important software
testing methodologies, used during and after development of the system. Section
7.2 briefly describes the test environment and provides information on the hard-
ware capabilities and network conditions used for the development and evaluation.
Section 7.3 lists the metrics and the result of the evaluation experiments. Section
7.4 analyses the security aspects of the system, and Section 6.5 briefly talks about
the limitations of Ethereum Blockchains in general, as well as the proof of concept
system.

7.1 Test Methodologies

Testing Methodologies are approaches used to test products to ensure they function
as expected. There are many different testing methodologies depending on the stage
of development. They can be broadly classified into Functional and Non functional
testing methodologies.

7.1.1 Functional Testing

Functional Testing of a system refers to a kind of black box testing meant to exam-
ine the system’s external workings, according to business requirements. Black box
testing is the method of testing wherein the internal workings of the system are not
required to be known. It typically involves identifying the features the system is
expected to perform, and determining whether the outputs match the expectations.
This thesis uses two main kinds of functional testing namely, system testing and
acceptance testing. System testing includes testing the entire system for errors and
bugs, and Acceptance testing involves making sure that all the functionalities work
according to expectations.

To conduct a functional test on the smart contract, a development and testing tool

59

called Truffle18 was used. It has a built in smart contract compilation system coupled
with an automated contract testing framework that made the unit testing relatively
convenient.

7.1.2 Non Functional Testing

Non functional testing requires that the system be tested against defined technical
qualities some of which include Performance, Usability, Security and Vulnerability
testing. This chapter mainly focuses on the non functional aspects of testing since
it is of more importance, in this thesis, to understand the internal workings of the
system. In the subsequent sections, there will be more discussion about the non
functional testing methods and an explanation of the results obtained as a result of
these non functional tests.

7.2 Test Environment

7.2.1 Hardware

The test environment consists of a host machine and an Ethernet connection. The
host machine is a server running a 64-bit Ubuntu Xenial 16.04.1 LTS operating
system. The processor has 8 multithreaded cores and an Intel Core i7-4800MQ
processor with a maximum clock speed of 3 GHz, and a RAM of 16 GB. Each client
or miner is run as a separate virtual Docker19 container on the host. A 240 GB Solid
State Drive (SSD) was used to prevent storage disk’s bottleneck issues. A 1 GbE
connection has been used to evaluate the proof of concept. The network conditions
are kept constant, and no external tools are used to modify the network latency or
packet loss, as evaluation over different network situations is not included in the
scope of the thesis.

7.2.2 Docker Containers

An open source software called Docker has been utilised to simulate a real world
distributed system. Docker containers are a lightweight way to package a node
with all the necessary runtime dependencies, and isolate it from the underlying

18Truffle github: https://github.com/ConsenSys/truffle
19Docker: https://www.docker.com/

60

infrastructure, i.e. the Linux kernel. Therefore, docker containers guarantee that
the nodes always run in the same way.

Docker was chosen over virtual machines, because of its lightweight nature and
faster boot time due to the isolation. It also allows a very effective memory and
CPU resource allocation system that was very useful for the evaluation of the proof
of concept.

7.2.3 Testbed configuration

This section explains an overview of the testbed used to evaluate the performance
of the blockchain based system developed to manage access configurations for IoT
devices.

The system uses a private Ethereum blockchain for evaluation purposes. There are
two main types of nodes used in the configuration namely, a bootnode and managers.
As discussed earlier, Ethereum nodes support a node discovery feature, wherein they
look for other peers on the network to connect to. In this case, a node that acts
as a connection facilitator for the rest of the network, called a bootnode, has been
used to achieve the peer connection. In practice, the main public Ethereum network
is also served by three bootnodes hard-coded into the Ethereum client. The test
configuration also includes six miner nodes, also called managers. The purpose of
the managers has already been discussed in Section 6.

7.3 Latency and Throughput Evaluation

Theoretically, Ethereum does not have any upper limit on the number of transactions
that a block can accommodate. When a miner tries to fit in transactions worth more
than the block gas limit, the block gas limit gradually adjusts itself. In practice,
however, there are many factors that influence the throughput and the latency of
a blockchain network. For example, clients that are big machines with plenty of
bandwidth and processing power will have a higher threshold for throughput whereas
smaller devices will have a lower throughput. This evaluation attempts to exhibit
how the proof of concept system behaves when the CPU processing and memory
are varied.

61

Evaluation Methodology and Results

It is imperative to understand the state of the system before, during and after the
evaluation is conducted, since the results depend on it to a great extent. The eval-
uation set-up involved setting up six miners and a bootnode on Docker containers.
The role of the bootnode was to aid in peer discovery for the miners. The bootnode
dynamically generates an Ethereum address, which the miners connect to, in order
to find each other. The official Ethereum image ethereum/client-go20 was used on
each Docker container.

The initial bandwidth between each pair of Docker containers was examined, to rule
out those bottlenecks. The bandwidth, measured using the Linux tool called iperf 21,
averaged out to 14.6 Gbits per second. The memory and CPU consumption of the
physical machine as well as every container before and during the tests were also
compared. A tool called sysstat22 was used to measure the performances of each
Docker container and the physical host at every stage. To ensure that unnecessary
processes don’t interfere with the evaluations, they were terminated.

After the private blockchain was connected, the CPU quota and the memory values
of each Docker container was changed to take the readings. The difficulty level
for block creation was initially kept low to see if it would adjust gradually. 60
transactions of the same size and type were pushed to the blockchain each time.
This was done to keep the transaction variables constant, and to check the amount
of time all the nodes would take to process the transactions and reach a consensus.
Due to the sheer number of steps involved in getting the system up and running,
bash and javascript scripts were used to automate the process.

20Ethereum Docker image: https://hub.docker.com/r/ethereum/client-go/
21iperf:https://iperf.fr/
22sysstat: System performance tool for Linux. For more information:

https://github.com/sysstat/sysstat

62

Time per 60 transactions (seconds)
CPU Quota (%) RAM(GB) Run1 Run2 Run3 Run4 Run5 Run6
100 16 31 36 37 36 40 38

8 73 69 85 71 69 75
4 77 75 87 85 77 79
2 150 144 157 139 149 132
1 184 205 192 199 198 192

50 16 63 55 62 73 75 64
8 97 86 87 75 102 81
4 105 110 100 107 120 102
2 183 163 182 171 178 174
1 245 219 229 235 234 231

Table 7: Relationship between System Resources and Block Creation Time

Table 7 shows the readings obtained after the process described above was per-
formed. The main purpose of making these readings was to observe the existence of
a pattern and to try to visualize the identified pattern.

As can be seen in Table 7, varying the CPU levels makes a bigger difference than
a 50% variation of the memory in the case of block creation time. Each Run in
the table refers to the sample data collected every time an iteration was made. 6
samples were collected for every CPU Quota and memory configuration, and a total
of 60 samples were collected. These were averaged out for every 60 transactions and
a graph was plotted. Figure 19 provides an illustration of the readings found from
the evaluation.

Each Docker container was allocated a specified amount of memory and CPU re-
sources, and a set of 6 readings observed for each resource configuration. However,
a point to be noted here is that the total memory capacity of the Server or the
physical machine, is 16 GB. The RAM therefore, indicates a maximum amount that
the particular Docker container can use, and there exists a possibility of memory
contention on the machine. Since this was just an experimental set-up, the afore-
mentioned limitations were recorded as constraints to the arrangement.

As previously mentioned in Section 4.2.4, mining in Ethereum is a memory as well
as a CPU intensive process. The generation of the DAG dataset, in itself, takes
up around 1 GB of memory and continues to increase linearly with the number of

63

blocks in the blockchain. Therefore, in this case, the order in which the experiment
was done also affects the amount of memory consumed.

Figure 19: Effect of System resources on block creation time

It can be observed, from both Table 7 and Figure 19, that the time to create a block
gradually increases when the resources are limited. The lowest configuration that
was tested here had a memory of 1 GB with a 50% of CPU Quota of the original
physical machine. One point to be noted here, is that every Docker container was
run on one CPU core every time. This limited the resources to an even greater
extent. For example, in this case, the lowest resource configuration device could
be a mid range Android phone or a tablet. Thus, a simple mobile device could
potentially be the miner in this instance. However, as the size of the blockchain
increases, it would be more and more difficult for a mobile device to be able to
store it. A solution to that could be to offload the data onto a cloud server. As
the number of miners grow in the blockchain, the difficulty level for a block to be
generated would increase as well. The increase in difficulty level would, in turn, lead
to more investment of computing resources of the device.

64

7.4 Security Analysis

This section analyses some of the weaknesses associated with the security of blockchains
in general as well as the proof of concept system.

7.4.1 Malicious Clients

A client that does not follow the rules of a given blockchain network is no more
considered a peer by all other clients, and ends up making another parallel blockchain
with its own rules. A more malicious client that is able to pretend to follow rules of
the blockchain system might possibly be able to act without getting noticed.

In this case, there is a possibility that a manager, who also happens to be a miner,
may go offline out of the blue, drop transactions, make wrong transactions, or even
decline that a transaction ever happened. One way the system can circumvent this
kind of behaviour is by using some more financial incentive for the managers to
submit the correct information in all situations. As a miner, even if a manager
refuses to verify transactions or declines that a transaction ever happened, the other
mining nodes make up for it. The transaction can only be excluded if a majority,
i.e. greater than 51 % of the miners decline to include it. In general, the managers
are assumed to be parties that the constrained devices trust, presumably the owners
of those devices. Therefore, there should be no reason for the managers to want
to sabotage the devices. The main advantage of using blockchains, as far as device
management is concerned, is to ensure the data integrity. This makes sure that
the data already in the system has not been modified - neither intentionally nor by
accident.

7.4.2 Malicious External Smart Contracts

In the case of smart contracts, any code that makes calls to an external smart
contract is a potential security risk which has to be evaluated very carefully, specially
if it includes some payment. The following paragraphs explain some known attacks
that can happen while making use of external contracts.

Denial of Service Attack The depth of the stack meant for making calls through
the Ethereum Virtual Machine is limited to 1024. If an attacker continues making
recursive calls until the stack depth limit, they may be able to take control of the

65

smart contract code. This is called as the Call Depth Attack [CoF17]. The attacker
can also manipulate the amount of gas needed for a transaction and at the very
least can make the gas required more than the block gas limit, thereby blocking any
transaction from happening at all.

Reentrancy One of the major security hazards of invoking an external contract
from any given smart contract S, is that the external smart contract can make
changes to its data without S having any idea. In this attack, functions of S are
called over and over even before the first function call is finished. This may cause the
different invocations of the same function to interact with each other in destructive
ways [CoF17]. A way to tackle this problem is to treat the function that invokes the
untrusted smart contract as an untrusted function itself. Another way to approach
this would be to use a mutex to lock a state in the function which can be unlocked
by the owner of the lock alone.

7.4.3 Sybil Attack

Many distributed systems do not have any form of identity management other than
having accounts. Due to this reason, any actor is capable of creating multiple
accounts. A Sybil Attack [Dou02] manifests when one actor can manage to act as
multiple entities at the same time. An attacker can try to fill the network with the
clients it controls. In such a case, the attacker can refuse to relay certain blocks or
only relay the ones created by the attacker.

A known solution to this attack is using a resource based counting mechanism,
i.e., keeping a track of the accounts created per resource. Another approach to
solving this can be to require the participants of the network to have a stake of a
limited resource, such as cryptocurrency, so that they do not get any benefit out of
pretending to be multiple entities in parallel. Manual authorization of each identity
could also be a way, although tedious and inconvenient.

7.4.4 Timestamp Hacking

Each node maintains an internal counter representing the network time based on the
median time of its peers. This information is exchanged between the nodes during
peer connection. However, if the difference between the median time and the system
time is greater than 70 minutes, the network counter time is set as the system time.

66

An attacker could potentially affect the network time if it chooses to, by connecting
multiple peers and reporting the time wrongly. This can be fixed by changing the
network time calculation methodology done by the nodes[BiF17].

7.5 Limitations of the system

The following paragraphs analyse some of the limitations of the proof of concept
implementation.

7.5.1 Block creation time

One disadvantage of the implementation is the amount of time it can take to create
a block. As per Ethereum implementation, it may take up to 12 seconds to create a
block in a public blockchain. Every time a transaction takes place in the blockchain,
it goes into the queue to be picked up by a miner. This means waiting for a miner
to collect transactions and then generate a new block.

The block creation time issue is hard to avoid, given the nature of the Ethereum
blockchain. This could pose a problem for the IoT devices in case of urgent access
requirements. If the transaction difficulty is set low enough, the block creation time
become relatively short. However, low difficulty could lead to multiple security issues
as well as generation of more orphan and stale blocks.

7.5.2 Changes to the system

The transactions work based on the logic provided in the smart contract. If a change
is to be made to the logic, or the way transactions are handled, the entire system has
to be somehow set up from scratch. This would cost a lot of gas, not to mention other
overheads such as the clients having to adapt to a new system. Another problem
that arises from this is the access data getting lost, due to the smart contract system
being set up all over again.

To remedy this problem, distributed databases such as Swarm23 or IPFS24 can be
made use of. This would mean that the actual data would be stored in these
distributed databases instead of the smart contract memory. These distributed

23Swarm: A decentralised content distribution platform. More information at http://swarm-
gateways.net/bzz:/theswarm.eth/

24IPFS: A peer to peer distributed web storage system. More information at https://ipfs.io/

67

databases generate a hash based on the data stored in them. This hash, in turn,
would be saved in the blockchain, thereby making it immutable.

Therefore, in other words, if there any changes are required to be made to the
system, there can be two possible approaches. Either a new smart contract needs to
be written with the new logic or, a new smart contract that manipulates the existing
smart contract needs to be created.

7.5.3 Timestamp Dependence

The system uses Block number and average block time to schedule the expiry of
a specific rule. This is not definite as the block times may change with different
releases of Ethereum.

68

8 Discussion

The aim of the thesis was to investigate how to securely manage IoT devices in a
more autonomous and distributed way, without having to trust a central entity. The
questions the thesis attempts to answer are as follows.

1. Is it possible to implement IoT device management, specifically in constrained
devices, on blockchains, on a global level?

It has been found from the observations and experiments conducted during
the course of this thesis, that Blockchain Technology has the potential to be
utilised to authenticate device identity, protect and store data, handle access
to devices, and process transactions in the operation of those devices, in a
distributed way. The distributed replication model of blockchains facilitates
accessing and supplying IoT information for customers as well as organisations,
without requiring a centralized management server. The blockchain can also
be used to securely make payments for services or use of device resources given
pre-agreed conditions are tracked.

2. What advantages does the use of blockchain bring to IoT?

Equal stakes Blockchain technology has already proven its worth in the
financial industry through the use of cryptocurrencies such as bitcoins. This
concept can be adapted to fit the needs of IoT networks, thereby allowing
billions of devices to talk to each other over the same network without the
need for additional resources. Blockchain also takes into account the issue
of ownership and authority between various vendors by ensuring everybody
involved has equal stakes.

Transparency, Privacy, Non-repudation, Integrity The main advan-
tage of using blockchains in IoT, is that it is public and transparent i.e., any-
body participating in the blockchain network will have the chance to see all
the transactions taking place and the blocks. At the same time, the complete
transaction data is not visible. The involved parties in the transaction remain
private since they transact under their respective accounts, and their per-
sonal information is protected by their private keys. This combination of non-
repudiation and confidentiality helps improve the privacy aspect of blockchain

69

transactions. Blockchain technology also incorporates hashing, which helps
check the integrity of the information stored in the blockchain.

Decentralization, Trustless As blockchain is decentralized, there is no
single central entity involved in approving transactions or set conditions for
certain transactions to be accepted. This means that it is a highly trustless
network, and requires consensus among all the participants in the network to
accept transactions.

Immutable Most importantly, it is secure from the point of view that the
data once entered cannot be changed, and may act as the single source of
truth. This property of immutability is a major advantage of the blockchain
technology. There is a possibility however, for a malicious node to try to
change the data or deny that a transaction happened. But in such a case, the
malicious miner would just be left behind, or desynchronise from the network
and in turn would end up running its own tiny blockchain network which would
be of no use to it.

Circular Economy Another advantage the use of blockchain can bring to
IoT can be to help build a so called circular economy25, where device resources
can be shared instead of purchasing and disposing.

Data Tracking The ability to track the data exchange history correspond-
ing to every single IoT device from the ledger of transactions, is also an im-
portant implication and is highly advantageous if used judiciously.

3. What are the caveats and challenges of using blockchains for management pro-
cesses in constrained devices, specially considered at a global perspective, and
how can they be mitigated?

There are some shortcomings to using blockchains for IoT, but the solutions
for them are either actively being worked on, or have already been solved at
the time of writing the thesis.

25A circular economy is an economic model which focuses on reusing materials and value.

70

Storage Scalability One of them, is the issue of Scalability. There are
different factors that could come under the umbrella term of scalability. It
includes aspects such as bootstrap time, transaction costs, throughput, latency
time [CDE16]. Bootstrap time, refers to the time taken by a new full node to
completely synchronize with the blockchain. At present, Bitcoin has more than
100 GBs worth of data that new nodes might need to download and process
in order to synchronize, and depending on the hardware specifications it takes
an average of four days to do so. Latency refers to the maximum time taken
to confirm a transaction, and maximum throughput refers to the maximum
rate at which the confirmation of transactions can be done on the blockchain.
Transaction costs comprise of the cost of resources consumed in order to
have a confirmed transaction. This includes the digital currency paid as a
transaction fee, as well as the physical currency paid for the operational costs
of the hardware that acts as a node, bandwidth of the network and storage
costs.

Energy consumption When a cryptocurrency is in its nascent stage, the
resources required to mine the currency do not amount to much. But as the
difficulty level of mining the cryptocurrency increases, the miners need to re-
sort to much more powerful hardware, and as we know, the more operational
efficiency a hardware has, more energy it consumes. With the growth in min-
ing farms all around the world, blockchain mining has very little regard for
sustainability.

Mitigation Strategies for Scalability

SPV nodes As discussed earlier, SPV nodes download a copy of the headers
of all blocks instead of the entire blockchain. This means that the storage
requirements scale linearly with time, the start time being when Bitcoins were
created, in this case [Sat08].

Block Pruning As mentioned earlier in Section 2.1.6, the blockchain grows
larger every 10 minutes. Block pruning removes transactions that are no longer
needed to verify if the blockchain is in a consistent state, and hence, allows
full nodes to free up storage space [Sat08]. In terms of scalability, pruned
nodes scale in the same way as the number of UTXO, or unspent transaction

71

outputs. This means that the storage will scale O(n) where n is the number
of users instead of number of transactions.

Sharding The main idea of sharding [But17], is to split the memory address
spaces of all the blockchain accounts into subspaces. For example, a sharding
method can insert the accounts with addresses beginning with 0x00 into one
shard, and addresses beginning with 0x01 into another one, and so on. Es-
sentially, each shard has its own transaction history and the effects of state
transitions corresponding to a particular shard is limited to that shard only.
The effect of a transaction taking place in a particular shard though, will
depend on the events taking place in the blockchain as a whole. Figure 20
explains sharding with a simple example.

Let us consider that account A, in shard X wants to transfer 100 digital coins
to account B, in shard Y. In this case, the transaction taking place in shard
Y depends on the events that took place previously in the other shard X.
The ’debit’ transaction in shard X destroys coins in that shard, whereas the
’credit’ transaction taking place in shard Y creates coins in that shard, thereby
showing how the legitimate transaction will take place.

 Blockchain

Account addresses
A: 500 coins
C: 730 coins

100 coins sent to
B

ID: 1647392

A: 500 coins
C: 730 coins

A: 400 coins
C: 730 coins

Receipts
consumed:
10225544

B: 100 coins
D: 810 coins

Payment
successful

ID: 1647392

B: 200 coins
D: 810 coins

Receipts consumed:
10225544
35448899

Shard X Shard Y

Figure 20: Example: Sharding

72

Sharding is made use of commonly in distributed systems such as MongoDB,
MySQL and BigDB.

Scalable Blockchain Protocols

• BitcoinNG[EGS16] The main problem BitcoinNG aims to solve is the
improvement in transaction throughput and latencies in the blockchain,
at the same time reducing the transaction confirmation to a few seconds.
This protocol improves performance by decoupling Bitcoin’s blockchain
operations into two different planes namely, serialising transactions and
electing a leader. The inventors of the protocol, divide time into epochs.
A chosen leader is responsible for serialising state machine transitions,
in every epoch. The leader is also responsible for creating new blocks
in order to facilitate state propagation. Therefore, there are two kinds
of blocks in this protocol, i.e., a key blocks, that elect the leader, and
microblocks, that record the transactions.

BitcoinNG exhibits that the scalability of blockchain protocols can be
improved until the only limiting factors are the individual node processing
power, limiting throughput, and network diameter, limiting the consensus
latency.

• Lightning Network[JpT16] The lightning network tries to address the
issue of network scalability for blockchains. It uses the concept of micro-
payments through payment channels for Bitcoin blockchains. Micropay-
ments mean making small payments and receiving instant confirmations.
The micropayments methodology allows two parties to open a payment
channel for multiple payments and the actual transactions are recorded
in the blockchain only after the channel closes. Without going into low
level technical details of the protocol, it is necessary to bear in mind that
this protocol mainly works with a minimal level of trust between two
parties and keeps track of the channel time and whether the signatures
for the transactions are properly done. The worst case scenario in this
protocol is that one party keeps the funds of the other party locked for ap-
proximately a day. When the disadvantaged party opens a new payment
channel, a refund is initiated since the other party had disappeared.

• Bigchain DB [MMM16] is a blockchain database that claims to write
one million transactions per second. All Bigchain DB nodes connect to a

73

single ReThinkDB26 cluster. However, the flaw with the implementation
is the failure to have independent storages. If the distributed database is
attacked or if the blockchain has one malicious node that tries to delete
the table, the entire system might be jeopardised. The other drawback
to this blockchain database is the low performance of the interaction
between the database and nodes connected to the blockchain.

26ReThinkDB is a distributed, NoSQL database. More information at
https://www.rethinkdb.com/

74

9 Conclusion

The purpose of this thesis has been to study the blockchain system, and analyse if it
is useful to employ the technology for identity and access management of constrained
devices. A working proof of concept of an access management system was designed
and implemented successfully on the Ethereum blockchain in order to assess the
technology. This was done through extensive research and consideration of the
choice of technology. The evaluation of the implementation proved that a blockchain
based device management system may bring some advantage over the existing device
management systems. Throughout the thesis, the advantages of using Blockchains
have been revisited multiple times.

The evaluation also revealed some limitations of the proof of concept system imple-
mented, most of which were issues related to blockchain technology in general. The
time it takes to generate a block, in particular, is a big disadvantage to a real time
IoT setup, as the readings indicated. The issues of scalability, energy consumption,
cost and block generation time were therefore examined in detail. It is essential for
these issues to have a solution in order to have an even widespread adoption of the
blockchain system.

To conclude the thesis, despite the blockchain technology still being in early stages
of development, it has many advantages that can be leveraged in a wide array of
application domains. If the current challenges can be overcome, it can potentially
change the way a lot of systems operate in the world.

75

10 Future Work

In continuation with the current research, it would be interesting to see how the
system would perform with physical nodes and real IoT devices. The current system
uses Docker containers to simulate a distributed blockchain environment, and just
uses identification information of the constrained devices, since the idea was to first
test out whether such a system is possible in the first place. An analysis of the
data could determine the real world implications of the system to a certain extent.
Therefore, an implementation of a full fledged hardware solution would be the most
plausible next step.

In addition, it would be a good idea to include the suggested improvements for the
system and develop a complete decentralized autonomous organization. This would
lead to discovery of many more issues and challenges relevant to the system, in
comparison with the controlled environment.

76

References

ABC16 Atzei, N., Bartoletti, M. and Cimoli, T., A survey of attacks on
ethereum smart contracts. Technical Report, Cryptology ePrint
Archive: Report 2016/1007, https://eprint. iacr. org/2016/1007, 2016.

ABH12 Assia, Y., Buterin, V. and Lior Hakim, Meni Rosenfeld, R. L., Colored
Coins whitepaper. 2012. URL goo.gl/1cqgcS.

AbW03 Aboba, B. and J.Wood, Authentication, Authorization and Accounting
(AAA) Transport Profile. 2003. URL https://tools.ietf.org/html/

rfc3539.

And14 Antonopoulos, A. M., Mastering Bitcoin. O’Reilly Media, 2014.

AVS12 A. Sehgal, V. Perelman, S. K. J. S.,Management of resource constrained
devices in the internet of things, volume 50. 2012.

Ash09 Ashton, K., That internet of things things. RFiD Journal 22, 2009.

BE15 Bot, B. and Ethereum, Enabling Blockchain Innovations with Pegged
Sidechains. 2015. URL https://blockstream.com/sidechains.pdf.

Bit16 BitFury, G., Digital Assets on Public Blockchains Whitepaper. 2016.
URL http://bitfury.com/content/5-white-papers-research/

bitfury-digital_assets_on_public_blockchains-1.pdf.

Bjo10 Bjorklund, M., YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). 2010. URL https://tools.

ietf.org/html/rfc6020.

But13 Buterin, V., Dagger: A memory-hard to compute, memory-easy to
verify scrypt alternative. Technical Report, 2013. URL http://www.

hashcash.org/papers/dagger.html.

But16 Buterin, V., Ethereum 2.0 Mauve Paper. 2016. URL http://vitalik.

ca/files/mauve_paper.html.

But17 Buterin, V., On Sharding Blockchains. 2017. URL https://github.

com/ethereum/wiki/wiki/Sharding-FAQ.

77

BEK14 C. Bormann, M. Ersue, A. K., Terminology for Constrained-Node Net-
works. 2014. URL https://tools.ietf.org/html/rfc7228.

BoH16 C. Bormann, P. H., Concise Binary Object Representation (CBOR).
2016. URL https://tools.ietf.org/html/rfc7049.

CML99 Castro, M. and Liskov, B., Practical Byzantine Fault Tolerance. Pro-
ceedings of the Third Symposium on Operating Systems Design and
Implementation, 1999.

DrB15 Dryja, T. and Buterin, V., Dagger-hashimoto protocol specifications.
Technical Report, 2015. URL https://github.com/ethereum/wiki/

blob/master/Dagger-Hashimoto.md.

Dou02 Douceur, J. R., The sybil attack. IPTPS ’01, 2002, URL http://dl.

acm.org/citation.cfm?id=646334.687813.

SBV17 der Stok, P. V., Bierman, A., Veillette, M. and Pelov, A., Coap manage-
ment interface. Technical Report, 2017. URL https://tools.ietf.

org/html/draft-vanderstok-core-comi-11.

EB15 Ethereum and Bot, B., Hydrachain open source code. 2015. URL https:

//github.com/HydraChain/hydrachain.

EGS16 Eyal Ittay, Gencer Adem Efe, S. E. G., Bitcoin-ng: A scalable
blockchain protocol. Proceedings of the 13th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI’16. USENIX Asso-
ciation, 2016, pages 45–59, URL http://dl.acm.org/citation.cfm?

id=2930611.2930615.

Fer16 Fernandez, J. O., Lisk Academy. 2016. URL https://academy.lisk.

io/.

FeA11 Fette, I. and Melnikov, A., The WebSocket Protocol. 2011. URL https:

//tools.ietf.org/html/rfc6455.

Eth15 Foundation, E., Ethash design rationale. Technical Re-
port, 2015. URL https://github.com/ethereum/wiki/wiki/

Ethash-Design-Rationale.

78

Eth16 Foundation, E., Ethereum white paper - a next-generation smart con-
tract and decentralized application platform. 2016. URL https:

//github.com/ethereum/wiki/wiki/White-Paper.

Hyp16 Foundation, L., Hyperledger Whitepaper. 2016. URL https://github.

com/hyperledger/hyperledger/wiki/Whitepaper-WG.

BiF17 Foundation, B., Bitcoin Weaknesses. 2017. URL https://en.bitcoin.

it/wiki/Weaknesses.

CoF17 Foundation, C., Ethereum Safety. 2017. URL https://github.com/

ConsenSys/smart-contract-best-practices.

Gav14 Gavin, W., Ethereum: A secure decentralised generalised transaction
ledger., 2014. http://gavwood.com/paper.pdf

Gre15 Greenspan, G., MultiChain Private Blockchain White Pa-
per. 2015. URL http://www.multichain.com/download/

MultiChain-White-Paper.pdf.

Har15 Hartke, K., Observing Resources in the Constrained Application Proto-
col (CoAP). 2015. URL https://tools.ietf.org/html/rfc6120.

KCE15 Harry, K., Miles, C. and Ellenbogen Paul, Joseph Bonneau, A. N.,
An empirical study of Namecoin and lessons for decentralized names-
pace design. 2015. URL http://randomwalker.info/publications/

namespaces.pdf.

CFS90 J. Case, M. Fedor, M. S. J. D., A Simple Network Management Protocol
(SNMP). 1990. URL https://tools.ietf.org/html/rfc1157.

J.D14 J.D.Bruce, The Mini-Blockchain Scheme. 2014. URL http://

cryptonite.info/files/mbc-scheme-rev2.pdf.

Jen96 Jensen, F. V., An introduction to Bayesian networks, volume 210. UCL
press London, 1996.

Jim16 Jimenez, J., Open mobile alliance-lightweight m2m specifications.
Technical Report, 2016. URL https://tools.ietf.org/html/

draft-jimenez-t2trg-coap-functionality-lwm2m-00. RFC.

79

KB16 Kordek, M. and Beddows, O., Lisk Whitepaper. 2016. URL https:

//lisk.io/whitepaper.

CDE16 Kyle Croman, Christian Decker, I. E. A. E. G., On Scaling Decentral-
ized Blockchains, 2016. http://fc16.ifca.ai/bitcoin/papers/CDE+
16.pdf

Ler14 Lerner, S., Strict memory hashing functions. Technical Report, 2014.
URL http://www.hashcash.org/papers/memohash.pdf.

Ler15 Lerner, S. D., Rootstock: Bitcoin powered smart contracts. Tech-
nical Report, 2015. URL http://www.the-blockchain.com/docs/

Rootstock-WhitePaper-Overview.pdf.

ToA15 Leshan Implementation. 2015. URL https://github.com/eclipse/

leshan.

LRM81 Leslie Lamport, Robert Shostak, M. P., The Byzantine Generals Prob-
lem , 1981. http://research.microsoft.com/en-us/um/people/

lamport/pubs/byz.pdf

Jpm14 Morgan, J., Advanced Message Queuing Protocol (AMQP) standard.
2014. URL http://www.iso.org/iso/home/store/catalogue_tc/

catalogue_detail.htm?csnumber=64955.

VPS16 M. Veillette, A. Pelov, A. S. R. T. A. M., Constrained Objects Language.
2013. URL https://tools.ietf.org/html/rfc7049.

Joh07 O’Hara, J., Toward a commodity enterprise middleware. 2007.
URL http://oldwww.acm.org/acmqueue/digital/Queuevol5no4_

May2007.pdf.

Org15 Org, B., Delegated proof-of-stake consensus. Technical Re-
port, 2015. URL https://bitshares.org/technology/

delegated-proof-of-stake-consensus/.

Pau13 Paul, D., Beyond mqtt: A cisco view on iot protocols. Tech-
nical Report, 2013. URL http://blogs.cisco.com/digital/

beyond-mqtt-a-cisco-view-on-iot-protocols.

80

JpT16 Poon, J. and Dryja, T., The bitcoin lightning network: Scalable
off-chain instant payments. Technical Report, 2016. URL https:

//lightning.network/. draft.

Sat08 Satoshi, N., Bitcoin: A peer-to-peer electronic cash system. 2008. URL
http://bitcoin.org/bitcoin.pdf.

RSS94 Sandhu, R. S. and Samarati, P., Access control: principle and practice,
volume 32. 1994.

Ste14 Stewart, I., Slimcoin. 2014. URL http://www.slimcoin.club/

whitepaper.pdf.

Sza97 Szabo, N., The Idea of Smart Contracts. 1997. URL http://szabo.

best.vwh.net/smart_contracts_idea.html.

Tel94 Teller, A., Turing completeness in the language of genetic programming
with indexed memory. Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the First IEEE
Conference on. IEEE, 1994, pages 136–141.

MMM16 Trent McConaghy, Rodolphe Marques, A. M., BigchainDB Whitepaper.
2016. URL https://www.bigchaindb.com/whitepaper/.

Vuk15 Vukoli, M., The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication. 2015. URL http://www.vukolic.com/iNetSec_

2015.pdf.

VaK15 V. Vaishnavi, B. K., Design research in information sys-
tems. Technical Report, 2015. URL http://desrist.org/

design-research-in-information-systems/.

SHB14 Z. Shelby, K. Hartke, C. B., The Constrained Application Protocol
(CoAP). 2014. URL https://tools.ietf.org/html/rfc7252.

1

Appendix 1. Contract Creator function description

Compile contract

Input: Smart contract code in Solidity
Output: Compiled version of the smart contract

Description: This function uses the solidity compiler binding library for javascript.
The smart contract code needs to be stored into a variable, without any line breaks,
for this function to work.

Calculate gas

Input: The full transaction along with the data to be passed
Output: The units of gas required to run the transaction

Description: This function uses the estimateGas method from the external Web3
javascript library, to determine the approximate amount of gas one needs to supply
for the contract upload transaction to be successful.

Deployment format

Input: The compiled smart contract code
Output: Ready to deploy smart contract

Description: This function determines the ABI 27 of the smart contract, and en-
capsulates the compiled code into error handling blocks. It also takes care of other
things such as having an unlocked user account for the deployment transaction, and
checking if all the parameters required to upload the contract have been taken care
of. It outputs the deployable version of the compiled smart contract code.

27ABI: Application Binary Interface is a description of all the functions included in the solidity
smart contract and how to use those functions.

2

Deploy

Input: Ready to deploy smart contract
Output: Smart contract deployed on the blockchain

Description: This function deploys the smart contract that the previous func-
tion produced as an output, and outputs the smart contract address if successfully
deployed.

1

Appendix 2. Smart Contract function description

Manager Authentication Check

Input: Manager’s Ethereum address
Output: True or False

Description: It is a constant function that verifies whether the manager updating
rules for a certain device in the smart contract memory is the one responsible for
that particular device. It returns a Boolean value.

Query Manager

Input: Manager’s Ethereum address, Device’s Ethereum address
Output: True or False

Description: This function takes the Manager and the constrained device addresses
as inputs, and queries whether a certain Manager is responsible for a certain device
or not. It returns a Boolean value.

Query Rule

Input: Manager’s Ethereum address, Ethereum addresses of the two communicat-
ing devices
Output: True or False

Description: This function takes the Manager, and two constrained device ad-
dresses respectively as arguments. It queries whether a certain constrained device
can access a particular constrained device or not. It returns a Boolean value.

2

Add Manager

Input: Manager Ethereum address
Output: True or False

Description: This function adds a manager in the smart contract memory on
the blockchain. This function executes when a manager broadcasts an identitiy
registration message, essentially making a call to the add manager function to add
itself to the blockchain. It stores the manager address as a key value in a mapping,
and returns a boolean value confirming if the add was successful. It also broadcasts
a message on the blockchain claiming that the manager with the given address has
been added.

Add Device

Input: Ethereum addresses of the Manager and Device
Output: True or False

Description: The manager of a constrained devices calls this function to add the
particular device. It takes the manager address and the constrained device address as
arguments, and adds the constrained device address in the value array corresponding
to the key value mapped pair with the manager address as the key value. It then
broadcasts a message over the blockchain indicating that the device corresponding
to the specific manager has been added.

If the manager needs to add more devices corresponding to it, those addresses go
into subsequent array indices in the value array of the key value pair.

Add Rules

Input: Ethereum addresses of the Manager and two communicating devices, Rule
information
Output: True or False

Description: This function takes the manager’s address, the constrained device’s
address that the manager manages, the new device’s address that can now have

3

access to the former device, the resources it can have access to, for how long the
access is valid and what kind of access rights the latter can have over the former’s
specified resources. Access rights usually range between none, read and write in-
dicated by numerical values, and the expiration time is specified by the number of
blocks after which the access rights are expected to expire. The number of blocks
is an indication of the time, in case of blockchains. After the data is stored in the
smart contract memory, a message is broadcast to the blockchain indicating that a
new rule has been added with the relevant details.

Remove Device

Input: Ethereum addresses of the Manager and Device
Output: True or False

Description: This function takes the device address and the manager address as
inputs and updates the value corresponding to the key value of manager address to
zero. Then a message is broadcast over the network specifying the details of the
device that has been de-registered from a particular manager on the blockchain.

Remove Rules

Input: Ethereum addresses of the Manager and the two communicating devices
Output: True or False

Description: This function takes the constrained device addresses and the manager
address as inputs and updates the value corresponding to the key value of constrained
device address to zero. Then a message is broadcast over the network specifying the
details of the rule that has been removed.

Remove Manager

Input: Ethereum address of the Manager
Output: True or False

Description: This function takes the manager address as an argument. It first

4

checks for any constrained device addresses corresponding to the manager as the
key value. If there are none, it goes ahead with setting the corresponding value
to null, and returns a true boolean value. Otherwise, an error is returned. This
function also broadcasts a message over the network specifying the details of the
manager that has been de-registered from the blockchain.

Execute Smart Contract Later

Input: Expiration time specified as a rule information
Output: True or False

Description: This function takes the expiration time of a rule as the input. It then
includes an internal logic to execute a transaction to the smart contract after the
given expiration time, to update the rule description. A trusted external contract,
called Ethereum Alarm Clock 28, is also made use of to schedule the contract calling
after the contract has expired.

Kill Smart Contract

Input: Ethereum address of the contract creator
Output: True or False

Description: Only the creator of the smart contract has access to this function.
This suicide function was implemented in the prototype in the event of a bug or an
unwanted behaviour that needs to be removed.

28Ethereum Alarm Clock: http://www.ethereum-alarm-clock.com/

1

Appendix 3. Client libraries used

React

React is a javascript library meant to create interactive user interfaces. The code of
this library is mainly maintained by Facebook. It was used in the project to create
the Client user interface. https://facebook.github.io/react/

Web3

Web3 is a javascript library that communicates through RPC calls on a local Ethereum
node, and basically exposes the RPC layer to communicate with Ethereum directly.
https://github.com/ethereum/wiki/wiki/JavaScript-API

Solc

Solc javascript library binds javascript code to Solidity compiler, thereby making it
possible to compile the smart contract code and deploy it. It uses Nodejs internally
to do so, and more information about it can be found at https://github.com/ethereum/solc-
js.

Lodash

Lodash is a javascript utility library that contains many inbuilt high performance
functions such as iterating through a javascript object, searching in javascript ob-
jects, using properties from different javascript objects to form a new object, etc.
https://lodash.com/

