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Abstract 

Opioids are the most efficacious analgesics in the treatment of nociceptive pain. Opioid 

treatment can, however, be complicated by side effects and also tolerance and opioid-

induced hyperalgesia. Therefore, drugs that potentiate opioid-induced analgesia and 

help reduce the required opioid dose can be beneficial as adjuvants in pain treatment. 

Interestingly, the mechanism of the attenuation of the analgesic effect of morphine in 

tolerance and opioid-induced hyperalgesia might be related to neuroinflammation in the 

central nervous system. The aims of this investigation were to study drug interactions 

that could potentiate the effects of opioids and prevent/reverse opioid tolerance, and 

also to assess the role of immunomodulating cells, microglia and astrocytes, in morphine 

tolerance and opioid-induced hyperalgesia in male Sprague-Dawley rats. 

Spironolactone, which has been suggested in the literature to potentiate the effects of 

morphine, did not display antinociceptive effects of its own in thermal tests, but acutely 

enhanced the morphine antinociception, most likely by inhibiting P-gp and increasing 

morphine brain concentrations. Spironolactone did not prevent the development of 

morphine tolerance. Spironolactone increased the antinociceptive effects and brain 

concentrations of oxycodone, probably via inhibition of metabolism. The increased brain 

disposition might be associated with P-gp inhibition. 

Pregabalin enhanced the antinociceptive and sedative effects of both oxycodone and 

morphine in thermal tests. The interaction, however, differed between these opioids as 

it depended on the dose or/and temporal scheme of the drug administration. The 

behavioral results could not be explained by pharmacokinetic interaction at the central 

nervous system level. Pregabalin did not prevent or reverse morphine tolerance. Chronic 

morphine treatment induced tolerance and hyperalgesia. The associated 

immunohistochemically determined increase in microglia reactivity took place at the 

spinal but not supraspinal level. The transcriptome of the spinal microglia cells indicated 
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upregulation of many inflammation and pain-associated genes. The results of this thesis 

imply that spironolactone has a robust pharmacokinetic interaction with morphine and 

oxycodone, which could have implications in opioid therapy. The interaction between 

pregabalin and opioids, however, does not seem to involve pharmacokinetic interaction. 

Thus, the results suggest that the drug interaction between pregabalin and opioids at 

the CNS level is pharmacodynamic. The transcriptome study of the spinal microglia 

strengthens the hypothesis that microglial activation after chronic morphine treatment 

is similar to activation that occurs with pathological pain. 
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1. Introduction 

Opioid drugs constitute the cornerstone of the treatment of moderate-severe acute, 

postoperative, and cancer pain. Although the analgesic efficacy of opioids is not 

restricted by a ceiling effect, in practice the opioid dose and analgesia can be limited by 

side effects. Therefore, other drugs that potentiate opioid-induced analgesia and help 

reduce the required opioid dose can be beneficial as adjuvants in pain treatment. 

Besides beneficial modulation, previously unrecognized interactions between opioids 

and other drugs can affect the opioid response and compromise the treatment. 

 

Interestingly, the literature suggests that diuretics might exert an antinociceptive effect 

(Granados-Soto et al., 2005; Poggioli et al., 1985; Sun et al., 2012) of their own and 

modulate the effects of opioids (Chu et al., 1978; Poggioli et al., 1985) in preclinical 

models. Antinociceptive mechanisms of individual diuretics include attenuation of 

microglial activation (Sun et al., 2012), antagonism of mineralocorticoid receptor (Dong 

et al., 2012), and blocking of the neural sodium-potassium-chloride co-transporter 

(Granados-Soto et al., 2005). The mechanism of the suggested interactions between 

diuretics and opioids remains unknown.  

 

Gabapentinoids have reduced the amount of opioids needed to alleviate experimental 

nociceptive pain in healthy volunteers (Eckhardt et al., 2000) and in postoperative pain 

(Clarke et al., 2009; Fassoulaki et al., 2012; Mahoori et al., 2014; Tiippana et al., 2007; 

Yücel et al., 2011). Drug interactions can be either pharmacokinetic and take place at the 

level of absorption, distribution, metabolism, and elimination or pharmacodynamic and 

take place at the molecular level, governing the response of the body to the drug. To 

characterize the nature of the interaction, drug concentration measurements might be 

required. Indeed, although pregabalin is not known to have any drug interactions, a 
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pharmacokinetic interaction between pregabalin and opioids has not been excluded. 

The interaction between pregabalin and opioids is also interesting as both drugs have 

been shown to be co-abused in forensic cases (Häkkinen, 2014), indicating that abuse of 

pregabalin might predispose to opioid-induced respiratory depression. 

 

Opioids also modulate their own analgesic effect by initiating adaptive processes like 

opioid-tolerance and opioid-induced-hyperalgesia (OIH), both of which can undermine 

the treatment (Watkins et al., 2009). Opioid tolerance and OIH might share a common 

neurobiological basis and the activation of microglia and related neuroinflammation has 

emerged as one possible mechanism contributing to the development of opioid 

tolerance and OIH (Cui et al., 2006; Grace et al., 2015; Raghavendra et al., 2002; Watkins 

et al., 2009). 

 

In this thesis, pharmacological interactions between the diuretics spironolactone, 

eplerenone, furosemide, and chlorothiazide and the anticonvulsant pregabalin in co-

administration with oxycodone and morphine were studied. In addition to drugs that 

could modulate opioid antinociception, we assessed the reactivity of microglia and 

astrocytes in morphine tolerance in spinal and supraspinal structures. 
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2. Review of the literature 

2.1 Definition of pain 

Pain is “an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage” (International 

Association for the Study of Pain, IASP).  

2.2 Physiology of nociception and pain 

The neural process that encodes noxious stimuli (nociception - according to the 

International Association for the Study of Pain) that alerts the organism of an imminent 

threat to its structural integrity is well preserved within evolution in different species 

(Sneddon, 2004). The consequence of nociception - motor response to withdraw from 

noxious stimuli or motivation to let damaged tissue heal provides an obvious advantage 

for survival. In the last centuries, many theories attempting to explain the physiology of 

nociception have been presented. For example, in the Specificity theory, all sensory 

modalities, including pain, have dedicated and distinct pathways, whereas in the 

Intensity theory separate pathways do not exist and the intensity of all stimuli is encoded 

in the frequency of the nerve impulses (Moayedi and Davis, 2012). An important step 

forward was taken with the Gate control theory, which postulated that the transmission 

in the fibers conveying touch information can affect whether the fibers conveying 

noxious stimulation can relay their information onwards (Melzack and Wall, 1965; 

Moayedi and Davis, 2012). According to the current knowledge, the phases of 

nociception and pain can be functionally divided into transduction, transmission, 
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modulation, and perception, all of which take place in specific structures of the nervous 

system.  

2.2.1 Nociceptors and nocireceptors 

Nociceptors are the first neurons in the nociceptive pathway. The cells are 

pseudounipolar with their somas in the trigeminal ganglion (Fig. 1A) or dorsal root 

ganglion (Fig. 1B). According to the Erlanger Gasser classification (Whitwam, 1976), 

the nociceptors are further divided into Aδ and C fibers based on the diameter of the 

axon. Aδ fibers are myelinated and conduct action potentials fast (5-30 m/s) 

(Marchland, 2012a). Aδ fibers evoke sharp, localized pain and respond to all noxious 

modalities (chemical, heat, mechanical) (type I) and to heat with relatively low 

threshold (type II) (Basbaum et al., 2009). Aδ type II fibers convey rapid signaling of 

noxious heat (Basbaum et al., 2009). Most C fibers are also considered polymodal, but 

their activation produces more ill-localized pain and sufficient activation can evoke a 

burning sensation (Basbaum et al., 2009). Unlike Aδ, C fibers are unmyelinated and 

conduct action potentials slowly (0.5-2 m/s) (Marchland, 2012a). In addition to the 

actual nociceptors, Aβ fibers that in normal conditions convey impulses from 

innocuous mechanical stimuli can begin to contribute to allodynia (“Pain due to a 

stimulus that does not normally provoke pain”, IASP) under conditions where the CNS 

is sensitized (Marchland, 2012a). 

 

The distal ends of the axons on the nociceptors lay in the peripheral tissues or viscera. 

All nociceptors have unmyelinated, free nerve-endings, which contain the actual 

molecular receptors (transducers) of the noxious stimuli. The transducers are a 

heterogeneous group of membrane-bound-proteins that include metabotropic, 

enzyme-linked receptors, and ionotropic channels (Woolf and Costigan, 1999). 

Important individual group of transducers is transient receptor potential (TRP) channels, 
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for review, see Julius (2013). Unlike the other primary afferents, nociceptors are 

activated only by stimuli whose magnitude exceeds the high threshold, which can be 

attributed to the high activation threshold of the transducing molecules (Woolf and Ma, 

2007).  

 

Transducers begin the first phase of nociception by transducing the noxious stimuli into 

action potentials. The action potentials are generated and conducted by voltage-gated 

sodium channels (VGCC), of which Nav1.7, Nav1.8, and Nav1.9 are particularly important 

(Dib-Hajj et al., 2010). The hereditary channelopathies which prevent the depolarization 

from amplifying into action potential can cause inability to experience pain (Cox et al., 

2006). Propagation of the action potential along the axon leads to the transmission 

phase of nociception.  
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Figure 1. Schematic diagram of the anatomy of nociceptors from the head (A) and elsewhere from the body 

(B). Trigeminal nucleus (Vc). Republished and modified with permission of American Society for Clinical 

Investigation from [J Clin Invest. Nociceptors: the sensors of the pain pathway, Adrienen E. Dubin et al., 

2010. Year of copyright 2010]; permission conveyed through Copyright Clearance Center, Inc.  
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2.2.2 Role of spinal cord and medulla oblongata in nociception 

The proximal end of the nociceptor forms a synapse with the second order afferent 

neuron or interneuron either in the dorsal horn of the spinal cord or trigeminal nucleus 

in the brain stem. C fibers synapse in laminae I and II and Aδ fibers in laminae I and V of 

the dorsal horn (Fig. 1) (Dubin and Patapoutian, 2010). The synapses are excitatory and 

use glutamate, neuropeptides such as calcitonin gene-related peptide (CGRP) and 

substance P, and proteins, including brain-derived neurotrophic factor (BDNF) as 

neurotransmitters (Basbaum et al., 2009; Woolf and Ma, 2007). Interneurons can, for 

example, produce direct neuronal interlinks to the motor nerves and facilitate spinal 

reflexes, but also locally inhibit the transmission from the afferent fibers. The axons of 

second order neurons decussate to the contralateral side and ascend via the 

anterolateral system of the spinal cord to the thalamus (spinothalamic tract) in 

diencephalon or reticular formation (spinoreticular tract) in the pons (Westlund and 

Willis, 2015). From the trigeminal nucleus, the axons to the thalamus and reticular 

formation ascend via the trigeminothalamic (Henssen et al., 2016) and the 

trigeminoreticular tracts (Panneton et al., 2011), respectively. Both the spinal cord and 

the trigeminal nucleus also project to the amygdala via the parabrachial complex (Jasmin 

et al., 1997). The tracts projecting to the thalamus mediate the sensory-discriminative 

dimension of pain (Fig. 2), and the tracts to the amygdala the motivational-affective 

dimension (Ab Aziz and Ahmad, 2006). Projections for reticular formation mediate 

poorly localized pain (Patestas et al., 2016), but also induce changes in alertness 

(Mendoza, 2011) as a response to noxious stimuli.  

 

The modulation phase has a significant role in nociception and pain. The modulation 

exists in the form of a descending modulatory circuit that can produce strong 

endogenous analgesia, but can also facilitate nociceptive transmission (Fig. 2) (Colloca 

and Grillon, 2014), for example, due to an emotional status. The descending modulation 
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gathers input from multiple areas, including the amygdala, the rostral anterior cingulate 

cortex, and the ascending tracts (Ossipov et al., 2010). Signals from the supraspinal 

structures converge to the periaqueductal gray (PAG) in the midbrain, which projects to 

the medulla (Ossipov et al., 2010) (Fig. 2). From the rostroventromedial medulla (RVM), 

the neurons of nucleus raphe magnus and nucleus reticularis gigantocellularis project 

signals to both the spinal and medullary dorsal horns directly or via interneurons to 

govern the nociceptive input from the periphery (Ossipov et al., 2010).  

 

GABAergic and glycinergic neurotransmission from the ventral medulla to the spinal 

cord is antinociceptive (Hossaini et al., 2012; Kato et al., 2006), but the subtype of the 

serotonin receptor  determines whether the serotonergic transmission evokes 

excitatory or inhibitory effects (Ossipov et al., 2010). Antinociceptive noradrenergic 

projections to the spinal cord descend from the locus coeruleus, which itself closely 

communicates with PAG and RVM  (Llorca-Torralba et al., 2016; Ossipov et al., 2010). 

Recent studies have also described direct descending modulatory circuits from the 

cortex to the dorsal spinal horn and trigeminal nucleus (Wang et al., 2015). The 

interneurons which can get input from both the peripheral afferents and descending 

tracts use, for example, enkephalinergic (François et al., 2017) and 

GABAergic/glycinergic transmission when inhibitory and glutamate when excitatory 

(Todd, 2010).  
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Figure 2. Schematic diagram of pain modularity circuitry. Periaqueductal gray (PAG), Locus 

Coeruleus (LC), Rostroventral medulla (RVM). Republished and modified with permission of 

American Society for Clinical Investigation from [J Clin Invest. Nociceptors: the sensors of the pain 

pathway, Michael H. Ossipov et al., 2010. Year of copyright 2010]; permission conveyed through 

Copyright Clearance Center, Inc. 
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2.2.3 Nociception and pain in the brain 

Perception, the last phase of nociception, takes place in the brain (Fig. 3). Cognitive 

functions are required to feel pain, at least with regard to how pain is defined. Thus, pain 

is not only a sensory experience but a complex sensation, which is affected by 

personality, memories, mood, and expectations. Considering the multidimensional role 

of pain, it is easy to understand that nociceptive information from the spinal cord and 

trigeminal nucleus is relayed to multiple brain regions. Although not specific for pain 

(Iannetti and Mouraux, 2010), four cortical structures have a dominant role in the brain: 

primary and secondary somatosensory cortices are important in the sensory-

discriminative dimension of pain, whereas insular cortex and anterior cingulate cortex 

participate in processing of the motivational-affective dimension (Marchland, 2012b) 

(Fig. 3). However, also subcortical structures like the amygdala have an important 

contribution to pain (Simons et al., 2012).  
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Figure 3. Schematic diagram of the brain areas involved in pain and nociception. Red labels 

indicate an association with the motivational-affective component of pain and blue labels a 

sensory-discriminative association. Prefrontal cortex (PFC), Anterior Cingulate Cortex (ACC), 

Amygdala (AMY), Basal ganglia (BG), Primary somatosensory cortex (S1), Secondary 

somatosensory cortex (S2), Parabrachial nucleus (PB), and Periaqueductal gray (PAG). Adapted 

by permission from Macmillan Publishers Ltd: [Nat. Rev. Neurosci., Cognitive and emotional 

control of pain and its disruption in chronic pain, Bushnell et al., 2013. Year of copyright 2013.] 

PAG 
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2.3 Endogenous opioid system 

The endogenous opioid system is an essential part of the central descending modulatory 

circuit. However, the endogenous opioid system also participates in peripheral 

analgesia, reinforcement networks, and modulation of stress and mood (Le Merrer et 

al., 2009; Vadivelu et al., 2011). The system consists of widespread but strategically 

concentrated opioid receptors and endogenous agonists, and it also mediates the effects 

of the exogenous opioid agonists, as is covered under Section 2.4 ‘Exogenous opioids’. 

2.3.1 Opioid receptors and their endogenous agonists 

The endogenous opioids comprise peptides in the β-endorphin, enkephalin, and 

dynorphin families (Benarroch, 2012). Enkephalins and dynorphins are expressed in 

interneurons, including those that participate in the modulation of nociception in the 

PAG-RVM-axis and the dorsal horn and trigeminal nucleus (Benarroch, 2012). β-

endorphins also participate in the modulation of nociception, but they project widely 

across the CNS from the nuclei at the brain stem and diencephalon (Benarroch, 2012) 

and are also secreted to the circulation from the pituitary gland (van Den Burg et al., 

2001). In addition, opioid peptides are secreted from immune cells in peripheral tissue, 

for review, see Kapitzke et al. (2005). The individual endogenous opioid peptides have 

differential affinity profiles to the opioid receptors (Kapitzke et al., 2005). 

 

Four opioid receptors: μ- (MOR), κ- (KOR)-, and δ (DOR)-opioid receptors and opioid-like-

receptor-1 (ORL-1) or nociceptin receptor (NOP), have been identified (Table 1). The 

opioid receptors belong to the family of seven transmembrane G protein-coupled 

receptors and are encoded by a single gene (OPRM1, OPRK1, OPRD1, and OPRL1, 

respectively) (Al-Hasani and Bruchas, 2011). Opioid receptors can further form dimers 

either with the same or a different opioid receptor type, increasing opioid receptor 
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variety (Al-Hasani and Bruchas, 2011). Subtypes of the different receptors produced by 

RNA splicing also exist, but their biological relevance remains unclear (Al-Hasani and 

Bruchas, 2011). Opioid receptors are highly conserved and are present in most species 

(Dreborg et al., 2008). However, the opioid system does not seem to be imperative for 

the development or survival of the individual, as genetically modified mice with no 

opioid receptors are fertile and stay alive at least in laboratory conditions (Kieffer, 1999). 

 

Opioid receptors reside in critical locations of the descending pain modulation circuit, 

including the anterior cingulate cortex, PAG-RVM axis, and superficial dorsal spinal cord, 

although the distribution of the different receptors varies (Benarroch, 2012). Studies 

using knockout mice have demonstrated that MOR, KOR, and DOR have distinct roles in 

the physiological regulation of nociception and that their individual ablation causes 

subtle differences in nociceptive tests. For example, KOR has been shown to be involved 

in spinally mediated thermal nociception, and MOR elicited an effect in mechanical 

nociception at the supraspinal level (Martin et al., 2003). Interestingly, endogenous 

antinociception caused by conditioned fear was attenuated by intra-RVM injection of 

MOR but not KOR and DOR antagonists (Foo and Helmstetter, 1999), and intra-PAG 

injection of MOR but not KOR antagonist (Bellgowan et al., 1998). The results are in 

harmony with the activation of MOR being required for antinociceptive effect of potent 

exogenous opioids (Kieffer and Gaveriaux-Ruff, 2002). 

 

Opioid circuits are also found in brain sites associated with reward-processing and 

addiction, including the ventral tegmental area, nucleus accumbens, and amygdala (Le 

Merrer et al., 2009)). In addition to their central functions, opioid receptors are a 

constitutive part of the peripheral nervous system, where their role has especially been 

studied in inflammation-related analgesia (Vadivelu et al., 2011).  
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Table 1. Opioid receptors and their agonist and antagonists. μ-opioid receptor, MOR (μ), δ-opioid 

receptor, DOR (δ), κ-opioid receptor, KOR (κ), Nociceptin receptor (NOP). (Chartoff and Connery, 

2014; Contet et al., 2004; Eguchi, 2004; Gaveriaux-Ruff and Kieffer, 2011; Land et al., 2008; Zaveri 

et al., 2005) 

 

 

2.4 Exogenous opioids 

2.4.1 Clinical use 

Opioid is a substance that binds to opioid receptors and produces morphine-like effects, 

whereas the term opiate refers to compounds found in the opium poppy plant. Opiates 

have been used for thousands of years. Archeological studies implicate the use of opium 

already in 14th century BCE in Minoan civilization (Askitopoulou et al., 2002). Morphine 

was extracted from opium first in 1805, and since then many synthetic or semi-synthetic 

(synthetized from opiates) opioid agonists have been developed. In the modern world, 

opioids are still the analgesics known to have the highest efficacy in the treatment of 

nociceptive pain.  

 

The global consumption of opioids has been on the rise during the past three decades, 

but reached a plateau between 2010 and 2015 (Pain & Policy Studies Group, 2015; 

Silbermann, 2011) (Fig. 4A). The use, however, is highly dissimilar between countries; in 
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2008, countries with 15% of the world’s population consumed 89% of the global 

morphine (Silbermann, 2011). In Finland in 2015, the consumption of strong opioids and 

weak opioids was 3 and 11 defined daily doses (DDD)/1000 inhabitants/day (Fimea, n.d.), 

respectively. The main indication for the use of opioids is moderate to severe pain. 

Opioids are widely used to treat acute nociceptive (Ramsay, 2000) and cancer pain 

(Caraceni et al., 2012). Opioids are also used in the management of neuropathic pain, 

although they are not the first-line choice (Dworkin et al., 2010). The careless use of 

opioids in non-malignant chronic pain can easily lead to problems due to the reinforcing 

effect of opioids on drug-seeking behavior (Chou et al., 2009). From the clinical 

perspective, opioids can be classified as weak, intermediate, or strong. In Finland, the 

following opioids are used as analgesics outside hospital in clinical practice: codeine and 

tramadol (weak opioids), buprenorphine (intermediate opioid), and morphine, 

oxycodone, fentanyl, methadone, and hydromorphone (strong opioids). 
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Figure 4. Consumption of opioids globally (A) and in Finland (B). Defined daily doses (DDD). 

(Fimea, 2016, 2012, 2010, n.d.; Pain & Policy Studies Group, n.d.) 
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2.4.2 Opioid-induced analgesia 

Opioid-induced analgesia is elicited via activation of the endogenous opioid system (Fig. 

5).  Analgesia comprises three system-level mechanisms: 1) emotional detachment from 

the pain, which has been shown to be due to MOR-mediated activity in the limbic system 

of the brain (Lee et al., 2014; Leppä et al., 2006.), 2) facilitation of the descending 

inhibitory system, and 3) inhibition of transmission of peripheral nociceptive input in the 

dorsal horn of the spinal cord and trigeminal nucleus.  

 

Interaction with the MOR as their mechanism of action is common to all exogenous 

opioid agonists (later only opioids) (Drewes et al., 2013). MOR is the most abundant 

opioid receptor in the supraspinal level, including the brainstem, amygdala, and 

thalamus (Benarroch, 2012). Specifically, the PAG-RVM axis, which has been shown to 

have high density of MOR (Commons et al., 2000), and intra-PAG injection of MOR 

antagonist have been demonstrated to attenuate the antinociceptive effect of systemic 

morphine (Bernal et al., 2007; Lewis and Gebhart, 1977). MOR comprises also 70% of 

the total opioid receptors in the spinal level, where the opioid receptors are 

concentrated presynaptically (~70%) in nociceptors and postsynaptically (~30%) in 

interneurons or projection neurons (Besse et al., 1990). Activation of MOR by opioid 

agonist causes the dissociation of the G-protein subunits Gβγ and Gα. The Gβγ activates 

inwardly rectifying potassium channels in the post-synaptic nerve terminal (Zylbergold 

et al., 2010), and deactivates voltage-dependent Ca2+-channels presynaptically (Dolphin, 

1998). Gαi inhibits adenylate cyclase, and thus, formation of cAMP (Hsia et al., 1984). 

The described events lead to inhibition of neuronal activity. In addition, activation of 

MOR is followed by intracellular mechanisms that desensitize the receptor signaling and 

could be interpreted as adaptation aiming to preserve homeostasis. The process is 

mediated via MOR phosphorylation and β-arrestin binding, which disturb the cell 

signaling and might lead to MOR internalization (Groer et al., 2006). Opioid-induced 
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analgesia is effectively blocked with the MOR antagonist naloxone (Markowitz et al., 

1976). 

 

 

Figure 5. Schematic diagram of opioid action sites. Periaqueductal gray (PAG), Rostroventral 

medulla (RVM). 
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2.4.3 Adverse effects 

Opioid administration can cause adverse effects that limit dosing and thus effectiveness 

of the opioid treatment. In a meta-analysis of non-malignant chronic pain patients, the 

most common adverse effects and their incidence were constipation (33%), nausea 

(26%), and sedation (23%) (Kalso et al., 2004). Opioids can also elicit other adverse 

effects, including pruritus and bladder dysfunction (Benyamin et al., 2008). Opioid-

induced immunomodulating effects via alteration of the endocrine system or immune 

cells are also possible, but their clinical relevance is less clear (Welters, 2003). Typically, 

patients experience adverse effects at the beginning of opioid treatment or during dose 

escalation, but these effects might continue also during the maintenance dose in chronic 

treatment  (Benyamin et al., 2008; Smith and Laufer, 2014). The most severe 

complication of opioids is respiratory depression. Respiratory depression is the 

prevalent mechanism of death in opioid overdose in drug addicts (White and Irvine, 

1999), but also the legal use of an opioid can predispose to respiratory depression; 

prescribed opioids were the most significant drugs involved in drug overdose fatalities 

in the USA in 2015 (CDC, 2016).  

 

The adverse effects are mediated via both peripheral and central mechanisms. 

Constipation, for example, is caused by the activation of MOR and DOR in the submucosa 

and myenteric plexuses of the gastrointestinal tract, leading to inhibition of motility of 

the small and large intestine (Nelson et al., 2016). The specific mechanisms of the opioid 

central adverse effects are less clear. Opioid-induced nausea and vomiting probably 

encompasses activation of MOR in the chemoreceptor trigger zone in the medulla and 

vestibular apparatus in the inner ear (Smith and Laufer, 2014). Opioid-induced sedation 

seems to arise from central anticholinergic effects, but also from parallel inhibitory 

effects on cerebral activity (Vella-Brincat and Macleod., 2007). Studies indicate that the 

mechanism of respiratory depression is associated with the opioid actions at the bulbar 
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respiratory network (Lalley et al., 2014). Other drugs, such as anti-emetics and 

peripheral opioid antagonists, are often needed to alleviate opioid-induced adverse 

effects (Smith and Laufer, 2014). 

2.4.4 Morphine 

Morphine is the classical MOR agonist (Pasternak and Pan, 2013) and although other 

opioids are replacing it in clinical medicine it has an established place as the reference 

drug in pharmacology. The pharmacodynamic mechanism of morphine is covered under 

Section 2.3.2 ‘Opioid-induced analgesia’. Morphine is glucuronidated to morphine-3-

glucuronide (M3G) and morphine-6-glucuronide (M6G) mainly in the liver by UGT2B7 

(Coffman et al., 1997) and N-demethylated to normorphine by CYP3A4 (Projean et al., 

2003; Hasselström and Säwe, 1993) (Fig. 6). The rat, however, produces no M6G from 

morphine (Kuo et al., 1991). M3G is inactive at MOR, but M6G possesses potent 

analgesic efficacy, which is considered to contribute significantly to morphine analgesia 

(De Gregori et al., 2012). Bioavailability of orally administered morphine is about 30% 

(Hasselström and Säwe, 1993) in humans, and of the total morphine dose, 9% (i.v.) and 

2% (p.o.) is excreted in urine as morphine, 44% (i.v.) and 42% (p.o.) as M3G, and 11% 

(i.v.) and 3% (p.o.) as M6G (Osborne et al., 1990).  

 

Drug transporters can exert significant effects in governing morphine and its metabolite 

disposition in the CNS. P-gp actively transports morphine out of the CNS across the 

blood-brain-barrier (BBB), and blocking P-gp pharmacologically and removing its 

expression from the BBB has increased morphine brain concentrations in the rat  

(De Gregori et al., 2012; Letrent et al., 1999; Xie et al., 1999). The P-gp blockers quinidine  

(Kharasch et al., 2003) and itraconazole (Heiskanen et al., 2008) did not, however, 

appear to have a significant effect on morphine brain disposition, but probably by 

inhibiting P-gp in the periphery they increased morphine plasma concentrations. Other 
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relevant drug transporters at the BBB are the probenecid-sensitive organic anion 

transporter, which facilitates transport of M3G (Xie et al., 2000), and the organic cation 

transporter 2, which facilitates transport of morphine (Mashayekhi et al., 2010). 

2.4.5 Oxycodone 

Oxycodone is a semi-synthetic MOR agonist that is increasingly used in clinical medicine 

(Lemberg et al., 2006). The pharmacodynamic mechanism of oxycodone is covered 

under Section 2.3.2 ‘Opioid-induced analgesia’. Oxycodone is metabolized in the liver 

mainly to noroxycodone, oxymorphone, and noroxymorphone (Fig. 6). The CYP3A N-

demethylates oxycodone to noroxycodone and oxymorphone to noroxymorphone, 

whereas CYP 2D6 O-demethylates oxycodone to oxymorphone, but also noroxycodone 

and oxymorphone to noroxymorphone (Lalovic et al., 2006; 2004; Samer et al., 2010). 

The role of the metabolites in oxycodone-induced analgesia is considered negligible 

(Lemberg et al., 2009), although intrathecal administration of noroxymorphone has 

shown potent analgetic efficacy in the rat (Lemberg et al., 2008), and oxymorphone itself 

is used as an opioid analgesic (Babalonis et al., 2016). Oxycodone has a bioavailability of 

60% (Pöyhia et al., 1992), and of the total orally administered dose of oxycodone, 9% is 

excreted in urine, 22% as noroxycodone, 11% as oxymorphone, and 14% as 

noroxymorphone (all presented as sum of free and conjugated proportions) (Lalovic et 

al., 2006). 

 

The role of transporter molecules in the oxycodone disposition across the blood-brain 

barrier is incompletely understood. Boström et al showed using microdialysis that 

oxycodone concentrations in the brain were disproportionately high relative to blood, 

indicating involvement of active oxycodone transport in the rat BBB (Boström, 2006; 

Boström et al., 2008). Interestingly, Okura et al. have suggested that oxycodone intake 

in the CNS is mediated via an organic cation transporter responsible for pyrilamine 
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transport in vitro and in situ in the rat (Okura et al., 2008), which could explain the results 

of Boström et al. Whether oxycodone is a substrate to P-gp is unclear. Co-administration 

of P-gp substrate PSC833 failed to alter oxycodone brain concentrations in the rat, 

suggesting that P-gp might not effectively participate in oxycodone efflux from the CNS 

(Bostrom et al., 2005). On the other hand, the investigation conducted in P-gp knock-out 

mice showed that presence of P-gp reduced concentrations of oxycodone in the brain 

(Hassan et al., 2007). Of the active oxycodone metabolites, oxymorphone has been 

shown to be actively transported to the CNS, but still the concentrations are probably 

too low to contribute to analgesia (Sadiq et al., 2013). Noroxymorphone is likely unable 

to cross the BBB due to its low lipophilicity (Lemberg et al., 2008).   

 

 

 

 

Figure 6. Schematic presentation of metabolism of morphine and oxycodone. Rat produces no 

morphine-6-glucuronide. Uridine 5'-diphospho-glucuronosyltransferase (UGT), Cytochrome P450 

(CYP). (Coffman et al., 1997; Hasselström and Säwe, 1993; Kuo et al., 1991; Lalovic et al., 2004; 

Projean et al., 2003). 
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2.4.6 Loperamide 

Loperamide is a synthetic opioid used to decrease gastrointestinal motility. Peripherally 

administered loperamide does not distribute to the CNS, thus demonstrating no central 

effects, but intrathecal (Kumar et al., 2012) administration produces MOR-dependent 

antinociception. The restriction of loperamide to the periphery is considered to be 

mediated via strong P-gp efflux at the BBB (Wandel et al., 2002). In accordance, the P-

gp inhibitor quinidine has increased loperamide brain concentration in the rat (Dagenais 

et al., 2004), and in P-gp knock-out mice the radioactivity of the brain tissue after 

administration of radio-labeled loperamide increased 12.5-fold compared with wild-type 

mice (Schinkel et al., 1995). 

2.4.7 The molecular structure of morphine, oxycodone, and loperamide 

The molecular structures of the opioids used in the present study (morphine, oxycodone 

and loperamide) are presented in Fig 7. The alkaloids morphine, oxycodone, and 

loperamide have molecular weight of 285, 315, 477 grams/mole and molecular formula 

of C17H19NO3, C18H21NO4, and C29H33ClN2O2, respectively.  
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Figure 7. Molecular structure of morphine (A), oxycodone (B), and loperamide (C). 

2.4.8 Opioid tolerance and opioid-induced hyperalgesia 

Opioid tolerance refers to acquired tolerance, which can be defined as loss of opioid 

efficacy following exposure to the drug. Tolerance has behavioral, pharmacokinetic, and 

pharmacodynamic dimensions (Collett, 1998). Behavioral tolerance refers to the 

individual being adapted to functioning under the influence of a substance (Collett, 

1998). The relevance of the pharmacokinetic dimension of tolerance is considered 

somewhat unclear (Dumas et al., 2008): it seems that opioids do not markedly auto-

induce biotransformation enzymes of phase I (Fredheim et al., 2012) or II (Rane et al., 

1983), however, Oxycodone (Hassan et al., 2007) and morphine (Aquilante et al., 2000) 

have been shown to induce the expression of the drug transporter P-gp, which could 
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alter the distribution of the P-gp substrate opioids in the brain, and in theory, contribute 

to opioid tolerance.   

 

Despite extensive research, the pharmacodynamic tolerance remains poorly 

understood. Studies indicate that the phenomenon encompasses multiple mechanisms, 

which seem to be differentially activated in response to different MOR agonists 

(Allouche et al., 2014). Numerous studies have demonstrated that binding of MOR 

agonist induces phosphorylation of MOR by many protein kinases, including  G protein-

coupled receptor kinases (GRKs), protein kinase C (PKC) and A (PKA), Ca2+/camodulin-

dependent protein kinase II (CaMKII), and mitogen-activated protein kinases (MAPKs) 

(Liu and Anand, 2001). Notably, the degree of the receptor phosphorylation has been 

shown to correspond to the opioid ligand efficacy (Yu et al., 1997). The phosphorylation 

of MOR is followed by binding of β-arrestines, which causes a steric block to the involved 

G-protein, disturbing the signaling to the effector molecule (Williams et al., 2012). 

Phosphorylation of MOR by itself is not sufficient to disturb the signaling to the inwardly 

rectifying potassium channels and to desensitize the receptor, but requires the binding 

of arrestines (Kovoor et al., 1997). The desensitized MOR is often internalized, 

dephosphorylated, and recycled resensitized to the cell membrane (Williams et al., 

2012). It is also possible that the internalized MOR is alternatively routed to degradation 

in lysosomes (Williams et al., 2012). The downregulation of the opioid receptors is, 

however, not considered necessary for the development of tolerance, as the expression 

of the opioid receptors has been shown to both upregulate and downregulate in chronic 

opioid treatment (Allouche et al., 2014). Particularly, the downregulation of MOR is not 

considered relevant in morphine-induced tolerance, as morphine differs from many 

other opioid agonists in that it is not considered to undergo MOR internalization (Dumas 

and Pollack, 2008; Williams et al., 2012). Morphine, however, also induces MOR 

phosphorylation (Mann et al., 2014), and deletion of β-arrestin has led into decreased 

development of morphine tolerance (Bohn et al., 2000). Failure of internalization of 



                                                                    Review of the literature                                     

39 

 

MOR after morphine treatment might explain the reduced MOR recovery from 

desensitization after chronic morphine treatment, thus contributing to morphine 

tolerance (Dang and Williams, 2004). Other theories of opioid tolerance include glia 

activation, are covered in Section 2.4.9 ‘Role of glia in opioid analgesia’. 

 

Opioid-induced hyperalgesia (OIH) refers to a phenomenon where administration of 

opioids provokes rather than alleviates pain. Although OIH is clinically acknowledged 

(Tompkins and Campbell, 2011), no publications asserting its epidemiology exist, 

probably because it is difficult to discern OIH from the development of opioid tolerance 

and progression of the underlying disease in patients (Lee et al., 2011).  

 

Indeed, in addition to their analgesic effects, opioids can cause sensitization to pain. The 

Opponent Process Theory can be used to conceptualize how these separate 

counteracting processes determine the opioid response (Koppert, 2007) . The analgesic 

effect of opioid arises if the opioid-induced antinociceptive processes surpass the 

concomitant opioid-induced pronociceptive processes. The recruitment of the 

pronociceptive processes reduces the analgesic efficacy of opioids and if the relative 

strength of these processes overcomes the antinociceptive processes, analgesia reverses 

to pain (Koppert, 2007.). It is therefore possible that the diminished antinociceptive 

effect of an opioid in developed tolerance is a sum of two components: desensitization 

to the antinociceptive effect of the opioid and enhanced recruitment of opioid-induced 

pronociceptive processes (Koppert, 2007).  

 

Opioid-induced tolerance and pronociception apparently share common mechanisms, 

of which the activation of the excitatory glutaminergic system in the synapse between 

the first and second order afferent seems the most prominent (Lee et al., 2011). 

Antagonism of glutamate-sensitive NMDA receptors has attenuated both OIH and 

tolerance (Mao et al., 1994; Mert et al., 2009), and morphine-induced downregulation 
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of synaptic glutamate uptake transporters EAAC1 and GLAST has been demonstrated to 

have a correlation with the development of morphine tolerance and thermal 

hyperalgesia in the rat (Mao et al., 2002). In accordance, amitriptyline has reversed 

morphine tolerance while increasing the expression of glutamine uptake transporters 

GLAST and GLT-1 and decreasing the concentrations of glutamate in the CFS (Tai et al., 

2007). In both the studies of Mao et al. and Tai et al., the occurrence of hyperalgesia 

and/or tolerance was prevented by protein kinase C inhibitor, indicating its pivotal role 

in the regulation of the glutamatergic system in response to opioids. The increased 

dorsal horn activity after opioid treatment might relate also to direct increase of 

glutamate release from the subpopulation of TRPV1-expressing spinal neurons and 

associated strengthening of the synapse via long-term potentiation (H.-Y. Zhou et al., 

2010). Increase of glutamate release from MOR-containing neurons in opioid tolerance 

has also been detected in the nucleus raphe magnus, possibly facilitating spinal 

nociception (Bie and Pan, 2005). The emerging role of glia in synaptic modulation in 

opioid-induced tolerance and pronociception is discussed in the next section. 

 

Another possible mechanism for opioid tolerance and pronociception is increased 

production of dynorphins. The role of dynorphins in the development of chronic pain 

has been established by many investigations, for review, see Podvin et al. (2016). Indeed, 

dynorphin antiserum injection blocked MOR agonist DAMGO-induced tactile allodynia 

and reversed thermal hyperalgesia in the rat (Vanderah et al., 2000). Other theories 

include the opioid-induced expression of cholecystokinin octapeptide, which has been 

shown to reduce the antinociceptive effect of opioids (Han et al., 1993), and 

upregulation of the β2-adrenergic signaling system (Liang et al., 2007). 
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2.4.9 Role of glia in pain and opioid analgesia 

The term ‘glia’, glue in Greek, reflects the passive and structural role in the CNS that glial 

cells (oligodendrocytes, satellite-glia, Schwann cells, microglia, and astrocytes) were first 

thought to play. What is now, however, well recognized is that microglia and astrocytes 

actively participate in the function of the nervous system by modulating 

neurotransmission reciprocally with the neurons and affecting the development and 

maintenance of synapses (Auld and Robitaille, 2003; Salter and Beggs, 2014). 

Specifically, the glia-neuron interfaces may also be involved in the chronic pain 

development, as many studies have revealed that glia-derived neuromodulators can 

affect the function of the spinal neurons related to nociceptive signaling, for review, see 

Grace et al. (2014). Interestingly, also opioids may facilitate many of the same 

pronociceptive glia-to-neuron mechanisms, and they can oppose opioid-induced 

analgesia, thus contributing to opioid tolerance and OIH (Fig. 8) (Watkins et al., 2005). 

 

Reinforcement of nociception by glia in pathological pain is based on 1) initiators (such 

as ATP and chemokines) leading to 2) glia activation (via signaling routes ERK and p38, 

for example) , and consequently to 3) secretion of glia-derived soluble mediators (such 

as interleukins and tumour necrosis factor) (Grace et al. 2014). Notably, the described 

steps in pathological pain, such as neuropathic pain, seem to be similar in the 

pathogenesis of opioid tolerance (Watkins et al., 2005). Specifically, opioid-associated 

initiators include substances such as fractalkine (CX3CL1) (Johnston, 2004), sphingosine-

1-phosphate (S1P) (Muscoli et al., 2010), and probably adenosine triphosphate (ATP) 

(Horvath et al., 2010; D. Zhou et al., 2010). Opioid-induced activation of glia has been 

shown to involve mitogen-activated protein kinase (MAPK) signaling routes ERK and p38 

in microglia and astrocytes (Cui et al., 2006; Z. Wang et al., 2010a; 2009). 
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The mechanism how opioids activate glia is, in part, unclear. Microglia and astrocytes 

may express MOR, KOR, and DOR (Chao et al., 1997; Horvath et al., 2010; Turchan-

Cholewo et al., 2008), and migration of microglial cells has been shown to depend on μ-

opioid receptor activation in vitro (Horvath et al., 2010). On the other hand, recent 

studies indicate that the μ-opioid receptor is not expressed in the microglia or astrocytes 

in the spinal dorsal horn (Corder et al., 2017; Kao et al., 2012). The other possible 

receptor that mediates glia activation is Toll-like receptor 4 (TLR4), which is expressed 

on microglia, but is inducible by inflammation also in astrocytes (Grace et al., 2015). 

Many opioids, including M3G, the metabolite of morphine, have been shown to possess 

TLR-4 signaling activity (Hutchinson et al., 2010).  

 

Blockade or removal of TLR-4 has enhanced both morphine and oxycodone analgesia 

and diminished morphine tolerance (Eidson and Murphy, 2013; Hutchinson et al., 2012). 

Similarly with these, compared with the TLR-4 knock-out mice, only the wild-type 

exposed to M3G exhibited hyperalgesia (Due et al., 2012). The role of TLR-4 in 

pronociception and tolerance has also been argued, because its removal from the 

genome in mice failed to enhance opioid antinociception and attenuation of tolerance 

(Mattioli et al., 2014). In addition to direct mechanisms suggested, the opioid-induced 

activation of glia can arise via neuron-derived substances. Chronic morphine treatment 

promotes the expression of substance P and CGRP (Powell et al., 2000), both of which 

heighten glial cell activation (Reddington et al., 1995; Zhu et al., 2014). 

Fractalkine is a product of neurons and astrocytes (Lindia et al., 2005), but its receptor 

is expressed in microglia (Verge et al., 2004). Suppression of fractalkine receptor has 

enhanced acute morphine analgesia and attenuated the development of tolerance and 

hyperalgesia (Johnston, 2004). Also of interest is that the effects of fractalkine may be, 

at least in part, IL-1-mediated, because fractalkine induces IL-1 release in the spinal cord, 

and co-administration of IL-1 receptor antagonist with morphine reverses hyperalgesia 

and prevents tolerance development (Johnston, 2004). Injection of fractalkine into 
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periaqueductal gray has diminished the acute antinociceptive effect of opioid agonists 

(Chen et al., 2007). Sphingosine-1-phosphate is a product of ceramide metabolism.  

Microglia express both the S1P receptors and the enzyme sphingosine kinase1, which 

catalyses S1P upregulation (Nayak et al., 2010; Tham et al., 2003). Morphine has been 

demonstrated to upregulate S1P in the spinal cord, and inhibition of ceramide and S1P 

blocks development of tolerance and OIH while preventing the production of the 

cytokines TNF-α, interleukin-1βα, and interleukin-6 (Muscoli et al., 2010). Moreover, 

administering S1P to activated microglia in vitro has elevated TNF-α and NO production 

(Nayak et al., 2010). The effects of S1P probably are not, however, glia-exclusive as S1P 

has been shown also to affect neuronal cAMP synthesis in the dorsal horn (Coste et al., 

2008). Moreover, purinergic transmission (including ATP) may be vital because inhibition 

of its receptors P2X4 (Horvath et al., 2010) and P2X7 (Zhou et al., 2010) in microglia has 

attenuated morphine tolerance.  

 

The soluble mediators augment excitatory synaptic transmission, primarily by enhancing 

glutamate release  or suppression of inhibitory synaptic transmission or both (Grace et 

al., 2014). The precise mechanisms include IL-1β-evoked glutamate release from the 

primary afferents via activation of functionally coupled presynaptic IL-1β and NMDA 

receptors (Yan and Weng, 2013), TNFα-induced release of glutamate from the primary 

afferents (Kawasaki et al., 2008), and TNFα-induced disinhibition of spinal synaptic 

transmission by reducing GABAergic neuron activity (Zhang et al., 2010). One important 

function of astrocytes especially is the uptake of glutamate from the synapses by GLAST 

and GLT-1 transporters (EAAT1 and 2 in humans) (Anderson and Swanson, 2000); their 

downregulation might also contribute to hyperalgesia (Weng et al., 2005). 

 

The research regarding opioid-induced glia activation has focused mainly on the spinal 

cord, and multiple studies have demonstrated increased reactivity of microglial cells in 

the dorsal horn after morphine treatment (Cui et al., 2008.; Holdridge et al., 2007; 
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Mattioli et al., 2010; Wang et al., 2010b).  The reactivity of supraspinal glia in chronic 

morphine treatment is less acknowledged, however. 

 

 

 

Figure 8. The role of neuroinflammation in morphine tolerance and hyperalgesia. Adapted by 

permission from Macmillan Publishers Ltd: [Nat. Rev. Neurosci., Opioid and chemokine receptor 

crosstalk: a promising target for pain therapy? Mélik et al., 2015, Year of copyright 2015] 
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2.5 Diuretics used in the present study 

Diuretics are drugs that promote the production of urine used in edematous diseases, 

hypertension, and heart failure. The literature suggests that the diuretics studied in this 

thesis, however, could exert antinociceptive effects in the rat via various mechanisms, 

including antagonism of mineralocorticoid receptor (Dong et al., 2012) and neuronal 

sodium-potassium-chloride cotransporter (Granados-Soto et al., 2005). In addition, 

spironolactone (Chu et al., 1978), furosemide (Chu et al., 1978), and chlorothiatzide 

(Poggioli et al., 1985) have also been suggested to potentiate the effects of the opioids 

via unknown mechanisms. 

2.5.1 Spironolactone 

After the discovery of aldosterone and its role in several edematous diseases, 

spironolactone was developed in the 1950s to antagonize the effect of aldosterone on 

mineralocorticoid receptors (Delyani, 2000). Spironolactone competes with aldosterone 

for binding to the mineralocorticoid receptor (MR) in the renal tubule, which decreases 

the retention of sodium and water and increases retention of potassium, but also in 

arterioles, where it antagonizes aldosterone-dependent vasoconstriction (Qavi et al., 

2015; Roush and Sica, 2016). Clinically, spironolactone is used for such conditions as 

congestive heart failure and liver cirrhosis (Qavi et al., 2015). 

 

In addition to its established indications, studies suggest that spironolactone can exert 

beneficial effects in experimental neuroinflammation and pain. Sun et al. (2012) showed 

that spironolactone attenuates pain behavior in a CCD model while inhibiting the 

immunoreactivity of microglia, decreasing the production of IL-1β and TNF-α and 

depressing the expression and phosyphorylation of NMDA receptors. Supporting the 

hypothesis that spironolactone can diminish microglia reactivity, Tanaka et al. (1997) 
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demonstrated that spironolactone inhibits corticosterone-induced activation of 

microglia in cells isolated from the forebrain of neonatal rats. Furthermore, 

spironolactone has decreased the concentration of TNF-α in the sciatic nerve and 

attenuated pain behavior in chronic constriction injury, but not in the vincristine-induced 

neuropathic model (Jaggi and Singh, 2010). In contrast, Wang et al. (2004) failed to 

detect any beneficial effect of spironolactone on pain behavior in a chronic constriction 

injury model. In addition to its own effects, spironolactone has been shown to enhance 

the analgesic effect of GR agonist dexamethasone in a CCD model in rats (Gu et al., 2011). 

 

The study by Chu et al. (1978) indicates that a significant interaction can arise between 

spironolactone and an opioid, as co-administration of spironolactone and morphine in 

morphine-tolerant rats was demonstrated to be lethal. Spironolactone inhibits UGT2B7 

(Knights et al., 2010), the enzyme responsible for the metabolism of morphine in 

humans, and could thus decrease the production of M3G, a potent glial activator 

(Hutchinson et al., 2010). Evidence also indicates that spironolactone might inhibit P-gp 

(Nakamura et al., 2001) and could affect the disposition of morphine (Schinkel et al., 

1995; Xie et al., 1999) and oxycodone (Hassan et al., 2007). 

2.5.2 Eplerenone 

Eplerenone, like spironolactone, is a competetive mineralocorticoid receptor antagonist 

indicated for the treatment of hypertension and congestive heart failure (Muldowney et 

al., 2009). Eplerenone, however, possesses greater mineralocorticoid receptor 

specificity, and thus lacks the androgen-receptor and progesterone-receptor related 

side effects of spironolactone (Muldowney et al., 2009; Struthers et al., 2008). 

 

MR and GR are expressed in various tissues and are often co-located in the same cell. 

The receptors can initiate both genomic and rapid, non-genomic responses via 
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intracellular signaling pathways (Funder, 2012; Gomez-Sanchez and Gomez-Sanchez, 

2014; Oakley and Cidlowski, 2013). Activation of MR can promote pro-inflammatory 

signaling that depresses the anti-inflammatory response of GR activation (Ibrahim et al., 

2016). Indeed, eplerenone has been shown to reduce pain-related behavior and 

excitability of afferent neurons in a back-pain model in the rat (Dong et al., 2012; Ye et 

al., 2014). In addition, eplerenone has been shown to function in concert with 

glucocorticoid 6-α methylprednisolone reducing pain behavior in a low-back pain model 

(Ye et al., 2014)  

 

Karst et al. demonstrated that MR mediated non-genomic effects of glutamate 

transmission in the hippocampal neurons within minutes (Karst et al., 2005). 

Hippocampus has been shown to affect acute pain processing in the rats (Ford et al., 

2011), rendering the hippocampal MRs a possible site of action for eplerenone-induced 

antinociception.  

2.5.3 Furosemide 

Furosemide is a potent diuretic that inhibits the sodium-potassium-chloride symporter 

(NKCC) in the loop of Henle in the kidneys (Hannaert et al., 2002). Granados-Soto et al. 

showed that both centrally and peripherally administered furosemide along with 

another NKCC blocker bumetanide reduced pain behavior in a formalin-induced 

inflammation model in the rat (Granados-Soto et al., 2005). In accordance, bumetanide 

has reduced pain behavior in rats following spinal cord injury (Hasbargen et al., 2010). In 

the study of Chu et al. furosemide restored the effect of morphine to attenuate 

characteristic turning behavior in brain-lesioned morphine-tolerant rats (Chu et al., 

1978). 
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2.5.4 Chlorothiazide 

Chlorothiazides are weak diuretics that inhibit reabsorption of sodium and chloride  by 

acting on the sodium-chloride symporter in kidney tubules (Duarte and Cooper-DeHoff, 

2010). A study by Poggioli suggested that chlorothiazides possess weak antinociceptive 

activity and that they would enhance the antinociceptive effect of morphine in the rat 

by an unknown mechanism (Poggioli et al., 1985). The expression of the thiazide-

sensitive sodium-chloride-transporter is probably renal-specific (Gamba, 2009). 

2.5.5 The molecular structure of the diuretics used in the present study 

The molecular structures of the diuretics used in the present study are presented in Fig. 

9. Spironolactone, eplerenone, furosemide, and chlorothiazide have molecular mass of 

417, 414, 330, and 296 grams/moles and molecular formula of C24H32O4S, C24H30O6, 

C12H10ClN2O5S, and C7H6ClN3O4S2, respectively. 
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Figure 9. Molecular structure of spironolactone (A), eplerenone (B), furosemide (C), and 

chlorothiazide (D). 

2.6 Anticonvulsant used in the present study 

2.6.1 Pregabalin 

Pregabalin is a synthetic molecule with an indication in the treatment of epilepsy, 

neuropathic pain, and generalized anxiety disorder. Pregabalin is the first-line drug with 

the combined norepinephrine and serotonin reuptake Inhibitors in neuropathic pain 

(Dworkin et al., 2010; Finnerup et al., 2015). It is a successor to gabapentin, which has a 

similar mechanism of action, but has saturable, and thus, unpredictable, absorption 
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(Bockbrader et al., 2010b). Pregabalin is considered to exert its effects via binding to the 

α2-δ1 subunit of voltage-gated calcium channels (VGCC) (Field et al., 2006) (Fig. 10), 

which are widely distributed in the nervous system. Pregabalin also binds to subunit α2-

δ2 (Z. Li et al., 2011), which has been hypothesized to be associated with the adverse 

effects (McDonough, 2012).  The precise role of the α2-δ subunit in the VGCC has not 

yet been elucidated, although the evidence suggests that it regulates the expression of 

the VGCC in the plasma membrane (Dolphin, 2016). Inhibition of the VGCC depresses 

presynaptic calcium influx and reduces the release of neuromediators, including 

glutamate, substance P, and CGRP (Fehrenbacher et al., 2003; Fink et al., 2002). Other 

suggested mechanisms of action for pregabalin include decrease of synaptic 

transmission by modulation of KATP channels and increasing trafficking of glutamate 

transporter EAAT3 to post-synaptic cell membranes (Verma et al., 2014). Pregabalin is 

not active at opioid receptors (Pfizer, n.d.a), and although it is a GABA -analog in its 

chemical structure, it is inactive at GABAA and GABAB receptors (Taylor et al., 2007).  

 

As an accompanying drug, gabapentinoids have enhanced the antinociceptive effects of 

opioids in acute nociceptive thermal tests (Meymandi et al., 2006; Shimoyama et al., 

1997) and in neuropathic pain (Christoph et al., 2011) in rats. In addition, gabapentinoids 

have reduced the consumption of opioids in humans in experimental nociceptive pain in 

healthy volunteers (Eckhardt et al., 2000) and in postoperative pain (Clarke et al., 2009; 

Tiippana et al., 2007; Yücel et al., 2011.). 

 

In clinical use, pregabalin is generally well-tolerated. Its use is not associated with serious 

adverse effects, but individuals starting pregabalin can experience transient adverse 

effects related to coordination and cognition in a dose-response dependent manner 

(Gajraj, 2007; Zaccara et al., 2011). Pregabalin can, however, cause euphoria, which has 

raised concern about its misuse and abuse (Schifano, 2014). A history of opioid abuse is 

a particular risk factor for pregabalin abuse (Evoy et al., 2017). A recent study showed 
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that pregabalin was involved in a great proportion of deceased opioid abusers in post-

mortem toxicology analysis (Häkkinen, 2014). The mechanism of the potentially lethal 

interaction remains, however, unknown. In the preclinical studies, LD50 of per oral 

pregabalin in the rat could not be determined even with the highest employed test dose 

(5000 mg/kg) (Pfizer, n.d.b), and very few case studies (Spiller et al., 2008) regarding 

pregabalin-only overdose have been reported in the literature. Interestingly, in the work 

of Gilron et al. (2003) gabapentin had blocked and reversed the tolerance to the 

antinociceptive effect of morphine. Whether pregabalin prevents or reverses the 

development of opioid tolerance in individuals abusing opioids remains obscure. 

  

Figure 10. Schematic diagram of voltage-gated calcium channel and Pregabalin binding site. 

Adapted from Pharmaceuticals 2013, Voltage-Gated Calcium Channel Antagonists and Traumatic 

Brain Injury, Gurkoff et al, distributed under the terms and conditions of the Creative Commons 

Attribution license (http://creativecommons.org/licenses/by/3.0/). 
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2.6.2. Molecular structure of pregabalin 

The molecular structure of pregabalin is presented in Fig. 11. Pregabalin has molecular 

mass of 159 grams/moles and molecular formula of C8H17NO2. 

 

Figure 11. Molecular structure of pregabalin.  

 

Table 2. Pharmacokinetic parameters of the studied diuretics, loperamide, and pregabalin. 

(1)(Brunton et al., 2011.) (2)(Welling, 1986) (3)(Maron and Leopold, 2008) (4)(Baker, 2007) 

(5)(Prandota and Witkowska, 1976) (6)(Pichette and Souich, 1996) (7)(Sica, 2005) (8)(Cook et al., 

2002). 
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3. Aims of the study 

Drugs that modulate opioid-induced analgesia can be beneficial adjuvants in the 

treatment of pain. On the other hand, morphine modulates its own analgesic effect by 

tolerance and opioid-induced hyperalgesia, which can complicate opioid treatment. 

Therefore, we aimed to study drugs that could potentiate the effects of the opioids and 

prevent/reverse opioid tolerance, and also to assess the role of neuroinflammation in 

chronic morphine treatment using the rat as a model organism. Specific aims in this 

thesis were as follows: 

 

 

I. To clarify potential pharmacological interaction between the diuretics 

spironolactone, eplerenone, furosemide, and chlorothiazide and the opioids 

oxycodone and morphine in thermal tests of acute nociception. 

 

II. To characterize effects of the anticonvulsant pregabalin on the 

antinociceptive and sedative effects of oxycodone and morphine in thermal 

tests of acute nociception and coordination test and also to exclude 

pharmacokinetic interactions between the drugs in the brain using 

concentration measurements. 

 

III. To assess glial reactivity in the spinal and supraspinal structures in morphine 

tolerance using immunohistochemistry, flow cytometry, and 

transcriptomics.  
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4. Materials and methods 

4.1 Materials 

4.1.1 Animals 

Male Sprague–Dawley rats (Scanbur, Sollentuna, Sweden, Harlan, Horst, Netherlands) 

were used. The rats weighed 200-300 g at the beginning of the experiments. They were 

accommodated in groups of four in transparent cages in light- and temperature-

controlled rooms. Water and standard laboratory chow were available ad libitum. The 

rats were habituated to the testing conditions for 3 days before the experiments. The 

animals were euthanized by decapitation or intracardiac perfusion in deep anesthesia. 

The National Animal Experiment Board of Finland approved the study protocols. 

4.1.2 Drugs 

Morphine hydrochloride, oxycodone hydrochloride trihydrate solution (Oxanest®, Leiras 

Takeda, Helsinki, Finland), furosemide (Furesis®, Orion Pharma, Espoo, Finland), 

eplerenone (Inspra®, Pfizer, New York City, NY, USA) and pregabalin capsules (Lyrica®, 

Pfizer, New York City, NY, USA) were purchased from the University Pharmacy (Helsinki, 

Finland). Spironolactone, loperamide, and chlorothiazide were purchased from Sigma-

Aldrich (St. Louis, MO, USA).  

Morphine hydrochloride was dissolved and oxycodone hydrochloride trihydrate and 

furosemide diluted in physiological saline. Spironolactone and chlorothiazide were 

diluted with 4% polysorbate 80 (Tween® 80, University Pharmacy, Helsinki, Finland) and 

loperamide with 2% polysorbate 80 in physiological saline. Pregabalin was dissolved in 
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0.5% methylcellulose (University Pharmacy, Helsinki, Finland) in physiological saline. 

Eplerenone tablets were mechanically pulverized and dissolved in 4% v/v Tween® 80 in 

physiological saline.The injection volumes and routes of administration were 2 mL/kg 

subcutaneously and 5 mL/kg intraperitoneally.  

4.2 Methods 

4.2.1 Model of postoperative pain 

The rats were deeply anesthetized using isoflurane and a short longitudinal incision with 

a sharp scalpel was made through the skin, fascia, and muscle of the plantar side of the 

hind paw, as previously described by Brennan et al. (Brennan et al., 1996). The inflicted 

wound was sutured with two absorbable knob sutures, and the animal was allowed to 

recover one day before the behavioral experiments. The wound on the paw was carefully 

observed during the study for signs of infection, which would have been an exclusion 

criterion. 

4.2.2 Measurement of acute nociception 

Tail-flick latencies (Studies I-IV) were assessed using a tail-flick apparatus (Ugo Basile 

37360, Comerio, Italy). In the test, the rats were restrained in plastic tubes. At each time 

point, three different sites of the middle third of the tail were exposed to radiant light. 

A flick of the tail automatically stopped the timer of the apparatus and the mean of the 

results was calculated. The cut-off was set at 10 s to avoid tissue damage. When an 

individual measurement reached the cut-off, no further tests were performed for that 

particular time point on that animal. 
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Hot plate tests (Studies I-III) were performed with a Harvard Apparatus Ltd. hot plate 

device (Edenbridge, Kent, UK). In the test, the rat was put inside a transparent circular 

cage on the hot plate (52 ± 0.2°C). Licking or stomping the hind paw was considered as 

a sign of thermal nociception. Latency to the first sign was measured, after which the 

animal was instantly removed from the hot plate. To avoid tissue damage, the cut-off 

was set at 60 s. 

 

Mechanical thresholds were assessed using either the Ugo Basile 37450 Dynamic Plantar 

Aesthesiometer (DPA) (Comerio, Italy) (Study IV) or the Imada DPS-1 digital force gauge 

(Northbrook, IL, USA) (Study II). When using DPA, the rats were placed on a metal mesh 

in plastic cages and habituated for 10 min before testing. A dull metal monofilament 

with a diameter of 0.5 mm was applied perpendicularly to the middle of the hind paw. 

The pressure was gradually increased until a rapid withdrawal or shaking of the paw 

occurred. The filament withdrew rapidly after the reaction and the apparatus stored the 

threshold of the force needed to cause the motor reaction. A 40-g cut-off was used.  

When using the force gauge in the model of postoperative pain, the rats were placed on 

a metal mesh covered with a transparent cage to settle down for 2 min. Skin 2 mm 

proximal to the wound was gently touched with a metallic monofilament with a 

diameter of 0.3 mm when the animal was sitting on its four limbs. The force of the 

filament against the skin was steadily increased until the nociceptive behavior, either 

rapid withdrawal or brisk shaking, occurred. A cut-off of 50 g was used to allow the 

animal to withdraw the paw from the filament effortlessly. 

 

Cold thresholds (Study IV) were measured with the Bioseb T2CT Cold/Hot plate 

apparatus (Vitrolles, France) as adapted from Allchorne et al (Allchorne et al., 2005). The 

temperature of the plate was set to 0°C, which was kept constant during the 

measurements. The rat was set free onto the apparatus plate in a transparent cage. The 
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latency to the first stomp or lift of the hind paw was recorded. Lift of the paw that was 

involved in coordinated movement of all four limbs was excluded. A cut-off of 180 s was 

used.   

4.2.3 Assessment of motor functions 

The rotarod test was performed using a rotarod apparatus (Ugo Basile 47700, Comerio, 

Italy) (Study III). The test measures motor performance. The time that the rat stayed on 

a rubber-coated rod that was rotating at a fixed speed of 20 rpm was measured. The cut-

off limit was set at 30 s. 

4.2.4 Determination of drug concentration 

The non-perfused whole-brain and liver samples were snap-frozen in liquid nitrogen. The 

arterial blood samples gathered in decapitation were allowed to coagulate at room 

temperature for 60 min and centrifuged at 4900 g for 20 min at 23°C. (Studies I-III). The 

determinations of morphine (Studies I-III), M3G (Studies I-III), M6G (Study I), 

normorphine (Study I), oxycodone (Studies II and III), noroxycodone (Studies II and III), 

oxymorphone (Studies II and III), and pregabalin (Study III) were performed using an 

Agilent 1100 series HPLC system (Agilent Technologies, Waldbronn, Germany) coupled 

with API 3000 tandem mass spectrometry (AB Sciex, Toronto, ON, Canada) that operated 

in a positive turbo ion spray mode. Before the analysis, spiked calibration standards and 

quality control samples were prepared in rat brain tissue homogenates for all the 

treatment compounds at appropriate concentrations that ranged from 1.0 to 2250 

ng/mL (Study II). The LC-MS/MS analyses of morphine, M3G, and pregabalin were 

carried out separately as previously described (Dominguez-Ramirez et al., 2006; Oertel 

et al., 2009) with some modifications.  
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The chromatographic separations were achieved on an Atlantis HILIC Silica column (3-

μm particle size, 100 mm × 2.1 mm I.D., Waters, Milford, MA, USA) using a gradient 

elution of mobile phase consisting of acetonitrile and 10 mmol/L ammonium formate in 

0.2% formic acid (v/v). Oxycodone served as an internal standard for morphine and M3G, 

and the limit of quantification was 1.0 ng/mL for both analytes (Studies I-III). Gabapentin 

was used as an internal standard for pregabalin analysis (Study II). The determination of 

oxycodone and its metabolites was performed as previously described (Neuvonen and 

Neuvonen, 2008). The limit of quantification for oxycodone, noroxycodone, and 

oxymorphine was 1.0 ng/mL (study III). The detection limit for oxycodone and its 

metabolites was 5 ng/g in brain tissue (Study II). The following ion transitions were 

monitored (Study I): morphine, m/z 286 to m/z 152; M3G and M6G, m/z 462 to m/z 286; 

normorphine, m/z 272 to m/z 152; oxycodone, m/z 316 to m/z 241, and the limit of 

quantification for morphine and M3G was 1.0 ng/mL. A signal-to-noise ratio of 20:1 was 

used as the limit of detection for normorphine, and the quantities were given in arbitrary 

units relative to the ratio of the peak area of the normorphine to that of the internal 

standard (Study I). The detection limit of oxycodone and its metabolites was 5 ng/g in 

brain tissue (Study II). The day-to-day coefficients of variations for all the methods 

described were below 15% for the concentrations of all analytes. Original protocol kindly 

provided by M.Sc. Jouko Laitila.  

4.2.5 Immunohistochemical staining 

Animals were deeply anesthetized using isoflurane and perfused intracardially with 

phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA) (Study IV). Collected 

tissues were fixed with 4% PFA overnight and embedded in paraffin (Study IV). Sections 

of 10 μm were prepared from the selected regions of the brain and lumbar regions of 

the spinal cords. Sections were probed with antibodies for Iba1 (1:1000, Cat N 019-
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19741, Wako, Richmond, VA, USA), GFAP (1:400, Cat G-3893, Sigma-Aldrich, St. Louis, 

MO, USA), CGRP (1:10,000, Cat. No. T-4032, Peninsula Laboratories, San Carlos, CA, 

USA), or substance P (1:10,000, Cat. No. T-4107,Peninsula Laboratories). Bound 

antibodies were visualized using anti-rabbit and anti-mouse biotinylated secondary 

antibodies and the VECTASTAIN ABC HRP Kit (Cat PK-6101, PK-4002 Vector Laboratories, 

Burlingame, CA, USA) as described by the kit manufacturer. Slides were imaged using 

the 3DHISTECH Scanner (3DHISTECH Ltd, Budapest, Hungary). Scanned images were 

analyzed with Matlab R2014b software (Mathworks, Natick, MA, USA). The number of 

Iba1 or GFAP-positive cells was quantified using manually set size and intensity 

thresholds as described by Penttinen et al (Penttinen et al., 2016). Original protocol 

kindly provided by Dr. Yulia Sidorova. 

4.2.6. Flow cytometry  

Animals were deeply anesthetized using isoflurane and perfused intracardially with 100 

ml of phosphate-buffered saline (PBS). The L4-L6 segments of the spinal cord, medulla, 

and primary somatosensory cortex were dissected. Dissected tissues were weighed, cut 

into tiny pieces, and gently homogenized through 70-µm cell strainers (Fisher Scientific, 

Waltham, MA, USA) in PBS/1% FBS. Single-cell suspensions prepared from ~25 mg of 

tissue per sample were blocked with 5% normal rat serum, and stained with a co-use of 

anti-rat markers, including Granulocyte-FITC (clone HIS48, eBioscience, San Diego, CA, 

USA), CD172a-PE (clone OX41, BioLegend, San Diego, CA, USA), MHCII-PerCP-eFluor 710 

(clone OX17, eBioscience), and CD11b/c-eFluor 660 (clone OX42, eBioscience) with light 

protection at 4°C for a 60-min continuous rotation. The cells were washed and 

resuspended in 2 mL of PBS/1% FBS/0.02% NaN3 buffer, and acquired on a 2-laser, 6-

color Gallios cytometer (Beckman Coulter, Brea, CA, USA) under a live gate of CD11b/c+. 

Kaluza flow analysis 1.3 software (Beckman Coulter) was used to analyze the flow 
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cytometry data. Microglia were defined as CD11b/c+granulocyte- total, MHCII+, and 

CD172a+ subtypes. Original protocol kindly provided by Dr. Zhilin Li.  

4.2.7 Microglia RNA isolation (CD11b-positive cells) 

Rats were perfused intracardially with 200 mL of 0.9% saline solution, and a L1-L6 spinal 

lumbar segment was collected for the isolation of CD11b-immunopositive 

microglia/macrophages by magnetic-activated cell sorting (MACS). The collected tissue 

was dissociated using a Neural tissue dissociation kit (T) (Miltenyi Biotec, San Diego, CA, 

USA; cat# 130-093-231) and the gentleMACS Dissociator (Miltenyi Biotec). After the 

dissociation process, the cells were suspended in 0.5% bovine serum albumin (BSA) in 

PBS and incubated with Myelin Removal Beads II (Miltenyi Biotec; cat# 130-096-733; 

1:10 dilution) for 15 min at 4°C. After the incubation, the cells were washed once and 

resuspended in 0.5% BSA in PBS and filtered through an LS column (Miltenyi Biotec; cat# 

130-042-401) using a QuadroMACS Separator (Miltenyi Biotec). The total effluent was 

gathered and resuspended in 0.5% BSA with 2 mM EDTA in PBS. The cells were incubated 

with mouse anti-CD11b:FITC antibody (AbD Serotec, Puchheim, Germany; Cat# 

MCA275FB; 1:10 dilution) at 4°C for 10 min. The cells were then washed, resuspended 

in 0.5% BSA with 2 mM EDTA in PBS, and incubated with anti-FITC MicroBeads (Miltenyi 

Biotec; cat# 130-048-701; 1:10 dilution) for 15 min at 4°C. The cells were washed and 

resuspended in 0.5% BSA with 2 mM EDTA in PBS. The cell suspension was placed on an 

LS column, put on a QuadroMACS Separator, and the anti-CD11b-labeled cells were 

collected from the column. RNA was extracted with Trizol reagent and alcohol-

precipitated in the presence of glycogen and treated with DNase (#1906, Ambion). 

Original protocol kindly provided by M.Sc. Jenni Anttila, Dr. Kert Mätlik, and Dr. Mikko 

Airavaara. 
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4.2.8 RNA sequencing 

Altogether 30 ng of total RNA was first subjected to rRNA and mitochondrial rRNA 

removal using a RiboGone Mammalian kit (Clonetech, Mountain View, CA, USA) and 

then used as a starting material for RNA-Seq. Indexed cDNA libraries from 200 pg of the 

ribosomal/mitochondrial RNA-depleted RNA were generated using a SMARTer® 

Stranded RNA-Seq Kit (Clonetech). Strand-specific sequencing data from the synthesized 

cDNA was obtained from the Illumina next-generation sequencing system. NextSeq High 

SE 1x75 bp run was utilized. 

Initial quality control on sequenced reads was performed with FastQC v0.11.3. Based on 

the quality reports, Illumina adapters were removed by Trimmomatic v0.33 and the read 

files were preprocessed as follows: reads with the first 5 bases were trimmed from the 

start of the read.  Base quality scores less than 30 were trimmed from the 5' end. Reads 

of length less than 20 bases were excluded. When samples had less than 70% of reads 

surviving trimming, they were discarded from the analysis. 

 

The processed reads were mapped (reference genome Rat Ensembl5) with Tophat 

v2.1.0. Up to 2 mismatches were allowed (both in the initial read and the segmented 

read alignment), and enforcing rules for first-strand synthesis library type were 

used. The mapped reads were then quantified in Fragments Per Kilobase of transcript 

per Million mapped reads (FPKM) with Cufflinks v2.2.1. Multiple read correction and 

upper-quartile normalization were used. Differential expression analysis was executed 

on a gene level using CuffDiff v2.2.1 with multiple read corrections. Original protocols 

kindly provided by Functional Genomics Units, Biomedicum Helsinki and Dr. Katherine 

Icay. 
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4.2.9 Experimental design 

The design of the experimental settings of the individual studies is described in brief in 

Table 3 and in detail in the original publications. 

 

Table 3. Experimental design. 
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4.3 Statistical analyses 

The results of the hot plate test are expressed as percentage of the maximum possible 

effect (MPE%), calculated as MPE% = [(post-drug latency − baseline latency)/(cut-off 

time − baseline latency)] × 100%. The results of the tail-flick test are expressed either in 

MPE% (Studies I-III) or latency in seconds (Study IV). The results of the cold plate test are 

expressed in latency in seconds (Study IV). The rotarod test results are expressed as the 

percentage change from the baseline values (Study II). The results of the DPA (Study IV) 

and mechanical gauge (Study II) are expressed as threshold in grams. In the text and 

figures, results are presented as mean of the sample values (+SEM when applicable) with 

minimum-maximum values (when applicable) or with individual values.  

  

The behavioral data were tested for significant differences in mean values by two-way 

analysis of variance followed by a Holm–Sidak correction for multiple comparisons 

(Studies I, II, IV), One-way analysis of variances followed by a multiple-comparison-

adjusted Tukey post hoc analysis (Study III) or unpaired T-test with Welch’s correction 

(Study IV). For the concentration data, one-way analysis for variance followed by the 

Holm–Sidak correction (Studies I, III) or two-way analysis of variance followed by a 

Holm–Sidak post hoc test with correction for multiple comparisons (Study III) was used. 

The immunohistochemistry data were tested for significant differences in mean values 

by two-way analysis of variance followed by a two-tailed Holm–Sidak correction for 

multiple comparisons or unpaired two-tailed T-test with Welch’s correction (Study IV). 

The fluorescence-activated cell sorting (FACS) data were tested for significant 

differences in mean values with unpaired two-tailed T-test with Welch’s correction. The 

data were analyzed using GraphPad Prism, version 6.0 a-c for Mac OS X (GraphPad 

Software, La Jolla, CA, USA). In the iPathway analysis (Study IV), the differential 

expression threshold for the transcript expression fold change was set at 0.5 (log2) and 
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the false discovery rate adjusted p-value (q-value) at 0.05. The false discovery rate p-

value correction was applied for GO-enrichment analysis and impacted phenotype 

analysis. The difference was considered significant at p < 0.05 (or q < 0.05 in Study IV) in 

all of the tests. 
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5. RESULTS 

Studies I and II 

5.1 Individual antinociceptive effect of spironolactone, eplerenone, 

furosemide, and chlorothiazide 

None of the studied diuretics (spironolactone 50 mg/kg or 100 mg/kg i.p., eplerenone 

100 mg/kg i.p., furosemide 100 mg/kg i.p., or chlorothiazide 50 mg/kg, i.p.) had 

antinociceptive effects in either the hot plate or tail-flick tests (Study I: Fig. 1 and Study 

III: Fig. 1 and Table 1).  

5.2 Antinociceptive effect of spironolactone, eplerenone, furosemide, and 

chlorothiazide in co-administration with oxycodone and morphine 

 

Spironolactone co-administration (50 mg/kg i.p.) enhanced the antinociceptive effect of 

morphine 2.5 mg/kg and 5 mg/kg s.c. in naïve rats (Study I: Fig. 1) and 4 mg/kg in tolerant 

rats (Study I: Fig. 2) in the thermal tests. Spironolactone also enhanced the 

antinociceptive effect of oxycodone 0.75 mg/kg s.c. in naïve rats in the thermal tests, 

whereas furosemide caused only a negligible effect in the hot plate test when combined 

with morphine (Study II: Fig. 1 and Table 1). Eplerenone and chlorothiazide did not 

enhance the antinociceptive effect of either of the opioids in the thermal tests (Study II: 

Table 1).    
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5.3 Spironolactone increases the morphine brain concentration and inhibits 

the elimination of morphine 

When spironolactone (50 mg/kg i.p.) was administered both 60 min and 0 min prior to 

morphine 4 mg/kg s.c., the antinociceptive effect of morphine was increased 

significantly in the hot plate at 30 min and 90 min time points (Fig. 12A), (Study I: 

Results). Concurrently, in the brain the morphine concentration was greatly elevated (Fig 

12B). In spironolactone co-treatment, the morphine serum concentrations were 

elevated only in the 90 min time point (Fig. 12C), however. In the liver, the morphine 

concentrations were elevated at both time points (Fig. 12D). The concentrations of the 

main metabolite of morphine, M3G, in the liver did not decrease at the 30 min time 

point, but increased at the 90 min time point in the spironolactone co-treatment (Study 

I: Fig. 3). In addition, spironolactone co-treatment significantly decreased CYP3A 

produced normorphine concentrations in the liver (Study I: Results).  
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Figure 12. Effect of spironolactone (50 mg/kg i.p.) on morphine (4 mg/kg s.c.) (MO4) 

antinociceptive effect in the hot plate test when spironolactone was administered 60 min and 0 

min before (MO4+SPR50X2) morphine. The results expressed as the mean of the maximum 

possible effect (MPE%) including the individual values are plotted at 30 and 90 min after 

morphine administration (A). The corresponding brain (B), serum (C), and liver (D) morphine 

concentrations are presented as mean in addition to the individual values. *, **, *** Statistically 

significant difference (p < 0.05, 0.01, 0.001) between the treatment groups. ### Statistically 

significant difference (p < 0.001) when compared against the saline group (SAL).  N = 6-10 at 30 

min and 5 at 90 min time point.   
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5.4 Spironolactone increases oxycodone brain concentrations and inhibits 

elimination of oxycodone 

Spironolactone 100 mg/kg i.p. administered 30 min before oxycodone 0.75 mg/kg 

increased the antinociceptive effect of oxycodone 68% and 50% MPE in the hot plate 

test at the 30 min and 90 min time points, respectively (Fig. 13A). In the brain, 

spironolactone increased the concentration of oxycodone 46% and 140%, respectively 

(Fig. 13B). Also, the concentrations of oxycodone in the liver and serum were increased 

at both time points (Fig. 13C-D). 
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Figure 13. Effects of spironolactone 100 mg/kg i.p., oxycodone 0.75 mg/kg s.c. (OXY 0.75), vehicle 

(VEH), and the combined effect of spironolactone with oxycodone (SPR100 + OXY 0.75) in the hot 

plate tests (A). The mean of the maximum possible effect (MPE%) including the individual values 

in the hot plate test are plotted at the 30 min and 90 min time points. The respective oxycodone 

concentration in brain (B), liver (C), and serum (D). #, ##, Statistically significant difference (p < 

0.05, 0.01, respectively) as compared with the vehicle control. *, **, Statistically significant 

difference (p < 0.05, 0.01, respectively) between treatment groups. N = 5-15 in the behavioral 

test and 3-6 in the concentration measurements per group.  
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5.5 Loperamide shows antinociceptive effect when co-administered with 

spironolactone 

Loperamide did not show any antinociceptive effect on its own in the thermal tests 

(Study I: Fig. 4). However, when spironolactone 50 mg/kg i.p. was administered 60 min 

and 0 min before loperamide 10 mg/kg s.c., loperamide demonstrated antinociceptive 

effects (Study I: Fig. 4). 

5.6 Spironolactone does not prevent the development of morphine tolerance 

Chronic spironolactone co-treatment (50 mg/kg i.p. b.i.d.) did not prevent the 

development of tolerance to the antinociceptive effect of morphine, when tested with 

morphine 4 mg/kg s.c. in the tail-flick and hot plate test. Chronic spironolactone 

pretreatment (50 mg/kg i.p. b.i.d., four days) did not cause changes in the acute 

antinociceptive effect of morphine 4 mg/kg in morphine-naïve rats in the thermal tests 

(Study II: Results).  

5.7 Spironolactone and eplerenone do not have acute antinociceptive effects 

in a model of incision pain 

After surgery, the threshold for mechanical hyperalgesia decreased approximately 40% 

on the first and 50% on the second postoperative day. Eplerenone 100 mg/kg i.p. was 

administered on the day after surgery and spironolactone 100 mg/kg i.p. on the second 

postoperative day (Study II: Fig. 3). There was no significant difference between the 

treatment and vehicle groups on either of the days at any time point in the mechanical 

threshold test (Study II: Fig. 3). 
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Study III 

5.8 Pregabalin differentially potentiates the antinociceptive effect of 

oxycodone and morphine  

Pregabalin (10 mg/kg or 50 mg/kg i.p.) alone did not produce significant antinociception 

in either the tail-flick or hot plate tests at the 30 min time point (Fig. 14A-H). At the 90 

min time point, pregabalin 50 mg/kg caused a significant antinociceptive effect of 43% 

MPE in the hot plate test (Study III: Results). Pregabalin (50 mg/kg i.p.) increased the 

acute antinociceptive effect of oxycodone (0.6 mg/kg s.c.) in the hot plate test (Fig. 14A) 

but not tail-flick (Fig. 14B), and of morphine 2.5 mg/kg (s.c.) in the hot plate test (Fig. 

14C) but not tail-flick (Fig. 14D). When pregabalin (10 mg/kg s.c.) was administered 30 

min before the opioids, the effect of oxycodone (Fig. 14E, F) but not morphine (Fig. 14G, 

H) was potentiated in the hot plate and tail-flick test. In the rotarod test, pregabalin (50 

mg/kg i.p.) alone did not significantly reduce the time that the rats stayed on the rod, 

but its combination with both oxycodone (Fig. 14I) and morphine (Fig. 14J) reduced the 

time significantly.   
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Figure 14.  Effects of pregabalin 50 mg/kg i.p. (P50) or 10 mg/kg i.p. (P10), vehicle (VEH), 

oxycodone 0.6 mg/kg s.c. (OXY0.6), morphine 2.5 mg/kg s.c. (MO2.5), and the combined effect 

of either pregabalin 50 mg/kg i.p. or 10 mg/kg i.p. with oxycodone (OXY0.6+P50), (OXY0.6+P10) 

or morphine (MO2.5+P50), (MO2.5+P10), respectively, in the hot plate test (A, C, E, and G), tail-

flick (B, D, F, and H), and the rotarod test (I and J), rotarod only P50. P50 was administered with 

the opioids and P10 was administered 30 min before the opioids. The means of the maximum 

possible effects (MPE%) or the latency from the baseline rotarod time (%) after 30 min of 

administration of the opioids are plotted with SEM. #, ##, Statistically significant difference 

(p < 0.05, p < 0.01 respectively) as compared with the vehicle control. *, **, Statistically 

significant difference (p < 0.05, p < 0.01) as compared between the indicated groups. N = 10–16 

rats per group. 

5.9 Pregabalin does not have an effect on brain concentrations of oxycodone 

or morphine or vice versa 

Pregabalin 50 mg/kg i.p. was administered 30 min before oxycodone 0.6 mg/kg s.c. Brain 

samples were collected immediately after the behavioral measurements at the 30 min 

time point. Pregabalin did not change the brain concentrations of oxycodone, 

noroxycodone, or oxymorphone; nor were the brain concentrations of pregabalin 

affected by co-administration of oxycodone (Study III, Fig. 3). 

 

Pregabalin 50 mg/kg was administered with morphine 2.5 mg/kg s.c., and the thermal 

antinociceptive tests were performed 90 min later (Study III: Results). The brain samples 

were collected after the behavioral measurements. The brain concentrations of 

morphine, M3G, or pregabalin were not affected by co-administration of pregabalin and 

morphine (Study III, Figure 3). 
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5.10 Pregabalin does not prevent morphine tolerance 

Co-administration of pregabalin 50 mg/kg s.c. with morphine during the tolerance 

treatment did not affect the development of morphine tolerance (Study III, Fig. 4). In 

morphine-tolerant animals, pregabalin 50 mg/kg s.c. did not potentiate the 

antinociceptive effect of acute morphine 5 mg/kg s.c., as measured by the hot plate test 

at the 30 min time point (Study III, Fig. 4). In addition, the effect of acute pregabalin 

50 mg/kg was assessed in both morphine-naïve and -tolerant rats to study potential 

cross-tolerance between morphine and pregabalin. However, prior morphine treatment 

did not affect the hot plate test latencies induced by acute pregabalin treatment at 120 

min. 

Study IV 

5.11 Chronic morphine treatment induces tolerance and hyperalgesia 

Morphine 10 mg/kg s.c. administered b.i.d. induced tolerance to the antinociceptive 

effect of morphine in 10 days in the tail-flick test (Fig. 15A). Opioid-induced hyperalgesia 

was detected in both the cold plate and DPA tests during the morphine treatment (Study 

IV: Fig. 2). 

5.12 Chronic morphine increases microglial reactivity in the spinal cord but 

not in the brain 

Chronic morphine treatment induced a 32-33% and 22-24% increase in microglial 

immunoreactivity in the dorsal horn and ventral horn of the spinal cord, respectively (Fig. 

15B-C). Also, immunoreactivity of substance P and CGRP in the dorsal horn was 
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increased (Study IV: Fig. 5). However, the treatment did not change the 

immunoreactivity of astrocytes in the dorsal horn (Study IV: Fig. 4). In flow cytometry, 

the proportion of M2-polarized (anti-inflammatory) microglia was increased (Study IV: 

Fig. 7). However, in the brain no increase in microglia or astrocyte reactivity after chronic 

morphine treatment was detected (Fig. 15D-E).   
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Figure 15. Mean effects of morphine in the tail-flick (A) tests in minimum-maximum-value-box. 

The rats were administered morphine 10 mg/kg s.c. or saline twice daily for 14 days. The tail-flick 

test was performed at baseline at day (d#) 1, 12 hours after the latest morphine injections from 

the previous day at d#7, 10, and 13, and one hour after the morphine injection at d#1, 7, 10, and 

13. The samples for immunoreactivity tests were gathered at d#14. The mean+SEM of the IBA1 

(B-C) immunoreactivity in the spinal cord and IBA1 (D) and GFAP (E) immunoreactivity in the 

brain.  *, **, *** Statistically significant difference (p < 0.05, 0.01, 0.001 respectively) as 

compared with indicated groups. N = 14-15 rats per group, except in immunohistochemistry 

group, where n = 4-5 rats per group.  

5.13 Chronic morphine treatment induces transcriptional changes in spinal 

microglia 

Altogether 2454 differentially expressed genes were detected after chronic morphine 

treatment in spinal microglial. Gene ontology enrichment analysis showed that genes in 

biological processes, including ‘immune system’ and ‘response to stress’, were enriched. 

Also, genes related to chronic pain in previous studies, like in the DAP12 pathway, were 

upregulated. Other significantly upregulated individual genes included Kcnn4, Fkbp5, 

Fcgr1a, and Cd244 (Study IV: Results).  
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6. DISCUSSION 

6.1 Pharmacokinetic interaction between diuretics and morphine 

or oxycodone 

Studies I and II demonstrated that the diuretics spironolactone, eplerenone, furosemide, 

and chlorothiazide lacked acute antinociceptive effects of their own in the thermal tests. 

Spironolactone, but not eplerenone, however, potentiated the antinociceptive effect of 

oxycodone and morphine, and spironolactone concomitantly increased the brain 

concentrations of both opioids. The results indicate that the increased antinociception 

in Studies I and II is due to the evident increase in opioid concentrations in the brain 

when spironolactone is co-administered.  

 

Both oxycodone and morphine are eliminated mostly in the liver by metabolism. In 

humans, UGT2B7 (2b1 in rat) metabolizes approximately 50% of the morphine dose to 

M3G and 10% to M6G (Andersen et al., 2003), while the rat forms no M6G (Kuo et al., 

1991). In a parallel route, a minor fraction of morphine is metabolized to normorphine 

by CYP3A4 (Andersen et al., 2003; Projean et al., 2003). The CYP3A also metabolizes 

oxycodone to its major metabolite noroxycodone, whereas parallel metabolism to 

oxymorphone via 2D6 is a less significant route (Lalovic et al., 2006). CYP3A metabolizes 

oxymorphone and 2D6 noroxycodone to noroxymorphone (Lalovic et al., 2004). 

 

In Study I, spironolactone treatment did not decrease hepatic M3G concentrations, 

which indicates that spironolactone does not inhibit the major morphine metabolizing 

enzyme, UGT2b1. It, however, decreased hepatic concentrations of normorphine, 

suggesting that spironolactone might inhibit CYP3A, a significant metabolizing enzyme 
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of oxycodone. Interestingly, in Study I, spironolactone indeed decreased the 

concentration ratio of noroxycodone to oxycodone. Also, the concentrations of 

noroxymorphone were reduced, which could also be explained by spironolactone-

induced inhibition of CYP3A metabolism. 

 

The increased morphine serum concentrations are likely due to decreased excretion, as 

the metabolism of morphine was shown not to decrease in the experiment (Study I). 

However, the elevated serum concentrations alone were unlikely to cause the increased 

morphine brain concentration, as under spironolactone, the brain/serum ratio of 

morphine was elevated. Both morphine (Letrent et al., 1999; Xie et al., 1999) and 

spironolactone (T. Nakamura et al., 2001) are substrates for P-gp, a drug efflux 

transporter expressed in the BBB and peripheral tissues, including the liver and kidney. 

A plausible hypothesis for the presented results could be that spironolactone inhibits P-

gp, which would cause both impaired efflux of morphine at the BBB but also reduction 

of elimination by decreasing excretion of morphine in bile and urine. Supporting this 

hypothesis, the results of this thesis demonstrated that the P-gp substrate loperamide 

exerted an antinociceptive effect only in co-administration with spironolactone. The 

finding implies that spironolactone increased brain distribution of the otherwise 

peripherally restricted loperamide, and thus, spironolactone was able to produce 

effective depression of P-gp function in the present study setting. The approach was, 

however, indirect and confirmation of the theory would require in vitro modeling of 

morphine transport in P-gp containing cells challenged with spironolactone. Loperamide 

is metabolized by CYP3A4 and 2C8 (Baker, 2007), and it is possible that spironolactone 

also increased its concentrations. 

 

Unlike with morphine (Studies I and II), the increased oxycodone (Study II) 

concentrations in the serum could be explained by a spironolactone-induced decrease 

in metabolism. However, whether spironolactone-induced inhibition of the P-gp at the 
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BBB contributes to the increased oxycodone brain concentrations, like it probably did 

with morphine, is unclear. The brain/serum ratio of oxycodone was increased, but the 

literature remains controversial regarding whether oxycodone is a substrate of P-

glycoprotein, see for; Hassan et al. (2007) and against; Boström et al. (2005). The 

hypothesis of P-gp inhibition would, however, explain the results of this thesis regarding 

the increased oxycodone brain disposition.     

 

Both spironolactone and eplerenone are MR antagonists. Activation of MR can promote 

pro-inflammatory signaling, diminishing the GR-dependent anti-inflammatory activity 

(Ibrahim et al., 2016). Indeed, eplerenone has been shown to reduce pain-related 

behavior and excitability of afferent neurons in a back-pain model in the rat (Dong et al., 

2012; Ye et al., 2014). In addition MR has been demonstrated to mediate rapid effects 

of glutamate transmission in hippocampal neurons (Karst et al., 2005). The 

hippocampus, on the other hand, affects acute pain processing in rats (Ford et al., 2011). 

It is therefore possible that spironolactone and eplerenone could have exerted an acute 

pharmacodynamic effect, which was not detected in both the model of postoperative 

pain (Study II) and acute thermal tests (Studies I and II). In the low back pain studies 

(Dong et al. 2012; Ye et al. 2014) pain behaviour was provoked by locally inflaming the 

L5 dorsal root ganglion. In the study by Dong et al., eplerenone decreased excitability of 

sensory neurons of inflamed but not uninflamed dorsal root ganglion. Therefore, it is 

possible that the antinociceptive effect of MR blocking can not be generalized to reduce 

pain with different underlying mechanisms. It must be noted, however, that brain or 

spinal concentrations of spironolactone were not measured in the acute co-

administration experiments with opioids in Studies I and II. Therefore, the possibility of 

increased CNS concentration of spironolactone contributing to the increased 

antinociceptive latencies in the behavioral results cannot be fully excluded. 
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An important conclusion from the results is that an enhanced acute antinociceptive 

effect of opioids with spironolactone cannot be attributed to increased diuresis, as 

furosemide, a more potent diuretic than spironolactone, caused only a negligible 

antinociceptive effect with morphine. Moreover, the spironolactone-induced diuresis 

was beyond the timeframe of the acute study in this thesis, as the natriuretic effect of 

spironolactone begins 3-5 days after treatment (Yeung and Wong, 2002). 

 

The clinical relevance of the demonstrated interaction between spironolactone and 

morphine or oxycodone remains elusive. Spironolactone and opioids could be co-used 

in conditions such as malignant ascites and cause heightened opioid brain 

concentrations and predispose to opioid adverse effects. On the other hand, the 

increased brain disposition of an opioid might also reduce the peripheral adverse effects. 

In the study of Heiskanen et al. P-gp inhibitor itraconatzole failed to increase the 

pharmacodynamic effect of morphine in humans, although the brain concentrations 

could not be assessed (Heiskanen et al., 2008). The effect of spironolactone on opioid 

pharmacokinetics should also be investigated in human volunteers. 

6.2 Pharmacodynamic interaction between pregabalin and 

morphine or oxycodone 

Study III demonstrated that acute administration of pregabalin potentiated both thermal 

antinociceptive and sedative effects of oxycodone and morphine. The measured changes 

in the brain concentrations of oxycodone, morphine, their major metabolites, and 

pregabalin failed to explain the antinociceptive results. In addition, pregabalin 

administration did not affect the development of morphine tolerance. The 

antinociceptive results are in agreement with clinical studies that have shown that co-

administration of gabapentinoids has reduced the amount of opioids needed to alleviate 
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experimental nociceptive pain in healthy volunteers (Eckhardt et al., 2000) and also 

postoperative pain (Clarke et al., 2009; Fassoulaki et al., 2012; Mahoori et al., 2014; 

Tiippana et al., 2007; Yücel et al., 2011.). Pregabalin is eliminated renally (Bockbrader et 

al., 2010a), but an interaction via the poorly understood drug transporters at the BBB 

level is possible. It seems that pharmacokinetic interactions between oxycodone, 

morphine, and pregabalin have not been previously studied. The unchanged brain 

concentrations of the studied drugs and their major metabolites after concomitant 

administration indicated, however, that the behavioral changes cannot be explained by 

altered brain disposition of the drugs. Thus, the results imply that the drug interaction 

between pregabalin and opioids at the CNS level is pharmacodynamic.  

 

Pregabalin is considered to exert its analgesic effect via binding to the α2-δ-1 subunit of 

voltage-gated calcium channels (VGCCs) (Field et al., 2006). VGCCs can be subdivided 

into low voltage-activated Cav 3.1-3.3 (T-) and high voltage-activated Cav 1.1-1.4 (L-), 

Cav 2.2 (N-), Cav 2.1 (P/Q-), and Cav 2.3 (R-types) (Dolphin, 2016). All of the high-voltage 

channels have been shown to be expressed in DRGs and the spinal cord (Lee, 2013) and 

to be associated with the α2δ subunit (Dolphin, 2016). 

 

Opioids exhibit their inhibition of calcium currents via N- (2.2) and P/Q-type (2.1) 

channels (Bourinet et al., 1996; Seward et al., 1991), but presumably not via L-channels 

(1.1-1.4) (Rhim and Miller, 1994). Interestingly, in the study of Omote et al. a selective 

N-type calcium channel blocker ω-CgTx produced a synergistic interaction with 

morphine in nociceptive tests (Omote et al., 1996). Thus, it could be hypothesized that 

pregabalin exerts its interaction by inhibiting the same presynaptic calcium channels as 

opioids (N and/or P/Q), which ultimately leads to a synergistic decrease in the secretion 

of excitatory neurotransmitters. Surprisingly, also L-type calcium channel inhibitors 

verapamil, diltiazem, and nicardipine have been shown to have synergistic 

antinociceptive interaction with morphine (Omote et al., 1993). However, whether 
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verapamil, diltiazem, and nicardipine actually exert their synergistic effect by selectively 

blocking the non-opioid-receptor-coupled L-channel could be argued, as verapamil has 

also been demonstrated to block P- and possibly N- and Q-channels (Dobrev et al., 1999), 

nicardipine N-type calcium channels (S. N. Li et al., 1999), and diltiazem P-type calcium 

channels (Dobrev et al., 1999). Diltiazem and verapamil are P-gp substrates and in the 

study of Shimizu et al potentiated the morphine-induced antinociception while not, 

however, markedly increasing the morphine brain concentrations (Shimizu et al., 2004). 

The role of pharmacokinetic interaction between morphine and the discussed calcium 

channel blockers cannot, however, be excluded from the mechanism behind the 

observed potentiation of analgesia. To summarize, it seems plausible that the 

potentiating effect of pregabalin on the opioids is mediated via inhibiting the common 

(N and/or P/Q) presynaptic calcium channels. However, interaction associated with L-

type channel inhibition is also possible. 

 

Surprisingly, when pregabalin was administered before the opioids at a smaller dose, 

only the antinociceptive effect of oxycodone, not morphine, was potentiated. Therefore,  

it was hypothesized that the difference in the results between the opioids could be 

related to functional selectivity, i.e. different agonists elicit different downstream 

signaling despite binding to the same μ-opioid receptor. Although it has been shown that 

MOR can demonstrate functional selectivity to morphine and oxycodone (A. Nakamura 

et al., 2013), the specific intracellular pathway that could explain the discussed result in 

the present study remains unknown. Ca2+-dependent endocytosis  is highly complex and 

varies in response to the array of unique stimulation patterns, for review, see Leitz and 

Kavalali (2016). Therefore, it seems possible that even subtle differences in MOR 

downstream signaling might explain the differences between opioids regarding the 

pharmacodynamic interactions with pregabalin.  
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In the meta-analysis of Tiippana et al. (2007) the figures for number-needed-to-harm 

(the number of patients needed to be treated to reveal a particular adverse effect) were 

relatively high, 35 and 12 for perioperative gabapentinoid to cause strong sedation or 

dizziness, respectively, in humans. Consistent with this, in the meta-analysis of Peng et 

al. (2007), the severity of dizziness caused by perioperative gabapentin was often 

classified as mild. By contrast, Jokela et al. (2008) reported an increased incidence of 

adverse effects, including dizziness, after perioperative pregabalin and oxycodone co-

administration. In the present study, the amount of sedation, measured as the time that 

rats were able to stay on a rotating rod, in concomitant administration with opioid was 

greatly increased. The results could be interpreted so that, from pharmacological point 

of view, gabapentinoids and opioids predispose to increased sedation, as shown by this 

study. Whether such sedation is experienced postoperatively might be dependent on 

the factors related to a specific clinical setting, such as type of surgery or timing of the 

drug administration. On the other hand, discrepancy between the experienced sedation 

in the discussed studies might also be explained by differences in the sensitivity of the 

methods of measuring sedation. Besides the analgesic effect, it should be noted that the 

supraspinally mediated hot plate test used in the present study is also affected by 

sedation and the associated motor impairment. Therefore, the observed potentiation of 

the opioids in the hot plate test was probably not solely analgesic in nature.   

 

In the postmortem toxicology study conducted in Finland in 2010-2011, 91% of 

pregabalin abusers also showed concomitant opioid use (Häkkinen, 2014). Hence, it was 

interesting also to determine whether the deaths could be attributed to the 

pharmacological interaction between pregabalin and opioids. Pregabalin did not, 

however, prevent the development or reverse morphine tolerance. Moreover, a 

synergistic effect on antinociception and sedation in morphine-tolerant animals was not 

detected. In contrast to the hypothesis, the results indicate that the combined use of 

pregabalin and an opioid does not predispose opioid-tolerant individuals to increased 
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effects of opioids. However, a limitation of the study was that respiratory depression 

measurements in chronic morphine administration was not performed. Moreover, the 

studies were performed with only one dose. It should also be noted that the mechanism 

of death is not necessarily related to respiratory depression, as both opioid receptors 

(Sobanski et al., 2014) and L-type calcium channels (Zhao et al., 2017) are known to 

regulate, for example, also myocardial function. 

6.3 Chronic morphine treatment increases microglial reactivity 

Study IV shows that chronic morphine treatment induced tolerance and hyperalgesia. 

Microglia immunoreactivity increased concomitantly at the spinal but not the 

supraspinal level. In flow cytometry, the proportion of anti-inflammatory spinal 

microglia was increased. Upregulation of many pain-related genes in the transcriptome 

of the spinal microglia after chronic morphine treatment were also detected. 

 

The mechanism of the opioid-induced activation of microglia remains to be elucidated. 

Hutchinson et al first suggested that glial activation would be mediated via TLR4 signaling 

(Hutchinson et al., 2010) but the role of TLR4 signaling in opioid tolerance and OIH has 

also been challenged (Mattioli et al., 2014). Spinal microglia and astrocytes have been 

shown not to express MORs (Corder et al., 2017.; Kao et al., 2012). In the present study, 

chronic morphine treatment increased the immunoreactivity of substance P and CGRP 

in the dorsal horn, both of which have been reported to activate microglia (Reddington 

et al., 1995; Zhu et al., 2014). Therefore, the activation of spinal microglia in chronic 

morphine treatment might be related to an increase in neuron-derived peptides.  

 

Chronic morphine treatment did not have an effect on spinal M1-polarized (pro-

inflammatory) microglia, but it increased the proportion of M2-polarized (anti-
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inflammatory) microglia of the total microglia. The result could be interpreted as 

transition to the resolution phase of the neuroinflammatory process or a sign of a 

process opposing the onset of inflammation. A reduction of microglia in the medulla and 

substantia nigra was also detected, but it is difficult to speculate about implications. 

 

In the present study, immunoreactivity of microglia or astrocytes was not significantly 

changed after chronic morphine treatment in such brain regions as the nucleus 

accumbens, ventral posterolateral nucleus, central amygdala, ventral tegmental area, 

central gray, or rostroventral medulla. Other studies have demonstrated both increases 

and decreases in immunoreactivity of the glial cells in individual brain regions after 

chronic morphine treatment (Hutchinson et al., 2009). For example, Hutchinson et al. 

reported that the count of microglial cells was decreased in the nucleus accumbens, 

while (Hutchinson et al., 2009) it was increased in the work of Zhang et al (X.-Q. Zhang 

et al., 2012). The finding in this study implies that the pathophysiology of opioid 

tolerance or opioid-induced hyperalgesia is not dependent on microglia or astrocyte 

activation in the studied supraspinal structures. 

 

The transcriptome of the spinal microglia revealed enrichment of genes in the sets 

related to the ‘immune system process’, ‘response to stress catabolic process’, and 

‘defense response’. In addition, individual genes including Kcnn4, Fkbp5, and members 

of the TREM2/DAP12-signaling pathway were upregulated. The calcium-activated 

potassium channel KCa3.1 (Kcnn4) is known to contribute to microglia activation via 

functional linkage to the intracellular p38 MAPK pathway, and many investigations have 

asserted that its blockade on glia attenuates neuroinflammation (Bouhy et al., 2011; Y.-

J. Chen et al., 2016; Kaushal et al., 2007; Reich et al., 2005). Interestingly, several KCa3.1 

blockers are also in clinical use, making KCa3.1 a feasible target for pharmacological 

intervention, for review, see Wulff and Castle (2010).  
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Fkbp5, a component of a steroid receptor complex, has been shown to have a significant 

role in pain regulation by modulating glucocorticoid signaling (Maiaru et al., 2016). Study 

of Maiaru et al. indicated that Fkbp5 was expressed exclusively in neurons of the 

superficial dorsal horn of the spinal cord, and thus, the role of Fkbp5 in microglia in 

morphine tolerance remains unknown. Interestingly, glucocorticoid signaling in 

microglia is suggested to govern the inflammatory state in inflamed CNS (Carrillo-de 

Sauvage et al., 2013). The TREM2/DAP12 signaling pathway is involved in cell activation 

and phagocytic activity, for review, see Xing et al. (2015). Kobyashi et al have 

demonstrated that TREM2/DAP12 signaling  in microglia promotes proinflammatory 

phenotype and aggravates neuropathic pain. (Kobayashi et al., 2016). According to the 

present results, it possibly also facilitates nociception in opioid treatment. 

6.4 Methodological and ethical considerations 

Pain is a product of a very complicated biological system. Due to the inherent complexity 

of the phenomenon, no in vitro or in silico methods exist today to model the pain in 

humans. Behavioral animal models are therefore still necessary despite their 

shortcomings. Indeed, the murine behavioral models are known to be sensitive to 

laboratory factors, including the individual conducting the experiments, air humidity, 

diet, and environmental stress factors (Chesler et al., 2002; Vissers et al., 2003). For 

instance, the olfactory stimuli associated with exposure to male but not female 

experimenters has recently been shown to cause stress and antinociception in rodents 

(Sorge et al., 2014.). Internal factors of the animals, such as genotype, age and gender, 

can also affect the results (Vissers et al., 2003).  Controlling all possibly relevant factors 

can be difficult, which explains some of the discrepancy in the preclinical results in the 

literature.  
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This thesis was limited by its utilization of male rats only.  The gender of the animals used 

in preclinical research has received special attention. The literature regarding humans 

suggests, although the issue is complex, that women are more sensitive to pain than 

men (Mogil, 2012) and might also show significant qualitative differences to men in their 

pain physiology, such as in some aspects of the immune system related to pain 

modulation (Sorge et al., 2015). The majority of preclinical studies of pain have, however, 

been conducted in male rats (Mogil, 2012), which can cause bias and reduce the 

applicability of the preclinical results to women.  

 

Ethical aspects are of particular importance when nociception is elicited in conscious 

animals. The Finnish act for the use of animals for scientific purposes is based on the 

implementation of the EU directive 2010/63/EU. Besides legislation, also the scientific 

community develops contemporary guidelines for ethical issues and to promote welfare 

of animals (Knopp et al., 2015). Interestingly, a preclinical trial register to tackle the 

significant problem of negative publication bias, which might be a leading cause of 

unnecessary use of animals, has also been recently discussed (Kontinen, 2015). This 

research was conducted in accordance with the guidelines of the local authorities and 

the International Association for the Study of Pain. The Three Rs principle of animal 

testing (replacement, reduction, and refinement) was considered in the design of the 

study settings. In the nociceptive behavioral tests, only the threshold of withdrawal was 

measured and the animals were allowed to discontinue the administration of the 

gradually increasing stimulus. The National Animal Experiment Board of Finland 

approved the study protocol.  

 

An ideal behavioral animal model for nociception has been suggested to possess the 

following qualities: input specificity, validity, and sensitivity (Le Bars et al., 2001). The 

administered stimulus should be nociceptive (input specificity) and the measured 

behavioral sign should be a selective response to nociception (validity) (Le Bars et al., 
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2001). The model should also be able to quantify the response and to discern the effect 

of possible pharmacological interventions (sensitivity) (Le Bars et al., 2001). In this thesis, 

frequently used behavioral tests were utilized, of which the heat tests (tail-flick and hot 

plate test) are validated tools in the study of opioid pharmacology, for review, see Le 

Bars et al. (2001). In the study of hyperalgesia, the cold plate in freely moving animals is 

reviewed by Allchorne et al. (2005) and the evaluation of mechanical hyperalgesia using 

methods similar to the mechanical gauge and dynamic plantar aesthesiometer is 

reviewed by Le Bars et al. (2001). All of the tests used are inherently prone to error due 

to potential non-specific responses, which could be related to, for example, learning in 

repeated measurements or drug-induced confounding effects. Interestingly, marked 

advances in the neuroimaging of pain (Morton et al., 2016) foster the hope that the 

problem of validity could be bypassed with functional imaging measuring the activation 

of pain-related brain regions directly. In this thesis, immunohistochemistry to measure 

glial reactivity, which necessitates the sacrificing of the animal, was employed.  Non-

invasive positron emission tomography imaging can, however, quantitatively measure 

glial activation (Imamoto et al., 2013) and may in the future replace less versatile 

immunohistochemical methods. 

6.5 Future perspectives 

The results of this thesis using the rat as a model organism, suggest that drug interactions 

can alter opioid brain concentrations and the possibility of increased opioid brain 

disposition should be acknowledged in clinical pharmacology. Although animal models 

are routinely used to predict pharmacokinetic behaviour of drugs in the human, 

interspecies differences of CYP-mediated metabolism and limited understanding of 

interspecies differences in drug transporters prevent direct extrapolation of the results 

(Chu et al., 2013; Martiqnoni et al., 2006). Therefore, further human studies are 
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warranted. In clinical trials, the drug brain concentrations cannot be, however, 

measured directly, but surrogate methods like analysis of the cerebrospinal fluid might 

be used (Nagaya et al., 2014). Non-invasive pharmacokinetic measurement methods, 

including positron emission tomography (Gupta et al., 2002), should, however, be 

further developed. Interestingly, magnetic resonance imaging could be used in the 

future to detect the distribution of magnetically labeled drugs (S. K. Li et al., 2008). 

Future pharmacogenetic studies could reveal relevant interindividual differences in the 

drug transporter molecule profiles, which could predispose to the effects of such 

interactions The mechanism of antinociceptive potentiation between pregabalin and 

opioids seems to be mediated via voltage-gated calcium channels. The role of VGCCs has 

gained attention in pain signaling studies (Gribkoff, 2006), and VGCCs have been a target 

for the development of pharmacological inhibitors (S. Lee, 2013). As the understanding 

of the function of the subunit α2δ1, the binding site of pregabalin, remains incomplete, 

further basic research characterizing its function might provide a basis for future drug 

development. In addition, the role of functional selectivity of μ-opioid receptor in 

pharmacodynamic drug interactions between opioids and other drugs should be studied 

more extensively as it might prove to have a clinical impact.  The detailed view of the 

distinct glial cell populations involved in opioid-induced neuroinflammation and the time 

scale of its progression remain to be elucidated. The endeavour to develop effective 

treatments for opioid tolerance and opioid-induced hyperalgesia would benefit from 

focused studies on the molecular mechanisms and identification of new druggable 

targets. 
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Conclusions 

Conclusions addressing the aims of this thesis using the rat as a model organism: 

 

 

I. Spironolactone did not display antinociceptive effects of its own, but acutely 

enhanced the morphine antinociception, most likely by inhibiting P-gp and 

increasing morphine brain concentrations. Spironolactone did not prevent 

the development of morphine tolerance. Spironolactone increased the 

antinociceptive effects and brain concentrations of oxycodone. Unlike with 

morphine, the mechanism of the potentiation is probably through inhibition 

of metabolism. The increased brain disposition might be associated with P-

gp inhibition.  

 

II. Pregabalin enhances the antinociceptive and sedative effects of both 

oxycodone and morphine. The interaction, however, differs between the 

opioids as it depends on dose or/and temporal scheme of the drug 

administration. The behavioral results could not be explained by 

pharmacokinetic interaction at the CNS level. Pregabalin did not prevent or 

reverse morphine tolerance. 

 

III. Chronic morphine treatment induced tolerance and hyperalgesia. The 

associated increase in microglia activation took place at the spinal but not 

the supraspinal level, including the relevant brain regions related to pain 

processing. The transcriptome of the spinal microglia cells indicated 

upregulation of pro-inflammatory processes and genes associated with 

pathological pain. 
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