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Abstract—Spectral properties of current-based volume integral
equation of electromagnetic scattering are investigated in the case
of isotropic and bi-isotropic objects. Using Helmholtz decom-
position the spectrum is derived separately for the solenoidal,
irrotational, and harmonic subspaces. Based on this analysis,
preconditioning strategies of the matrix equation are discussed.

I. INTRODUCTION

Volume integral equation (VIE) methods are useful in many

electromagnetic scattering analysis tasks involving inhomo-

geneous dielectric and magnetic targets. Since the method

requires only the Green’s function of the background medium,

that most often is homogeneous and isotropic, the method

is available for much more complicated media than e.g., the

surface integral equation method requiring Green’s functions

of all considered media.

The challenge in VIE is that it results a dense fully popu-

lated matrix that is expensive to solve. Hence, fast solvers like

the ones based on Fast Fourier Transform or on Fast Multipole

Method, are mandatory as the size of the problem is increased.

Since these fast methods are based on the iterative solution

of the matrix equation, for the total efficiency of the method

it is essential that the iterative solution converges as fast as

possible.

Spectrum of electromagnetic VIEs has been studied e.g., in

[1]–[4]. These studies show that the spectral radius depends

on the permittivity, or on the material contrast in general. The

spectral radius in turn is related to the conditioning of the

matrix and to the convergence rate of an iterative solution. As

verified with numerical experiments, strong material contrast

and high frequency, have a negative effect on the iteration

count [5]. Even more problematic are structures with negative

material parameters. For these cases the spectrum of the VIE

operator appears on both size of the origin and the matrix can

be singular.

As shown in [6] in the case of dielectric isotropic medium

an efficient preconditioner for the electric current VIE operator

can be obtained by properly scaling the solenoidal, irrotational

and harmonic subspaces. This preconditioning strategy leads

to an iteration count that is nearly independent on the permit-

tivity, as long as the permittivity is positive.

In this paper, we extend the analysis of the current-based

VIE from isotropic media to bi-isotropic one. In the latter case,

the spectrum has a more complicated dependence on the ma-

terial parameters and several problematic material parameter

combinations are identified that may lead to a singular matrix.

Preconditioning strategies based on the discrete Helmholtz

decomposition are also discussed.

II. CURRENT-BASED VOLUME INTEGRAL EQUATION

FORMULATION

Consider time-harmonic electromagnetic scattering (the

time factor is e−iωt) by a three-dimensional bounded object

D in a homogeneous and isotropic background medium with

constant ε0 and µ0. The sources of the incident field E
inc,Hinc

are outside the object.

A solution to the scattering problem is found by using

the volume integral equation (VIE) method. This method is

based on the volume equivalence principle where the total

electromagnetic fields, scattered plus incident, are expressed

as

E(r) =
−1

iωε0
L[J](r) −K[M](r) +E

inc(r), (1)

H(r) =
−1

iωµ0

L[M](r) +K[J](r) +H
inc(r). (2)

Here the volume integral operators are

K[F](r) = ∇× V[F](r), (3)

L[F](r) =
(

∇∇ ·+k2
0

)

V[F](r), (4)

and V is given by

V[F](r) =

∫

D

G0(r, r
′)F(r′) dV ′, (5)

with the Green’s function G0 of the background medium.

Definition of the equivalent electric and magnetic volume

current densities J and M depend on the medium. In the

following we consider two cases, isotropic and bi-isotropic

medium.



A. Isotropic Object

Assume first that object D is isotropic with position de-

pendent scalar parameters ε1 and µ1. Then the constitutive

relations are given by
[

D

B

]

=

[

ε0εr
¯̄I ¯̄O

¯̄O µ0µr
¯̄I

][

E

H

]

, (6)

where ¯̄I and ¯̄O is the unity and zero dyadic and εr and µr are

the relative electric permittivity and magnetic permeability of

the medium.

The equivalent electric and magnetic volume current densi-

ties are now given by

J = −iωε0τεE, (7)

M = −iωµ0τµH, (8)

with notations τε = εr − 1 and τµ = µr − 1.

Using (1) and (2) with (7) and (8), leads to the electric and

magnetic current volume integral equation (JMVIE)
[

I − τεL −iωε0τεK

iωµ0τµK I − τµL

][

J

M

]

=

[

J
inc

M
inc

]

. (9)

Here we have denoted

J
inc = −iωε0τεE

inc and M
inc = −iωµ0τµH

inc. (10)

B. Bi-isotropic Object

For bi-isotropic medium the constitutive relations contain

also the relative magneto-electric parameters ξr and ζr [7]
[

D

B

]

=

[

ε0 εr
¯̄I √

ε0µ0 ξr
¯̄I

√
ε0µ0 ζr

¯̄I µ0 µr
¯̄I

][

E

H

]

. (11)

Parameters ξr and ζr can be related to Tellegen χr and chiral

κr parameters as [7]

ξr = χr − iκr and ζr = χr + iκr. (12)

The volume currents in bi-isotropic medium are given by

J = −iωε0τεE− iωξH, (13)

M = −iωµ0τµH− iωζE. (14)

Using representations (1) and (2) with (13) and (14), gives

JMVIE for bi-isotropic medium




I − τεL+ iωξK −iωε0τεK− ξr
η0

L

iωµ0τµK− ζrη0L I − τµL− iωζK





[

J

M

]

=

[

J
inc

M
inc

]

. (15)

Here η0 =
√

µ0/ε0 and

J
inc = −iωε0τεE

inc − iωξHinc (16)

M
inc = −iωµ0τµH

inc − iωζEinc. (17)

III. SPECTRAL ANALYSIS

Next we study the spectrum of JMVIE formulation in the

case of isotropic and bi-isotropic medium. First we note that

JMVIE defines a mapping from L2(D) onto itself [6], [8].

In the following, we shall utilize Helmholtz decomposition of

L2(D)

L2(D) = ∇H1

0
(D)⊕H0(div0, D)⊕W(∂D), (18)

where ∇H1
0
(D) is the irrotational subspace (with zero curl),

H0(div0, D) is the solenoidal subspace (with zero diver-

gence), and W(∂D) is the subspace of the gradients of

harmonic H1(D) fields.

Operator K is compact in L2(D) and its eigenvalues accu-

mulate to the origin. Therefore, it suffices to consider the L

operator. To analyze that operator on the irrotational subspace,

we shall use identity

L[F] = (T − I) [F] (19)

with T [F] = ∇× (∇× V)[F].

A. Isotropic Medium

Consider first the solenoidal part in the isotropic medium.

Since for a solenoidal function F
sol, L[Fsol] = k20V[Fsol], and

V is compact, the essential spectrum of that part is simply the

unity.

To analyze the irrotational part we apply (19) to obtain

I − τεL = εrI − τεT . (20)

Since for an irrotational function F
irr operators T and K

vanish, the integral operator of (9) on irrotational subspace

reduces to
[

εrI 0
0 µrI

]

. (21)

The essential spectrum (accumulation points of the eigenval-

ues) for the irrotational subspace is thus given by

λ = εr and λ = µr. (22)

Finally, consider the harmonic subspace. Writing J = J
harm =

∇h and substituting that current into the L operator gives after

integration by parts [6]

L[Jharm] =
(

I + τε
(

∇Sn − k2V
))

[Jharm]. (23)

Here

Sn[F](r) :=

∫

∂D

G0(r, r
′)n(r′) ·F(r′) dS′ (24)

is the surface single layer potential operator. Taking normal

component of the right hand side of (23) on the surface of D
gives

(

n · I + τε
(

D
∗

n − k2n ·V
))

[Jharm] (25)

where D
∗

n is the adjoint of the surface double layer operator.

Since that operator is compact if the surface is smooth, the

essential spectrum of the harmonic part has accumulation

points at (εr+1)/2 and (µr+1)/2. For non-smooth surfaces,



the adjoint of the double layer potential operator is bounded

and the spectrum will be spread around the accumulation

points.

In conclusion, in isotropic medium the essential spectrum

of JMVIE (9) contains the following accumulation points

1, (1 + εr)/2, (1 + µr)/2, εr and µr. (26)

B. Bi-isotropic Medium

Next we consider bi-isotropic medium. The main difference

compared to the isotropic medium is that the L operator

appears on both the diagonal and off-diagonal blocks of (15).

Consider first the solenoidal subspace. Since the L operator

is compact for solenoidal functions, the essential spectrum of

the solenoidal part is unity, as in the case of isotropic medium.

For the irrotational part we utilize (20), and identity (19) is

used to obtain

ξL = ξI − ξT . (27)

Then, the integral operators in (15) reduce to

[

εrI ξrI

ζrI µrI

]

. (28)

The spectrum is therefore determined by

det

[

(εr − λ)I ξrI
ζrI (µr − λ)I

]

= 0. (29)

This leads to a quadratic equation which solution is

λ =
εr + µr ±

√

(εr + µr)2 − 4(εrµr − ξrζr)

2
(30)

defining the accumulation points of the spectrum of the

irrotational subspace.

Using similar procedure as above in the case of isotropic

medium for the harmonic subspace we obtain the following

equation (compact operators are again omitted)







1

2
(εr + 1)I

1

2
ξrI

1

2
ζrI

1

2
(εr + 1)µrI






. (31)

Solving that equation, gives the following eigenvalues

λ =
1

4
(ǫr + µr + 2)

±

√

1

4
(ǫr + µr + 2)2 − ((ǫr + 1)(µr + 1)− ξrζr)

2
. (32)

In conclusion, in bi-isotropic media the essential spectrum of

(15) consists of unity (solenoidal subspace), (30) (irrotational)

and (32) (harmonic).

IV. NUMERICAL EXPERIMENTS

In the numerical solution, first the volume of an objects is

divided into linear tetrahedra. Then the integral equations are

discretized using Galerkin’s method with piece-wise constant

basis and testing functions scaled with the square of the

volume of an element. More details on the discretization

process are given, e.g., in [5], [6], [9].

Let us consider a sphere with k0r = 0.1 where k0 is the

wavenumber of vacuum and r is the radius of the sphere. Fig. 1

shows the eigenvalues for isotropic material with εr = 3, εr =
9, µr = 1 and with zero magneto-electric parameters. In the

figure, the accumulation points of the spectrum predicted by

the theory are denoted for the solenoidal part by a vertical

blue line, for the irrotational one with green lines, and for the

harmonic part with black lines.

For εr = 3 the spectrum has accumulation points close

to 1 and 3, corresponding to the solenoidal and irrotational

subspaces, and the spectrum of the harmonic part is spread

around the accumulation point 2 as a consequence of non-

smooth discretization. As permittivity is increased, the shape

of the spectrum remains about the same, but the irrotational

and harmonic parts become wider. This means that the spectral

radius depends on the permittivity. The higher permittivity, the

wider is the spectral radius.
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Fig. 1: Eigenvalues (red dots) for a sphere k0r = 0.1 with

εr = 3, εr = 9 and µr = 1, χr = 0, κ = 0.

Next the analysis is repeated with non-zero chiral parameter

κ. As κ is increased, Fig. 2, the solenoidal part stays at 1, the

irrotational part starts to shift to lower and higher values, and

the harmonic part is slightly wider than in the case of isotropic

medium.

As a last example, we consider two problematic cases where

the spectrum is spread on both sides of the origin, causing an

ill-conditioned matrix and poor iteration convergence. In the

first case εr = 3, µr = 1, χr = 0, κ = 2 and in the second

one εr = −2, µr = 1, χr = 0, κ = 0.3. As Fig. 3 illustrates,

for these material parameter combinations the accumulation
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Fig. 2: Eigenvalues for a sphere k0r = 0.1 with εr = 3, µr =
1, χr = 0 and with κ = 0.3, and κ = 0.6.

points of the irrotational and harmonic parts appear on the

both sides of the origin.
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Fig. 3: Eigenvalues for a sphere k0r = 0.1 with εr = 3, µr =
1, χr = 0, κ = 2 and with εr = −2, µr = 1, χr = 0, κ = 0.3.

V. PRECONDITIONING STRATEGY

Next we discuss how the spectral analysis can be utilized

in developing a preconditioner for JMVIE. In order to do

that we should be able to scale the solenoidal, irrotational

and harmonic parts separately [6]. This in turn requires the

use of a discrete Helmholtz decomposition. To that end, let

PS ,PI and PH denote the projections from the piece-wise

constant L2 space to the solenoidal, irrotational and harmonic

subspaces. Let

Ax = b, (33)

denote the original matrix equation due to the discretization

of JMVIE in the case of an isotropic dielectric scatterer. With

the Helmholtz projection operators, the scaled equation can be

expressed as [6]

PA (Hx) = P b, (34)

where H = PS + PI + PH is the total Helmholtz projector

and the preconditioner is given by

P = PS +
1

εr
PI +

2

1 + εr
PH . (35)

As shown in [6], this preconditioner leads to an iteration count

that is nearly independent on the permittivity of the object.

VI. CONCLUSION

Spectral properties of the current-based volume integral

equation are studied in the case of isotropic and bi-isotropic

media. Using Helmholtz decomposition the spectrum is di-

vided into solenoidal, irrotational, and harmonic parts. For

electrically small objects, the solenoidal and irrotational parts

of the discretized system follow rather well the theory and

have a discrete spectrum. Due to non-smooth discretizations

the harmonic part is spread over the accumulation point. The

main point in this spectral analysis is that it can be utilized

in developing efficient preconditioners for the discrete matrix

equations.
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