
 
 

 

 

 

 

Ultra-high Performance Liquid 

Chromatography in Steroid Analysis 

Fanny Salonen 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Master of Science Thesis 

University of Helsinki, 

Department of Chemistry 

Analytical Chemistry 

October 2017 



1 
 

 

 

Tiedekunta – Fakultet – Faculty 

Faculty of Science 
  

Koulutusohjelma – Utbildningsprogram – Degree programme 

Analytical chemistry 

Tekijä – Författare – Author 
 

 Fanny Salonen 
Työn nimi – Arbetets titel – Title 
 

  Ultra-high Performance Liquid Chromatography in Steroid Analysis 

Työn laji – Arbetets art – Level 
 

 Masters’ thesis 

Aika –  Datum – Month and year 
 
  

Sivumäärä – Sidoantal – Number of pages 
  

Tiivistelmä – Referat – Abstract 
 

The latest version of liquid chromatography is ultra-high performance (or pressure) chromatography 
(UHPLC). In the technique, short and narrow-bore columns with particle sizes below 3 µm are used. The 
extremely high pressure used results in very short analysis times, excellent separation, and good 
resolution. This makes UHPLC a good choice for steroidal analysis. Steroids are a highly interesting area 
of study; they can be recognized as biomarkers for several diseases and are a relevant topic in doping 
testing. In this thesis articles on the topic ‘steroid analysis with UHPLC’, published prior to April 2017, are 
reviewed. 
 
UHPLC is always combined with mass spectrometry (MS) for steroid analysis. The MS utilized is usually 
of multi-dimension: quadrupole time of flight (QTOF) or triple quadrupole (QqQ). The instrumentation is 
suitable for both untargeted and targeted analysis. In untargeted studies, the study of changes in the 
human metabolome has been especially interesting. The articles on targeted studies are usually focused 
on doping control and quantification of identified biomarkers. The analysis with UHPLC-MS/MS usually 
provide reliable results with fast analysis time, without complicated sample preparation. Typically, the 
sample preparation processes can include only protein precipitation, liquid-liquid extraction or solid-phase 
extraction. 
 
UHPLC is also a valuable tool in simple and routine analysis. The separation efficiency is increased by 
the small plate height and the analysis time can thus be reduced. In this thesis work the technique was 
utilized for the analysis of food additives. For validation of an UHPLC method the repeatability, trueness, 
bias, measurement uncertainty and other factors need to be assessed. The experimental part of the thesis 
is dedicated to describe the development and validation of a method for analysis of five food additives and 
caffeine. 
 
The developed method was partly validated, with the aim to fulfil the needs of the Finnish Customs 
Laboratory. The optimized method comprised of an injection volume of 2 µL and a flow rate of 1.0 mL/min.  
The buffer was a phosphate buffer at pH of 4.0 and the gradient elution program was from 6 % to 30 % of 
acetonitrile in 1.6 minutes, then 1.6-1.7 minutes with 6% acetonitrile. The total run time was only 1.7 
minutes. The limit of detection values was between 0.02 µg/mL and 1.73 µg/mL. The limit of quantitation 
values was between 0.054 µg/mL to 5.78 µg/mL, which should be sufficient for the Customs needs in the 
sense of checking if a product is over a certain limit. Expanded measurement uncertainties were around 
20 %. 

Avainsanat – Nyckelord – Keywords 

UHPLC, steroids, MS, validation 
  

Säilytyspaikka – Förvaringställe – Where deposited 

Helsinki University Digital Archives/eThesis 
  

Muita tietoja – Övriga uppgifter – Additional information 



2 
 

 

List of abbreviations   

A  Eddy diffusion 

AAS   androgenic anabolic steroid 

ACN  acetonitrile 

API  atmospheric pressure ionization 

ASE  accelerated solvent extraction system 

As-K  acesulfame potassium 

Asp  aspartame 

B  longitudinal diffusion 

BA benzoic acid 

C  diffusion caused by mass transfer 

C18  octadecyl carbon chain bonded silica 

DAD  diode array detector 

DLLME  dispersive liquid-liquid microextraction 

dp  particle size distribution of stationary phase 

dSPE  dispersive solid phase extraction 

ESI  electrospray ionization 

Fapas Food Analysis Performance Assessment Scheme 

FLD  fluorescence detector 

GC gas chromatography 

GC/MS gas chromatography combined to mass spectrometry 

H   plate height 



3 
 

H295R  adrenal gland cells 

HF-LPME  hollow fiber liquid-phase microextraction 

HPLC  high pressure liquid chromatography 

KD  distribution coefficient 

λ  describes the uniformness of the packing 

LC  liquid chromatography 

LC-MS quality Quality, that is needed for liquid chromatography with a mass 

spectrometer as detector. 

LE  liquid extraction 

LLE  liquid-liquid extraction 

MS/MS tandem mass spectrometry 

MSTFA  N,O-bis(trimethylsilyl)trifluoroacetamide 

N  plate number 

NH4Ac  ammonium acetate buffer 

OPLS  orthogonal projections to latent structures 

PCA   principal component analysis 

PFP  pentafluorophenyl column 

PLS  partial least square regression 

Q  quadropole mass spectrometer 

QqQ  triple quadropole 

QToF  Hybrid mass spectrometer with a quadrupole and time of flight 

  combined. 

QuEChERS quick, easy, cheap, effective, rugged and safe sample    

preparation 



4 
 

RI  refractive index 

ROC  receiver operating characteristic 

RPLC  reversed phase liquid chromatography 

Rs  resolution 

SA sorbic acid 

Sac  saccharin 

SDME  single-drop micro extraction 

SIMCA  soft independent modelling of class analogies 

SPE  solid phase extraction 

SPME  solid phase micro extraction 

ToF  time of flight mass spectrometer 

tr  retention time 

u  mobile phase velocity 

UHPLC  ultra-high pressure liquid chromatography 

UV/Vis  ultraviolet and visible light detector 

WADA  World Anti-Doping Agency 

  



5 
 

  

Table of contents 
 

1. Introduction .................................................................................................................. 82 

2. Analysis of steroids ....................................................................................................... 93 

3. Theory of ultra-high performance chromatography .................................................. 116 

4. Parameters and apparatus for ultra-high pressure chromatography ........................ 149 

5. Detection modes ...................................................................................................... 1611 

6. Sample preparation techniques ............................................................................... 2015 

6.1 Liquid extraction methods............................................................................. 2015 

6.2 Solid phase extraction methods .................................................................... 2117 

6.3 Quick, easy, cheap, effective, rugged, and safe sample preparation ........... 2218 

7. Type of matrixes with steroids ................................................................................. 2319 

8. Chemometrics .......................................................................................................... 2420 

9. Applications .............................................................................................................. 2521 

Validation of food additives using ultra-high pressure liquid chromatography ............. 4339 

1. Background ........................................................................................................... 4440 

2. Instrumentation .................................................................................................... 4541 

3. Chemicals .............................................................................................................. 4541 

4. Preparation of solutions ....................................................................................... 4642 

4.1. Standard preparation .................................................................................... 4642 

4.2. Eluent preparation......................................................................................... 4642 

4.3. Samples and sample preparation .................................................................. 4743 

5. Method optimization ............................................................................................ 5046 

5.1. Selection of buffer ......................................................................................... 5046 

5.2. Selection of pH for the phosphate buffer ..................................................... 5147 

5.3. Gradient ......................................................................................................... 5349 

5.4. Selection of wavelengths for analysis ........................................................... 5450 

5.5. Injection volume ............................................................................................ 5551 

5.6. Temperature .................................................................................................. 5551 

5.7. Flow rate ........................................................................................................ 5652 

6. Method validation ................................................................................................ 5753 



6 
 

6.1. Trueness ........................................................................................................ 5753 

6.2. Within laboratory reproducibility .................................................................. 5753 

6.3. Measurement uncertainty............................................................................. 5854 

6.4. Limit of detection and limit of quantification ............................................... 6258 

6.5. Linearity ......................................................................................................... 6359 

6.6. Robustness..................................................................................................... 6460 

6.7. Durability ....................................................................................................... 6561 

7. Results and discussion .......................................................................................... 6662 

8. Concluding remarks .............................................................................................. 6864 

9. References ......................................................................................................... 6965 

 

  



7 
 

 

I. Theoretical part



8 
 

1. Introduction  

There are many different chromatographic methods that can be utilized for the separation and 

analysis of compounds. The most common techniques are gas chromatography (GC) and liquid 

chromatography (LC). LC has developed a lot since the first available instruments. Tswett was the 

first to describe and utilize LC. He separated pigments from plants with the help of a glass tube filled 

with calcium carbonate as a stationary phase and petrol ether as a mobile phase. This was already 

in the beginning of the 20th century.1 The latest version of the LC is ultra-high performance (or 

pressure) chromatography (UHPLC), which can be used with short and narrow columns with small 

particles and at an extremely high pressure to achieve short analysis time and high peak capacity. 

LC is superior to GC in the analysis of high molecular weight compounds and other compounds of 

low volatility. The reason for this is that the higher the temperature in the GC oven, the higher is 

the risk for degradation of the sample compounds. This is especially important to take into 

consideration when working with biological matrixes.2 However, GC has the advantage of having 

larger resolving power compared to regular LC. This has pushed the development of LC in the 

direction of smaller particle columns, which reduces the plate height and increases the resolution.3 

The UHPLC instrument was first introduced in 2004 by Waters and was trademarked as UPLC®.4 

Other manufacturers have after this launched similar instruments by the name UHPLC. The UHPLC 

is an instrument that can operate in pressures above 1000 bars. This enables the usage of particle 

sizes below 2 µm with flowrates high enough to achieve minimum band broadening.5 

The UHPLC instrument can be connected to a variety of detectors. Common detectors are the 

UV/Vis detector and the mass spectrometer.  The workhorse UV/Vis detector can be selective 

enough for simple mixtures and is commonly utilized in routine analysis. The true efficiency of 

UHPLC can though be seen when it is connected to a tandem mass spectrometer (MS/MS). At its 

best UHPLC-MS/MS provides an efficient setup for analysis of steroids and steroid metabolites. It 

can for example efficiently separate up to 124 metabolites, which can be detected and identified by 

MS/MS.6  

Steroids are a highly interesting area of study; they can be recognized as biomarkers for several 

diseases and are a relevant topic in doping testing. Steroids also provide a challenging task for the 

separation scientist, as they are structurally very similar. UHPLC offers high peak capacity and short 
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analysis time, as it can be utilized with sub 2 µm solid phase particles.7 This means that it suits well 

for the challenging task to resolve steroids. 

UHPLC is also a valuable tool in simple and routine analysis. With the small plate height, the analysis 

time can be reduced and the separation efficiency increased. The technique can be utilized for the 

analysis of food additives. For the validation of an UHPLC method several factors, like the 

repeatability, trueness, bias, measurement uncertainty etc. need to be assessed. The experimental 

part of the thesis is dedicated to describe the development and validation of a method for the 

analysis of five food additives and caffeine. 

2. Analysis of steroids  

Steroids play a large role throughout the body and can therefore be found in any matrix taken from 

the human body. Typically, they are analyzed from blood or urine samples, which are both aqueous 

matrixes that can easily be prepared for LC analyses. However, such samples are also routinely 

analyzed by GC and immunoassays.7,8  

The reason why steroids are of great interest in analysis is that they are relevant in detection of 

doping drugs and as possible disease biomarkers. They have been linked to Alzheimer’s disease, 

cancers, and diabetes.9,10,11,12 Generally, physiological steroid levels are low and vary from individual 

to individual, depending on age, sex, stress level, etc.13 This makes it hard to compare results 

between individuals. 

The basic structure of steroids consists of a perhydro-1,2-cyclopentanophenanthrene ring system 

(figure 1). They can be classified per the amount of carbons or by their function. The division by 

function divides the steroids into four main groups: androgens, estrogens, glucocorticoids, and 

mineralocorticoids.  All steroids are lipophilic.7  

 

 

FIGURE 1: BASIC STRUCTURE OF STEROIDS. 
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GC/MS derivatization is needed for thermos-labile compounds with low volatility and high polarity, 

which includes estrogens.14  This means that some of the interesting steroids cannot be analyzed by 

GC without derivatization. In some cases, the compound needs to be hydrolyzed to be volatile 

enough for GC, however, this makes it hard to identify the total of the original compound.7 These 

factors make LC a very attractive method for analysis of steroids. 

The steroidal structure easily metabolizes with both first and second phase metabolism (figure 2). 

The first phase metabolism is mainly reduction, hydroxylation, and oxidization by enzyme activity, 

whereas the second phase is the addition of a glucuronic acid or sulfate.15 Without metabolism, it 

would be impossible to excrete compounds from the body. For a compound to be excreted via the 

urine it usually has to undergo first and second phase metabolism.16 The downside to this is that, as 

steroids have many metabolic pathways it can be hard to recognize the parent compound, even 

without any sample pretreatment.13 This needs to be taken into consideration when the sample 

type is chosen.  

 

    

FIGURE 2: THE GENERAL METABOLISM PATHWAYS FOR TESTOSTERONE.17 

The MS detector is crucial as the steroids are very alike in their structures and are thus hard to 

separate and identify reliably with other detectors. Especially in metabolite studies, the MS makes 

it possible to identify compounds for which there are no standards available in the laboratory.2 With 

the information provided by the MS, a complete metabolome can be harnessed to find patterns for 

different diseases, without the knowledge of which all the compounds are.18 

Immunoassay is a completely different method, which is based on binding an antigen or antibody 

to the compound. This causes a measurable change, for example by making the compound 

fluorescent.19 Immunoassays are sensitive, but are prone to antibody cross reactivity, which gives 
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false positives.20 This is especially problematic, when analyzing congenital adrenal hyperplasia in 

newborn children or other serious diseases.21  

GC-MS/MS methods are more selective than immunoassays, but also demand more elaborate 

sample preparation. The samples need to be hydrolyzed and/ or derivatized prior to analysis. 

Kotronoululas et al. utilized the sample preparation procedure in the guidelines of World Anti-

Doping Agency (WADA).22 The sample was first enzymatically hydrolyzed with β-glucuronidase, then 

incubated for an hour, and further derivatized with N-methyl-N-(trimethylsilyl) trifluoroacetamide. 

The problem of this is that not all steroid metabolites undergo enzymatic hydrolysis, which can give 

too low values in doping control for some compounds.22 The derivatization step and hydrolysis step 

also take a lot of time compared to the very simple sample preparation methods required before 

UHPLC analysis. The sample preparation prior to UHPLC can be as simple as dilution, but usually 

some further preparation is done. 

As can be seen from this, it is not easy to study steroids on a general level. The aim to recognize 

patterns is hard, not only because of the differences from individual to individual – but also since 

very few samples can be analyzed directly. The sample preparation, the capability of the instrument 

to separate the compounds, and the data processing are all sources of error. 

At its best UHPLC-MS analysis provides a short and simple way to measure selectively and 

sensitively, with low limits of detection (LODs), metabolites that can be of interest in doping control 

or as biomarkers of diseases.  

3. Theory of ultra-high performance chromatography 

The separation mechanisms of LC are based on the separation power of the mobile phase and solid 

phase partitioning. These are mainly affected by the choice of column and mobile phase(s). The 

quality of the column for a certain analysis can be estimated by calculation of plate height, 

resolution, separation factors, and retention factors. The required properties of a column depend 

on the compounds of interest. It is, however, hard to estimate the separation of different 

compounds in a column. The separation depends on molecular interactions: dipole-dipole bonding, 

hydrogen bonding, π-bonding, and acid-base interactions.2 

The small particle sizes utilized in UHPLC is the result of careful optimization of solid phases based 

on the theory described by Van Deemter.23 According to him band broadening is caused by three 
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mofactors: Eddy diffusion (A), longitudinal diffusion (B), and mass transfer (C). The plate height (H) 

is utilized for estimation of column efficiency based on these three factors. The mass transfer and 

longitudinal diffusion are both dependent on the linear mobile phase velocity (u).23 At low velocities, 

the longitudinal diffusion is dominant and as the velocity increases its effect is reduced; the 

compounds just do not have time to diffuse longitudinally. On the other hand, the input of mass 

transfer grows as the velocity increases.  

𝐻 = 𝐴 +
𝐵

𝑢
+ 𝐶𝑢      (1) 

The A term is the one that accounts for most of the advantages of UHPLC compared to regular high 

performance liquid chromatograph (HPLC). As the column packing gets smaller and smaller the 

paths of the molecules have smaller differences in the routes they travel through the packing. This 

means that the A term converges towards zero as the particle size (dp) is reduced, as it is in open 

tubular columns (equation 2).  

𝐴 = 𝜆𝑔𝑑𝑝,       (2) 

where 𝜆 describes the quality and uniformness of the packing.24 This means that small uniform 

packing has real potential. Also, the C variable is reduced as the column packings get smaller, 

especially for core shell particles, and the compounds cannot diffuse as far into the stationary phase, 

which reduces C. The effects can clearly be seen in a study done by Szabolks Fekete et al. 2013 

(figure 3).3 From the figure it can be seen at which velocities the A, B, and C terms dominate. 

Interestingly the A factor seem to be the same for all the sub 3 µm column packings. 
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FIGURE 3: PLATE HEIGHT (HETP) OF DIFFERENTLY PACKED COLUMNS. [PUBLISHED WITH PERMISSION FROM ELSEVIER].3 

The flipside of small packing particle sizes is that they result in high back pressure, which regular 

HPLC cannot handle. Every time the particle size is reduced by a factor of two the backpressure 

increases by four, without any change in the other paramters.5 The pressure is caused by the 

resistance of the liquid going through the narrow paths between and in the stationary phase. The 

UHPLC systems can handle pressures up to 1300 bars.25 This makes it possible to use sub 3 µm 

particles without reducing the flowrate. Another method to reduce the differences in routes is to 

use core-shell particles. The solid core reduces the diffusion into the particles, and hence reduces 

the time a compound needs to equilibrate between the phases.2 Normally the particles are fully 

porous. 

As the diffusion factors are minimized in the packed particles, very narrow peaks are formed. The 

resolution describes the separation power of a system. The resolution (Rs) can be expressed by the 

retention times (tr) and the peak widths (wb).24 

𝑅𝑠 =
𝑡𝑟1−𝑡𝑟2

1/2(𝑤𝑏1+𝑤𝑏2)
      (3) 

Narrow peaks are directly connected to higher resolution. Low diffusion also generates a high plate 

number, as it is also connected to the peak width. The N is another measure on column efficiency 

(equation 4). The advantage of it is that only one compound is needed for determination of the 

column efficiency. N can be further converted to the plate height H, which gives the efficiency of a 

specific column (equation 5). 
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𝑁 = 16× (
𝑡𝑟

𝑤𝑏
)

2

      (4) 

𝐻 = 𝐿/𝑁       (5) 

From the equations it can be seen how strongly the peak width affect both the resolution and the 

plate height. Many factors that play part in the achieved resolution can thus be optimized by 

minimizing the diffusion. This combined with the large surface area of the small particles makes 

UHPLC a powerful tool for the separation of compounds.  

The resolution is not the only important factor in chromatography, also the sensitivity is of high 

importance. As the peak width is reduced the peak height is increased, which means that the 

sensitivity is better than in regular LC. How sensitive the method is, depends a lot on the analyzed 

compounds and the used detector. 

As shown by the topics discussed in this section, UHPLC offers one answer to today’s demands. It is 

more and more important to achieve faster and more sensitive analysis. With the superior pressure 

withstanding properties of UHPLC, it can be utilized with columns having extremely small packings 

and of short length. This leads to shorter analysis time without loss in resolution. 

4. Parameters and apparatus for ultra-high pressure 

chromatography 

The major components of a liquid chromatograph are several pumps, an injector, a degasser, a 

detector, and a column. These provide the base for the instrument. The pumps push the mobile 

phase through the column, the injector introduces the sample to the column, the column separates 

the components into narrow bands, and lastly the detector gives a response to the compounds 

present. The degasser does not take part in the analysis directly, but has the important function of 

removing dissolved gases from the mobile phases. Air bubbles can ruin the column and disturb the 

detector. There are two types of degassers available on the market: vacuum and helium.2  

It is critical to have as steady flow as possible. Unsteady flow is not good for the filled columns and 

creates uneven signals in mass flow detectors. To achieve a steady flow there are often two or more 

pumps. The idea is when the other pump is filling up, the other one is maintaining the flow. A typical 

pump in LC systems is the reciprocating pump, but there are also pneumatic pumps and syringe 
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pumps.24 The pumps for UHPLC need to be extremely efficient and reliable, as they need to be able 

to function at extremely high pressures.  

There are quite a few parameters that can be adjusted in the UHPLC instrument. The main ones are 

injection volume, flow rate, choice of column, and temperature. Injection volumes can vary a lot 

depending on the required LOD. Generally, in biological samples very low LODs are desired. To 

achieve low LODs injection volumes of even 35 µL can be utilized.26 To use large injection volumes 

are not problem free since one can easily overload the detector and column. Normally 2-10 µL 

injections are utilized in UHPLC applications. The small injection volumes are one of the parameters 

that are different in HPLC and UHPLC. With smaller columns, also smaller samples are needed. The 

injection is done by introducing the sample into a rotary sample loop injector, from which the 

sample is introduced by rotating the valve so that the mobile phase pushes the sample with it.2 

The flow rate depends on which detector is connected to the LC. If the detector is a MS, lower flow 

rates need to be used not to overflow the detector, compared to a UV/Vis detector. The reason for 

this is that all the eluent needs to be vaporized for the detector.2 In LC-MS flow rates between 0.15-

0.45 mL/min are common, whereas in LC-UV/Vis even 2 mL/min can be utilized. In general, less 

solvent is needed compared to HPLC in total. 

In UHPLC short columns are generally utilized. The columns are between 50 – 150 mm long, 2 mm 

wide and have stationary phases with particles smaller than 3 µm in diameter. The most popular 

stationary phase is octadecyl carbon chain bonded silica (C18) for reversed phase liquid 

chromatography (RPLC).2 It provides good retention for a variety of compounds from food additives 

to steroids. RPLC is of course not the only operating mode, but is the most widely used mode.2 In 

RPLC the stationary phase of the column is non-polar and the mobile phase is polar. 

There are different kinds of manufacturing methods for silica.27 From this follows that C18 columns 

from different providers can vary in selectivity. The column chosen should have as few free silanol 

groups as possible. The free silanol groups can adsorb or increase the retention of polar compounds 

in the analysis. Another reversed phase column which can be utilized for separation of steroids is a 

penta fluorophenyl column (PFP).28 

To get repeatable results it is important to have a stable temperature in the column every day. This 

means that the column temperatures are usually at least five degrees over room temperature. The 
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change in temperature affects the mobile phase viscosity and the solubility of buffer salts and 

compounds.24 The maximum temperature for the column depends on the column.  

The mobile phases utilized vary depending on the detector and compounds. In RPLC, the main 

solvent is aqueous and the added part of organic solvent is considered an organic modifier.2 The 

ratio of these can change during the run (gradient run) or stay constant (isocratic run). The amount 

can be easily changed in modern instruments as they have mixing compartments for combining 

solvents from several flasks. Gradient runs are often preferred to reduce the band broadening for 

late eluting compounds. As the amount of the organic modifier grows, the less organic compounds 

are retained by the column. For non-MS detectors phosphate buffers and acetic acid buffers in 

combination with acetonitrile, propanol, or methanol are commonly used.24 In MS applications, very 

dilute formic acid is added to the solutions, as it can increase signal intensities.29 

5. Detection modes 

Common detectors utilized in UHPLC are UV/Vis, fluorescence (FLD), refractive index (RI), and mass 

spectrometers (MS). Many factors need to be considered when the detector is chosen: does the 

study require a universal or selective detector, non-destructive or destructive, how large working 

range, and sensitivity is needed. Optimally the detector is fast, requires small sample volumes, has 

minimal noise and give a constant mass to signal ratio. Detectors measure either concentration or 

mass-flow.2 

Spectrophotometry is based on the absorption of a specific wavelength. Molecules absorb energy 

on many levels and everything from the core to the spin of the nuclei absorb at different 

wavelengths. Electron transitions can be detected in the ultraviolet and visible region of the 

spectrum and can be quantified. The UV/Vis detectors can be utilized for detecting compounds that 

have double or triple bonds, or nonbonding electrons. This means in practice that UV/VIS 

spectrometry is a powerful tool for detection and quantification of organic compounds. As 

previously mentioned the method is not universal, however in many applications this limitation 

does not matter and UV/vis spectrometers are widely considered as workhorse detectors.2  

A typical type of UV/Vis detector is the diode array detector (DAD). The DAD can simultaneously 

record the complete UV/Vis spectrum and all wavelengths produced by the lamp can be detected 

simultaneously. The apparatus consists of a light source which is directed towards the sample. After 
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the light beam, has passed the sample the light is divided into its components by a grating. The 

grating separates the different wavelengths are to the different diodes. The diodes respond to light. 

The greatest downside of the detector is the risk of cross reference due to the possibility of other 

compounds absorbing similarly and having the same retention time as the compound of interest. 

The FLD is similar to the DAD, but is more selective as compounds need to be fluorescent in order 

to be detected or undergo derivatization to achieve that. The great advantage of FLD is that it is 

much more sensitive than UV/Vis due to low background noise levels, which are due to less 

scattered light.2 

Mass spectrometers are very useful detectors for LC and they are widely applied in for example 

pharmaceutical sciences and biochemical applications.30 MS instruments give more information 

about the structure than a DAD. The response of the instrument is relative to the amount of 

compound present. It can thus be utilized for both quantification, qualitative analysis, and 

identification of compounds. However, it is not trivial to connect LC to MS. UHPLC operate at 

extremely high pressure and MS do the opposite and mainly operate in vacuum. To be able to 

combine two so different instruments atmospheric pressure ionization interfaces (API) have been 

developed. The most common API is the electrospray (ESI) interface.31 Other common APIs are 

atmospheric chemical ionization and atmospheric photon ionization.32  

For one to be able to analyze samples by MS, the ions need to be in gas phase. In ESI the sample is 

nebulized by a strong electrical field induced by a corona needle (3-5kV) the evaporation of the 

sample is further enhanced by a warm stream nitrogen gas. As the solvent evaporates the charges 

on the droplets surface get closer to each other, a field-induced electrohydrodynamic droplet 

disintegration occurs, which is known as Coulomb explosion.30 The microdroplets then further 

disintegrate to gas phase ions. There are two different ways this can happen; 1) by emission from 

the droplets surface, which is called the ion-evaporation model, or 2) by soft desolvation, the so-

called charge-residue model.31 The two different ionization models are presented in figure 4. ESI is 

a very soft ionization method, where multiply charged ions are commonly formed.33 
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FIGURE 4: THE FORMATION OF IONS DURING ELECTROSPRAY IONIZATION. REPRINTED WITH PERMISSION, COPYRIGHT 

© 2009 TAYLOR & FRANCIS 33 

In MS ions are separated by their energy, mobility, or velocity. Two of these properties need to be 

known for the calculation of mass to charge ratio of the ion.24 There are many types of mass 

analyzers on the market that can be interfaced with LC. Common mass analyzers are the quadrupole 

(Q), quadrupole ion trap, time of flight (ToF) and Fourier transform ion cyclotrone resonance.33 From 

these the Q and ToF are widely utilized for steroidal samples and will be further discussed in this 

thesis. 

The Q is the most common detector and is often used in tandem mode. Especially in bioanalysis the 

triple quadrupole (QqQ) is very common.30 The detector separates ions by the means of an electric 

field, which varies by time. The electric field is built up from an oscillating radiofrequency and direct 

currents that induce an alternating current. Only ions with specific mass to charge ratios will be able 

to pass through this field and reach the detector.2 This means that masses should be preselected. It 

is very advantageous to couple Q instruments into QqQ. The major reason for this is that the matrix 

effects can cause major disturbances and possible co-eluting peaks.34  There are four different ways 

to do analysis by QqQ: scanning of parent ions, neutral losses, daughter ions or multiple reaction 

monitoring.35 The second Q is commonly utilized as a filter or collision cell, which makes all of the 

previously mentioned phenomena possible. 

The ToF is operationally very different to the Q. In ToF all the ions are accelerated to the same 

velocity and directed to a high vacuum flight tube, where the ions fly freely. The speed of the ions 

is relative to the square root of their mass. This means that the heavy molecules will reach the 

detector last.24 The ToF has the great advantage that no preselection of target masses is needed 

and it has better mass resolution giving accurate masses. This means that all data is recorded 

simultaneously and there are less issues with matrix effects.34 Compared to the QqQ the ToF has a 
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smaller dynamic range, but is generally more sensitive.35 In practice the QqQ is utilized for 

quantification and target analysis and the ToF for untarget analysis. 

Another very common method is a hybrid model, where a quadrupole mass analyzer is combined 

with a time of flight detector. It has the scanning power of a Q and the resolving power of the ToF. 

It is very similar to the QqQ, but instead the last quadrupole is replaced by a ToF instrument. The 

QToF provides high sensitivity, resolution, and mass accuracy for the precursor ions and 

fragments.35 The earlier generation QTOFs had issues with low dynamic ranges and were thus poor 

choices for quantification. In the newer models this have improved to a magnitude of 5 order along 

with better inter-day and intra-day repeatability. 36 

In steroidal analysis, the need for resolving power is great, which leaves UV/Vis, IR, or FLD out of 

consideration. The reason for the need of high resolving power is the very similar structures of 

steroids. In practice this makes MS the detector of choice. The complex matrixes from the human 

body further requires detectors with even higher resolving power than a single MS, which means 

that the QqQ and QToF are extremely popular for steroidal analysis.  A summary of the detectors is 

presented in table 1.  

TABLE 1: SUMMARY OF TYPICAL DETECTORS FOR UHPLC. 

Detector Advantages Down sides 

DAD almost universal 
non-destructive 
cheap 
easy to operate 
fast 

risk of cross reference 
compounds need to absorb 
UV/Vis region 
background noise 

FLD non-destructive 
cheap 
easy to operate 
sensitive 
fast 

few compounds are naturally 
fluorescent 

RI Universal, detects everything 
that differs from the mobile 
phase 

Not suitable for gradient use, 
sensitive to temperature 
changes and flow rate 
changes 

MS Universal 
Selective 
Extremely small risk of cross 
reference 
Identification of unknowns 

Expensive 
Hard to operate 
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6. Sample preparation techniques 

Very few samples can be analyzed without any sample preparation. The separation can be either 

chemical or physical. The sample needs to be in a form that fulfils the requirements of the 

instrument. In the case of LC, it means that the samples need to be in a liquid form, of high enough 

concentration, homogenous and without interfering compounds. Traditional selective sample 

preparation techniques for LC are liquid-liquid extraction (LLE), solid phase extraction (SPE), and 

QuEChERS (quick, easy, cheap. effective, rugged, and safe). All these methods are suitable for 

organic compounds as there is no need for strong acids or extremely high temperature and/or 

pressure in the sample preparation step. In addition to these, the sample preparation often can 

include filtration, particle removal by centrifugation and concentration or dilution. More invasive 

methods like dry ashing and combustion or acid dissolution and digestion can sometimes be utilized 

for inorganic compounds, these however, will not be further discussed in this thesis. 

Steroid samples are usually serum or urine samples.  From the serum samples the proteins need to 

be removed prior to LC analysis. This can be done with protein precipitation. A typical precipitation 

technique is to add an organic solvent for example methanol10,37,38 or acetonitrile6,39. This process 

denatures the proteins and as they do so they precipitate. The supernatant can then be utilized 

directly in analysis6 or can be dried and then reconstituted for analysis37. In addition to protein 

precipitation also LLE or SPE can be utilized. 

An optimal sample preparation technique is simple, fast, has great recovery rates, is selective, and 

utilize small amounts or no toxic solvents. It is not trivial to fulfil all these requirements’ and sample 

preparation is often considered a bottleneck for analysis. The largest errors contributed to a method 

are caused by sampling and sample preparation.  

6.1 Liquid extraction methods 

Liquid extraction methods (LE) are utilized for the extraction of organic compounds into a liquid 

phase. The theoretical basis of the methods lies in the partitioning of the studied compound 

between two immiscible phases.2 One of the phases is liquid, as the method name suggests, but the 

other one can be solid, liquid, or theoretically even a gas. The compound is divided between the 

two phases depending on polarity and other properties.  This phenomenon is described by the 

distribution coefficient, KD, and the concentration of a compound A in phase 1 and phase 2 (equation 

6).  
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𝐾𝐷 =
[𝐴]1

[𝐴]2
      (6) 

If the two phases are both liquids, the method is called liquid-liquid extraction (LLE). At optimal 

conditions, the compound is concentrated in the extraction fluid and any interfering components 

stay in the other phase.2 The amount of compound in each phase can be adjusted by changing the 

volume of the extractant, however, it is more efficient to extract several times with new solvents 

and small amounts.2 In the case of steroids the other phase is the liquid sample (serum or urine) 

and the organic solvent is for example dichlormethane12 or 1-chlorobuthane 40.  

The mixing of the phases can be done in many ways. One of the most traditional methods is to put 

two immiscible liquids into a separation flask and manually shake the bottle and separate the 

phases.  For small volumes LLE can also be carried out in a test-tube. For efficient extraction of large 

volumes, more elaborate methods have been developed, such as Soxhlet extraction and 

Accelerated Solvent Extraction (ASE®). In Soxhlet extraction the solvent is circulating to enhance the 

extraction, and in ASE an elevated pressure of between 70 bar and 140 bar is additionally used.41 

The trend nowadays is to miniaturize methodologies, and this has also been done with LE. The 

reason for miniaturization of processes is to use less toxic solvents and save money and time. There 

are many methods for this: e.g., single-drop microextraction (SDME), hollow fibre liquid-phase 

microextraction (HF-LPME), and dispersive liquid–liquid microextraction (DLLME).42 These are all 

based on extractions that only require minute amounts of solvent. 

6.2 Solid phase extraction methods 

Solid phase extraction (SPE) is a popular method for quick concentration of compounds and removal 

of matrix components. It requires only five steps: activation of adsorbent, removal of the activation 

sorbent, application of sample (sorption), a washing step, and finally elution.43 Five steps might 

sound like a lot, but in practice each step is very simple to do and takes little time. 

SPE is based on the partitioning of a compound between a liquid phase sample and a solid stationary 

phase. The compounds must have stronger affinity towards the solid phase than to the liquid phase 

to be adsorbed. The compounds are then eluted from the solid phase with a solvent towards the 

compounds have greater affinity than to the solid phase. This is an easy and popular sample 

preparation technique for steroid samples. The compounds of interest are absorbed into a solid 
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polymer and the rest is washed out. The compounds are then extracted from the polymer material 

with a mixture of organic solvent and water, for example MeOH/ water.18   

The advantage of this method is that even big amounts of liquid sample can be processed and eluted 

into a small volume quickly. Simultaneously it functions as a sample concentration method. On the 

other hand, also small sample volumes can be processed. A large number of matrix components are 

removed and the recovery rates are typically very high. Another great advantage of SPE compared 

to LLE is that very low amounts of solvents are needed, especially for large volume samples.  

The sorbents utilized in SPE are mainly the same types that are utilized in LC as stationary phase 

materials. The major differences are that in SPE the aim is to have as large volume as possible, which 

means that more porous materials are better. The phases can also be tuned a bit differently to the 

stationary phases in columns. The free silanol groups can provide in C18 based SPE materials 

important interaction sites for polar compounds. This makes the C18 adsorbent almost universal, 

especially when there is little of the sample.44  

There are readily different types of solid phases available: cross-linked copolymers, graphitized 

carbons, and different n-alkylsilicas.44 The more selective the SPE step, the higher is the sensitivity 

of the method. The stationary phases are based on polar, non-polar, or ion-exchange interactions. 

The type of solid phase depends on which types of functional groups are bound to the silica or 

copolymer and what solvent is utilized.43 Common bound phases are the same as utilized in LC 

columns: C18 (non-polar), C8 (non-polar), and cyano (polar).2 The solid phase is typically placed in 

cartridges and disks, but there are a lot of other formats on the market as well. The typical particle 

size is 40-60 µm in particle size distribution (dp).44  

SPE can either be utilized online or offline. It can also be utilized for simultaneous derivatization and 

sample clean-up.43 SPE is a powerful clean up method with lot of applications. 

 

6.3 Quick, easy, cheap, effective, rugged, and safe sample preparation 

QuEChERS (Quick, easy, cheap, effective, rugged, and safe) is, as the name suggests, a simple and 

effective sample preparation method suitable to a variety of matrixes prior to LC analysis. It was 

developed in 2003 by Anastassiades et al. for the analysis of pesticides in food matrixes.45  In the 

method developed by Anastassiades the compounds where first extracted with acetonitrile with 
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added salts. An aliquot of the supernatant was then treated by dispersive solid phase extraction 

(dSPE). This means that the sorbent is added to the solution and then mixed. The solid phase utilized 

for the dSPE varies depending on the application, and in the work by Anastassiades et al. a polymer 

secondary amine (PSA) was utilized. The idea is opposite to SPE; in QuEChERS the interfering matrix 

is adsorbed to the sorbent and the compounds are left in the supernatant. The process is aided with 

salts. Salts utilized in QuEChERS can be magnesium sulfate and sodium acetate. These buffer the 

solution and dries the organic solvent.2  

QuEChERS is a highly popular technique due to its versatility and it has been utilized in over 700 

research papers prior to 2013.46 It can be applied to any matrix, but the method should be chosen 

depending on the compounds present in the sample. For example, if the target compounds are very 

polar they will be adsorbed to the primary and secondary amine (PSA).2 Some compounds might 

need a buffered solution if they are easily ionized to be reproducibly extracted.  

7. Type of matrixes with steroids 

There are plenty of different matrixes in the human body, and basically steroids can be analyzed 

from anything. The most commonly studied matrixes are urine and blood serum, but also for 

example tissue, saliva, hair, and nails can be utilized. Upon selecting the matrix several factors need 

to be considered. Optimally the matrix requires no or only little sample preparation, have high levels 

of compounds of interest, can be taken non-invasively, and gives trustworthy results.   

The selection of the matrix highly affects the amounts of compounds, that can be found and in what 

time interval. In hair are drugs detectable after weeks. Hair can thus be utilized for the detection of 

repeated use of anabolic steroids.47  Urine gives good short-term information of used drugs, but 

mainly through metabolites as the parent compounds are not efficiently excreted through urine. 

Serum gives an even shorter time interval compared to hair and urine, since it only reflects the 

amounts circulating in the blood. Blood serum (and plasma) has the advantage of giving the 

possibility to reliably analyze the unmodified compounds.48 Saliva reflects well the circulating levels 

of free steroids, even better than serum, however some steroids can be present at so low 

concentration that they are hard to detect.17 
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Depending on the matrix there are different challenges in sample preparation. Most of the matrixes 

need to be cleaned to remove residues (for example nails and hair), solid particles, and proteins 

prior to analysis. After this procedure, a clean-up and concentration step is usually taken.   

A completely different kind of approach to human matrix is to grow human cells and study the effect 

of different drugs the produced metabolites. For steroid studies, adrenal gland cells are utilized 

(H295R).49 In this way, it is easy to simulate how drugs affect the steroid production.  

The great advantage of UHPLC is that the compounds do not need to be derivatized as there is no 

need to reduce their boiling points. However, the derivatization can sometimes add sensitivity26.  

8. Chemometrics 

The data processing can be highly demanding, especially for multidimensional MS applications. To 

resolve the data, several statistical tools need to be utilized. In metabolomic research one of the 

main aims is to classify individuals. This can be done considering the complete metabolome by 

multivariate data analysis.50 

Principal component analysis (PCA) is the base for multivariate data analysis. With it you can 

simplify, reduce and model data, detect outliers, select variables, classify, and predict properties 

based on previously made models. To be able to use PCA only a matrix of data with a specific number 

of objects (or samples) and a determined number of variables are needed.51 

The basic idea of PCA is that you find the variables that give the biggest variation in the 

multidimensional cloud and ignore the dimensions that do not influence much. The cloud is formed 

by building a unique axis for every variable, which is orthogonal to the previous. Then the length of 

the vectors in each direction are formed. The vectors that give the least input to the cloud are 

ignored. This makes it possible to reduce dimensions without losing the essence of the data. When 

this is done, eigenvectors can be formed. These eigenvectors give the dimensions of the new cloud, 

which has the most important factors (principal components) of the old cloud.52 This cloud can be 

utilized to compare the results from new samples to determine if it is similar. PCA is needed in 

metabolite studies to be able to form models for urine or serum samples with hundreds of 

metabolites. Without PCA it would be hard to grasp, what the data shows us and which factors are 

relevant. There are also other similar methods, for example factor analysis.52 
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Another data handling method is partial least square (PLS) regression. It has the same structure as 

PCA, but instead of just treating the subjects as two datasets, it maximizes the covariance first to 

make one of the data sets predict a second set of data. This means that not necessarily the largest 

principal components are utilized, as their predictive properties can be limited. Orthogonal 

projections to latent structures (OPLS) combined with PLS makes the data more interpretable, by 

separating predictive and uncorrelated information.52 In practice PCA is a good method to detect 

outliers in multivariate space, whereas OPLS is good for the determination of which factors are the 

predictive factors in the data. 

Data can be categorized to different classes with the help of supervised pattern recognition. To do 

this, an independent set of data with known parameters need to be available as a training set. The 

training set could be metabolite data from urine samples from both people with ovary cancer and 

people, who do not have ovary cancer. With the data two different classes are formed to which 

uncategorized data is compared. How well the uncategorized data fits into one class can be 

evaluated by distribution tests.52 Soft independent modelling of class analogies (SIMCA) is a pattern 

recognition method that enables the formation classes and the comparison of uncategorized data 

to given classes with PCA as a basis.53 

These multivariate models need to be validated. This can be done with receiver operating 

characteristic (ROC). With ROC true positive and false positive rates can be calculated. Another 

method for validation is crossvalidation.52 Crossvalidation needs three sets of data: validation, 

training and test. From the validation data set each sample is compared to the training set once. 

The error given by this comparison is a good estimation for the prediction error for new samples.50 

These methods are extremely powerful and can give too optimistic results. The major problem with 

these statistical tools is that it is hard to get enough data to give a good base for them. Often there 

are more variables assessed then there are samples. This makes classification unreliable due to 

overfitting.50 Basically, this means that the method works very well for the training set, but does not 

predict future samples well. 

9. Applications 

In table 2 all the articles published prior to April 2017 on steroid analysis by UHPLC-MS are listed.  
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TABLE 2: METHODS USED FOR ANALYSIS OF STEROIDS. 

Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2016 UHPLC-

QTOF 

C18 

(BEH), 150x2.

1 mm, 1.7 µm 

Urine Steroid related 

biomarkers 

SPE (Oasis HLB) 

96 cartridge 

wellplate 

Methanol/ACN  18 

2016 UHPLC-

QqQ 

 Liver 

tissue, 

serum 

Estrogen and 

estrogen related 

compounds 

  Method and other 

parameters from 

Gaikwad et al. 2013.13 

54 

2016 UHPLC-

QqQ 

C18 

(Poroshell), 

150x2.1 mm, 

2.7 µm 

Serum 7 steroids 

(glucocorticoids, 

androgens, 

progesterones, 

estrogens) 

Addition of 

ethyl acetate, 

centrifugation 

derivatization 

with dansyl 

chloride 

ACN/ 0.1% formic acid Run time 8 min, 

injection volume 10 µL, 

LOD 0.0048-4.6880 

ng/mL, column 

temperature 35 °C. 

55 

2016 UHPLC-

QTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Serum Metabolite study Protein 

precipitation 

with can 

ACN/ water 0.1% formic 

acid 

Flowrate 0.3 mL/min, 

injection volume 2 µL, 

runtime 35 min and 100 

µL sample utilized. 

56 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2015 UHPLC-

QTOF 

C18 (BEH), 

100×2.1 mm, 

3.0 μm 

Serum Metabolite study LLE can ACN/ water 0.1% formic 

acid 

100 µL of sample, 5 µL 

injection and run time 

30 min. 

57 

2015 UHPLC-

QqQ 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine Glucuronides 

 

SPE, C18 Water/ MeOH 

with 0.01% HCOOH and 1 

mM NH4COOH 

LOD even 2ng/mL and 

20 µL injection. 

58 

2015 UHPLC-

QTOF 

C18 (HSS-T3) 

100 mm × 2.1 

mm, 1.8 μm) 

Urine Metabolite study Addition of 

trichloro acetic 

acid and 

centrifugation 

ACN/ water with 0.1% 

formic acid 

Utilized 600 µL sample 59 

2015 UHPLC-

QTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Plasma Metabolite study Protein 

precipitation 

MeOH 

ACN/ water with 0.05% 

formic acid and 

NH4HCO3+ ACN 

Utilized only 75 µL of 

plasma, 2 µL injection 

and flowrate 0.14 

mL/min. 

10 

2015 UHPLC-

QTrap 

C18 (Kinetex) 

150x3 mm, 

2.6 µm 

Serum Testosterone, 5α-

dihydrotestosterone

, androstenedione, 

SPE (HLB), 

cartridges 

MeOH/ water with 0.1% 

formic acid  

Flowrate 0.25 mL/min, 

16 min runtime, 10 µL 

injection and LOD 

0.003-0.2 ng/mL. 

60 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

dutasteride and 

finasteride 

2015 UHPLC-

tripleTOF 

C18 (Kinetex) 

50x2.1 mm, 

2.6 µm 

Urine Metabolite study Protein 

precipitation 

MeOH/ water 

ACN/ water with 21.70 

μmol/l formic acid 

Flowrate 0.5 mL/min, 15 

min runtime and 3 µL 

injection. 

61 

2015 UHPLC-

tandemQp 

C18 (HSS-T3) 

100 mm × 2.1 

mm, 1.8 μm) 

Plasma Oubain SPE (MAX) MeOH/ water LoQ 1.7 pmol/L, 

flowrate 0.35 mL/min 

and runtime 12.5 min. 

62 

2014 UHPLC-

QTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine Steroid metabolite 

study 

SPE (HLB) Water/  

ACN with 

0.1% formic acid 

Flowrate 0.3 mL/min, 

injection volume 10 µL 

63 

2014 UHPLC-

QTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine Metabolite study SPE (HLB) ACN/ water with 0.1% 

formic acid 

10 µL injection, inhouse 

made dimensionality 

reduction. 

64 

2014 UHPLC-

Qtrap 

C18  

Zorbax SB 

2.1x50mm, 

1.8µm and 

Serum Seven androgen and 

estrogen related 

compounds 

LLE (1-

chlorobutane), 

derivatization 

MeOH/ water (0.2% 

formic acid) 

LOD 1-500 pg/mL, 30 µL 

injection and utilized 0.5 

mL of sample. 

40 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

30x2.1 mm, 

2.7 µm 

with Dansyl 

chloride 

2014 UHPLC-

HDMS 

(QTOF) 

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Serum Metabolite study, 

quantified 10 

Protein 

precipitation 

methanol/ 

ACN/ Acetone 

and LLE 

dichlormethan

e 

ACN/ water (0.1% acetic 

acid) 

Utilized machine 

learning in their data 

analysis. Progressive 

flow rate 0.25-0.30-0.45 

mL/min. 

 

12 

2014 UHPLC-

HDMS 

(QTOF) 

C18 (HSS-T3) 

100 mm × 2.1 

mm, 1.8 μm) 

Saliva Metabolite study Methanol 

precipitation x 

2 

ACN/ water with 0.1% 

formic acid 

5 µL injection, flowrate 

0.5 mL and runtime 13 

min. 

65 

2014 UHPLC-

QTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Venous 

blood 

sample

s 

Metabolite study Blood 

coagulation 

promoting gel 

tubes, MeOH, 

ACN (2:1) 

precipitation 

ACN/ water with 0.1% 

formic acid 

18 min runtime. 66 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2013 UHPLC-

QTOF 

C18 

(BEH), 150x2.

1 mm, 1.7 µm 

Urine 12 conjugated 

steroids 

SPE (HLB) Water/ ACN with 0.1% 

formic acid 

Flow rate 0.3 mL/min, 

injection 10 µL, runtime 

28 min and LOD 0.5-1 

ng/mL. 

36 

2013 UHPLC-

LTQ 

not 

mentioned 

Plasma Metabolite study Methanol 

precipitation 

 100 µL of sample 

utilized. 

67 

2013 UHPLC-TQ C18 (HSS-T3) 

150 mm × 1 

mm, 1.8 μm) 

Human 

breast 

tissue 

Metabolite study of 

101 exogenous and 

endogenous 

steroids. 

Precipitation 

by methanol 

and water (1:1) 

Water/ ACN with 0.1% 

formic acid 

LOD 0.003-15.7 pmol/L, 

flowrate 0.15 mL/min 

and runtime 12 min. 

13 

2013 UHPLC-

TQS 

Kinetex PFP, 

100×2.1mm, 

2.6 µm 

Plasma Aldosterone and d7-

aldosterone 

Zinksulphate 

and methanol 

precipitation, 

SPE (HLB) 

MeOH/ water  Runtime 5 min, LOD 2.6 

& 30 pmol/L. flowrate 

0.45 mL/min. 

28 

2013 UHPLC-TQ C18 

(BEH), 150x2.

1 mm, 1.7 µm 

Urine Targeted and non-

targeted steroids 

and steroid-

glucuronides 

SPE (HLB) 50 mM NH4Ac (pH 4.5) in 

both water (1:9, v/v) and 

methanol/ acetonitrile 

(1:3:6,v/v/v). 

LOD 10 pg/mL-5ng/mL, 

32 min runtime, 0.13 

mL/min, 10 µL injection 

68 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

and 50 °C column 

temperature. 

2013 UHPLC-

QTOF 

C18 (HSS-T3) 

50 mm × 2.1 

mm, 1.8 μm) 

Urine Deglucuronidated 

and desulfated 

steroids 

Particle 

removal with 

centrifuge and 

dilution to 1/5. 

MeOH/ water with 0.1% 

formic acid 

 69 

2013 UHPLC-TQ C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Plasma Eight adrenal C-21 

steroids 

SPE (MAX) ACN/ water with 0.1% 

formic acid 

Runtime 5 min, 0.1 mL 

of sample, 20 µL 

injection, LOD 0.2 

ng/mL and 50 °C column 

temperature. 

70 

2013 UHPLC-

QTOF 

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Blood 

sample

s 

Metabolite study Serum 

separator 

tube, 

precipitation 

with Methanol 

ACN/ water with 0.1% 

formic acid 

2 µL injection and 0.35 

mL/min flowrate. 

9 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2013 UHPLC-

QTOF/ 

UHPLC-

QqQTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine 

and 

plasma 

Metabolite study  Precipitation 

with methanol 

ACN/ 0.1 % formic acid  71 

2013 UHPLC-

QTOF/ 

UHPLC-

QqQTOF 

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Urine 

and 

blood 

Metabolite study Anticoagulatio

n (sodium 

citrate), ACN 

precipitation 

Supplementary data 

ACN/ 0.1 % formic acid 

5 µL injection. 39 

2012 UHPLC-

QTOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Plasma, 

liver 

tissue 

Bile acids Methanol 

precipitation 

ACN/ Water with 0.1 % 

formic acid 

Needs only 5 mg of 

tissue and 25 µL plasma, 

4 µL injection, LoQ 2.5-

20 nM, runtime 21 min 

and column 

temperature 65 °C. 

72 

2012 UHPLC-

tandemQ 

(Waters 

Quattro 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Blister 

fluids, 

plasma 

Testosterone, 

dehydroepiandroste

rone, 

SPE (MAX) ACN/ water with 0.1 % 

formic acid 

Measures local 

hormone levels from 

the skin. LOD 0.1-0.5 

nmol/L 

73 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

Premier 

XE) 

androstenedione 

and testosterone 

2012 UHPLC-

orthogona

l 

accelerea-

tion TOF 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine Metabolite study Methanol 

precipitation, 

dilution (1:3) 

ACN/ water with 0.1 % 

formic acid 

Runtime 23 min and a 

flowrate of 0.4 mL/min. 

74 

2012 UHPLC-TQ C18 (HSS-SB) 

100 mm × 2.1 

mm, 1.8 μm) 

Plasma Ethylestradiol LLE (hexane/ 

ethyl acetate), 

derivatization 

(dansyl 

chloride) and 

SPE (MCX) 

Water/ ACN: isopropanol 

(80:20) with 0.1 % formic 

acid 

A LOD of 1 pg/mL for 

ethylestradiol, 35 µL 

injection, flow rate 0.4 

mL/min. 

26 

2011 UHPLC-UV C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Urine Cortisol, 

cortisone and 6β-

hydroxycortisol 

SPE (HLB) MeOH/ water with 0.1 % 

formic acid 

7 min runtime, 20 µL 

injection, LOD 3-5 

ng/mL 

75 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2011 UHPLC-

QTOF 

C18 

(BEH), 150x2.

1 mm, 1.7 µm 

Urine Eleven endogenous 

sulfo- or 

glucuroconjugated 

steroids 

SPE (HLB) ACN/ water with 0.1 % 

formic acid 

28 min runtime, column 

temperature 25 °C, 20 

µL injection, LOD 1-5 

ng/mL. 

76 

2011 UHPLC-

tandemQ 

(Waters 

Quattro 

Premier 

XE) 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Nails Cortisol, cortisone, 

dehydroepiandroste

rone (DHEA) and 

DHEA sulfate 

Incubation in 

Sorensen 

buffer, SPE 

(HLB) 

ACN/ 0.1% formic acid 10 µL injection, 30 °C, 

runtime 9.5 min, 

flowrate 0.4 mL/min, 

LOD  5-20 pg/mg. 

77 

2011 UHPLC-

QTOF 

C18 

(BEH), 150x2.

1 mm, 1.7 µm 

Urine Testosterone, 

epitestosterone, 

androsterone, 

etiocholanolone, 

dehydroepiandroste

rone, 5α- or 5β-

androstane- 

SPE (HLB) ACN/ water with 0.1 % 

formic acid 

Done with the same 

method as Badoud 

2011.76  

78 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

3α,17β-diol and 

dihydrotestosterone 

2011 UHPLC-

QTOF/ 

QqQ 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine SARM-S4 and 

metabolites 

LLE (TBME and 

NaHCO3+Na2C

O3) or LLE 

(ethyl acetate 

Na2CO3) 

ACN/ water with 0.1 % 

formic acid 

First study to find 

SARM-S4 utilized as 

doping, flow rate 0.4 

mL/min and injection 

volume 10 µL. 

79 

2011 UHPLC-

tandemQ 

(XEVO) 

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Dried 

blood 

spots 

17α-

hydroxyprogesteron

e, 21-deoxycortisol, 

11-deoxycortisol, 

11- 

deoxycorticosterone 

and cortisol  

LE 

(ACN:Acetone) 

ACN/ water with 0.1 % 

formic acid 

Run time 1.25 min, flow 

rate 0.6 mL/min, 

injection volume 7.5 µL, 

column temperature 40 

°C and LOD 0.9-1.3 

nmol/L. 

21 

2011 UHPLC-IM 

(ion 

mobility 

ms) 

C18 

(BEH), 100 

(/50)x2.1 mm, 

1.7 µm 

Urine Testosterone and 

epitestosterone 

glucuronide epimers 

LLE (ethyl 

acetate) 

Water/ methanol with 

1mM 

ammonium acetate and 

0.1 % formic acid 

LOD 99 ng/mL 

testosterone, 98 ng/mL 

eptestosterone, flow 

rate 0.75 mL/min, 

80 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

column temperature 40 

°C, injection volume 20 

µL. 

2010 UHPLC-

Quattro 

Primer 

tandem 

mass 

spectrome

ter  

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Plasma Anandamide, 

ovarian sex steroids 

and 

gonadotrophins 

Precipitation 

(acetone) + LLE 

(MeOH/Chloro

form)  

2mM 

ammonium acetate/ ACN 

with 0.1 % formic acid 

7 µL injection. 81 

2010 UHPLC-

Quattro 

Primer 

tandem 

mass 

spectrome

ter 

C18 (HSS-T3) 

50 mm × 2.1 

mm, 1.8 μm) 

Plasma Cortisol,  

21-deoxycortisol, 

11-deoxycortisol,  

4-androstene-3,17-

dione and  

17-

hydroxyprogesteron

e 

LLE (MTBE) Water/ methanol with 

1mM 

ammonium acetate and 

0.1 % formic acid 

50 µL of serum, with 20 

µL injection, column 

temperature 60 °C, 0.6 

mL/min flow rate. Run 

time 5 min. 

82 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2009 UHPLC-

QqQ 

C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Urine Screening of 

diuretics, beta-

blockers, selected 

stimulants and 

steroids 

SPE (Varian 

Nexus) 

MeOH/ 0.1 % formic acid 2 µL injection, 0.5 

mL/min flow rate, LODs 

7-15.8 ng/mL and 

column temperature 45 

°C. 

83 

2009 UHPLC 

QTOF/ToF

/QqQ 

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Urine Stanozolol 

metabolites 

LLE 

(diethylether+ 

NaHCO3+Na2C

O3) or SPE 

(MCX) 

Water/ MeOH with 

ammonium 

acetate (1mM) and 

0.001% acetic acid 

Flow rate 0.3 mL/, 

injection 20 µL and 

LODs 3ng-10ng/mL. 

84 

2009 UHPLC-

Quattro 

Primer 

tandem 

mass 

spectrome

ter 

C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Dried 

blood 

spots 

Steroid profiling LE 80% ACN 

and 20% water 

MeOH/ 0.05 % formic 

acid 

14 µL injection, flow 

rate0.6 mL/min 

20 
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Year Apparatus Column Matrix Compounds Sample 

preparation 

Mobile phase Comments Ref

. 

2008 UHPLC-TQ C18 

(BEH), 100x2.

1 mm, 1.7 µm 

Serum Testosterone 

and 5α-

dihydrotestosterone 

LLE (MTBE), 

derivatization 

with 2,3-

pyridinedicarb

oxylic 

anhydride, SPE 

(HLB) 

Water/ 2mM ammonium 

acetate in 

acetonitrile:water (98/2).  

Column temperature 50 

°C, flow rate 0.5 

mL/min, 5 µL injection. 

85 

2007 UHPLC-MS C18 

(BEH), 50x2.1 

mm, 1.7 µm 

Urine Corticosteroids LLE 

(Diethylether+ 

NaSO4), 

enzymatic 

deconjugation 

ACN/ water with 0.1 % 

formic acid 

Analysis time 5.5 min, 

LOD (calf urine): 0.1-3.3 

µg/L 

86 

 

 

Year

  

Appara

tus   

Column   Cells   CompoundCompounds   Sample prep-aration   Eluents   Comments   Ref 
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2015

  

UHPLC-

QTOF  

C18 (BEH) 150x2.1 

mm, 1.7µm  

H295R  Metabolite study, 

quantification of 11 

steroids  

Protein 

precipitation (MeOH, 

ZnSO4), SPE (HLB)  

Water/ MeCN wit

h 0.1 % formic 

acid  

flowrate 0.06 

mL/min  

49 

2014

  

UHPLC-

QqQ  

Kinetex PFP  

(2.1×100 mm, 

2.6 μm) /C18 

(BEH) 50x2.1 mm, 

1.7µm  

H295R/ 

COS-1  

Metabolite study  LLE (dichloromethane)  1 % formic 

acid/ 49 %:49 %:2 

% methanol:acet

onitrile:  

isopropanol  

Analysis method 

from previous 

paper  

87  

2012

  

UHPLC-

TOF  

C18 (BEH) 150x2.1 

mm, 1.7µm  

H295R  Nine natural steroids  Addition of sodium 

acetate, SPE 

(Phenomenex Strata x)  

water/ ACN with 

20 mM formic 

acid  

Metabolite 

study of drugs 

that affect the 

steroidogenesis,  

25 µL injection 

88   

2012

  

UHPLC-

QqQ  

Kinetex PFP  

(2.1×100 mm, 

2.6 μm) / BEH 

(2.1x50 mm, 1.7 

µm) 

H295R  Steroid metabolite study 

and quantification  

LLE (dichloromethane)  1 % formic 

acid/ 49 %:49 %:2 

% MeOH:ACN: iso

propanol or 1 % 

formic acid/can 

 flow rate 0.4 

mL/min 

89 
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As a summary of the reviewed articles steroids are of interest in metabolite studies and in 

doping assays. UHPLC is always combined with a MS instrument for steroid analysis. The MS 

utilized is usually of multi-dimension: QTOF or QqQ. The instrumentation is suitable for both 

untargeted and targeted analysis. In untargeted studies the study of changes in the human 

metabolome has been especially interesting. The articles with targeted studies are usually 

focused on doping control. 

It has been found that diseases make small changes in the human metabolome. These 

differences can be detected to diagnose diseases earlier or with higher confidence level. The 

diseases studied within the frame of this work are congenital adrenal hyperplasia20,21,82, 

chronic liver disease90, polycystic ovary syndrome91, isolated post-challenge diabetes9, 

Alzheimer’s disease10, post hepatitis B cirrhosis74, coronary artery disease6, prostate cancer12, 

primary liver cancer11 and B-cell non-Hodgkin’s lymphoma.66 Metabolome studies are not only 

restricted to diseases. They can also be utilized for changes in the metabolome caused by 

dioxin exposure markers18,64, menstrual cycle81, pregnancy68, sleep restriction67, to support 

testosterone replacement therapy for hypogonadism85, and for assessing drug response26,60. 

Metabolomics can be an efficient tool to detect diseases, even at early stages, but also to learn 

more about the processes in the human body. 

In antidoping related studies the aim has been to profile and determine the metabolism and 

metabolites for drugs63,79,80,84, find biomarkers and fragments of drugs78,92, and to determine 

reliably prohibited compounds from different matrixes17,22,83,86. It is important to have good 

understanding of the metabolites and drug behavior in the body to be able to detect doping 

in individuals. If the metabolome of an individual is known, it is easier to find differences and 

hence detect forbidden drug use.  

In the cell studies made by UHPLC-MS, the human H295R adrenocarcinoma cell line is utilized. 

The cells show how chemicals affect steroidogenesis. Tonoli et al. showed that untargeted 

steroidal footprinting can be done, by studying the effects of triclorcarban on H295R cells.49 

Rijk et al. studied the effect of 10 compounds that are known to affect stereoidogenesis.88 

Lastly Schloms et al. studied the effect of rooibos on the cells.87,89 

UHPLC-MS/MS usually provides reliable results with fast analysis time and without 

complicated sample preparation. As seen from table 1, typically the sample preparation 

processes include only protein precipitation, LLE, or SPE. The most common SPE cartridge is 
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the Oasis® HLB cartridge. It was used in 11 out of 19 cases. For protein precipitation, the most 

common solvent is methanol (12 out of 15 cases). In liquid extraction or LLE a variety of 

solvents are utilized. In most of the cases the sample was concentrated by drying and then 

reconstituting in a suitable solvent. Basically, all the matrixes need to be pre-treated prior to 

analysis. This is not only because the MS instrument is very sensitive, but also due to the very 

narrow bore columns, which can easily get clogged. For urine samples SPE is the most utilized 

sample preparation method, for serum on the other hand LLE is the most typical method. 

Derivatization can be utilized to increase sensitivity and dansyl chloride is by far the most 

utilized derivatization reagent for steroids. However, in some cases the sample can be injected 

after just addition of solvent and centrifugation.11,93 

Sample preparation methods can also be combined (LLE, SPE and derivatization) to achieve 

cleaner samples and hence lower detection limits, even as low as 1pg/mL26. However, there 

are studies that achieved such low detection limits with less sample preparation40. It is 

questionable if it is advisable to have complicated sample preparation techniques for methods 

aimed for everyday use. An optimal sample preparation method that most studies aim to 

achieve is fast, robust, and simple. These requirements are easily fulfilled with UHPLC based 

methods. Many of them are true options for immunoassay or GC-MS/MS methods utilized in 

doping or healthcare related analysis. 

The columns utilized in the articles reviewed are mostly C18 columns having the lengths of 50, 

100, or 150 mm. The stationary phase particle size is sub 3 µm (1.7, 1.8, 2.6, 2.7, or 3 µm). The 

most popular column is the BEH (ethylene bridged hybrid) 100 x 2.1 mm with a 1.7 µm particle 

size by Waters. The typical mobile phase utilized is acetonitrile and water with 0.1 % of formic 

acid. The injection volumes are from 2 µL6 up to even as large volumes as 35 µL26, typically the 

injections are 10 or 20 µL. With larges injection volumes of sample, lower LODs can be 

achieved. Typically, the LODs in these studies are in the size of ng/mL11,22,36,40,68,70,72, but quite 

a few of them reached even pg/mL levels28,40,60,62,68. Hinchliffe et al. managed to get as low 

LODs as 26 pmol/L.28 

Surprisingly low flowrates were utilized in these studies. These flowrates were as low as 0.14 

mL/min10 and the highest flowrate was 0.6 mL/min.20 The reason for the low flowrates are 

probably restrictions by the MS instruments. The low flowrates make the analyses very long 

for an UHPLC analysis. Many of the steroid studies have closer to or even over 30 min 
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runtimes.6,68,71,76,91 On the other hand, there are many applications with short runtimes of only 

5 minutes28,70,80,82. The column temperatures are typically 30 to 45 °C, but even as high as 65 

°C has been utilized.72 

In applications, the QqQ instrument is widely utilized for the quantification of target 

compounds and QTOF and TOF are widely utilized for the identification of compounds. Often 

both QTOF and QqQ are utilized to get the full power of the MS instruments. For example, Su 

et al. studied women with painful periods.39 First they processed the data with MassLynx V4.1 

and MarkerLynx software, after which they proceeded to do a multivariate analysis with a 

software called EZinfo. From this they proceeded to check the results with unsupervised PCA 

analysis, PLS and OPLS and determined the potential biomarkers with these. Lastly, they 

quantified the biomarkers with UHPLC-QqQ.39 As can be seen from this, metabolomic studies 

need a lot of data handling, and not even all the steps are mentioned here. The data handling 

procedure described here is what most of the UHPLC-QTOF metabolic studies utilize. In steroid 

applications, it is highly interesting to do untargeted analysis to find a target compound to 

further analyze.   
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II. EXPERIMENTAL SECTION 

Validation of food additives using ultra high pressure liquid 
chromatography 
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1. Background 

The Finnish Customs laboratory monitors a variety of products of non-animal origin to ensure 

that they meet EU standards. There are EU regulations for the labeling of products and upper 

limits for the allowed concentration of a certain additive. The allowed levels are given in the 

regulation N:o 1333/2008 appendix II.  

Typical matrixes for the Customs laboratory are different beverages, candy, jams, and snacks. 

In these are screened preservatives, sweeteners and caffeine, among others. It is extremely 

important that the labelling of the product is correct to ensure consumer safety. The aim of 

this project was to increase the efficiency of the analysis of soft beverages by combining three 

different methods into one. 

It is very attractive to combine several analyses into one, this saves time in sample 

preparation, analysis time, and documentation.  Especially since some products must be 

screened for several compounds. An example of this could be an energy drink, which can 

contain caffeine, preservatives, and sweeteners. The energy drink would earlier have been 

analyzed with three separate methods. 

The Finnish customs acquired a brand new UHPLC, for which the new method was developed. 

In the new method, the compounds acesulfame potassium (As-K), saccharin (Sac), aspartame 

(Asp), caffeine (Caf), sorbic acid (SA), and benzoic acid (BA) were analyzed, with only minimum 

amount of sample preparation and an analysis time of less than two minutes. 

Agilent has several application notes for analysis of foodstuff. At least two of these 

applications had all the compounds of interest separated.94,95 They were selected for the basis 

of this method. The major difference between the application notes was that the first one 

utilized ammonium acetate buffer and the other phosphate buffer. These buffers were 

compared and the parameters were tuned to achieve excellent separation. Originally the 

acetate buffer was preferred due to the possibility to change the detector to a mass 

spectrometer. Different flowrates, column temperatures, injection volumes, and gradient 

compositions were evaluated and optimized. 
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The method was lastly validated partially. The within laboratory repeatability, robustness, and 

measurement uncertainty were calculated. The result is a fully functioning simple method for 

the analysis of additives in beverages. 

2. Instrumentation 

The apparatus was bought from Agilent Technologies. The instrument was an Agilent infinity 

II 1290 UHPLC system, which was combined with a fluorescence and DAD detector. It has two 

dual piston pumps with integrated degasser, mixing unit, rotary injector with loop (10 µL), 

column oven, and the detectors. The two dual piston pumps can pump high pressures and 

cause only minimal noise. 

Only the DAD detector was utilized in the experiments, as all the selected compounds absorb 

light in the ultraviolet region. A column with a C18 stationary phase was utilized, which is 

considered an all-around column. The model of the column was Zorbax Eclipse Plus C18 Rapid 

Resolution HD 2.1x50 mm, with a particle size of 1.8 µm. The column was provided with the 

instrument, but proved fit for purpose. 

The instrument is equipped with the software Chemstation. Chemstation was utilized for all 

the data handling.  

3. Chemicals 

Chemicals utilized in this project consist of the compounds, solvents, rinsing solution for the 

needle and water. The compounds of interest were all solids and stored per manufacturers’ 

instructions.  

Aspartame and sorbic acid were stored in a refrigerator in a desiccator. The other solids were 

stored at room temperature protected from humidity. Most of the solvents utilized were LC-

MS purity and if not the solution was filtered through a 0.2 µL filter. The buffers were prepared 

from solid ammonium acetate or concentrated phosphoric acid. The pH was adjusted with 

acetic acid (concentrated), for the ammonium acetate buffer and ammonium (about 25 %) for 

the phosphate buffer. A 50% ACN-water solution was prepared for needle wash with LC-MS 

purity ACN and Millipore water. All the water utilized was ion changed and filtered with 

Millipore systems combined with a 0.2 µm filter. 
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All the chemicals used for the standards are presented in table 3 with their manufacturers. 

TABLE 3: LIST OF UTILIZED CHEMICALS WITH MANUFACTURERS. 

Chemical Producer 

Acesulfame K Fluka 

Aspartame, L-Aspartyl-L-phenylalanine 

methyl ester (98%) 

Acros organics 

Benzoic acid Merck 

Saccharin Sigma-Aldrich 

Sorbic acid Sigma-Aldrich 

Caffeine Sigma-Aldrich 

Vanillin Sigma-Aldrich 

Ethyl-vanillin Sigma-Aldrich 

 

4. Preparation of solutions 

4.1. Standard preparation 

The comparison standards were prepared by diluting 100 mg of the compound into a 100-mL 

measuring flask to the final concentration of 1000 µg/mL. Sorbic acid does not dissolve in 

water and hence it was always prepared with a minimum of 25 mL methanol with the addition 

of water to accurate volume. For determination of the retention time for the compounds and 

for the creation of a spectral library a 500 µg/mL solution for each compound separately was 

prepared. In other cases, a mixture was prepared of all compounds was made. 

Vanillin standards were prepared separately for analyses of possible disturbance. They were 

made into 1000 µg/mL standard solution with 50 % methanol-water as solvent. The typical 

stock solution prepared was 1000 µg/mL mixture in 50 % methanol-water. 

4.2. Eluent preparation 

A fresh eluent was prepared weekly. The 20 mM phosphate solution was prepared by adding 

1 mL of 85 % H3PO4 into approximately 800 mL of LC-MS purity water, followed by pH 
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adjustment to 4.0 by addition of 25 % ammonium solution. About 1.1 mL of ammonium 

solution was needed. Lastly the solution was diluted quantitatively to 1 L and filtered. 

The 20 mM ammonium acetate buffer was prepared by dissolving about 1.5 g of ammonium 

acetate into 800 mL of LC-MS quality water, the pH was adjusted with about 0.85 mL of 

concentrated acetic acid to a pH of approximately 4.8. Also, a 10 mM ammonium acetate 

buffer was made with 0.77 g of ammonium acetate and approximately 0.425 mL of the acetic 

acid.  

4.3.  Samples and sample preparation 

Some samples were bought from a local super market to try out the method. Typical samples 

were chosen: cola drinks, energy drinks, jams, and juice concentrate. These were prepared 

like any other sample. From the drinks, sweeteners, preservatives and caffeine – almost all 

the compounds of interest – could be found.  

The samples were prepared by sonicating them for about 15 min to remove carbon dioxide 

and then diluting them 1:5 or 1:10 in a 30% methanol-water mixture or only in water, lastly 

filtering them. The filter types and sonicator are listed in table 4. 

TABLE 4: FILTERS AND THE SONICATOR UTILIZED IN THE PROJECT. 

Filter (for eluent) Thermo Scientific, membrane filter, non-sterile, nylon, 0.2 µm, 47mm. 

Filter (for others) Life Sciences, GHP Acrodisc 13 mm Syringe Filter, 0.2 µm GHP 

membrane 

Sonicator GWB, B220, 45 kHz 

 

The samples used in this study are Vanilla Coca-Cola, Coca-Cola, Redbull and Redbull 

sugarfree, FunLight Orange, and apple-pear concentrate along with the jams pirkka 

strawberry and smashed apples. The juice concentrates were first prepared according to 

instructions on the package. These are typical samples analyzed by the customs laboratory, 

with typical concentrations of additives. The more specific contents are listed in table 5 for 

the beverages. In the beverages, there is not much that should cause issues in the analysis 

after removal of possible gas bubbles. The biggest issues can be caused by sugar and possibly 

low amounts of the additives.  
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For the customs laboratory, it is important to know whether the compound is below a certain 

maximum, which has been set by the European Union, or in the case of caffeine if there are 

correct markings if the product has high amount of caffeine. Most of the chosen samples have 

caffeine and none of the samples have all the compounds of interest. 

The allowed levels for the different additives depends on what type of product it is and for 

who it is aimed. In beverages, a warning label is required if the product contains more than 

150 mg/L Caf.96 In flavored drinks the limits for Asp is 600 mg/L, As-K 350 mg/L, Sac 80 mg/L, 

sorbate/ SA 300 mg/L.97 From this can be seen that the allowed levels are quite high and thus 

the method does not have to be very sensitive.  

TABLE 5: CONTENTS OF THE UTILIZED SAMPLES PER THE CONTENTS LISTED IN THE PACKAGE SPRING 2016. 

Product Contents 

Coca-Cola water, sugar, carbon dioxide, E150d, E338, natural aromas 

(incl. caffeine), plant extract. 

Vanilla Coca-Cola water, sugar, carbon dioxide, E150d, E338, natural aromas 

(incl. caffeine), plant extract. 

Redbull Water, saccharide, glucose, E330, carbon dioxide, taurine 

(0.4%), E500, E504, caffeine (0.03%), vitamins (niacin, 

pantone acid, B6, B12), aromas, E150a, E101 

Redbull sugarfree Water, E330, carbon dioxide, taurine (0.4%), E500, E504, 

sweeteners E950, E951, caffeine (0.03%), vitamins (niacin, 

pantone acid, B6, B12), aromas, E415, E150a, E101 

Fun Light, orange Water, apple acid, sodium citrate, arabicum, xantangum, 

E444, aspartame, acesulfame-K, beta-carotene, ascorbic 

acid, potassiumsorbate.  

Pirkka Sokeriton omenan ja 

päärynän makuinen 

juomatiiviste 

Water, pear juice from concentrate, apple juice from 

concentrate, citric acid, aromas, aspartame, acesulfame-K, 

sodium benzoate, potassium sorbate, ascorbic acid, E150d. 

 

The supermarket provided a valuable starting point to see if there are some immediate issues 

with the method. The peaks seemed to be well resolved for all the samples and the 
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concentrations for the contents possible. After this, the Food Analysis Performance 

Assessment Scheme (Fapas) samples were analyzed. Fapas provides samples for laboratories 

for proficiency testing. The same samples are sold as reference materials. The reference 

materials come with assigned values and uncertainty determined from the proficiency test 

results.  

The Fapas samples were utilized for estimation of bias and trueness. The contents of the 

samples are listed in table 6. Fapas samples should give quite a good approximate of how 

much the sample contains a specific compound before the expiration date. Additionally, some 

even older Fapas samples were analyzed, the results were however unusable. In the old 

samples, it could be clearly seen that aspartame had degraded. The levels of the other 

compounds did not seem to change significantly within one year. The samples were either of 

cola or tonic water type. 

To get a realistic estimation of the noise, Freeway pineapple soda was utilized. This takes into 

account possible variation caused by the sugar contents. It has none of the compounds of 

interest, and no peaks could be seen. 

TABLE 6: CONTENTS OF FAPAS SAMPLES. 

FAPAS 
sample 
number 

As-K 
(assigned 
value/ 
confidence 
range) 

Sac 
(assigned 
value/ 
confidence 
range) 

Caf 
(assigned 
value/ 
confidence 
range) 

Asp 
(assigned 
value/ 
confidence 
range) 

BH 
(assigned 
value/ 
confidence 
range) 

SH 
(assigned 
value/ 
confidence 
range) 

Applicability 
date 

T03124QC, 
Cola 

 22.3/ 17.8-
26.8 mg/L 

  127/ 107-
146 mg/L 

140/ 118-
161 mg/L 

29 Aug 2016 

T03114QC, 
Tonic 

174/ 148-
199 
mg/mL 

  356/ 309-
403 
mg/mL 

115/ 97-
133 mg/mL 

 21 Feb 2015 

T03115QC, 
Tonic 

85.1/ 71.2-
99.1 mg/L 

35.2/ 28.6-
41.7 
mg/mL 

93.9/ 78.8-
109.1 
mg/mL 

 140/ 118-
161 mg/mL 

 14 Jun 2015 

T03122QC, 
Cola 

53.2/ 43.9-
62.6 mg/L 

53.7/ 44.2-
63.1 mg/L 

97.6/ 81.9-
113.3 
mg/L 

 115.4/97.3-
133.5 
mg/mL 

 5 Jun 2016 
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5. Method optimization 

5.1. Selection of buffer 

Agilent has a few application notes with analyses of sweeteners and conserving agents. There 

was however only two type of buffers, acetate and phosphate. The acetate buffer is based on 

a mixture of ammonium acetate salt, with a buffering range (3.76-5.76).24The phosphate 

buffer on phosphoric acid, which buffers from 1.14 to 3.14 cannot be utilized with an MS 

instrument. 

A gradient 10% - 30% ACN in 1.40 min was utilized with acetate buffer and a flowrate of 1 

mL/min and column temperature 30 °C. All the compounds were well separated. However, 

the fact that acetate buffer absorbs at 210 nm, causes a baseline drift as the gradient changes. 

In an isocratic run the problems with this would not be as dominant. In figure 5 the issue can 

be seen; the base line drifts a lot with a change of the gradient and all the peaks tail. 

Additionally, there is a lot of background noise in the beginning of the analysis caused by the 

injection. For a 50 µg/mL solution the baseline drift is not very significant.  This is, however 

not the case for a 5 µg/mL solution. 

 

FIGURE 5: UHPLC SEPARATION OF A STANDARD SAMPLE OF 50 µG/ML CONCENTRATION. THE SAMPLE 

COMPONENTS WERE ACESULFAME-K (AS-K), SACCHARINE (SAC), CAFFEINE (CAF)ASPARTAME (ASP), BENZOIC 

ACID (BA) AND SORBIC ACID (SA), MOBILE PHASE: ACETATE BUFFER (PH 4.8) AND ACN, UV-DETECTION AT 

210 NM, INJECTION VOLUME 2 µL, TEMPERATURE 30 °C. 

The baseline drift could be reduced by addition of acetate to the acetonitrile solution. The 

issues with injection could be reduced somewhat by preparing standards into buffer solution. 
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As there is only a little retention for As-K, it elutes almost at the same time as the rest of the 

solution injected. This made it hard to get reproducible results. This combined with the extra 

work with having acetate in every solution made the phosphate buffer as the eluent of choice, 

even though the optimal pH was not within the buffering range. 

5.2.  Selection of pH for the phosphate buffer 

The pH optimization was made for the phosphate solution. The method is quite pH dependent, 

which is problematic as the optimal separation is not within the buffering range of the 

phosphate solution (1.14 to 3.14; pKa≈2.1).24 In Agilent application note a pH of 3.65 was 

utilized. This did not give good enough separation in our analysis (figure 7). To further enhance 

the separation of sorbic acid and benzoic acid, a pH of 4 was chosen (figure 8).95 There is no 

major changes in the retention times within the pH range 4.00 - 4.10. With a pH of 4.92 

aspartame eluted last and was not completely separated from sorbic acid (figure 9). As the pH 

is lowered to 3.19 there is no separation of sorbic acid and benzoic acid (figure 10). A pH 

change from 3 to 5 only caused the retention times of benzoic acid and sorbic acid to change.  

  

FIGURE 6: UHPLC SEPARATION OF A STANDARD SAMPLE OF 25 µG/ML CONCENTRATION. THE SAMPLE 

COMPONENTS WERE ACESULFAME-K (AS-K), SACCHARINE (SAC), CAFFEINE (CAF)ASPARTAME (ASP), BENZOIC 

ACID (BA) AND SORBIC ACID (SA), MOBILE PHASE: PHOSPHATE BUFFER (PH 3.65) AND ACN, UV-DETECTION 

AT 210 NM, INJECTION VOLUME 2 µL, TEMPERATURE 35 °C. 
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FIGURE 7: UHPLC SEPARATION OF A STANDARD SAMPLE OF 25 µG/ML CONCENTRATION. THE SAMPLE 

COMPONENTS WERE ACESULFAME-K (AS-K), SACCHARINE (SAC), CAFFEINE (CAF)ASPARTAME (ASP), BENZOIC 

ACID (BA) AND SORBIC ACID (SA), MOBILE PHASE: PHOSPHATE BUFFER (PH 4.00) AND ACN, UV-DETECTION 

AT 210 NM, INJECTION VOLUME 2 µL, TEMPERATURE 35 °C. 

 

FIGURE 8: UHPLC SEPARATION OF A STANDARD SAMPLE OF 25 µG/ML CONCENTRATION. THE SAMPLE 

COMPONENTS WERE ACESULFAME-K (AS-K), SACCHARINE (SAC), CAFFEINE (CAF)ASPARTAME (ASP), BENZOIC 

ACID (BA) AND SORBIC ACID (SA), MOBILE PHASE: PHOSPHATE BUFFER (PH 4.92) AND ACN, UV-DETECTION 

AT 210 NM, INJECTION VOLUME 2 µL, TEMPERATURE 35 °C 

 

-50

0

50

100

150

200

0 0,5 1 1,5 2 2,5

pH 4.00

As-K

Sac
Caf

Asp
BA

-50

0

50

100

150

200

0 0,5 1 1,5 2 2,5

As-K

Sac
Caf

Asp
BA SA 

SA 



53 
 

 

FIGURE 9: UHPLC SEPARATION OF A STANDARD SAMPLE OF 25 µG/ML CONCENTRATION. THE SAMPLE 

COMPONENTS WERE ACESULFAME-K (AS-K), SACCHARINE (SAC), CAFFEINE (CAF)ASPARTAME (ASP), BENZOIC 

ACID (BA) AND SORBIC ACID (SA), MOBILE PHASE: PHOSPHATE BUFFER (PH 3.19) AND ACN, UV-DETECTION 

AT 210 NM, INJECTION VOLUME 2 µL, TEMPERATURE 35 °C 

 

 

5.3. Gradient 

In gradient runs the composition of the mobile phase changes. Usually the amount of the 

organic modifier increases within the run. This can be done linearly or in steps. The reason for 

using a gradient is to reduce the analysis time of the slower eluting compounds, and hence to 

get narrower peaks. On the other hand, also the beginning of the gradient can be adjusted. 

Very polar compounds are going to be more retained if there is less organic modifier in the 

eluent. 

Better separation of the compounds was done by adjusting the gradient using phosphate 

buffer. The biggest drawback of the original gradient in the application note was that there 

was hardly any retention of the first compound. This is not surprising as As-K is ionic with 

highly polar functional groups. 

As the gradient was selected to start with a higher percentage of buffer the retention was 

somewhat increased. The levels from 11 % of ACN was reduced to 6 %. Also, the percentage 

was changed to 30 % ACN from 56 % at the end of the gradient. The effect this had on the 

retention times can be seen in table 7. The most important changes were for the first eluting 
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compounds. The differences might seem negligible, but in high resolution separation and 

short runtimes like these, the difference is big. 

TABLE 7: CHANGE IN RETENTION TIMES AS THE AMOUNT OF ORGANIC MATTER WAS CHANGED FROM 11 % 

(RETENTION TIME 1) TO 6 % (RETENTION TIME 2). 

Compound Retention time 1 Retention time 2 

As-K 
0.256 0.288 

Sac 
0.333 0.418 

Caf 
0.636 0.758 

Asp 
0.866 0.975 

BA 
1.054 1.121 

SA 
1.18 1.256 

 

The retention times vary somewhat from run to run, typically with one number on the second 

decimal. For example, the retention times for Sac varied from 0.41 to 0.42 min. This is not a 

very big variation, but causes some issues for the peak recognition as the peaks were narrow 

(especially As-K, Sac, and Caf) and thus the software did not always recognize the compound 

as the target compound. The software is programed so that it allows a certain amount of 

variation (percentage) in the retention time, which depends on the peak width. 

5.4. Selection of wavelengths for analysis 

A UV/Vis library with the spectra for all the compounds of interest was created. From the 

spectra, the optimal wavelength for analysis could be seen. The idea of the library is that the 

reference spectrum can be compared to the peak from the sample to reduce the risk for cross 

referencing. Unfortunately, aspartame and saccharine have very similar spectra. Overall the 

UV/Vis spectrum is not as compound specific as the infrared spectrum. The reason for this is 

that very broad peaks are caused by the different possibilities for electron transition from the 

different rotational and vibrational levels.2  

The absorbance maximum of Caf, Sac, and Asp are at 200 nm. Normally 210 nm is selected for 

the detection of these three compounds. This wavelength is not very good for aspartame as 

its absorbance increases sharply below 220 nm. Caf has a second absorbance maximum at 275 

nm, which could be utilized as backup wavelength. As-K and BA have an absorption maximum 
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227 nm. SA has very strong absorption at 260 nm. To summarize: three wavelengths where 

chosen for quantification, 210 nm, 227 nm, and 260 nm. Of these, 210 nm was considered the 

general wavelength, because most compounds that absorb, absorb in that area. This means 

that the wavelengths are not very selective, which increases the risk of misidentification. 

5.5. Injection volume 

Injection volume is a parameter which can easily lower the LODs and enhance reproducibility. 

When the injection volume is doubled also the peak size of the compound is doubled, as there 

is double the amount of compound present. The injection volume should not be too low or 

high. If too much is injected the detector can be overloaded. On the other hand, there needs 

to be sufficient amount of the compound present to be detected. At low concentrations, the 

peaks are very low and the areas small. Even at an injection of 2 µL aspartame the UV-

absorption is only 10 mAu high for a 5 µg/mL solution. 

At first a 1 µL injection was utilized. By keeping low injection volumes the risk of blocking the 

column is reduced. This is especially important for tricky matrixes. The volume of 1 µL was also 

utilized in one of the application notes provided by Agilent Technologies.95 The peaks were 

however too small. With doubling the injection volume to 2 µL better and more reproducible 

results were achieved. Further 3 µL injections were tested in hope of even more reproducible 

results, but it turned out that with the injection of 3 µL of the sample Redbull Sugrafree there 

was no longer baseline separation of As-K and an unknown compound. 

5.6. Temperature 

To get stable retention times it is important to have constant temperature. In the summer the 

room temperature can increase up to 30°C. No temperature below that could be considered. 

The temperatures 30, 35, 40, and 45°C were investigated. As the temperature rises, the 

retention times get shorter. The changes are presented in table 8. The pressure reduced from 

approximately 640 bar to 520 bar in the beginning of the analysis. The reason for this is that 

liquids get less viscous as the temperature rises.2 The temperature of 40 °C was chosen, 

because of the lower pressure and the diminished risk of the room temperature being over 

that.  
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TABLE 8: CHANGE IN RETENTION TIMES COMPARED TO TEMPERATURE. 

Temperature 30 °C 35 °C 40 °C 45 °C 

As-K 0.306 0.297 0.286 0.276 

Sak 0.460 0.439 0.410 0.388 

Kof 0.798 0.778 0.757 0.737 

Asp 1.019 0.998 0.976 0.953 

BH 1.217 1.174 1.134 1.089 

SH 1.328 1.295 1.261 1.226 

Pressure (bar) 640 590 550 520 

 

5.7. Flow rate 

As the method was based on the Agilent application note, first a flow rate of 1.8mL/min was 

tested.95 The pressure was however quite close to the maximum and due to an expected 

increase of the pressure over time, the flowrate was reduced. The pressure dropped about 

100 bars with a reduction of 0.2 mL/min in the flow rate, see table 9. Both the pressure and 

the flowrate affect the retention times and peak shapes. A flowrate of 1 mL/min was found to 

be optimal with short analyses time, good peak shapes, and low pressure. There is also no 

need for large flowrates as the analysis is so short even with 1 mL/min flowrate. 

 

TABLE 9: EFFECT OF FLOWRATE UPON RETENTION TIMES AND PRESSURE. 

mL/min 0.8 1 1.2 1.4 

As-K 0.357 0.286 0.238 0.204 

Sak 0.511 0.410 0.345 0.291 

Kof 0.883 0.757 0.667 0.597 

Asp 1.115 0.976 0.874 0.795 

BH 1.318 1.134 0.993 0.886 

SH 1.449 1.261 1.120 1.011 

Pressure 

(bar) 

445 550 650 740.0 
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6. Method validation 
Validation of an analysis is the most important part of the development of a new method; 

without validation, there is no proof that the method works. Validation confirms the fitness 

for purpose of the analytical method.98 For validation of this method for analysis of food 

additives, the trueness, measurement uncertainty, reproducibility, robustness, LOD and LOQ, 

and the standard solution stability were evaluated. 

6.1. Trueness  

Trueness consists of accuracy and precision.2 Accuracy is the value of how close the average 

value comes to the “real” value and precision is the factor how close the results are too each 

other.2 Optimally the results are both accurate and precise. Trueness was measured by 

comparing Fapas samples and in house measured samples and by statistical evaluation. 

Several of the analyzed Fapas sample showed also peaks for other compounds, often sorbic 

acid, even though they were not included as reference compounds. Bias was used for 

comparison of achieved values in comparison to assigned values for the FAPAS samples and 

in house samples. 

6.2. Within laboratory reproducibility 

Within laboratory reproducibility (Rw) was measured with two different Fapas samples 3122 

and 3124. The evaluation of reproducibility is not fully completed. First, the analysis was only 

carried out during 4 days and for aspartame there is no evaluation. The reproducibility testing 

was additionally done by the same person in the same laboratory with the same instrument 

at different days. The method still needs to be tested at least by a different analyst, for a longer 

term, with different stock solutions, with recalibrations, and for all other factors that change.99  

The reproducibility was calculated by calculating the standard deviation (SD) from day to day 

analysis. The results are presented in table 10. These results indicate reasonable to good 

reproducibility; however, the data is unreliable with so few parallel analyses. The 

reproducibility for aspartame was not calculated as the sample was analyzed only a few times. 
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TABLE 10: WITHIN LABORATORY REPRODUCIBILITY 

 Average result SD Value  (RSD%) Relative value 

As-K 51.69 1.36 2.64 % 

Sac 52.03 1.69 3.25 % 

Caf 98.77 5.94 6.01 % 

BA 127.8 1.89 1.48 % 

SA 132.4 2.23 1.68 % 

 

6.3.  Measurement uncertainty 

Measurement uncertainty is one of the most crucial parameters to be determined in the 

validation process.   It is highly important to acknowledge the error caused to the method by 

all the different variables in the analysis. The measurement uncertainty can be evaluated with 

many different methods. One method is the NORDtest principle.99 The aim of the NORDtest is 

to support the evaluation of measurement uncertainty in routine analysis. It provides a 

practical and easily understandable way to calculate the uncertainty in environmental testing 

laboratories among others.99 

The uncertainty consists of many factors in an analysis. It can be hard to identify all factors 

contributing to the error of the achieved results. There are two types of errors; random errors 

and systematic errors.100 Random errors are harder to identify as they are, as the name 

suggests, random. These can be for example small mistakes done by the analyst. Systematic 

errors are caused by the system itself. An example here could be an error caused by filtration 

of the sample. Some of the sample might be adsorbed in the filter. The amount that does this 

is constant from sample to sample. The systematic error can be evaluated by calculating the 

bias.99 This is done by comparison of acquired results and given “true” values for a sample. 

The equation to calculate the error caused by the bias is presented in equation 7. 

𝑏𝑖𝑎𝑠 = �̅� − 𝑅𝑀𝑆𝑣𝑎𝑙𝑢𝑒     (7) 

where �̅� is the average value of received results and RMSvalue the “true value” given by the 

reference material provider. This can be turned into relative bias by dividing the bias with the 

certified value and multiplying by a 100. If there are several reference materials the average 

of RMSBias is utilized. The equation is presented in equation 8. 
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𝑅𝑀𝑆𝑏𝑖𝑎𝑠 = √
∑(𝑏𝑖𝑎𝑠)2

𝑛
     (8) 

The reference material should be analyzed on a minimum of five different days.99 The 

reference material itself, of course, has an error. This must be considered when calculating 

the error caused by the bias. The final error caused by the bias (ubias) is the bias and the error 

of the reference material (equation 9), in the case when several reference materials are 

utilized, and further the standard deviation of the one bias if only one reference material is 

utilized (equation 10). 

𝑢𝑏𝑖𝑎𝑠 = √𝑅𝑀𝑆𝑏𝑖𝑎𝑠
2 + 𝑢(𝐶𝑟𝑒𝑓)^2    (9) 

𝑢𝑏𝑖𝑎𝑠 = √(𝑏𝑖𝑎𝑠)2 + (
𝑠𝑏𝑖𝑎𝑠

√𝑛
)

2

+ 𝑢(𝐶𝑟𝑒𝑓)^2   (10) 

 

As earlier mentioned, the measurement uncertainty (u) consists of random error and 

systematic error. In practice this means that the bias is utilized for the evaluation of systematic 

error and the day to day variation within the laboratory for the random error, which is 

represented by the reproducibility within the laboratory (Rw). 

Expanded measurement uncertainty (U) is calculated by considering all possible errors. In this 

analysis, the Fapas samples played a large role in the estimation. The statistical calculations 

were based on the NORDtest principle.99 This means that the measured results were first 

compared with the Fapas assigned values using bias. After that the errors were compared to 

the standard deviation for the runs. 

In chemistry, the results are assumed to be normally distributed.2 The FAPAS assigned values 

accompanied with a confidence interval, Z=2, which means that the interval is within a 

confidence level of 95 %. To calculate the u(Cref) the value of the given value (µ) is subtracted 

from the upper limit (x) and divided by 1.96 (equation 11).99 

u(𝐶𝑟𝑒𝑓)  =
𝑥−µ

1.96
,     (11) 

When several CRMs are utilized the u(𝐶𝑟𝑒𝑓) is the average of the values. 
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The u(Cref) can be converted into relative uncertainty by dividing u(𝐶𝑟𝑒𝑓) with the give value 

and multiplying with 100. 

The measurement uncertainty was calculated from the FAPAS samples 3122 and 3124. The 

sample 3122 contains As-K (53.2/ 43.9-62.6 mg/L), Sac (53.2/ 43.9-62.6 mg/L), Caf (97.6/ 81.9-

113.3 mg/L), and BA (115.4/97.3-133.5 mg/mL). The sample 3124 has Sac (22.3/ 17.8-26.8 

mg/L), BA (127/ 107-146 mg/L) and SA (140/ 118-161 mg/L). The samples were analyzed four 

days: 21.6, 5.7.16, 7.7.16 and 12.7. As can be seen a reference material for Asp is missing, this 

was analyzed instead with a inhouse prepared material made into a Funlight concentrate. 

Funlight was measured over a long period to be 136.78 µg/mL (130.99-142.58) by the Customs 

laboratory. Funlight was only analyzed twice with the new method.  

The bias indicated for aspartame is very low. The reason for this is the small uncertainty of the 

Funlight measurements. The uncertainty is not however very trustworthy as the reference 

material has only been analyzed with one method. The other biases seem to be around the 

expected values and are quite similar to each other.  

The calculation of the measurement uncertainty is presented for BA. 

𝑏𝑖𝑎𝑠%(3124) = (𝑥̅̅̅ − 𝑅𝑀𝑆𝑣𝑎𝑙𝑢𝑒)/𝑅𝑀𝑆𝑣𝑎𝑙𝑢𝑒×100 % = (128 − 127)/127×100%

= 1.14 % 

𝑏𝑖𝑎𝑠%(3122) =
116.7−115.4

115.4
×100% = 0.66 %  

𝑅𝑀𝑆𝑏𝑖𝑎𝑠 = √
∑(𝑏𝑖𝑎𝑠)2

𝑛
= ((0.66%2 + 1.14%2)/2)0.5 = 0.90 %   

u(𝐶𝑟𝑒𝑓) =
𝑥−µ

1.96
=

146−127

1.96
= 9.69,

9.69

127
×100 % = 7.63 %   

𝑎𝑛𝑑
133.5−115.4

1.96
= 9.23,

9.23

115.4
×100 % = 8.00 %  

(
7.63 %2+8.00 %2

2
)

0.5

= 7.82 %   

𝑢𝑏𝑖𝑎𝑠 = √𝑅𝑀𝑆𝑏𝑖𝑎𝑠
2 + 𝑢(𝐶𝑟𝑒𝑓)^2 = √0.90 %2 + 7.822 = 7.87 %  

The estimation of the bias with only one reference material differs after the calculation of the 

bias. Here is an example for the calculation of the u(𝐶𝑟𝑒𝑓) for As-K. 
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𝑢𝑏𝑖𝑎𝑠 = √(−2.93%)2 + (
1.36

√4
)

2

+ 9.01%^2 = 9.55 %  

The rest of the 𝑢𝑏𝑖𝑎𝑠 are listed in table 11. 

TABLE 11: THE VALUES FOR THE CALCULATED 𝒖𝒃𝒊𝒂𝒔 

Compound u(bias) 

As-K 9.55 % 

Sac 12.17 % 

Asp 2.87 % 

Caf 8.81 % 

BA 12.2 % 

SA 9.62 % 

 

After estimating the systematic error with the bias, an estimation of the random error needs 

to be made. The random error can be estimated with Rw. Optimally this would be taken from 

a control chart or similar over a long period. In this case the best value we have for the 

estimation is the four analyses done for the FAPAS samples. 

The uncertainty (uc) and the expanded uncertainty (U) was not calculated for aspartame due 

to lack of data of reproducibility. The equation for uc (equation 12) and U (equation 13) is 

presented below. U gives a high confidence interval of 95 %.99 A model calculation is presented 

for BA. 

𝑢𝑏𝑖𝑎𝑠 = √𝑢𝑏𝑖𝑎𝑠
2 + 𝑅𝑤

2      (12) 

𝑈 = 2×𝑢𝑏𝑖𝑎𝑠     (13) 

𝑈(𝐵𝐴) = 2×√12.2 %2 + 1.48 %2 = 24.76 %  
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TABLE 12: CALCULATED EXPANDED UNCERTAINTY FOR THE COMPOUNDS. 

Compound U 

As-K 19.10 % 

Sac 25.20 % 

Caf 18.29 % 

BA 24.76 % 

SA 19.53 % 

 

6.4. Limit of detection and limit of quantification 

Limit of detection (LOD) is the lowest concentration, where the peak can be distinguished 

from the noise and where the signal is larger than the measurement uncertainty related to 

it.101 

The limit of detection was calculated by using a zero matrix with an addition of 0.5 µg/mL, in 

this case Freeway lemonade with pineapple taste diluted to 1:5. Six parallel analyses were 

carried out and the noise was calculated close to the peaks (see table). The noise is given by 

the software by calculation of three times of the standard deviation of the noise plus the mean 

of the noise. The noise varies quite a lot from analysis to analysis, the largest variation is at 

the beginning of the run, which affects highly As-K, which has a noise at worst above 2.5 mAu. 

The LOD was the calculated according to equation 14. 

𝐿𝑂𝐷 = 3×𝑁×
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑒𝑠𝑡𝑑

𝐻𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑑
    (14) 

An example for calculation of the LOD is given for BA, the rest are tabled in table 10. The factor 

of three is utilized to achieve a 99 % confidence limit.2 The heights of the peaks in these 

calculations are from a 5 µg/mL standard solution and noise is measured from a 1/5 diluted 

freeway pineapple soda. 

The LOQ was calculated similarly but instead of using a factor of three a factor of ten was 

utilized (equation 15).  

𝐿𝑂𝑄 = 10×𝑁×
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑒𝑠𝑡𝑑

𝐻𝑒𝑖𝑔ℎ𝑡𝑠𝑡𝑑
    (15) 
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An example for the calculation of the LOD is given for BA, the rest of the results are given in 

table 13, the LOQ is as previously mentioned calculated similarly and hence it is not separately 

presented here. 

𝐿𝑂𝐷 = 3×0.0962×
5 𝑝𝑝𝑚

17.408
= 0.0753 𝑝𝑝𝑚 

 

TABLE 13: THE LODS AND LOQS FOR AS-K, SAC, CAF, ASP, BA AND SA. 
 

AVERAGE 
NOISE 

LOD LOQ 

AS-K 2.0111 1.7329 5.7763 
SAC 0.1466 0.0613 0.2043 
CAF 0.0574 0.0224 0.0747 
ASP 0.0601 0.0895 0.2984 
BA 0.0962 0.0753 0.2509 
SA 0.0611 0.0162 0.0541 

 

 

6.5. Linearity 

The linearity or working range for the analyzed compounds is somewhat different for each 

compound. The ones that look linear in figure 10 are quite linear with correlation factors 

above 0.999. The peak shapes are affected and retention times are different, however. Only 

the peak of sorbic acid clearly overloaded the detector at a concentration of 1000 µg/mL. This 

is not surprising as the most accurate values given by a spectrometer is between 180-820 

mAu.2 Modern instruments can give excellent values in a larger scale, even up to 2000 mAu.2 

Within the normal working range, aimed for this method, (5-100 µg/mL) all the compounds 

show excellent linearity (see figure 11). 



64 
 

 

FIGURE 10: THE AREAS FOR 50, 100, 250, 500 AND 1000 µG/ML SAMPLES WITH ERRORS. 

6.6. Robustness 

Robustness assesses factors in the process that can cause variation, like changes in 

temperature, fluctuations of mobile phase composition, or pH.101 As has been shown in the 

method development section, the method seems to be quite robust.  

There are no major changes in the analysis if the pH changes from 4.00-4.10. It is very 

important that this analysis is not very pH sensitive. It needs to withstand small pH variation, 

as the buffer utilized is not in its buffering range. As for the temperature changes the major 

changes have been addressed by having high enough column temperature. Small changes in 

the mobile phase composition should not matter much, but for example the effect of 

concentration changes in the buffer was not assessed for the phosphate buffer. For the 

acetate buffer, there was no change between 10 mM and 20 mM buffers. 

The DAD detector is very robust and the nature of electron transitional changes are of the 

type that small changes in the wavelengths do not cause major changes in the detection 

process. The biggest issue might be caused by fluorescent compounds, which, however, were 

not present in this analysis.2 

The samples Vanilla Coca-Cola, Coca-Cola, Redbull and Redbull sugarfree, FunLight Orange 

and apple-pear concentrate along with the jams Pirkka strawberry and mashed apple, were 

analyzed to see if anything unexpected would happen. The method seems to work for all of 
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these. However, the jams needed more dilution and several filtration steps in order to pass 

the 0.2 µm filter. 

Vanillin and ethyl-vanillin are very common additives in food matrixes and there was some 

concern for possible issues with vanillin peaks possibly overlapping one of the compounds. A 

standard mixture with added vanillin and ethyl-vanillin of 25 µg/mL was analyzed. The 

retention times of the different types of vanillas were the same and did not overlap with any 

of the compounds of interest. There might of course be other additives that overlap and this 

should be kept in mind while analyzing new products. 

6.7. Durability 

Stock solutions are highly practical to utilize as a base for comparison of standards. The 

problem is that quite often the compounds start to disintegrate in aqueous solution.16 This 

can be reduced by adjusting the pH, addition of organic solvents, or with storage in cold and 

dark.16 For the customs two different solutions at two different storage temperatures were 

tested over a period of two months.  

The durability was tested by preparing two stock solutions. One was 500 µg/mL containing all 

of the compounds in 30 % MeOH and 70 % H3PO4-solution, and the other one was identical, 

but the H3PO4 solution replaced with water. These solutions were divided into small test tubs 

with caps and stored in either the fridge (temp 4 °C) or freezer (temp -20 °C). One tube of each 

type was then analyzed every one or two weeks, after the dilution to 50 µg/mL and 5 µg/mL. 

The day of preparation was 13.5.2016 after which the solutions were analyzed on the 

20.5.2016, 1.7.2016, and 13.7.2016. 

The results are a bit inconclusive. For more accurate results, more data points would have 

been needed. However, it seems that the variation is caused by variation in the preparation 

of the solution. Especially the results from the solution made from the buffer stored in the 

freezer 20.5.2016 can be discarded, as it is clearly differs from the other results. Over in all, 

the areas of the peaks are quite the same over the period measured. The areas are shown for 

the 50 µg/mL solution of As-K and Sac, which have the biggest variation. The results for the 

other samples are similar (figures 12 and 13).  
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FIGURE 11: STABILITY TEST FOR AS-K OVER THE PERIOD OF TWO MONTHS. 

 

FIGURE 12: STABILITY TEST FOR SAC OVER THE PERIOD OF TWO MONTHS. 

 

From the compounds analyzed, aspartame disintegrated the most. This could be clearly seen 

in the older Fapas sample analyzed, where the observed amount could be less than half of the 

given value. Over the period of two months there was no difference in the areas of any of the 

compounds, whichever way the standard solutions were stored. Furthermore, no division in 

peaks or unknown peaks could be seen in the chromatograms.  

 

7. Results and discussion 
The method developed was validated partly, with the aim to fulfil the needs of the Finnish 

Customs Laboratory.  The optimized method was as follows: an injection volume of 2 µL; 

gradient elution from 6 % ACN to 30 % ACN in 1.6 minutes, then 1.6-1.7 minutes again 6 %; 

phosphate buffer at pH of 4.0; a total runtime of 1.70; a flowrate of 1.0 mL/min; detection at 
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210 nm, 227 nm, and 260 nm. The LODs were between 0.02 µg/mL and 1.73 µg/mL and the 

LOQ between 0.054 µg/mL and 5.78 µg/mL. This values should be sufficient for the Customs 

needs in the sense of checking if a product is over a certain limit. The LOQ for AS-K, which is 

over 5 µg/mL, is a bit problematic as the lowest calibration solution is 5 µg/mL. This is 

something to take into consideration if low concentrations are quantified. Expanded 

measurement uncertainties are around 20%.   

The method developed is good for analyzing beverages. It is however questionable if it will be 

robust enough for more complex matrixes. As an example can be mentioned matrixes that 

contain a lot of proteins and fat, like protein bars. These might have stronger matrix effects. 

They might also cause clogging, resulting in an increase of the column pressure, without 

proper sample preparation. Dilution and filtration of samples like this is not going to be 

sufficient, and some LE procedure combined with protein precipitation, would probably be 

needed. This could be compared to sample preparation methods for the serum samples prior 

to MS studies, which were surprisingly simple and have similar components to foodstuff. The 

biggest difference is the sample amount. In foodstuff, large samples are better and there is no 

need to miniaturize the sample volume. A large sample is more representative for foodstuff 

that might have variation from package to package. 

Other matrixes than beverages contain a lot of compounds that have not been addressed in 

this thesis. This might cause some misidentification of the compounds. It is a true downside 

with UV/Vis detectors that they cannot be utilized for identification of compounds. The 

original idea to develop a method with an acetate buffer would have allowed the possibility 

to switch the detector to an MS, which would give more knowledge of the detected 

compound, as could be seen in the steroidal analyses. For routine analysis, with good idea 

what the sample contains, the MS instrument might be too elaborate and expensive. The MS 

instruments are highly efficient, but need a lot more knowhow to operate, need cleaner 

samples, and are higher in maintenance. Lastly, the analysis is also slower, due to the low 

flowrates. 

Compared to steroidal analysis the developed method for analysis of food additives is very 

simple. The contents of food stuff are well known and the quantification of the compounds 

thus simple. In steroidal analysis, the MS and in most of the cases a MS/MS is needed, due to 

complex matrixes that contain plenty of different compounds of similar structures.  
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8. Concluding remarks 

UHPLC is a versatile instrument, which can be utilized for the analysis of simple beverages to 

complicated blood samples. It is flexible in the sense that it can be connected to a MS 

instrument to provide even more information of the sample than could be achieved with only 

a UV/Vis detector. 

The instrument itself provides repeatable results with high resolution. The sample preparation 

can be simple and the analysis time short, depending on the application. In non-targeted 

analysis, the analysis tends to be long, but in targeted analysis times less than ten minutes are 

common. This makes the instrument well fitted for routine analysis of parallel samples. 

There are almost no limits for the compounds that can be analyzed with UHPLC. Only ionic 

compounds can cause issues in RPLC. The composition of the mobile phases and the type of 

stationary phases can be tuned to fit a variety of samples and compounds. The only limitation 

is that the samples need to be free from all kinds of particles that might induce clogging of the 

column. 

The main advantage of UHPLC lies in the small particles utilized as stationary phase. It provides 

short time for the column to equilibrate and high plate numbers for relatively short columns. 

This reduces the analysis time and the solvent consumption. Even though UHPLC is a powerful 

tool, the instrument is easy and straightforward to use.   

The validation process for UHPLC is simple, but takes time. The method developed for the 

Customs heroes the speed of the UHPLC in routine analysis. The samples need only minimal 

pretreatment. This leads to complete analysis in a very short time. 

In steroid analysis, the versatility and softness of the instrument is the major advantage. There 

is no need for extreme heat or labor intense sample preparation, such as derivatization, in 

order to analyze the compounds.  

In the future, the UHPLC instruments will replace all the traditional HPLC instruments. The 

higher efficiency and the fast analysis is what is needed today. The UHPLC-MS will become 

more affordable and they will land in regular hospital laboratories. They will be utilized for 

finding indicators for cancer and other diseases. 
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