
Department of Computer Science
Series of Publications A

Report A-2017-6

Third-generation RNA-sequencing analysis:
graph alignment and transcript assembly with

long reads

Anna Kuosmanen

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XV, University Main Building, on December 20th, 2017, at 12
o’clock noon.

University of Helsinki
Finland



Supervisors
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Abstract

The information contained in the genome of an organism, its DNA, is ex-
pressed through transcription of its genes to RNA, in quantities determined
by many internal and external factors. As such, studying the gene expres-
sion can give valuable information for e.g. clinical diagnostics.

A common analysis workflow of RNA-sequencing (RNA-seq) data consists
of mapping the sequencing reads to a reference genome, followed by the
transcript assembly and quantification based on these alignments. The
advent of second-generation sequencing revolutionized the field by reduc-
ing the sequencing costs by 50,000-fold. Now another revolution is immi-
nent with the third-generation sequencing platforms producing an order
of magnitude higher read lengths. However, higher error rate, higher cost
and lower throughput compared to the second-generation sequencing bring
their own challenges. To compensate for the low throughput and high
cost, hybrid approaches using both short second-generation and long third-
generation reads have gathered recent interest.

The first part of this thesis focuses on the analysis of short-read RNA-seq
data. As short-read mapping is an already well-researched field, we focus on
giving a literature review of the topic. For transcript assembly we propose a
novel (at the time of the publication) approach of using minimum-cost flows
to solve the problem of covering a graph created from the read alignments
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with a set of paths with the minimum cost, under some cost model. Various
network-flow-based solutions were proposed in parallel to, as well as after,
ours.

The second part, where the main contributions of this thesis lie, focuses on
the analysis of long-read RNA-seq data. The driving point of our research
has been the Minimum Path Cover with Subpath Constraints (MPC-SC)
model, where transcript assembly is modeled as a minimum path cover
problem, with the addition that each of the chains of exons (subpath con-
straints) created from the long reads must be completely contained in a
solution path. In addition to implementing this concept, we experimen-
tally studied different approaches on how to find the exon chains in prac-
tice. The evaluated approaches included aligning the long reads to a graph
created from short read alignments instead of the reference genome, which
led to our final contribution: extending a co-linear chaining algorithm from
between two sequences to between a sequence and a directed acyclic graph.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.2.2 Graph theory: Graph algorithms
I.6.5 Model development
J.3 Life and medical sciences: Biology and genetics

General Terms:
algorithms, design, bioinformatics, computational biology

Additional Key Words and Phrases:
network flow, dynamic programming, directed acyclic graphs
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Chapter 1

Introduction

Gene expression controls the functions of all the cells in an organism. The
information contained in the genome of an organism, its DNA, is expressed
through transcription of its genes, in quantities determined by many in-
ternal and external factors. This collection of expressed transcripts, the
transcriptome, can be studied with many different techniques, the earliest
ones being hybridization-based microarrays and Sanger sequencing. Mi-
croarrays are popular because of their low price and high throughput, but
they can only identify already known sequences. In comparison, Sanger se-
quencing allowed the identification of novel sequences, but at significantly
higher cost and lower throughput.

The invention of second-generation sequencing in the early to mid-2000s
revolutionized the field of transcriptome analysis. With its high throughput
compared to Sanger sequencing, second-generation sequencing allowed to
not only identify the transcripts in the sample, but to also quantify their
amounts.

The small size of the sequenced fragments (called reads) brought its
own challenges to the analysis of RNA-sequencing (RNA-seq) data. With
the lengths in at most a few hundred bases, the reads had to be assembled
computationally to form the best-guess prediction of the transcripts and
their expression levels in the sample. In the past decade this field has re-
ceived a huge amount of interest, with countless tools developed for different
sequencing platforms (for surveys of tools see e.g. [42, 17, 6, 60, 26, 65]).

In the early 2011 sequencing technologies took a leap forward in the
form of third-generation sequencing platforms. Compared to the second-
generation platforms, third-generation sequencing produces significantly
longer reads, up to tens of thousands of bases long, but at a lower through-
put and with a higher error rate. In the optimal case, third-generation
sequencing would allow us to sequence transcripts in full from one end to
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2 1 Introduction

another. But while DNA fragments with lengths in the tens of thousands
of bases are routinely sequenced with third-generation platforms [1], RNA
sequencing has yet to reach such lengths due to the fragility of the RNA
molecule [75, 80, 81]. However, even long reads that do not span the whole
transcript can give us valuable information about non-consecutive exons.

The transcript assembly problem can be modeled as Minimum Path
Cover problem in a splicing graph [27]. In a splicing graph, the vertices
correspond to exons and there is an edge between two vertices if there exists
a split read alignment where the corresponding exons are consecutive. Then
the minimum number of paths covering all vertices corresponds to the most
parsimonous solution of assembled transcripts.

Bao et al. [5] proposed, and Rizzi et al. [67] fully solved, a model of Min-
imum Path Cover with Subpath Constraints, where the long reads spanning
multiple exons create subpaths (also called exon chains) that have to be
fully contained in some path in the solution.

Thematically, this thesis is divided into two main parts: short-read
RNA-seq analysis and long-read RNA-seq analysis. With “short-read” we
refer to reads with length of at most a few hundred basepairs (bp) that
are produced by second-generation sequencing platforms. “Long-reads” on
the other hand can be several thousand bp long, produced either by third-
generation platforms or by creating synthetic reads in silico from short
reads.

In Sections 1.1, 1.2 and 1.3 we will describe the biological background
and introduce some notation and algorithms that we will use throughout
the thesis.

In Chapter 2 we will discuss the field of short read RNA-seq. In this
thesis we assume that we have a reference genome, and the workflow of the
RNA-seq data analysis goes from sequencing to read mapping to transcript
assembly. Our main contribution to this topic is a novel transcript assembly
tool that is based on minimum-cost flows.

We will begin Chapter 3 with an introduction to the third-generation
sequencing, and discuss the differences between short and long reads from
the perspective of data analysis. All the main contributions of this chapter
are related to using long reads as subpath constraints (exon chains) for
transcript assembly. In Section 3.3 we survey and experimentally evaluate
approaches for optimizing the correctness of exon chains instead of the local
alignment score. In Section 3.4 we propose an approach to extend co-linear
chaining from two sequences to a sequence and a directed acyclic graph.
And in Section 3.5 we describe our implementation of solving Minimum
Path Cover with Subpath Constraints.
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pre-mRNA

mature mRNA
transcripts

Figure 1.1: During the preprocessing of mRNA, introns (gray boxes) are
spliced out and the remaining exons can form different combinations.

Finally, Chapter 4 summarizes the contributions and discusses possible
directions for future research.

1.1 Transcription and alternative splicing

The information content of an organism is recorded in its DNA, and ex-
pressed through transcription. RNA transcripts can be divided into two
groups,messenger RNAs (mRNAs for short) and non-coding RNAs. mRNA
serves as an intermediary molecule in the production of proteins, whereas
non-coding RNAs can perform diverse functions. The collection of RNA
transcripts in a cell at any given time is called a transcriptome.

After transcription, mRNAs go through a series of modifications to form
a mature transcript. The first step in the modifications is the splicing out of
the introns (“intervening sequences”) and the combination of the remaining
exons (“expressed sequences”). Because the exons can combine in different
ways, a single gene can act as a blueprint for several transcripts. This
phenomenon is called alternative splicing and is illustrated in Figure 1.1.

The amounts of each RNA transcript in a cell vary based on several
factors (e.g. tissue type). When studying the transcriptome, not only
do we need to identify the transcripts, but we also need to quantify their
amounts.
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1.2 Graph theory terminology

A graph G = G(V,E) consists of a set of vertices V = v1, v2, . . . , v|V | (also
called nodes) and a set of edges E ⊆ V × V (also called arcs).

A labeled graph is tuple (V,E, �,Σ) where (V,E) is a graph and � : V �→
Σ assign labels from Σ to the vertices, Σ being an ordered alphabet.

An edge from u to v is written as (u, v) ∈ E. If there exists an edge
(u, v), we call u and v adjacent. If (u, v) = (v, u) we call the edge undirected,
otherwise we call it directed. If all the edges in the graph G are directed,
we call G a directed graph. In a directed graph, we denote by N−(v) the set
of in-neighbors of v and by N+(v) the set of out-neighbors of v. In other
words, there exists an edge (u, v) for all u ∈ N−(v) and an edge (v, w) for
all w ∈ N+(v).

A path P is a sequence of vertices v1v2 . . . v|P | such that all consecutive
vertices are connected by an edge. We call the first vertex of a path P its
startpoint, and the last vertex its endpoint. If there is a (possibly empty)
path from vertex u to vertex v we say that u reaches v. We denote by
R−(v) the set of vertices that reach v.

A cycle is a path from a vertex to itself. If the graph G has no cycles,
it is called acyclic. A directed acyclic graph (DAG for short) is one of the
core components used in this thesis.

A path cover of a DAG G = (V,E) is a set of paths P1, . . . , Pk such that
every vertex v ∈ V appears on some path. The size of a minimum path
cover of G is called the width of G.

1.3 Flow networks and minimum-cost flow

A flow network is a tuple N = (G, b, q) where G = (V,E) is a directed
graph, b is a function assigning a capacity buv ∈ N to every edge (u, v) ∈ E,
and q is a function assigning an exogenous flow qv ∈ N to every vertex
v ∈ V , such that

∑
v∈V qv = 0. Moreover, we also require that for every

source s, we have qs > 0, for every sink t, qt < 0 and for every other node
v that qv = 0.

We say that a function x assigning to every edge (u, v) ∈ E a number
xuv ∈ N is a flow over the network N , if the following two conditions are
satisfied:

1. 0 ≤ xuv ≤ buv, for every (u, v) ∈ E,

2.
∑
u∈V

xvu −
∑
u∈V

xuv = qv, for every v ∈ V .



1.4 Main contributions 5

In a minimum-cost flow problem, we are additionally given flow cost
functions cuv(·), for every edge (u, v) ∈ E. The goal is to then find a flow
which minimizes: ∑

(u,v)∈E
cuv(xuv).

1.4 Main contributions

The main contributions of this thesis are given in the original publications
I-V. Below is a brief summary of the main results in the order of original
publication.

Paper I. In this paper we introduce a method for transcript assembly
(identification and quantification) that is based on minimum-cost flows.
The method works by finding the minimum-cost flow in an offset flow net-
work in polynomial time. The resulting flow can then be split back into
paths by e.g. repeatedly removing the path of maximum bottleneck.

The author carried out the experiments and wrote the corresponding
section of the paper.

Paper II. In this paper we refine the problem introduced in Paper I
by asking for a number k of paths to optimally explain the splicing graph.
Although this problem then becomes NP-hard, we give a fast dynamic pro-
gramming algorithm for it. We show that this approach, augmented with
three optimizations and heuristics, achieves similar or better performance
than state-of-the-art tools Cufflinks, IsoLasso and SLIDE.

The author carried out the experiments and wrote the corresponding
section of the paper.

Paper III. We implement the concept of using subpath constraints
in solving the minimum path cover problem [5, 67] for transcript assem-
bly, and compare this approach to two state-of-the-art tools StringTie and
FlipFlop. We use the conditions of hypothetical perfect (error-free) se-
quencing, and show that even under these conditions the problem is not
trivial. Introducing errors to the data complicates the problem further.

The author designed and carried out the experiments and co-wrote the
paper. Implementation was joint work.

Paper IV. In this paper we survey and experimentally compare various
approaches for finding exon chains corresponding to long read alignments.
We also study the time and memory requirements of various modules re-
quired for finding the exon chains.

Our experiments show that using short reads from second-generation
sequencing can significantly improve the correctness of the predicted exon
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chains. Using short reads to error correct the highly erraneous long reads
before splicing graph creation, or creating the splicing graph from the short
reads and projecting the long reads on the graph show the most improve-
ment based on our experiments.

Design of the experiments was joint work. The author was responsible
for carrying out the experiments and writing majority of the paper.

Paper V. In this paper we generalize the dynamic programming so-
lution for co-linear chaining from between two sequences to between a se-
quence and a directed acyclic graph (DAG) using path covers. The time
bounds for our solution reduce to the optimal time bounds for two sequences
when the graph corresponds to an unary path.

Our solution is based on considering each path of the path cover as
a sequence, combined with careful bookkeeping to keep the computation
order correct.

The author co-designed the algorithms and co-wrote the paper.



Chapter 2

Short-read RNA-seq analysis

In the early to mid-2000s Sanger sequencing [71], which had been used
to compose the first draft of the human genome [32, 87], was eclipsed by
second-generation sequencing technologies that had much higher through-
put with lower cost.

Several companies entered the market within a few years, each with
a different technology. 454’s pyrosequencing yielded reads of up to 1,000
bp, whereas Illumina’s sequencing-by-synthesis approach started out at 36
bp read length, but has grown over the last decade to 300 bp [21]. The
differences in the sequencing approaches had an impact on the error profile
of the reads as well; while both platforms have ∼1% error rate, for 454
the dominant error type is insertions and deletions (a base being added or
removed, indels for short), while Illumina’s errors are mostly substitutions
(a base being replaced by a different base).

Other major players in the second-generation sequencing field are Ion
Torrent and Applied Biosystem’s SOLiD [21]. Ion Torrent’s error profile is
similar to 454’s, with insertions and deletions dominating. The read length
is shorter, with 400 bp being the maximum in the current machines. SOLiD
sequencing interrogates every base three times by overlapping the primers,
which reduces the error rate to under 0.1%, but the drawback of the system
is the read length being limited to 100 bp.

Despite the myriad options for second-generation sequencing, research
is increasingly being conducted on Illumina instruments [21]. Because of
this, we will focus on Illumina-type short reads.

We will first briefly describe the second-generation sequencing process,
and then discuss the downstream analysis. We assume that we have a
reference genome for the analysis. A different line of research is focused on
reference-free transcript assembly (e.g. [10, 73, 22, 94]).

7



8 2 Short-read RNA-seq analysis

A common reference-based RNA-seq analysis workflow is shown in Fig-
ure 2.1. Section 2.2 of this chapter describes the first step, short read map-
ping, and Section 2.3 focuses on the following transcript assembly step,
briefly discussing transcript assembly tools in general before introducing
our tool Traph. Differential expression analysis is a vast field with enough
material to fill several theses, but is outside the scope of this work.

2.1 Second-generation sequencing

Second-generation RNA sequencing consists of two steps: library prepara-
tion and sequencing. As the sequencing platforms were designed for double-
stranded DNA, RNA must first be reverse-transcribed into double-stranded
complementary DNA (cDNA). Reverse transcription can create biases in the
resulting library due to the nature of the process (e.g. random hexamer
primers show a clear sequence-specific bias [25]). Either before or after re-
verse transcription, the RNA (or the resulting cDNA) is broken into short
fragments.

Optionally the fragments can be duplicated with polymerase chain re-
action (PCR) to achieve desired coverage, i.e. how many reads cover each
base of the transcriptome in average. This step can add its own biases, as
not every fragment is copied equally many times [92]. An example of real
RNA-seq data aligned to the reference genome is shown in Figure 2.2 to
illustrate that these biases cause the coverage to be far from uniform.

After the library preparation, each fragment is clonally amplified to
form a cluster, that consists of ∼1,000 copies of the fragment. Depending
on the sequencing machine (e.g. MiSeq, NextSeq), each sequencing run can
accomodate from tens of millions to a few billions clusters, divided between
several flowcells. The fragments can be sequenced either from one end of
the fragment (single-end reads) or from both ends (paired-end reads).

During sequencing, nucleotides (A, C, G and T) tagged with fluorescent
dyes are added into the flowcells. Because of the dyes’ relatively large
size blocking the DNA polymerase, only one complementary nucleotide
should incorporate to the chain before the reaction terminates. After the
excess nucleotides are washed off, the fluorescence from the incorporated
nucleotides can be imaged. Cleaving off the dye allows the reaction to
continue for another round of sequencing, up until the desired read length.

The “short read” nature (max 2x 300 bp paired-end reads with Miseq
v3 chemistry kit [21]) of Illumina systems is because of the nature of the
sequencing chemistry. At any point, a cluster can go “out of sync” – for
example one of the 1,000 copies may accidentally incorporate two bases
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Figure 2.1: Common steps of a reference-based RNA-seq analysis are read
mapping, transcript assembly and differential expression analysis.
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GLI2
Gene

[0 - 101]gmap_mappings.sorted.bam Co
e

gmap_mappings.sorted.bam

120,988,000 bp 120,989,000 bp 120,990,000 bp 120,991,000 bp 120,992,000 bp 120,993,000 bp

5,755 bp

chr2

p25.2 p24.3 p23.3 p22.2 p16.3 p15 p13.2 p11.2 q11.2 q12.3 q14.2 q21.1 q22.2 q23.3 q24.2 q31.1 q32.1 q32.3 q33.2 q34 q36.1 q37.1

Figure 2.2: An example of real RNA-seq data aligned to the reference
genome shows that the coverage is far from uniform. The grey peaks at
the top of the image show the coverage of each base, and the grey boxes
below represent individual alignments. The blue boxes at the bottom rep-
resent the annotated transcripts. Image captured from Integrative Genome
Browser [68].

instead of one. Now 999 copies of the fragment give the correct signal and
one gives the wrong signal because it is out of sync. The more cycles there
are, the more molecules will be out of sync, and eventually the noise from
the unphased signal will drown the true signal.

2.2 Short read mapping

The first step of the downstream analysis is to map the reads to a suitable
reference. This first step is critical, for the accuracy of the downstream
analysis depends on it. While finding the optimal solution for mapping one
read to a reference is trivial using dynamic programming, mapping up to
billions of reads that way is not feasible in the lifetime of the universe 1.

For faster processing, mapping algorithms construct indexes from the
read sequence, or the reference sequence, or sometimes both [42]. Al-
though with the current throughput of the second-generation sequencing
technologies, approaches that index the reads have become inpractical due
to the memory requirements. There are two major indexing approaches,
depending on the properties of the index: those based on hash tables
(e.g. [15, 45, 34, 43]) and those based on compressed prefix or suffix array-
like structures (FM-index) [19] (e.g. [37, 91, 31, 41]).

1With the human genome consisting of three billion bp, and assuming read length of
100 bp and filling each cell of the dynamic programming matrix taking one millisecond,
mapping one billion reads would take 95,000,000,000 years
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Hash table based approaches store into a hash table all k-mers, for some
suitable value of k, in the reference. They then query the k-mers in the read
for a quick seeding of alignment candidates, which can then be extended or
discarded using variations of dynamic programming algorithms [49]. FM-
index requires significantly less space than hash tables (e.g. Bowtie’s [38]
index for the human genome requires only 2.4 GB) and supports extremely
fast retrieval of exact matches. As the FM-index is conceptually equivalent
to a suffix tree, exact substring matching corresponds to finding a path
representing the query, starting at the root. As such, FM-index-based
mapping algorithms can query for the exact match of the whole read in one
pass.

Mismatches in the alignment can be introduced to hash tables by using
e.g. spaced seeds [55], i.e. seeds where specified positions are allowed to not
match. However, multiple seed masks are required to cover various per-
mutations of match and mismatch positions, which increases the memory
requirements. The FM-index allows mismatches at no extra memory cost
by branching the search, but the time requirement increase is exponential
in the number of allowed mismatches.

Compared to mapping DNA reads that generally align in full with a
small number of errors, mapping RNA-seq reads poses an additional chal-
lenge; we have to allow for very long gaps in the alignment to account
for the spliced-out introns. In mammalian genomes, introns span a wide
range of lengths, typically from 50 to 100,000 bases. Most current map-
ping software for RNA-seq reads use the seed-and-extend approach. In the
seed-and-extend approach partial reads (“seeds”) are matched to the ref-
erence genome to find candidate positions (“hits”) and then the sequence
surrounding the hits is further examined (“extension”) to compose a whole
read alignment.

2.3 Transcript assembly and Traph

The second step in the downstream analysis of RNA-seq data is transcript
assembly, namely reconstructing as accurately as possible the RNA tran-
scripts from the read alignments. The difficulty of the problem lies in
the fact that the transcripts may share exons. Because of this, all meth-
ods for solving the problem use graph models (either explicit or implicit).
The vertices of the graph represent individual reads (overlap graph [83])
or continuous stretches of DNA (splicing graph [27, 48, 44] or connectiv-
ity graph [18, 47, 24]), whereas edges are inferred from overlaps or spliced
alignments.
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Every vertex and edge has an associated observed coverage, and the bio-
logical problem of reconstructing the RNA transcripts translates to covering
the graph with paths. Some of the popular approaches include exhaustively
enumerating over all possible candidate paths and finding the minimum cost
solution under some cost model (e.g. a least sum of squares [47] or a least
sum of absolute differences [48]), and modeling the problem as Minimum
Path Cover [83, 78, 5] (MPC).

Here we will introduce our novel transcript assembly tool Traph (for
Transcripts in gRAPHs): how Traph creates the splicing graph, how it
uses minimum-cost flows and how it splits the resulting flow into paths that
correspond to the transcripts. We will also introduce a variant of Traph
where, instead of searching for a solution that minimizes the objective cost
function, we search for a given number k of paths. Finally we will review
the experimental results from comparing Traph to state-of-the-art tools.
The material here is based on Paper I and Paper II.

2.3.1 Creating the splicing graph

The approach used by Traph’s splicing graph creation module is annotation-
free, that is, it does not use the annotated (known) transcripts to guide
the creation of the splicing graph. The starting point of the algorithm is
examining the coverage cov(i) (i.e. the number of reads that cover that
position) at every genomic position i. It then classifies positions where
cov(i) > 0 as exonic and positions where cov(i) = 0 as intronic. However,
because of the errors in the read alignment step, there might be spurious
regions where cov(i) > 0. We use a heuristic to prune these areas by
requiring that for a region to be designated exonic either the length of the
region has to be above a given threshold, or cov(i) has to be above a given
fraction of the average coverage2.

It is possible that two exons overlap in genomic coordinates. As a
post-processing step for exon finding we split any overlapping exons into
pseudoexons as illustrated in Figure 2.3. Pseudoexons, unlike exons, cannot
have any overlap between them, which simplifies the next steps.

The edges of the splicing graph are inferred from split-read alignments;
if two exons are consecutive in a read alignment, an edge is added between
the corresponding vertices. Each vertex v has a coverage cov(v) that equals
the average coverage of the corresponding exon (i.e. the sum of reads that
cover each of the positions in the exon divided by the exon length), and each
edge has a weight cov(u, v) that equals the number of split read alignments

2The average coverage is computed by counting all the alignments in the file before
starting the creation of the splicing graph.
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Figure 2.3: During the splicing graph creation we split any overlapping
exons (top) into “pseudoexons” (bottom).

corresponding to that edge. Optionally, edges without sufficiently high
coverage can also be pruned.

One task remains before moving on to the next step: the flow network
requires flow sources (vertices with exogenous flow > 0) and flow sinks
(vertices with exogenous flow < 0). We choose as flow sources the plausible
starting vertices of the transcripts, and as flow sinks the plausible ending
vertices of the transcripts. As we do not impose any criteria on the number
of paths, without given sources and sinks we might have a solution made
up of one path per edge, with weight equalling that edge’s coverage, which
thus has cost 0.

The first heuristic for identifying the flow sources and sinks checks the
incoming and outgoing edges of each vertex; if a vertex v has no incoming
edges, it is designated a flow source, and if it has no outgoing edges, it is
designated a flow sink. The second heuristic examines the coverage profile
along the exons to find flow sources and flow sinks featuring alternative
splicing events where the flow source (respectively flow sink) of a transcript
is contained in an exon of another transcript.

Because the start position of the read along the transcript is random,
the theoretic coverage profile of the source vertices and sink vertices is
different than for vertices that are in the middle of a transcript (see Fig-
ure 2.4). However, due to the biases in the sequencing process, (explained
in Section 2.1), the coverage profile in reality is less-than-uniform. We solve
this problem by using a sliding window approach; we move a sliding win-
dow of size m (default: m = 10) along the coverage profile and examine the
coverage difference between the positions at start and end of the window.

An example on the main steps of the module – inferring the exons, infer-
ring the edges, and choosing the sources and sinks – is shown in Figure 2.5.
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Figure 2.4: With the assumption that the read start positions along the
transcript follow an uniform distribution, vertices at the start and end of a
transcript have a characteristic slope in coverage.

Figure 2.5: Traph’s module for creating a splicing graph consists of three
main parts: Inferring the exons (top), inferring the edges (middle), and
choosing the sources and sinks (bottom). Exons are inferred by examining
the coverage profile (on the right). Edges are inferred from the spliced
alignments. Flow sources have a characteristic upward slope in coverage,
whereas flow sinks have a characteristic downward slope.
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Figure 2.6: Figure 2.6(a): The input graph, where the numbers denote
the vertex and edge coverages. We assume a cost function f(x) = x2.
Figure 2.6(b): An optimal flow with cost (1 − 1)2 + (2 − 1)2 + (1 − 2)2 +
(3− 3)2 + (1− 1)2 + (2− 2)2 + (3− 2)2 = 3. Figures 2.6(c) to 2.6(e): The
greedy decomposition algorithm iteratively reports the path of maximum
bottleneck (red) and then removes those flow values from the network.

2.3.2 The flow engine

First, to transform the splicing graph into an input graph for finding
minimum-cost flow we need to do a few simple changes:

1. For every vertex v we replace v with two vertices vin and vout.

2. We add an edge (vin, vout) with weight cov(vin, vout) = cov(v).

3. We add a global source s0 and a global sink t0.

4. We add an edge (s0, s) for every vertex s ∈ flow sources, and an edge
(t, t0) for every vertex t ∈ flow sinks.

For finding the optimal flow in polynomial time we used the LEMON
library [39]. After finding the optimal flow, the final step is decomposing
it into a small number of paths. Decomposing a flow to the minimum
number of paths is an NP-hard problem [85, Proposition 2], but there are
polynomial-time heuristics for it. We used a greedy approach, where we
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repeatedly removed the path of maximum bottleneck, where the bottleneck
is the smallest flow value of its edges. We then reported it as a transcript,
and removed the value of the path from the flow values of all edges it
traversed in the network. An example of an input graph, choosing an
objective function f(x), finding the optimal flow and decomposing the flow
using greedy algorithm is shown in Figure 2.6.

Traph, unlike Traphlor that is introduced in Section 3.5, also produces
the expression level estimates for the predicted transcripts. When decom-
posing the minimum-cost flow into paths, we also implicitly obtained a
value for every path; these can be converted into the standard measure-
ment of expression levels: fragments per kilobase of exon per million reads
mapped (FPKM).

2.3.3 Dynamic programming – bounding the number of paths

As a follow-up to Paper I, in Paper II we introduced a case where instead of
searching for a solution with an arbitrary number of paths, which minimizes
the objective cost function, we search for a given number k of paths. Solving
this variant of the problem requires O(|M |k(n2 +Δk)nk) time, where M is
the set of all possible expression levels, Δ is the maximum in-degree of the
graph and n is the number of pseudoexons.

This solution is clearly intractable as-is for large values of k. However,
we can use three heuristics and optimizations to make the approach prac-
tical. First, we use dynamic programming; we decompose the graph along
vertices whose removal disconnects the graph into components and solve
the problem recursively on each. Obviously the cut vertex between sub-
graphs G1 and G2 is the sink of G1 and the source of G2, so the solution
on G1 can be used to initialize the dynamic programming table for G2.

Given k paths and the set M of all possible expression levels, enumerat-
ing over all the combinations of expression levels for all the paths requires
|M |k time. We avoided this enumeration by using a genetic algorithm.
While by its nature the results of a genetic algorithm vary, we experimen-
tally showed that the variation is very small; in one hundred executions,
the standard deviation of the path weight was less than 0.001% of the mean
path weight for each transcript.

As the time requirement is exponential on k, for practical purposes we
implemented a heuristic that chooses k′ based on the size of the graph (for
k′ ≤ k). We compute the optimal k′ paths, remove them from the graph,
and repeat the process till we have obtained k paths in total.

The details of the algorithm and the proofs of NP-hardness of the prob-
lem can be found in Paper II.
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2.3.4 Experimental results

Here we will summarize the experimental results from Paper I and Paper
II. In both papers we used simulated data from human chromosome 2; in
Paper II we used all the genes that had transcripts longer than 300 bp
(1,462 genes), whereas in Paper I we used a subset of them (29 genes) due
to the time constraints for submission.

We considered two cases which we call singles scenario and batch

scenario. In the singles scenario we simulated 300,000 paired-end reads
with length 2x 76 bp from each gene (with the simulated expression levels
of the transcripts varying over three levels of magnitude) and gave them
to TopHat [82] for alignment one data set (gene) at a time. In the batch

scenario we pooled those 300,000 paired-end reads per gene for all the
simulated genes (1,462 and 29, respectively) and aligned all 438,600,000
and 8,700,000, respectively, reads at once. In the singles scenario we
strived for idealistic alignments with very little to no noise, whereas the
batch scenario served as a more realistic alignment setting.

For validation, in both Paper I and Paper II we created a bipartite graph
with one side having a vertex for each annotated transcript (from which
reads were simulated), and one side having a vertex for each predicted
transcript. Dummy vertices, with empty sequence and expression level
of 0, were added to the side with less vertices to make the counts even.
Each vertex was connected to all the vertices in the opposite side of the
graph, with the weight of the edge computed from the differences of the
sequences and expression levels. Note that this matching was done on the
“per gene area” basis to limit the number of vertices, as we could not run
the validation script in a reasonable time for the whole batch mode data
set.

However, there was one major difference in the validation criteria be-
tween the papers. In Paper I we used bitscore between the sequences, which
is based on normalized compression distance [14], whereas in Paper II we
used sequence dissimilarity. Bitscore is more grounded as a measure, but
it requires full alignment. Sequence dissimilarity can be computed with
Myers’s bitparallel algorithm for approximate string matching [61], which
allowed us to use a data set that was two orders of magnitude larger.

Given the bipartite graph with the edge weights computed as described
above, we computed a perfect matching where each predicted transcript
(or a dummy) matched exactly one annotated transcript (or a dummy).
From this matching we then computed true positives, false positives and
false negatives under specified sequence and expression level differences3.

3Transcript pairs with sequence and expression level difference under the threshold
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Figure 2.7: Performance of the tools on simulated data. Plots 2.7(a) and
2.7(b) depict results in the singles scenario, and plots 2.7(c) and 2.7(d)
depict results in the batch scenario. Figures reproduced from Paper II.

We measured the performance between our flow-based Traph (“Traph
flow”), Traph with bounded number of paths (“Traph dynamic”), Cuf-
flinks [83], IsoLasso [47] and SLIDE [44] using F-measure, the harmonic
mean of sensitivity and precision, as the measure of goodness.

Here we show only the results from Paper II as the results from Paper I
are included within them. We chose two thresholds for the relative expres-
sion level differences, namely 10% and 40%. As can be seen in Figure 2.7,
in the singles scenario, both Traph flow and Traph dynamic are on-par
with Cufflinks and outperform IsoLasso and SLIDE. The situation is the
same in the batch scenario when the relative expression level difference
is at most 10%. In the batch scenario with the relative expression level
difference at most 40% both our methods outperform the competitors.

Note that in the batch scenario any transcripts predicted outside the
annotated gene areas were added as false positives, whereas in the singles
scenario they were simply discarded from the counts. As IsoLasso pre-

were classified as true positives. Otherwise they were classified as false positives or
false negatives, depending on which side of the bipartite graph they resided. Under this
validation model true negatives do not exist.
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dicted a surprising 7,422 transcripts outside the gene areas, this lowered its
performance in the batch scenario significantly.

Following the publication of Paper I and Paper II, Traph has been used
as one of the comparison software in three publications [59, 64, 50]. As
expected, the newer software tools outperformed Traph. However, Traph’s
performance was comparable to Cufflinks and IsoLasso in several of the
tests on simulated data. All three of the articles reported that the authors
had been unable to run Traph on the real data, which is unfortunate as
we had not experienced such problems ourselves and could probably have
fixed the issue once contacted.
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Chapter 3

Long-read RNA-seq analysis

In the early 2011 the first third-generation sequencing platform PacBio RS
from Pacific Biosciences was commercially released. It was followed in a
few years by Oxford Nanopore’s MinION, as well as PacBio’s new Sequel
System with much greater capacity than PacBio RS.

Compared to second-generation sequencing, third-generation sequenc-
ing reads are significantly longer (up to hundreds of thousands of bases),
but the raw error rate is also an order of magnitude higher [21, 53]. As a
response to the high error rates of third-generation sequencing, synthetic
long read technologies (e.g. Illumina’s TrusSeq) have also emerged. These
synthetic approaches, first developed by Moleculo1, combine a novel library
preparation step with proprietary informatics to assemble long reads in sil-
ico from short, second-generation reads.

With the read lengths exceeding the length of all but the longest of
transcripts, it would seem that long-read technologies make the RNA-seq
analysis trivial, as the transcripts could be sequenced in full from one end
to another. However, the library preparation steps for RNA-seq restrict
the lengths of the long reads, making the recovery of full-length transcripts
for longer genes less likely [75, 80, 81].

Even for the cases where we are not able to recover full-length tran-
scripts, long reads can still provide valuable information about the con-
nectivity of non-consecutive exons (see Figure 3.1 for a simple case where
connectivity information of only consecutive exons is not enough).

Long reads, in the form of expressed sequence tags (ESTs), had been
used in transcript prediction long before the era of third-generation se-
quencing [20]. However, in the case of [20] the candidate transcripts were
created from exhaustively enumerating over all the paths in the splicing

1Illumina acquired Moleculo in late 2012.

21
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Figure 3.1: A minimal example of a case where the real transcript struc-
ture, case (a), is impossible to infer with certainty when given only informa-
tion about consecutive exons. Case (b) would be equally likely prediction.

graphs, and the ESTs were used to filter for candidates suitable for gene
annotation.

Instead, the model of Bao et al. considers the long reads spanning mul-
tiple exons as subpath constraints in a splicing graph2 [5]. This concept
can then be combined with the MPC problem to create the Minimum Path
Cover with Subpath Constraints (MPC-SC) problem. As the vertices of a
splicing graph are exons, a subpath constraint (a sequence of exons) can
also be considered an exon chain.

In this chapter we will first give an overview of the different options for
long-read sequencing, and what trade-offs these technologies offer. Then
we will briefly review the literature of aligning long reads to the reference
genome as well as describe our experimental study about optimizing the
correctness of the exon chains instead of the alignment score, before con-
tinuing on to an alternative approach of aligning reads to a splicing graph
instead of a reference genome. The chapter will wrap up with the descrip-
tion of Traphlor, our extension to Traph that uses the subpath constraint
information.

3.1 Long-read sequencing

There are currently two main technologies that produce long reads: third-
generation sequencing and synthetic approaches that use existing short-read
technologies to construct long reads in silico [21]. Current commercially-
available third-generation sequencing technologies can be further divided
into two categories: single-molecule sequencing-by-synthesis and nanopore
sequencing. Various novel approaches using direct imaging have been at-
tempted (e.g. ZS Genetics, Reveo and Halcyon Molecular) [72], but none
of them have been commercially published to this date.

2The problem was fully solved by Rizzi et al. [67]
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Pacific Biosciences’ (PacBio) Single-Molecule Real Time (SMRT) se-
quencing belongs to the sequencing-by-synthesis category. It captures se-
quence information during the DNA replication process, similar to Illu-
mina sequencing. The main differences are that only a single molecule is
sequenced instead of a clonal cluster and that PacBio does not require a
pause between the read steps, which makes the sequencing process signifi-
cantly faster [72].

For PacBio reads, the N50 measure is over 20,000 bp (that is, half
of all data are in reads longer than 20,000 bp), with the maximum read
length being over 60,000 bp [1]. However, the throughput is low, typical
throughput of Sequel System SMRT cell is only 3.5-7 Gb per run, whereas
Illumina’s HiSeq 2500 produces up to 300 Gb per run. Another disadvan-
tage of PacBio is the error rate, which is roughly 11-15% 3 [66, 53]. The
majority of the errors are insertions, followed by deletions.

As the PacBio template – created by ligating two hairpin adaptors to
the ends of a double-stranded DNA molecule – is circular, the fragment
can be sequenced multiple times (called “passes”) over the lifetime of the
DNA polymerase [66]. By cutting the adaptors out of the long read, a
circular consensus sequence (CCS) can be created from the resulting sub-
reads. As PacBio sequencing errors are randomly distributed, unlike the
second-generation sequencing errors, the final error rate can be highly re-
duced by using CCS. For example, a coverage of 15 passes yields > 99%
accuracy. However, as the total length of the long read is limited by the
lifetime of the polymerase, the number of passes and the length of the CCS
are a trade-off.

The second major player in the third-generation sequencing field is
Oxford Nanopore with MinION and PromethION devices [21], which, as
the name implies, use nanopore sequencing. Unlike other sequencing plat-
forms, which monitor incorporation of the nucleotides to the template DNA,
nanopore sequencing directly detects the DNA composition.

In the nanopore sequencing, a current is passed through a protein pore.
As the DNA molecule travels through the pore, the current is disturbed [33].
The shifts of voltage, that are due to the DNA fragment in the pore, can
be interpreted as a k-mer corresponding to the DNA fragment currently in
the pore. Because nanopore measures k-mers (of length 3-5 bp) instead of
single bases, instead of 4 signals, there can be more than 1,000 signals [21].

Oxford Nanopore also uses a hairpin adapter but, unlike PacBio’s cir-
cular sequence, only ligates it to one end of the DNA molecule [33]. This

3Since the accuracy metrics are computed from alignments of base-calls to the appro-
priate reference, each alignment method used will produce slightly different estimates.
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allows forming a two-pass consensus sequence called 2D. An alternate li-
brary preparation protocol, 1D, does not use hairpin adapters. The 1D
protocol allows for higher throughput, at the cost of lower accuracy.

Nanopore read lengths are even longer than PacBio’s; 1D reads over
300,000 bp in length, and 2D reads up to 60,000 bp long, have been achieved
with genomic DNA using MinION [33]. The throughput of MinION is a
few Gb per run, at the same level as PacBio. But Oxford Nanopore’s
PromethION, released in late 2016, promised to increase the throughput to
2-4 Tb by massive parallelization and increase in the sequencing speed.

As a consequence of having over 1,000 different signals, Oxford Nanopore
has a large error rate: up to 30% for a 1D read and 12% for a 2D read,
with insertions and deletions dominating [21]. Homopolymers pose an ad-
ditional challenge to the platform, as it can be difficult to tell when one
k-mer leaves the pore and another one enters.

Illumina and 10X Genomics synthetic long-read approach were devel-
oped as a response to the costs ($750-1000 per Gb), error rates (11-30%)
and low throughput (a few Gb) of the third-generation sequencing plat-
forms [21]. For creating synthetic long reads, large fragments4 are par-
titioned before shearing, and the small fragments in each partition are
barcoded.

Then existing short-read sequencing infrastructure can be used for the
sequencing, which saves the labs from needing to buy new machines. Ac-
cordingly, the throughput and error profile are identical to the existing
machines. However, assembling the long reads requires higher sequencing
coverage than a typical short-read project, which increases the costs to the
same level as PacBio and Oxford Nanopore devices [21].

However, no matter the sequencing technology, for RNA-seq applica-
tions sequencing full-length transcripts is still a challenge due to library
preparation factors such as RNA degradation, mechanical shearing and in-
complete cDNA synthesis [75, 80]. A derivative of Illumina’s synthetic long
read technology, SLR-RNA-Seq, was tested against PacBio, and it was
found that 61-64% of the long reads from both technologies represented
full-length transcripts – that is, extending from the first splice site to the
last splice site of an annotated transcript [81]. Note that in this study the
authors used PacBio’s circular consensus sequences to reduce the error rate
to 1-2%, which limits the length of the read.

As a final note about the long-read sequencing, it should be remem-
bered that the transcript expression levels vary over six orders of magni-
tude [29]. This variance combined with the low throughput of PacBio and

4As of 2016, the manufacturers reported fragment sizes of 1̃00,000 bp.
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Oxford Nanopore MinION means that only the most expressed transcripts
are likely to be sequenced. Whether PromethION lives up to its promises
of high throughput remains to be seen.

3.2 Long read mapping

There are two main characteristics of the reads that we need to consider in
the topic of short read mapping vs. long read mapping: read length and
error profile. Whereas second-generation sequencing (Illumina) reads are
up to 300 bp long with error rate of ∼1%, consisting mainly of substitu-
tions, third-generation sequencing platforms PacBio and Oxford Nanopore
produce RNA-seq reads of several kb5, with error rates up to 30%, mainly
indels.

In contrast to simple mismatches, only a few algorithms tolerate in-
dels [49, 35, 23]. With commonly used second-generation sequencing map-
ping tools, even short (1-3 bp) indels in the reads caused the number of
correctly reported alignments (the recall measure) to plummet from 92-
98% to 47-82% [35]. These issues have inspired a second generation of
read mappers (e.g. [88, 58]), as well as new versions of short read mappers
that are better equipped for aligning longer reads with high error rates
(e.g. [37, 40, 41, 51]). Although, only BWA-SW [41], BWA-MEM [40] and
ALFALFA [88] have been shown to scale well to read lengths up to several
kilobases.

Additionally, as an increasing fraction of reads contains a splice site,
there are more cases where a read extends by 10 bp or less into one of the
exons. These small anchors make accurately mapping the reads a difficult
task. If an algorithm uses exact matches of k-mers to narrow down the
search space, the small anchor often remains unmapped, and is mapped to
the intervening intron in the final stage. This problem has been tackled
by two-stage alignment (e.g. [35]), where junctions are inferred from the
whole data set in the first pass, and then the alignments are adjusted to
the junctions in the second pass.

However, for the subpath application introduced earlier, we do not need
the exact alignment around the junctions. We simply need the exon chains
corresponding to the subpaths. In the following section we will tackle an al-
ternative approach of optimizing the correctness of the exon chains instead
of the local alignment score.

5As a reminder, third-generation sequencing platforms can produce read lengths in
hundreds of kb, but the library preparation factors limit the length of RNA-seq reads.
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3.3 Optimizing correctness of exon chains

In Paper IV we evaluated several approaches for optimizing the correctness
of exon chains corresponding to long reads. As baseline we created a splicing
graph from a mixture of long and short reads. As the main alternative,
we created the splicing graph from only the short reads, and used two
different approaches to match the long reads on the graph: using dynamic
programming on the graph, and an approximate method of choosing the
exons with the most overlap with the genomic alignments. Additionally, we
attempted to error-correct the long reads using short reads before creating
the splicing graph only from the error-corrected long reads.

For error correction we used LoRDEC [70], for alignment GMAP [93]
and for creating the splicing graph SpliceGrapher [69]. The rest of the tasks
were performed with in-house scripts.

Given a splicing graph created from short reads, we first transformed
it into a sequence graph by replacing each pseudoexon with a unary path
where its ith vertex is labeled with the ith character of the exon. We also
considered the long read as a linear sequence DAG. Then we could use
dynamic programming to perform a DAG-path alignment, with the minor
adjustment that we wanted to find a semi-local alignment.

We used a scoring scheme that slightly favored insertions and deletions
over mismatches (+4 for match, -3 for mismatch and -2 for both insertions
and deletions). These values fall short of the real error profile of PacBio
reads (where insertions are approximately ten times more common than
substitutions [13]), but a fully realistic error profile, e.g. -10 for mismatch,
-1 for insertion and -5 for deletion, would cause every true mismatch to be
reported as an insertion followed by a deletion.

As a fast approximation for the dynamic programming, we tested an
approach of choosing the exons for the exon chain based on overlaps be-
tween the genomic coordinates of the long read alignment and the genomic
coordinates of the exons in the splicing graph created from short reads.

For the purpose of the study in Paper IV, we implemented a naive
approach where for every long read alignment and for every exon in the
splicing graph we calculated the overlap between the coordinates. Every
exon e that had an overlap with a read R was considered a candidate
for the path. From these candidates we chose n exons that formed a path
P = e1, . . . , en, where the start coordinates of the n exons were in ascending
order. If there existed no edge between exons ei and ei+1, the path was
considered to fail to align.

For the experiments we chose 100 genes at random from human chro-
mosome 2 (GRCh38/hg38) that had at least two distinct transcripts (i.e.
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not sharing all the inner borders) with the minimum length of 1 kb and
with the longest transcript being over 3.2 kb long.

For each gene we simulated 10,000 short (75 bp) reads with 1% substi-
tution rate and 1,000 long reads (400,800,1200,1600 bp) with 11% insertion,
4% deletion and 1% substitution rate (experimentally estimated PacBio er-
ror profile from [13] rounded to the nearest integer). We also simulated the
same data sets without sequencing errors for comparison. For simulation
we used RNASeqReadSimulator [46] and an in-house script, as RNASe-
qReadSimulator only simulates substitutions.

For “ground truth” we converted the simulated read data to alignments
and compared the genomic coordinates of the alignments to the exons in
the splicing graphs produced by SpliceGrapher. For our base case and the
error-corrected case we used the same procedure to get the paths. Dynamic
programming and overlap methods produced paths as-is. Two paths were
considered to match if they consisted of the same set of vertices.

The results for data with 16% sequencing error are shown in Figure 3.2(a)
and for the data without sequencing error in Figure 3.2(b). SpliceGrapher
for the base case (“merged”) could not be run for read lengths longer than
400 bp in reasonable time.

Error correction was clearly the top performer with approximately 90%
F-measure. Combining error correction and the overlap methods, that is,
creating splicing graph from the short reads, aligning error-corrected long
reads to the genome and choosing the exon chains based on the overlaps,
improved the performance slightly.

Surprisingly, dynamic programming performed very poorly, with F-
measure in the 25-40% range with errors and 45-60% without errors. The
likely explanation is that while dynamic programming is guaranteed to find
an optimal solution, it can break ties arbitrarily: if the last base of the exon
and the last base of the following intron are the same, and both are incor-
porated into the splicing graph, choosing either will give score-wise optimal
solution. But for validation only one of them is correct. This phenomenon
is present both with and without sequencing errors.

Read aligners generally use the canonical dinucleotides (AG-GT) to
break ties, which explains why the overlap case does not suffer as greatly
from the erraneous splice sites being incorporated into the splicing graph.

To study the correlation between the correctness of exon chains and
transcript prediction accuracy, we ran tools StringTie [64] and Traphlor (see
Section 3.5 and Paper III) to predict the transcripts from the alignments
and predicted paths. Traphlor ran on the mixture of short and long reads
was considered the baseline (from here on referred to as “Traphlor base”).
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Figure 3.2: Exon chain prediction accuracy for the cases with (a) 16% se-
quencing error (b) and no sequencing error. In “merged” case long read
alignments were mirrored on a graph made from both short and long reads,
in “dynamic programming” dynamic programming was used to align long
reads on the splicing graph, and in “overlaps” the best overlap in genomic
coordinates on the exons predicted from short reads were chosen. In “cor-
rected” the long reads with 16% sequencing error were first error-corrected
with short reads, then aligned to the reference and these alignments were
mirrored on graph made from short reads. “Corrected + overlap” cases first
used error-correction and then used the overlaps between short and long
read alignments to infer the exon chains. Figure reproduced from Paper
IV.
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For the base case we let Traphlor build the splicing graph. For the
other use cases (merged, corrected, dynamic programming, overlaps and
corrected+overlaps) the graphs from SpliceGrapher and the inferred paths
were given to Traphlor’s flow engine. StringTie built its own splicing graph.

The running times of Traphlor base and Traphlor’s flow engine grew
linearly with read length, whereas StringTie’s running time seemed to in-
crease exponentially. We aborted the processing of the 1600 bp data set
after three CPU days had passed, but in hindsight the expected running
time with the exponential increase was almost nine CPU days.

Based on Figure 3.3, our hypothesis – that the correctness of the exon
chains correlates with the accuracy of the transcript prediction – seems to
hold. Dynamic programming had the worst exon chain accuracy, and is
at the same level as Traphlor base in the transcript prediction accuracy.
However, the overlap method had slightly worse exon chain accuracy than
the error correction method, but slightly better accuracy in the transcript
prediction.

3.3.1 Hidden Markov model -based approach to find correct
splice sites

Due to space constraints we had to omit a section about using hidden
Markov models (HMM) to correct the splice sites of long read alignments
from Paper IV. The main idea behind this approach is to let the canonical
dinucleotides, that reside at the borders of exons and introns, guide the
search. The pair “GT” at the exon-intron border is called donor site and
the pair “AG” at the intro-exon border is called acceptor site.

Hidden Markov models have been used in several gene prediction soft-
ware [36, 28, 54, 79], but to our knowledge they have not been used for
inferring splice sites from RNA-seq data. As with the gene prediction
software, HMM for splice site recognition requires states for “exon” and
“intron”, as well as “donor” and “acceptor” sites (see Figure 3.4). As the
choice of the area to process is based on the read alignments, states for in-
tergenic areas are not needed. The model can also be simplified compared
to gene prediction HMM by having only a single exon and a single intron
stage, as we do not need to keep track of the reading frame.

Our HMM emits a tuple of symbols at each state: the character at
position i and whether the coverage at position i is above or below a given
threshold k (see Figure 3.5). The intuition is that there should be at least
k amount of coverage in exonic regions, and very little or no coverage in
intronic regions. Due to mismappings near splice sites, the coverage near
the exon-intron borders could be above or below the threshold.
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Figure 3.3: Transcript prediction accuracy using the data sets with 16%
sequencing error. Transcripts were predicted from the alignment file (both
short and long reads) using software StringTie and Traphlor (Traphlor
base), which build their own graphs. In the remaining cases the flow net-
work module of Traphlor was given the predicted graphs and exon chains
for each exon chain finding approach. Figure reproduced from Paper IV.
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Figure 3.4: A simple hidden Markov model for finding splice sites consisting
of four states: Exon, Intron, Donor site and Acceptor site.

AGTCGGCTTAGGCATATGGCCCTAGCCAAGTTCGAGTCGGCTTAGGCATATGGCCCTAGCCAAGTTCGAGTCGGCTTAGGCATATG

...GTTCGAGTCGGCTTAGGCATATGGCCCTAGC...

Sequence Coverage
...11111111111100000000000011111.....

HMM
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Figure 3.5: From the alignment data we extract the sequence (left) and
for every genomic position i also whether the coverage at that position is
above or below a given threshold k (right). The tuples (base, coverage) are
given to the HMM and Viterbi algorithm is ran to produce a sequence of
exonic and intronic areas. Based on these areas the alignments can then
be corrected around the splice sites.
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Table 3.1: The transition probabilities between the HMM states. The path
can start and end in either exon or intron state.

Exon Intron Donor Acceptor

Exon 0.9 0.01 0.09 0.0
Intron 0.01 0.9 0.0 0.09
Donor 0.0 1.0 0.0 0.0

Acceptor 1.0 0.0 0.0 0.0

Table 3.2: The emission probabilities of the HMM. Emitted symbol is a
pair of (base, coverage), where coverage is either 0 (under the threshold)
or 1 (above the threshold). Donor and acceptor states can only emit their
corresponding dinucleotides.

(A,0) (A,1) (C,0) (C,1) (G,0) (G,1) (T,0) (T,1)

Exon 0.0625 0.1875 0.0625 0.1875 0.0625 0.1875 0.0625 0.1875
Intron 0.1875 0.0625 0.1875 0.0625 0.1875 0.0625 0.1875 0.0625

After the publication of Paper IV, we implemented this approach and
experimented on the data sets used in Paper IV to see how the input and
output alignments differed. For implementation we used the C++ library
StochHMM [52].

We tested several combinations of transition and emission probabilities
to find values that would result in reasonable exon-intron paths (e.g. not
too short exons). The final transition and emission probabilities used in
correcting the alignments are listed in Tables 3.1 and 3.2.

Based on the exon-intron path prediction of the HMM, we adjusted the
alignments block-wise, where each block was defined as an ungapped part
of an alignment. If a first, or respectively last, block crossed a predicted
exon border, we attempted to align the crossing part of the sequence to
the border of any previous, or respectively following, exon. For the middle
blocks we shifted the junction to match the predicted borders, if possible.
If the alignment could not be shifted as described above, it was left as-is.

We defined as correct an alignment where the junctions of the predicted
alignment matched the junctions of the true alignment. Conversely, an
alignment that was not correct was classified as incorrect. We did not
require the outer borders to match to allow for soft clips, i.e. unaligned
bases at the ends of the alignment.

We measured the total number of modified alignments, as well as how
many alignments changed from correct to incorrect, from incorrect to cor-
rect, and from one incorrect alignment to another incorrect one.
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Table 3.3: The results of modifying read alignments using HMM for Illu-
mina and PacBio type data. The numbers in the parenthesis are the se-
quencing error rates of the data. The columns show the percentage of the
read alignments that were modified, the percentage of correct alignments
(C) changed into incorrect alignments (I), incorrect alignments into correct
alignments, and incorrect alignments into different incorrect alignments.

Modified C→I I→C I→I

400 bp

Illumina (1%) 0.38 14.63 0.03 85.35
Illumina (0%) 0.39 14.61 0.00 85.39
PacBio (16%) 0.39 41.00 0.00 59,00
PacBio (0%) 0.39 23.59 0.00 76.41

800 bp

Illumina (1%) 0.38 14.11 0.00 85.89
Illumina (0%) 0.39 14.13 0.00 85.87
PacBio (16%) 0.09 19.54 0.00 80.46
PacBio (0%) 0.39 21.52 0 78.48

1200 bp

Illumina (1%) 0.38 13.93 0.10 85.96
Illumina (0%) 0.39 14.15 0.00 85.85
PacBio (16%) 0.06 16.13 0.00 83.87
PacBio (0%) 0.35 20.80 0.00 79.20

1600 bp

Illumina (1%) 0.38 13.62 0.05 86.33
Illumina (0%) 0.39 14.28 0.00 85.72
PacBio (16%) 0.06 23.21 0.00 76.79
PacBio (0%) 0.40 25.00 0.00 75.00

2000 bp

Illumina (1%) 0.38 14.12 0.11 85.77
Illumina (0%) 0.38 14.62 0.00 85.38
PacBio (16%) 0.05 4.17 0.00 95.83
PacBio (0%) 0.47 33.26 0.00 66.74

2800 bp

Illumina (1%) 0.39 14.46 0.15 85.38
Illumina (0%) 0.40 14.06 0.00 85.94
PacBio (16%) 0.11 9.57 0.00 90.43
PacBio (0%) 0.67 55.13 0.00 44.87

3200 bp

Illumina (1%) 0.37 13.53 0.08 86.39
Illumina (0%) 0.38 14.08 0.00 85.92
PacBio (16%) 0.06 17.86 0.00 82.14
PacBio (0%) 0.80 44.60 0.00 55.40
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Table 3.4: The median running time per gene of using dynamic pro-
gramming to align 1,000 long reads to the sequence graph. As the time-
measuring module used measured real time instead of CPU time, median
time is more suitable than mean time to filter out outliers.

400 bp 800 bp 1200 bp 1600 bp

1 hr 30 min 4 hr 55 min 11 hr 50 min 20 hr 34 min

As can be seen in Table 3.3, the number of modified alignments was
insignificant for both Illumina (0.37%-0.40%) and PacBio (0.05%-0.80%)
type reads. As our validation criteria considered only blocks of contigu-
ous alignment, the correcting of an alignment was not able to “cross” an
insertion or a deletion in the alignment, which could limit the number of
modified alignments. However, Illumina type reads should have very few
indels.

Additionally, at most 0.15% of the modified alignments were changed
from incorrect to correct. These results suggest that hidden Markov models
might not be a suitable model for this problem.

3.4 Co-linear chaining in DAGs

In Paper IV we evaluated approaches on finding the exon chains correspond-
ing to the long reads in a splicing graph. One of the tested approaches was
creating the splicing graph from short, less erroneous, reads, and using dy-
namic programming to align the long reads to the corresponding sequence
graph. As a reminder, a sequence graph is created from the splicing graph
by replacing the exons with unary paths where each vertex corresponds to
one base of the exon.

However, aligning sequences under edit distance (e.g. filling the dy-
namic programming matrix) requires quadratic time, and as such is not
feasible for large sequence graphs and long reads (see Table 3.4 for some
experimental running times from Paper IV).

Co-linear chaining was already a crucial component of whole genome
alignment algorithms in the early 2000s [74, 12, 11], but it has also gathered
recent interest over the past few years for its scalability to massive inputs
(see e.g. [63, 84, 88, 89, 90, 57]).

In the co-linear chaining problem, the input is assumed to be a set of
N anchor pairs of intervals in two sequences that match, either exactly or
approximately. The goal of co-linear chaining is to find a subset of these
plausible anchors whose elements appear in increasing order in both se-
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quences and which maximize the coverage in one of the sequences. This
type of solution, extended to a DAG, is sufficient for our purpose of find-
ing subpath constraints; the exact alignments at the exon borders are not
needed.

Formally, the co-linear chaining problem between a sequence and a DAG
can be formulated as follows:

Problem 3.1 (Co-linear chaining between a sequence and a DAG)
Let R be a string, let G be a labeled DAG, and let M be a set of N anchor
pairs (P, [c..d]), where P is a path in G, �(P ) is the concatenation of the
vertex labels in P , and c ≤ d are non-negative integers (with the interpre-
tation that �(P ) matches R[c..d]). Find an ordered subset S = s1s2 · · · sp of
pairs from M such that

• for all 2 ≤ j ≤ p, it holds that sj−1.P ≺ sj .P and sj−1.d < sj .d, and

• S maximizes the ordered coverage of R, defined as coverage(R,S) =
|{i ∈ [1..|R|] | i ∈ [sj .c..sj .d] for some 1 ≤ j ≤ p}|.

We say that P1 precedes P2 (P1 ≺ P2) if either P1 and P2 have a suffix-
prefix overlap (and P2 is not fully contained in P1), or they do not share
vertices and the endpoint of P1 reaches the startpoint of P2.

Let us first study a relaxed version of the problem where overlaps be-
tween the paths are not allowed.

Problem 3.2 (Overlap-limited co-linear chaining between a se-
quence and a DAG) Let R be a string, let G be a labeled DAG, and
let M be a set of N anchor pairs (P, [c..d]), where P is a path in G and
c ≤ d are non-negative integers (with the interpretation that �(P ) matches
R[c..d]). Find an ordered subset S = s1s2 · · · sp of pairs from M such that

• for all 2 ≤ j ≤ p, it holds that there is a non-empty path from the
endpoint of sj−1.P to the startpoint of sj .P and sj−1.d < sj .d, and

• S maximizes coverage(R,S).

The basic idea of solving co-linear chaining problem with dynamic pro-
gramming is to fill a table C[1 . . . N ] where entry C[j] gives the maximum
ordered coverage of R[1 . . .M [j].d] using the pair M [j] and any subset of
the pairs from M [1],M [2], . . . ,M [j − 1]. As the anchor intervals in the
sequence can overlap, we need to consider two cases when filling the table:
either the intervals do not overlap (let us call it case (a)) or they overlap
(let us call it case (b)).
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The dynamic programming table can be filled with the following for-
mula:

Ca[j] = (M [j].d−M [j].c+ 1) + max
j′ :M [j′].d<M [j].c

C[j′],

Cb[j] = M [j].d+ max
j′ :M [j].c≤M [j′].d≤M [j].d

C[j′]−M [j′].d,

C[j] = max(Ca[j], Cb[j]).

Inclusions, i.e. M [j].c ≤ M [j′].c, can be left computed incorrectly in
Cb[j], since there is a better or equally good solution computed in Ca[j] or
Cb[j] that does not use them [2].

The challenge when extending the co-linear chaining problem to a DAG
is that the topological order of the graph might not follow the reachability
order between the paths. In the following sections we will describe two
solutions for dealing with this issue: a brute-force approach using depth-
first traversal order, and a path cover approach that links the tuples using
forward propagation.

3.4.1 Brute-force algorithm

Problem 3.2 can be solved with brute force by checking individually, for
every tuple j, every tuple j′ for which M [j′].P ≺ M [j].P . To process only
the tuples that fulfill the precedence relation, we use graph traversal as
shown in Algorithm 1.

First we order the N pairs M [1],M [2], . . . ,M [N ] in O(|E| + N) time
so that the endpoints of M [1].P,M [2].P, . . . ,M [N ].P are in topological
order, breaking ties arbitrarily. Then we reverse the edges of G. After this
preprocessing step, we can start computing the maximum ordered coverage
for the pairs as follows: for every pair M [j] in topological order of their
path endpoints for j ∈ {1, . . . , N} we do a depth-first traversal starting
at the startpoint of path M [j].P . Note that since the edges are reversed,
the depth-first traversal checks only pairs whose paths are predecessors of
M [j].P . Depth-first search takes O(|V |+|E|) time and is executed N times,
for O((|V |+ |E|)N) total time.

Theorem 3.1 Overlap-limited co-linear chaining between a sequence and
a labeled DAG G = (V,E, �,Σ) (Problem 3.2) on N input pairs can be
solved in O((|V |+ |E|)N) time.
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Input: DAG G = (V,E) and N pairs M [1],M [2], . . . ,M [N ] of the
form (P, [c..d])..

Output: The index j giving maxj C[j].
Order the N pairs by the topological order of their path endpoints.

/* Save to end[i] the indexes of all pairs whose path

ends at i. */

for j ← 1 to N do
end[M [j].P.last].push(j);

end
Reverse the edges of G;
for j ← 1 to N do

maxcov ← M [j].d−M [j].c+ 1;
u ← M [j].P.first;
/* Depth-first search starting from u. When meeting

a vertex where a tuple ends, update the coverage.

*/

for w ∈ DFS(u) do
for j′ ∈ end[w] do

C ← −1;
if M [j′].d < M [j].c then

C ← C[j′] + (M [j].d−M [j].c+ 1);
else if M [j].c ≤ M [j′].d ≤ M [j].d then

C ← C[j′] + (M [j].d−M [j′].d);
if C > maxcov then

maxcov ← C;

end

end
C[j] ← maxcov;

end
return argmaxj C[j];

Algorithm 1: Brute-force algorithm for co-linear chaining between a
sequence and a DAG.
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3.4.2 Co-linear chaining between a sequence and a DAG
using path cover

For graphs with small width k, we can do significantly better than the trivial
algorithm’s time requirement O((|V | + |E|)N). Using a minimum path
cover to reduce the DAG into a set of k paths and treating these paths as
sequences (plus some additional information about the reachability between
the vertices), we can solve Problem 3.2 in time O(k|E| log |V |+ kN logN).
However, the performance difference depends on the topology of the graph
compared to the number N of the input pairs, if e.g. k = O(|V |) and
N = O(1), the brute-force algorithm performs better.

Our approach is based on the following observation: Suppose that we
have a problem involving DAGs that is solvable by traversing the vertices in
topological order, and that a partial solution at each vertex v is obtainable
from all (and only) vertices that can reach v, denoted R−(v). Also suppose
that at each vertex v we need to to query a data structure that depends on
R−(v) and such that the answer Query(R−(v)) at v is decomposable as:

Query(R−(v)) =
⊕
i

Query(R−i (v)). (3.1)

In the above, the sets R−i (v) are such that R−(v) =
⋃

iR
−
i (v), they are not

necessarily disjoint, and
⊕

is some associative operation on the queries,
such as min or max. It is understood that after the computation at v, we
need to update the data structure, and that after the update we cannot
query for a vertex before v in topological order, because it would give an
incorrect answer.

Using the above observation, we replace a single data structure with K
data structures, where K is the number of paths in the path cover, and
perform the operation from (3.1) on the results of the queries to these K
data structures.

Our approach consists of three parts:

1. Finding the minimum path cover, that is, the smallest set of paths
that cover all the vertices of the graph.

2. Computing the forward propagation links.

3. Solving Problem 3.2 by treating the paths of the minimum path cover
as sequences.

To use flows for finding the minimum path cover, we first transform
graph G(V,E) into graph G∗ by replacing each node v with two nodes v−
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and v+, add an edge (v−, v+) and add all in-neighbors of v as in-neighbors
of v−, and all out-neighbors of v as out-neighbors of v+. Edges of type
(v−, v+) get demand 1, whereas all other nodes get demand 0. Finally, we
add a global source with an out-going edge to every node, and a global sink
with an in-coming edge from every node.

Our algorithm finds the minimum path cover by reducing a minimum
flow problem to a maximum flow (see e.g. [3]). First we find a feasible
flow f : E → Z, and then we transform it into a minimum feasible flow by
finding a maximum flow f ′ in G in which every edge e ∈ E now has capacity
f(e)− d(e), where d(e) is the demand of the edge. The final minimum flow
is then obtained as f(e)− f ′(e), for every e ∈ E.

We use an approximate greedy algorithm for finding a path cover in
G∗ whose size is larger than the size of the minimum path cover k by
a factor O(log |V |). This algorithm is based on the classical greedy set
cover algorithm (see e.g. [86]): at each step, choose a path that covers the
most uncovered vertices. We compute with dynamic programming for each
vertex v ∈ V value u[v], storing the largest number of uncovered vertices on
a path starting from v. This takes O(|E|) time. Then we take the vertex
v with the maximum u[v], trace back for the optimal path starting from v,
and set every vertex on that path as covered. We repeat this process for
K paths, for a total time of O(K|E|). Following the proof of [86], because
the universe to be covered is V and each possible path in G is a possible
covering set, which implies that K = O(k log |V |), where k is the size of
the minimum path cover.

This path cover induces a flow of value O(k log |V |), which still needs
to be reduced to a flow of value k. If we run the Ford-Fulkerson algo-
rithm on G∗, this means that there are O(k log |V |) successive augmenting
paths, each of which can be found in time O(|E|), for a total time of
O(k|E| log |V |).

Theorem 3.2 Given a DAG G = (V,E) of width k, the minimum path
cover on G can be found in time O(k|E| log |V |).

The second part of our approach is computing the forward propagation
links using the path cover P1, . . . , PK just computed above. As the answer
at v depends on R−(v), we cannot process the vertices on the K paths in
arbitrary order. We define as last2reach[v, i] the last vertex on path i
that reaches v. See Figure 3.6 for an example.

As the complementary operation, we define a set of forward propagation
links forward[u], where (v, i) ∈ forward[u] holds for any vertex v and index
i with last2reach[v, i] = u. Computing all the forward propagation links
takes O(|E|K) time, as shown in Algorithm 2.
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Input: DAG G = (V,E) and path cover P1, P2, . . . , PK of V .
Output: Propagation links (u, v, i) stored as (v, i) ∈ forward[u].
for i ← 1 to K do

for j ← 1 to |P i| do
v ← P i[j];
paths[v].push(i);
index[v][i] ← j;

end

end
for v ∈ V in topological order do

for i ∈ paths[v] do
last2reach[v][i] ← index[v][i];

end
for i /∈ paths[v] do

last2reach[v][i] ← maxu∈N−(v) last2reach[u][i];
end

end
for v ∈ V in topological order do

for i ∈ paths[v] do
forward[last2reach[v][i]].push(v, i);

end

end
Algorithm 2: Computing the propagation links.
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Figure 3.6: A path cover P1, P2, P3 of a DAG. The forward links entering v
are shown with dotted black lines, for each of P1, P2, P3. We mark in gray
the set R−(v) of vertices that reach v. Image reproduced from Paper V.

Lemma 3.1 Let G = (V,E) be a DAG, and let P1, . . . , PK be a path
cover of G. For every v ∈ V and every i ∈ [1..K], we can compute
last2reach[v, i] in overall time O(|E|K).

Before continuing on to the third step, we will briefly review an algo-
rithm for the co-linear chaining problem between two sequences that runs
in the optimal O(N logN) time [2], as we will reuse it in our algorithm
for co-linear chaining between a sequence and a DAG. We fill follow the
notation of [56].

The key component of the algorithm is a pair of binary search trees
that support Range Maximum Queries: T that stores the values for cases
where the anchors do not overlap, and I that stores the values for cases
where the anchors do overlap.

We will use the following classical result in our analysis:

Lemma 3.2 The following two operations can be supported with a balanced
binary search tree T in time O(log n), where n is the number of leaves in
the tree.

• update(k, val): For the leaf w with key(w) = k, update value(w) =
val.

• RMaxQ(l, r): Return maxw : l≤key(w)≤r value(w) (Range Maximum
Query).

Moreover, the balanced binary search tree can be built in O(n) time, given
the n pairs (key, value) sorted by component key.

Let T and R be two sequences over an alphabet Σ, and let M be a set
of N pairs ([x..y], [c..d]). First we sort the input pairs M by the coordinate
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y into a sequence M [1],M [2], . . . ,M [N ] so that M [i].y ≤ M [j].y holds for
all i < j. Next we initalize the search trees T and I with keys M [j].d, for
every pair M [j], and additionally the key 0. All the values are set to −∞.

Like in our brute-force approach, described in Algorithm 1, we fill a
table C[1 . . . N ] where entry C[j] gives the maximum ordered coverage
of R[1 . . .M [j].d] using the pair M [j] and any subset of the pairs from
M [1],M [2], . . . ,M [j − 1].

We can use an invariant technique to convert the recurrence relations
such that we can exploit range maximum queries of Lemma 3.2:

Ca[j] = (M [j].d−M [j].c+ 1) + max
j′ :M [j′].d<M [j].c

C[j′]

= (M [j].d−M [j].c+ 1) + T .RMaxQ(0,M [j].c− 1),

Cb[j] = M [j].d+ max
j′ :M [j].c≤M [j′].d≤M [j].d

C[j′]−M [j′].d

= M [j].d+ I.RMaxQ(M [j].c,M [j].d),

C[j] = max(Ca[j], Cb[j]).

For these to work correctly, we need to have properly updated the trees T
and I for all j′ ∈ [1..j−1]. That is, we need to call T .update(M [j′].d, C[j′])
and I.update(M [j′].d, C[j′] − M [j′].d) after computing each C[j′]. The
running time is O(N logN).

Recall that our approach uses a path cover to split the graph into a series
of sequences. Assume we have a path cover of size K and have computed
forward[u] for all u ∈ V . For each path i ∈ [1..K] we create search trees
Ti and Ii. As in the case of sequences described earlier, we set as keys all
M [j].d for every pair M [j] and additionally key 0, and initialize all values
to −∞.

We process the vertices in topological order. For every vertex v that
corresponds to the endpoint of some M [j].P , we update the trees Ti and Ii
for all paths i that cover vertex v. Then we follow the forward propagation
links and update C[j] for each path M [j].P whose startpoint is w for all
(w, i) ∈ forward[u].

Before the main loop visits w, we have processed all forward propaga-
tion links to w, and the computation of C[j] has taken all previous pairs
into account through the K search trees. The forward propagation makes
sure that the search tree queries only consider those pairs where the path
endpoint reaches the startpoint of M [j].P .

The algorithm is shown in pseudocode in Algorithm 3. There are NK
forward propagation links, and both search trees can be queried in O(logN)
time, for a total of O(NK logN) time. The number of updates on the trees
is also bounded by NK, as each endpoint can be contained in at most K
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paths. Combined with Theorem 3.2, we have K = k and the total time
becomes O(k|E| log |V |+ kN logN).

Theorem 3.3 Problem 3.2 on a labeled DAG G = (V,E, �,Σ) of width k
and a set of N input pairs can be solved in time O(k|E| log |V |+kN logN)
time.

We now consider how to extend Algorithms 1 and 3 to work for the
more general case of Problem 3.1.

We use an FM-index [19] tailored for large alphabets [30] and a two-
dimensional range search tree [16] modified to support range maximum
queries. The two-dimensional range search trees support range maximum
queries in time O(log2 |V |). We can show that O(L) queries are sufficient
to take all the overlaps into account, where L =

∑
i |M [i].P |—the sum of

the path lengths—is at most the total input length.

Alternatively, we can process each overlapping pair separately, and com-
pute in constant time its contribution to C[j]. This gives another bound
O(L log log |V |+#overlaps), where #overlaps is the number of overlaps
between the input paths. This can be improved to O(L+#overlaps) by
using a generalized suffix tree to compute the overlaps in advance [67, proof
of Theorem 2].

Theorem 3.4 Let G = (V,E, �,Σ) be a labeled DAG and let M be a set of
N pairs of the form (P, [c..d]). The algorithms from Theorems 3.1 and 3.3
can be modified to solve Problem 3.1 with additional time O(L log2 |V |) or
O(L+#overlaps), where L is at most the input length and #overlaps is
the number of overlaps between the input paths.

The technical details of the FM-index and the two-dimensional range
search trees can be found in Paper V.

3.5 Traphlor

In Paper III we added the subpath constraints concept introduced by Bao
et al. [5], and fully solved by Rizzi et al. [67], to our transcript prediction
tool Traph (Paper I). Naturally, as the problem to solve is different, the
flow engine was replaced with a new version, but we could use the splicing
graph module and the module for splitting the flow into paths mostly as is.
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3.5.1 Modifications to the splicing graph creation

We used the splicing graph creation module from Traph as the base of the
module for Traphlor. To find the subpath constraints we enumerate over
the read alignments; every alignment with gapped alignment is added as a
potential subpath constraint.

However this process gives all the possible subpath constraints, and as
Rizzi et al. point out, for the reduction to work correctly any overlapping
constraints must first be merged [67]. We do this in two stages. First, we
remove all the constraints that are fully contained in another. Second, we
merge overlapping constraints.

Rizzi et al. proved that iteratively merging the constraints with the
longest suffix-prefix overlap is optimal in theory. However, we tested a
different approach and found it to perform better in practice.

So instead of merging the constraints with the longest suffix-prefix over-
lap, we solve the problem using a minimum-cost flow. We use an approach
similar to [62]: we create a flow network with the subpath constraints as
vertices, and an edge is added between two vertices if the corresponding
constraints have a suffix-prefix overlap (see Figure 3.7). The weights on
the edges are set based on the difference of coverage between its endpoints.
Each edge exiting from the global source of the network is given a weight
that is larger than the sum of all the weights in the network, to prefer so-
lutions with the minimum number of paths. The resulting minimum-cost
flow is then split into paths: all vertices which belong to the same path are
the constraints to be merged.

One thing to note about this flow network based on the constraints
(constraint flow network) is that every constraint, that has a flow source of
the original graph as its first vertex, is a flow source in the contraint flow
network, and every constraint, that has a flow sink of the original graph as
its last vertex, is a flow sink in the constraint flow network. Additionally,
like in the original graph, every vertex that has no in-neighbors is a flow
source, and every vertex that has no out-neighbors is a flow sink. Note that
the constraint flow network is not necessarily connected, and a single vertex
can be both a flow source and a flow sink if the corresponding constraint
does not share any suffix-prefix overlap with other constraints.

After these steps there are no containments or suffix-prefix overlaps
between the subpath constraints, and we can proceed to creating the flow
network from the splicing graph and the subpath constraints.
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(a)

s∗ t∗

(b)

Figure 3.7: a) An example of a splicing graph with subpath constraints and
b) the constraint flow network created from them. Square vertices are the
global source and sink. Image adapted from Paper III.

3.5.2 The flow engine

As explained in Section 2.3.2 for Traph, the flow network is built from the
splicing graph by splitting every vertex v into two vertices vin and vout,
adding a global source and sink and connecting the sources and sinks of
the splicing graph to them. Adding a high weight (larger than the sum of
all weights in the network) on the edges from the global source to splicing
graph sources guarantees a solution with the minimum number of paths.

A modification for the subpath constraints goes as follows: for every
constraint with first vertex u and last vertex w we add an edge (u,w), with
weight equal to the sum of weights on the edges of the subpath. We set
the demand of edge (u,w) to 1, and set the demands of the edges that the
subpath constraint covers to 0 (see Figure 3.8). That is, instead of covering
the edges corresponding to the path in the original network, we have to
cover the subpath constraint edge instead.

Given the flow in the graph we can split it into paths greedily like we
did with Traph, by repeatedly removing the flow of the path with maxi-
mum bottleneck from the network. The subpath edges can be converted
back into the corresponding paths trivially. Note that because of the sub-
path constraint edges, currently Traphlor does not support computing the
expression levels like Traph does.
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Figure 3.8: Subpath constraints (red and blue in (a)) are converted into
edges from the first vertex of the constraint to the last vertex (in (b)).
The demands, shown on the graph, on those edges covered by the subpath
constraint are set to 0.
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Figure 3.9: F-measure with perfect alignments (a) and GMAP alignments
(b). Figure reproduced from Paper III.

3.5.3 Experimental results

We compared Traphlor to two other flow-based transcript assembly tools
StringTie [64] and FlipFlop [9]. We tested on simulated data, considering
two cases: “perfect alignments” and alignments produced by GMAP [93].
In the latter case FlipFlop required over 50 GB of RAM, and as such we
could not run it on the machines available.

Again we chose all the genes in human chromosome 2, but this time
with the minimum length of 1 kb. We simulated reads of lengths 400-
3,200 bp. Our preliminary tests showed that with realistic long read error
profiles (10-15% error rate) GMAP failed to align a significant portion of the
reads, so we opted to not add sequencing error to the simulation. To keep
the coverage constant we adjusted the number of reads, with there being
60 million 400 bp reads and 7.5 million 3,200 bp reads. Any transcripts
shorter than the read length were added to the data set in full.

As Traphlor does not predict expression levels, we only compared the
predicted transcripts. Instead of using sequence dissimilarity metrics, as
used in Paper I and Paper II, we followed the example of [47] and com-
pared the inner exon borders of the annotated transcripts and predicted
transcripts.

As can be seen in Figure 3.9, with perfect mappings Traphlor outper-
formed its competitors (as measured by F-measure) once read length ex-
ceeded 400 bp, but when mapping errors were introduced, the performance
dropped significantly. However, Traphlor’s performance was on-par with
StringTie when read length exceeded 1200 bp. The drop in performance
was mainly due to lowered precision, sensitivity was affected only slightly
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(see Figures 4 and 5 in Paper III). As we focused on high sensitivity during
the development of Traphlor, the drop in precision is an understandable
trade-off.
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Input: DAG G = (V,E), a path cover P1, P2, . . . , PK of G, and N
pairs M [1],M [2], . . . ,M [N ] of the form (P, [c..d]).

Output: The index j giving maxj C[j].
Use Algorithm 2 to find all forward propagation links;
for i ← 1 to K do

Initialize search trees Ti and Ii with keys M [j].d, 1 ≤ j ≤ N ,
and with key 0, all keys associated with values −∞;
Ti.update(0, 0);
Ii.update(0, 0);

end
/* Save to start[i] (respectively, end[i]) the indexes of

all pairs whose path starts (respectively, ends) at

i. */

for j ← 1 to N do
start[M [j].P.first].push(j);
end[M [j].P.last].push(j);

end
for v ∈ V in topological order do

for j ∈ end[v] do
/* Update the search trees for every path that

covers v, stored in paths[v]. */

for i ∈ paths[v] do
Ti.update(M [j].d, C[j]);
Ii.update(M [j].d, C[j]−M [j].d);

end

end
for (w, i) ∈ forward[v] do

for j ∈ start[w] do
Ca[j] ← (M [j].d−M [j].c+1)+Ti.RMaxQ(0,M [j].c− 1);
Cb[j] ← M [j].d+ Ii.RMaxQ(M [j].c,M [j].d);
C[j] ← max(C[j], Ca[j], Cb[j]);

end

end

end
return argmaxj C[j];

Algorithm 3: Co-linear chaining between a sequence and a DAG using
a path cover.
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Chapter 4

Conclusions

In this thesis we have discussed RNA-seq data analysis for both short
(second-generation sequencing) and long (third-generation sequencing or
synthetic) reads. Our main focus has been how to use the information long
reads provide about non-consecutive exons in transcript assembly.

First, in the field of short-read analysis, we proposed a novel approach
of using minimum-cost flows to solve the transcript assembly problem. We
can find the optimal flow in a modified splicing graph, and split the flow into
paths using the path of maximum bottleneck decomposition, in polynomial
time. We implemented this approach in our tool Traph. We also proposed a
version of Traph where instead of looking for a solution with the minimum
cost over an unbounded number of paths, we look for exactly k paths with
the minimum cost over all such solutions. This is relevant in practice since
a small fraction of the graph can be erraneous due to various biological
events or technical errors.

We showed that Traph is competitive on transcript prediction accuracy
with at-that-time state-of-the-art tools Cufflinks [83], IsoLasso [47] and
SLIDE [44].

Compared to exhaustively enumerating all possible candidate paths and
then solving a quadratic/integer linear program to evaluate the fitness of
each candidate transcript (e.g. IsoInfer/IsoLasso, SLIDE, CLIIQ [48]),
minimum-cost flows provide a simple and fast polynomial time algorithm.
Cufflinks’ minimum path cover approach is done by computing a maxi-
mum matching, which can also be reduced to a flow problem. Parallel to
our work, a similar minimum-cost flow approach called FlipFlop [9] was
proposed. Two years later network flows were used in StringTie [64], which
was shown to outperform the state-of-the-art tools, including our Traph.

As part of Traph, we implemented a splicing graph creation module
that scales reasonably well to both large read lengths and error rates (as
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shown in the running times in Paper V); StringTie, which was chosen for
the comparison, had its running time increase exponentially as the read
length increased (and was indeed unable to be run in a reasonable time
for read lengths exceeding 1200 bp), whereas the running time increase of
our module was linear. As the splicing graph creation module used in the
experiments of Paper V, SpliceGrapher [69], stalled with highly erraneous
long reads, one of the possible directions of future work is converting our
graph creation module described in Section 2.3.1 into a stand-alone tool.

After Bao et al. [5] proposed, and Rizzi et al. [67] fully solved, using
long reads as subpath constraints in the Minimum Path Cover problem, we
extended Traph to use the subpath constraint information. The subpath
constraints were modeled as edges in the flow network that spanned from
the vertex corresponding to the first exon of the constraint to the vertex
corresponding to the last exon of the constraint. Now instead of searching
for the solution with the minimum cost, under some cost model, we searched
for the minimum number of paths.

For comparison with our tool, Traphlor (for Traph with Long Reads), we
chose StringTie and FlipFlop, as their authors had hinted that the tools are
capable of using long read information. In the case of “perfect mapping”, a
situation where all the reads were perfectly mapped to their origin, Traphlor
outperformed both its competitors. However, when mapping errors were
introduced, precision (the number of matched transcripts divided by the
number of predicted transcripts) of Traphlor dropped significantly, and its
total accuracy (as measured by F-measure) only reached that of StringTie
for read lengths above 1,200 bp. FlipFlop would have required over 50 GB
of RAM to execute, and our machines could not provide that.

The loss of precision was most likely due to the fact that Traphlor re-
quires covering all the subpath constraints with some path. This ties back
to the problem of long read alignment, where very short segments after a
splice junction can remain unmapped in the seeding stage. Most one-pass
mapping algorithms (including GMAP [93], which we used) prefer extend-
ing the alignment to include the first few bases of the intervening intron
instead of the correct mapping. The result was that Traphlor reported a
transcript for each of these mismappings.

As the mappings will likely include even more of these short anchors
when sequencing errors are added to the picture, an important direction for
future work on Traphlor is making the algorithm more resistant to noise.
Whether an expression level quantification step can be added is also an
interesting direction of future work, although there exist many tools that
handle the quantification step when given the transcript sequences.
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Our work with Traphlor brought up an interesting point on what ob-
jective to optimize: instead of optimizing the local alignment score for each
read, we could optimize the correctness of the exon chains that make up the
subpath constraint instead. Our third contribution was evaluating different
methods for optimizing the correctness of the exon chains. We considered
three approaches: creating a splicing graph from short reads and using dy-
namic programming to align long reads to the graph, a fast approximation
of the above by using overlaps between the short and long read alignments,
and error-correcting the long reads using short reads before mapping them
to the reference genome. As the base case we created the splicing graph
from both short and long reads but, as mentioned, the tool SpliceGrapher
could not handle this case in a reasonable time with reads exceeding 400
bp.

Our results showed that error-correcting the reads yielded the best re-
sults, but using the coordinate overlaps between short and long reads was
not far behind. Dynamic programming performed poorly, possibly due to
the same short-anchor issue that Traphlor had encountered. Dynamic pro-
gramming is guaranteed to find an optimal solution, but it can break ties
arbitrarily.

While the dynamic programming solution proved to be ineffective, both
accuracy and running time wise, for finding the subpath constraints, we
pursued the direction of aligning a sequence to a graph. While it is unlikely
there exists an algorithm for aligning sequences in subquadratic time (as
it would violate the Strong Exponential Time Hypothesis [4]), co-linear
chaining problem between two sequences with N anchor pairs can be solved
in O(N logN) time [2].

Our last contribution was to extend co-linear chaining from between
two sequences to between a sequence and a DAG. Recently Patro et al.
proposed a transcript quantification algorithm that only requires the co-
linear chain of the spliced alignment instead of full alignment [63], to which
our approach could be applicable.

Our solution is based on covering the DAG with k paths, and treating
these paths as sequences. Careful bookkeeping of the processing order is
required to make sure all the in-neighbors of the vertex are processed before
the vertex itself. This problem formulation is very generic, and can be used
for extending other dynamic programming tasks (e.g. longest increasing
subsequence or longest common subsequence) from sequences to between a
sequence and a DAG.

First we considered a relaxed variant of a problem, where the anchors
in the DAG were not allowed to overlap. Given the k paths and N an-
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chor pairs, we can solve this relaxed variant in O(kN logN) time. When
the DAG consists of an unary sequence (k = 1), the time requirement
matches that of the optimal solution for the sequences. For additional time
O(L log2 |V |) or O(L + #overlaps), where L is at most the input length
and #overlaps is the number of overlaps between the input paths, we can
allow for overlaps in the anchors in the DAG.

There are two main directions for future work for co-linear chaining
between a sequence and a DAG. First, it remains open whether the bound
O(k|E| log |V |) for the MPC problem can be improved. Second, we as-
sumed that we are given N anchor pairs as an input. With sequences, the
anchors are usually taken to be maximal exact matches (MEMs) and can
be retrieved in linear time [8, 7]. While practical approaches for retrieving
length-limited MEMs between a sequence and a DAG exists [77, 76], it is
largely an open problem how to retrieve MEMs between a sequence and a
DAG in general.
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[56] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-
Scale Algorithm Design—Biological Sequence Analysis in the Era of
High-Throughput Sequencing. Cambridge University Press, May 2015.
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