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Abstract—We establish a theoretical framework for solving
the equations of motion for an arbitrarily shaped, isotropic, and
homogeneous dust particle in the presence of radiation pressure.
The scattering problem involved is solved by a surface integral
equation method, and a rudimentary sketch of the numerical
implementation is introduced with preliminary results agreeing
with predictions.

I. INTRODUCTION

The observed polarization of the interstellar medium is
due to scattering from asymmetrical, aligned dust particles.
Alignment of interstellar dust particles has been under metic-
ulous study for the last few decades, and it has been firmly
established that the dominant alignment method in many
situations is by radiative torques [1]. The canonical method of
studying the dynamics and in turn the alignment of interstellar
particles is by considering orientation averaged equations of
motion (EoMs) [2], which is a powerful method of analysis,
when combined with numerical scattering software such as the
Discrete Dipole Scattering (DDSCAT) software [3].

Due to the modern advancements of different scattering
solutions, mainly of the integral equation methods (IEMs), a
dynamical solution using the rigid body EoMs for arbitrary
geometries without orientation averaging is possible with
tolerable computational efforts. Surface integration methods
have been used to study the forces and torques due to radiation
pressure [4]. We introduce a theoretical framework for solving
the dynamics of a dust particle implementing the Poggio-
Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral
equation method [5] and sketch a corresponding numerical
algorithm with preliminary results.

II. THEORETICAL FRAMEWORK

We introduce the necessary background for the development
for a numerical solver of the rotational dynamics for an
interstellar dust partcile interacting with an electromagnetic
field. Combining the following subsections, a framework for
solving the EoMs for a dust particle is obtained.

A. Dynamics of a Rigid Body

An interstellar dust particle is assumed to be a homoge-
neous, rigid body which obeys Newtonian mechanics. In-
terstellar dust is composed of highly asymmetric particles,
thus the EoMs are left in their most general form. The most

important physical quantity of the particle is its moment of
inertia tensor, the matrix form of which for a discretized body
composed of mass points is defined as
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(1)
where the summations are done over all the mass points mi

with coordinates (xi, yi, zi), i = 1, . . . , N . This form of the
inertia tensor is applicable to a situation, where the particle
surface is discretized using a triangular mesh, illustrated in
Fig. 1.

As a real symmetric matrix the inertia matrix has an
eigendecomposition I = QIpQᵀ, where Ip = diag(I1, I2, I3)
and Q is a rotation matrix. In the body frame, the rotational
EoMs simplify to Euler’s equations,

~N = I~̇ω + ~ω × (I~ω), (2)

where ~N is the total external torque, ~ω is the angular velocity
vector and ˙( ) is shorthand for a time derivative. Now the
rotational dynamics of the particle are described by the EoMs

Ṙ = RΩ∗,

~̇ω = I−1
(
~N− ~ω × (I~ω)

)
,

(3)

where R is the rotation matrix describing the orientation of
the particle and Ω∗ is an auxiliary matrix, which makes the
upper equation equivalent with ~̇r = ~ω ×~r, defined by

Ω∗ =

 0 −ωz ωy

ωz 0 ωx

−ωy ωx 0

 . (4)

B. Electromagnetic Background

The pressure effects of electromagnetic radiation were orig-
inally conceptualized in Kepler’s observations of the tails of
comets and formulated mathematically by Maxwell in 1873
[6]. A Lorentz force density, the force per unit volume, is

~f = ρ~E + ~J× ~B, (5)

where ρ is the charge of the volume element and ~E, ~J and ~B
are the electric field, electric current and the magnetic field
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Fig. 1: A mesh discretization of a symmetric sample particle
in the laboratory frame {x}lab and the body frame {x′}body.

intensity, respectively. By Maxwell equations and vector cal-
culus identities it can be expressed as

~f = ∇ · T− ε0µ0
∂~S

∂t
. (6)

The ~S-term, where ~S = ~E× ~H is the Poynting vector, is the
energy flux of the radiation fields, which averages to zero. The
first term contains the Maxwell stress tensor with components

Tij = ε0
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and, by integrating the force density to obtain the total force
over a surface and using the divergence theorem, we obtain
the total average mechanical force on the particle surface S,

~F =

∮
S

T · n̂ dS. (8)

The corresponding average torque due to EM radiation is, in
a straightforward fashion,

~N =

∮
S

~r× (T · n̂) dS. (9)

C. The Surface Integral Equation Method

Different methods exist for solving a scattering problem
from given incident, or primary, field. When a surface mesh is
considered, a surface integral equation (SIE) method will be
a natural approach to the problem.

Surface integral equation formulations for linear, homoge-
neous, and isotropic media can be constructed in many ways,
for example as the Stratton-Chu equations [7] or as an exten-
sion to the previous formulation, the PMCHWT formulation,
where the total fields are expressed with respect to the primary
fields (~E, ~H) and equivalent electric and magnetic surface
currents (~JS , ~MS) = (n̂× ~H, ~E× n̂), which induce the same
scattered fields as the physical scatterers [5].

The surface equivalence principle [8] states that the total
fields inside the integration domain are uniquely determined by

the primary fields and the equivalent surface current densities:

Θ(~x)~E(~x) = ~Ei(~x)− η

ik
L[~JS ]−K[ ~MS ],

Θ(~x)~H(~x) = ~Hi(~x)− 1

ikη
L[ ~MS ] +K[~JS ],

(10)

where η =

√
µ

ε
is the impedance of the medium, Θ(~x) is

defined for surface sources as

Θ(~x) =


1, if ~x ∈ D, the integration domain,
1/2, if ~x ∈ S, any surface occupying D
0, otherwise,

(11)

and L and K are integrodifferential operators defined as

L[~F] ≡
∫
Si

k2~Fφ+∇(∇ · ~F)φdS,

K[~F] ≡
∫
Si

∇× ~Fφ dS,

(12)

where φ is the Green’s function for the Helmholtz operator.
A set of solvable integral equations is obtained by imposing
different boundary conditions and coupling the fields in some
way. The PMCHWT formulation is obtained by imposing the
boundary conditions

γt(~E1 − ~E2) = 0,

γt(~H1 − ~H2) = 0,
(13)

where γt[~F] ≡ −n̂× n̂ × ~F is the tangential trace operator,
and coupling the resulting electic and magnetic field integral
equations with coupling constants of 1, which results in

A
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)
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where
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(15)
and indices 1 and 2 separates the homogeneous and isotropic
background and scatterer. [9]

III. NUMERICAL METHODS

A Fortran software for solving the EoMs for a surface
meshed particle, assumed to be homogeneous and isotropic,
has been developed. The software analyses the mesh geometry
and calculates and diagonalizes the inertia matrix for the
particle. The radiative torques and forces are calculated by
an implementation of the direct PMCHWT formulation with
Rao-Wilton-Glisson (RWG) [10] basis and testing functions
[9], which makes it possible to calculate the forces and torques
quickly in any particle orientation, if the primary fields are
rotated in the calculations instead of the particle. This in
turn makes a straightforward integration of the EoMs possible
without any approximations of the particle geometry other than
what is limited by the mesh.



The problem setup is always in the laboratory frame. The
EoMs are solved in the principal axes frame (principal frame)
and the scattering problem must be solved in some body frame.
For simplicity the body frame is chosen so that it equals the
laboratory frame at t = 0. Thus two rotation matrices, the
orientation matrix R and the diagonalization matrix Q, are
needed to navigate between the frames. The framework is
summarized in Fig. 2.

Scattering
frame,
{x}sca

Principal
frame,
{x}p

RQᵀ

QRᵀ

Laboratory
frame, {x}lab

R

Q

Rᵀ

~k must be rotated for scattering solution

~k constant EoMs solved

Fig. 2: Diagram of the different coordinate changes used and
the significance of each frame in the integrator.

The integrator is based on the Runge-Kutta method [11],
which updates the angular velocity at each time step using the
torques calculated via PMCHWT method. The corresponding
new rotation matrix is calculated using the Rodrigues’ rotation
formula [12] with the average angular velocity during a
timestep. The framework of dynamics integration is presented
in Fig. 3.

Quantity
Coordinates

~k ~N R

{x}lab ~klab constant R(t) = QᵀRp(t)

{x}sca ~ksca = Rᵀ(t)~klab ~Nsca(t)

{x}p ~Np(t) = QRᵀ(t)~Nsca Rp(t)

(1)

(2)

(3)

(4)

t = t + ∆t

Fig. 3: The algorithm used in the integrator in a nutshell:
First, rotate the wave vector (inverse transformation com-
pared to the particle rotation) and solve the torques using
PMCHWT method; second, rotate the torque vector to the
principal coordinates; third, update the EoMs in the principal
coordinates; and, fourth, solve the new rotation matrix in
laboratory coordinates.

IV. RESULTS

We tested the software with two particle geometries, a
sphere and a Gaussian random sample sphere (GRS) [13], vi-
sualized in Fig. 4. The particles rotated with an initial angular
velocity in the laboratory frame ~ωlab = (0, 0, 1) rad

s , with size
parameter a = 10−7 m and constant density ρ = 2000 kg

m3 .
Adaptive timestep ∆tmax = 10−2 s, amplitude of the primary

E-field E0 = 10−2 V
m , and relative permittivity ε = 2+0i were

used as input parameters. The primary field was a plane wave
with wave vector ~k = kk̂ = 107(0, 0, 1). The adaptivity of
the time step limits the maximum rotation per time step to
0.4 rad, with maximum time step of 0.01 s.

Fig. 4: The test particle geometries for the spherical and GRS
particles, with their principal axes, the axis of highest principal
moment highlighted.

The numerical results, summarized in Fig. 5 and Fig. 6,
were consistent with expectations: the only significant force
on the symmetrical sphere was in the direction of the wave
vector ~k, and the GRS particle was subjected to forces in the
two perpendicular directions as well. The torques on the sphere
were 6 orders of magnitude smaller than on the GRS particle.

Fig. 5: Radiative torque and force induced on the sphere,
calculated by the PMCHWT method and the angular velocity
and linear velocities obtained by solving the EoMs.



Fig. 6: As in Fig. 5 for the GRS particle. The forces and
torques demonstrate the asymmetry of the GRS.

V. CONCLUSIONS

The direct numerical integration of rotational and linear
EoMs using the PMCHWT surface integral equation method
provides a novel approach to the problem of interstellar dust
particle dynamics in electromagnetic radiation environment.

Results of the preliminary tests encourage further develop-
ment. The main result is that the surface integral equation
method provides a feasible way to solve the dynamics of
rotational systems under radiation pressure explicitly.
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