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ABSTRACT 

During the last decade, nucleic acid-based amplification techniques (NAATs) 

have revolutionized the way clinical microbiology laboratories diagnose hu-

man pathogens. Modern automated NAATs require considerably less hands-

on time and testing is much simpler than with conventional detection meth-

ods. The combination of ease of performance and speed, has made real-time 

NAATs appealing alternatives to conventional culture-based or immunoassay-

based testing methods for diagnosing various infectious diseases. 

 

However, in this era of implementing new technologies, it is crucial to focus 

not only upon the possibilities but also upon the pitfalls of the technology. Fail-

ure to do so may increase the cost of implementation, and put the new tech-

nology at risk of losing reputation in the eyes of the clinicians. This thesis deals 

with the basic principles behind modern NAATs and the implementation and 

utility of some of these modern assays in clinical diagnostics.  

 

The thesis consists of six studies on three new fully automated NAAT plat-

forms, the BD Max, the GenomEra CDX, and the GenRead system. All plat-

forms were used for the screening of toxigenic Clostridium difficile in faecal 

specimens in comparison with the routine laboratory methods. In addition, 

the GenomEra CDX system was used for the detection of Staphylococcus au-

reus and the marker of methicillin resistance from various sample matrixes, 

and the detection of Streptococcus pneumoniae from blood cultures. 

 

All assays showed excellent sensitivity and specificity for the target microbes. 

Moreover, all platforms decreased the analysis time significantly as compared 

to conventional laboratory methods, although variation between the NAAT 

test systems were seen. As its best, the total turnaround-time was less than 30 

minutes with the GenRead, 55 minutes with the GenomEra, and 90 minutes 

with the BD Max system. The platforms had different sample throughput ca-

pacity and space requirement, as well. The lightweight and battery-powered 
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GenRead instrument with isothermal NAAT based assay proved to be most 

flexible system for clinical diagnostics, enabling mobile analytics in both la-

boratory and near patient. 

 

Molecular techniques such as real-time PCR and isothermal amplification 

combined with modern robotics can provide significant advantage in labora-

tory diagnostics for detection of pathogenic bacteria. In this study, the three 

NAAT platforms proved to be suitable for rapid testing of C. difficile, methicil-

lin-susceptible and -resistant S. aureus, and S. pneumoniae from various sam-

ple types.  
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TIIVISTELMÄ 

Viime vuosikymmenen aikana nukleiinihappopohjaiset monistustekniikat 

ovat mullistaneet kliinisesti merkittävien patogeenien mikrobiologista labora-

toriodiagnostiikkaa. Modernit automatisoidut nukleiinihaponosoituslaitteis-

tot vaativat huomattavasti vähemmän käsityöaikaa ja testaus on yksinkertai-

sempaa kuin tavanomaisilla laboratoriomenetelmillä. Helppokäyttöisyys ja 

nopeus on tehnyt reaaliaikaisista nukleiinihappotekniikoista houkuttelevia 

vaihtoehtoja perinteisille viljely- tai antigeenipohjaisille analyysimenetelmille 

erilaisten tartuntatautien diagnostiikkaan. 

 

Uusien tekniikoiden ilmaantuessa on kuitenkin tärkeää keskittyä paitsi niiden 

tuomiin mahdollisuuksiin myös niissä piileviin haasteisiin. Mikäli näin ei 

tehdä, saattaa huolimaton käyttöönotto lisätä laboratorion kustannuksia ja 

asettaa uuden tekniikan vaaraan menettää arvoaan asiantuntijoiden silmissä. 

Tämä väitöskirjatyö käsittelee modernien nukleiinihaponosoitusmenetelmien 

perusperiaatteita sekä joidenkin näiden tekniikoiden hyödyntämistä kliinisen 

mikrobiologian diagnostiikassa. 

 

Väitöskirjatyö koostuu kuudesta osatutkimuksesta, jotka käsittelevät kolmea 

automatisoitua nukleiinihaponosoituslaitteistoa; BD Max:ia, GenomEra 

CDX:ää ja GenRead:iä. Kaikkia kolmea laitetta käytettiin toksigeenisen Clost-

ridium difficilen seulonnassa ulostenäytteistä ja saatuja tuloksia verrattiin 

kliinisten laboratorioiden käytössä oleviin rutiinimenetelmiin. Tämän lisäksi 

GenomEra CDX -laitteistoa hyödynnettiin Staphylococcus aureuksen ja meti-

silliiniresistenssigeenin havaitsemiseen erilaisista näytemateriaaleista sekä 

Streptococcus pneumoniaen havaitsemiseen veriviljelynäytteistä. 

 

Kaikki testisysteemit osoittivat erinomaista herkkyyttä ja tarkkuutta kohde-

mikrobien suhteen. Lisäksi testatut laitteistot pienensivät analyysiaikaa mer-

kittävästi tavanomaisiin laboratoriomenetelmiin verrattuna, joskin tässä tes-

tijärjestelmien välillä haivatiin selvää vaihtelua. Parhaimmillaan kokonaistes-
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tiaika oli alle 30 minuuttia GenRead-laitteella, 55 minuuttia GenomEra-lait-

teella ja 90 minuuttia BD Max -laitteella. Myös laitteistojen näyteanalyysika-

pasiteetissä ja tilavaatimuksessa havaittiin eroavuuksia. Kevyt ja akkukäyttöi-

nen GenRead-laite, jossa hyödynnettiin isotermistä nukleiinihaponosoitus-

määritystä, osoittautui joustavimmaksi kliiniseen diagnostiikkaan mahdollis-

taen mukana kuljetettavan analyysiyksikön, joka soveltuu sekä laboratorioon 

että lähellä potilasta tehtävään analytiikkaan. 

 

Molekyylitekniikat, kuten reaaliaikainen PCR ja isoterminen nukleiiniha-

ponosoitus yhdistettynä nykyaikaiseen robotiikkaan, voivat mahdollistaa mer-

kittävän diagnostisen hyödyn patogeenisten bakteerien analytiikkaan. Tässä 

väitöskirjatyössä tutkitut kolme nukleiinihappopohjaista testisysteemiä osoit-

tautuivat erittäin soveltuviksi C. difficilen, metisilliiniherkkien ja -resistent-

tien S. aureus sekä S. pneumoniae -bakteerien nopeaan tunnistukseen useista 

eri näytetyypeistä. 
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1 INTRODUCTION 

Microbial populations are extremely ubiquitous in the environment. Through 

everyday activities such as breathing, eating, and touching, the human body is 

constantly exposed to these microorganisms. Although most of these organ-

isms are benign and can live on humans (on our skin and mucus membranes) 

as part of the normal microbiota, some organisms can act as pathogens and 

cause damage to the host. The physician, following clinical examination of a 

patient, may suspect the presence of certain infectious agents and order mi-

crobiological tests from various patient samples, such as infected tissues, pus, 

blood, faeces, urine, or sputum. Even though pathogenic microbes represent a 

minority in the whole microbial population, they cause substantial morbidity 

and mortality worldwide (1-10). Thus, proper diagnostics is essential for rapid 

identification of infectious agents and timely treatment of a patient.    

 

In clinical (diagnostic) microbiology laboratory, the main role is to screen 

specimens for pathogens typically associated with given disease or infection. 

Until the 21st century, non-nucleic-acid based techniques such as direct mi-

croscopy, culture, and immunological tests were the main techniques for the 

detection of infectious agents in the clinical specimen (11). Although these con-

ventional techniques form the basis of diagnostic microbiology and, e.g., the 

culture is still considered as the “gold standard” for detection of many patho-

genic bacteria, it is well known that they possess limitations (12,13). The most 

important limitation of culture is that it is a time consuming and labour-inten-

sive method. Moreover, culturing requires viable organism to be present in the 

specimen, which sets certain requirements for transport and storage condi-

tions of the specimen, and slowly growing bacteria, fastidious or uncultivable 

bacteria may remain undetectable (14-18).   

 

To improve the detection of clinically important bacteria, significant techno-

logical advancements have been made in recent years. During the first decade 

of 21st century, various nucleic acid amplification-based techniques (NAATs) 
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have become available for clinical microbiology laboratories to diagnose infec-

tious diseases (13,19-22). Technological advances in, i.e., real-time PCR tech-

niques, nucleic acid sequencing, and DNA microarrays have invigorated the 

field and created new opportunities for laboratories to support patient care. 

Simultaneously, the dependency of microbiology laboratories on time con-

suming culture based techniques has been reduced because of NAATs. 
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2 REVIEW OF LITERATURE 
NAATs are based on three basic steps; nucleic acid extraction, target amplifi-

cation, and target detection and each step has its own critical elements that 

should be understood when using these techniques. 

2.1 Techniques for nucleic acid extraction and purification 

The preanalytical phase aims to release microbial nucleic acids present in the 

specimen. This step is critical for the whole process (23). When deciding which 

method to use, the type of pathogen sought is to be considered. Due to the 

differences in cell wall structures, some bacteria such as gram-negative enter-

obacteria can be lysed easily, whereas gram-positive organisms such as staph-

ylococci and spore forming clostridia can be very difficult to lyse.  

 

Nucleic acid extractions can be categorized roughly into either chemical or 

physical techniques. In chemical extraction, detergents and proteolytic en-

zyme, such as proteinase K are used to solubilize the bacterial cell wall and 

cytoplasmic membranes to release the nucleic acid (24,25). Physical extrac-

tion, on the other hand, consists of, e.g., boiling of the specimen or using ultra 

sound sonication. The crude sample lysate formed from either of the tech-

niques contains both DNA and RNA. Since bacterial RNAs are highly unstable, 

with an average half-life of about 3 minutes for fast-growing bacteria, ex-

tracted samples need to be stabilized if RNAs are to be analysed instead of 

DNA (26,27). In order to isolate RNA from DNA, DNase with chaotropic agent 

guanidium thiocyanate and detergent can be used to digest DNA, denature 

proteins, and inhibit ribonucleases (28). By contrast, if lysate containing DNA 

only is required, RNase can be added, instead of DNase, to enhance the degra-

dation of RNA (26).  

 

Although the crude sample lysate can be used directly in many amplification 

assays, the presence of large amounts of cellular and other materials in clinical 
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specimens, e.g. proteins, carbohydrates, urea, bile salts, and nitrates, in com-

plex mixtures often impedes the subsequent nucleic acid amplification reac-

tions (Table 1) (29-39). Thus, these components are considered PCR inhibitors 

and they should be removed prior, during, or after extraction process or 

avoided during amplification and detection. In addition to the substance 

group, the concentration of the molecular compound is important for its in-

hibitory effect (32). Hence, widely applied approach for the removal of PCR 

inhibitors is the dilution of the sample or the extracted sample lysate (40,41). 

However, the dilution is accompanied by a decrease in assay sensitivity. In-

stead of dilution, PCR inhibitors may be removed effectively by sample treat-

ment with activated carbon, using physical and chemical extraction techniques 

simultaneously or consecutively with or without filtration (Table 1) (32). Albeit 

non-specimen related inhibitory component, the polymeric surface of a lab-

ware, e.g. sample container or reaction vessel, may have a high adsorption of 

DNA decreasing the yield of nucleic acid and the sensitivity of the test (Table 

1) (42,43). Thus, molecular grade labware with low adsorption of DNA should 

be used for NAATs.  

 
Table 1. Examples of PCR inhibitors, their mechanisms of action, and general methods for re-
moval of inhibitors 

Affecting 
step 

Inhibitor Mechanism of action Method for removal 
of inhibitor  

Reference 

Extraction The poly-
meric sur-
face of a 
labware 

High adsorption of DNA, 
especially if high ionic 
strength sample buffer is 
used 

Labware with low ad-
sorption of DNA 

(42,43) 

 Nucleases Degrade template DNA 
and RNA 

Physical or chemical 
inactivation 

(33) 

Amplification Metal ions 
(e.g. Ca2+) 

Inhibition of polymerase 
via competitive metal ion 
binding 

Removal of metal 
ions e.g. with chelat-
ing agents 

(34-36, 44) 

 EDTAa Inhibition of polymerase 
via chelation of metal 
ions such as Mg2+ 

Removal of EDTA by 
filtration or dialysis 

(37) 

 Proteases Degrade polymerase Physical or chemical 
inactivation 

(37) 

 Urea Degrade polymerase Sample dilution (38) 
Detection Haemoglo-

bin 
Increase background flu-
orescence 

Usage of label mole-
cules resistant to 
background fluores-
cence 

(39) 

 Nucleases Degrade probes Physical or chemical 
inactivation 

(37) 

aEDTA = ethylenediaminetetraacetic acid 
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To simplify the extraction and nucleic acid purification processes, a number of 

commercial manufacturers have developed manual extraction kits for clinical 

laboratories (13). These kits differ according to the method, cost, and time re-

quired for extraction. This variability allows flexibility in choosing the kit that 

suits best to the needs of the laboratory. Commercialized extraction kits typi-

cally use noncorrosive agents making them safe to use by laboratory personnel 

(13). However, while these kits are generally inexpensive and easy to use, they 

have several drawbacks. Processing of samples requires multiple manipula-

tions. As the number of samples to be extracted increases, augments the risk 

of contamination. Hence, manual extraction can be a laborious, time-consum-

ing process which requires the undivided attention of the technologist in order 

to ensure optimal results. 

 

To make it even simpler, some manufactures have developed commercially 

available extraction reagents suitable for automated platforms from a wide va-

riety of clinical specimens (see also chapter 2.5). Most commonly used kits for 

automated systems consists of either a chemical extraction with nucleic acid 

purification by a spin column technology (filtration) (45,46) or a chemical 

and/or physical extraction with nucleic acid purification by a magnetic silica 

particles technology (47,48). According to Nickoloff, in the spin column tech-

nology, the lysate buffering conditions (salt and pH) are adjusted to allow op-

timal binding of the nucleic acid to the membrane before the sample is loaded 

onto the spin column (49). These conditions also ensure that protein and PCR 

inhibitors are not retained on the membrane. In the end, purified nucleic acid 

is eluted from the spin column in a concentrated form in either buffer or water 

(49). According to Tan et al., nucleic acid purification and isolation using mag-

netic particles is based on the ultra-small and uniform magnetic nanoparticles, 

which are constructed with an iron oxide magnetic core and a silica layer, and 

coated with a functional group, such as carboxylic acid, thiol, or streptavidin, 

containing moieties (50). Again, nucleic acid is captured in an adjusted lysate 

buffer conditions (salt and polyalkylene glycol concentration), but now by the 

functional group, which acts as a bioaffinity absorbent. During washing steps, 

nucleic acid is separated from other molecules and PCR inhibitors. In the final 
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step, nucleic acid is eluted from the magnetic particles into a buffer solution 

or water (50).  

 

To control the success of nucleic acid extraction and removal of inhibitors, an 

internal control (IC) is typically included into the extraction process. The IC 

should be either an artificial DNA target or a target from human (cellular) DNA 

which is amplified and detected along with the microbial nucleic acid target(s). 

If the sample yields a negative results and IC is not amplified then a re-extrac-

tion and/or sample purification is needed.  

2.2 Target selection (primers and probes) 

In order to detect anything from the extracted sample lysate, one should define 

the target(s) of interest. As the genome of bacteria (prokaryotes) differs from 

human cells (eukaryotes), it has been reasonably easy to design oligonucleo-

tide primers and/or probes suitable for the NAATs used in clinical microbiol-

ogy (51). Primers and probes are the main components of nucleic acid-based 

detection systems and have been the subject of multiple studies (52,53). Pri-

mers are specific oligonucleotide strands that flank the target nucleic acid se-

quence to be amplified and are complementary to opposite strands of the tar-

get. Primers are typically between 15 and 30 bases long and do not have to be 

exactly the same size. However, it is crucial that the melting temperatures of 

the two primer/template duplexes are identical within 1–2 °C, in order to en-

sure specific annealing to the target sequence (54). Probes, on the other hand, 

are for the specific detection of the target nucleic acid sequence. They are a 

fragment of DNA or RNA of variable length (usually 50-100 bases long) la-

belled with a molecular marker of either radioactive or (more recently) fluo-

rescent molecules (13). Both, primers and probes are reviewed further in chap-

ters 2.3 and 2.4. 

 

The target primer sequence must be unique in order to identify a specific path-

ogenic organism or an organism group among normal microbial flora, (e.g., 

Staphylococcus aureus, Streptococcus pyogenes [group A streptococci] or 



Review of Literature 
 

18 
 

Mycobacterium genus in wound swabs or sputum samples), to quantify mi-

crobes (e.g., cytomegalovirus in plasma), or to identify unique virulence genes 

(e.g., verotoxin genes or Clostridium difficile toxins A and B genes in faeces) 

or genes or mutations associated with antimicrobial resistance (e.g., the me-

diator for methicillin resistance, the mecA gene in S. aureus or mutations in 

rpoB gene associated with rifampicin resistance in M. tuberculosis) which can 

occur across strains or species (13). For accurate species identification, the tar-

get nucleic acid sequence should be conserved and exist only in the target or-

ganism. Most commonly used targets for microbial identification are species-

specific “housekeeping” genes or the species-specific region of ribosomal 16S 

gene (53,55). These targets genes demonstrate only minimal evolutional alter-

ation as they are vital for the organism. Other target genes such as virulence 

or resistance genes, though, may vary due to evolution and move from a one 

group of microbes to another, which should be taken into account in target 

selection and in primer and probe design (56,57).  

 

In order to avoid primer sequence cross-reactivity (i.e., false-positive results) 

and to confirm assay specificity it is recommend to search for the intended 

primer sequence in a DNA database such as the National Centre for Biotech-

nology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/BLAST/) 

or perform a decent method verification with known microbes in complex 

specimen matrices such as stool (13).  

2.3 Nucleic acid amplification 

Nucleic acid amplification can be categorised basically into two main groups, 

signal amplification and target amplification. In signal amplification tech-

niques, the concentration of target nucleic acid does not increase. The in-

creased analytical sensitivity comes from increasing the concentration of la-

belled molecules attached to the target (58). As a result, the signal is directly 

proportional to the amount of target sequence present in the specimen. This 

reduces concerns about false-positive results due to cross contamination, as 

the number of target molecules is not altered. Moreover, signal amplification 

techniques are not affected by the presence of enzyme inhibitors in specimens, 
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as they are not dependent on enzymatic processes to amplify the target. An 

example of signal amplification technique is hybrid capture assays where the 

target DNA in the extracted sample is denatured and hybridized with a specific 

RNA probe (59). Then, the DNA-RNA hybrids are captured by anti-hybrid an-

tibodies coated on the surface of a reaction tube. Alkaline phosphatase-conju-

gated anti-hybrid antibodies bind to the immobilized hybrids and the detec-

tion is achieved with a chemiluminescent substrate in a luminometer. 

 

Despite the benefits of signal amplification techniques, target amplification is 

more commonly used in clinical laboratories because it provides greater ana-

lytical sensitivity and broader technical applications. Target amplification 

techniques are discussed more closely in the following chapters (2.3.1, 2.3.2, 

and 2.3.3.).        

2.3.1 Polymerase chain reaction (PCR) 

The development of the polymerase chain reaction (PCR) by Mullis and co-

workers (60,61) was a milestone in biotechnology and heralded the beginning 

of molecular diagnostics. Although other strategies have also been developed 

and utilized in molecular microbiology, PCR is still the most widely used 

NAAT. 

 

At its simplest, a PCR consists of (extracted) target DNA, oligonucleotide pri-

mers, a heat-stable DNA polymerase, a mixture of deoxyribonucleotide tri-

phosphates (dNTPs; dATP, dCTP, dGTP, and dTTP), salts such as MgCl2 and 

KCl, and a buffer. These are mixed together to create a reaction mixture. To 

initiate the PCR, the reaction mixture is heated to separate the two strands of 

target DNA and then cooled to permit the primers to anneal to the target DNA 

in a sequence-specific manner. The DNA polymerase initiates the extension of 

the primers at their 3’ ends toward one another. The primer extension prod-

ucts are then dissociated from the target DNA by heating. (21) Each extension 

product, as well as the original target, can serve as a template for subsequent 

rounds of primer annealing and extension. 
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At the end of each cycle, the PCR products are theoretically doubled. The whole 

procedure is carried out in a programmable thermal cycler that controls pre-

cisely the temperature of each step, the lengths of time the reaction mixture is 

held at the different temperatures, and the number of cycles. Ideally, after 20 

cycles of PCR a 106-fold and after 30 cycles a 109-fold amplification occurs. 

(21) In practise, however, the theoretical amplification is not achieved com-

pletely due to the presence of possible residual inhibitors and unoptimized re-

action conditions. 

2.3.2 Reverse transcriptase-PCR (RT-PCR)  

As it was originally described, conventional PCR was suitable for DNA ampli-

fication only. In order to amplify RNA targets, though, some technical modifi-

cations for PCR were required. Thus, reverse transcriptase (RT)-PCR was de-

veloped. In this process, cDNA is first produced from RNA targets by reverse 

transcription and then the cDNA is amplified by PCR (21). The first RT-PCR 

used two enzymes, a heat-labile RT such as avian myeloblastosis virus RT and 

a thermostable DNA polymerase. Because of the temperature requirements of 

the heat-labile enzyme, cDNA synthesis had to occur at temperatures below 

the optimal annealing temperatures of the primers. This caused problems in 

terms of both nonspecific primer annealing and inefficient primer extension 

(21). These problems have been overcome by the development of a thermosta-

ble DNA polymerase derived from Thermus thermophiles that under the 

proper conditions (typically at a temperature between 45–80 oC) can function 

efficiently as both an RT and a DNA polymerase (62). 

2.3.3 Isothermal amplification 

Unlike PCR, isothermal nucleic acid-base amplification (iNAAT) is a technique 

where the target amplification process can be performed at a single tempera-

ture. This eliminates the need for expensive thermal cyclers. Furthermore, as 

the amplification reaction occurs constantly and not only during programmed 

cycles, the time to target detection can be as short as 15–30 minutes (63,64). 

Isothermal amplification can be divided into several methodological “sub-
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groups” such as, nucleic acid sequence-based amplification (NASBA), self-sus-

tained sequence replication (SSSR), transcription-mediated amplification 

(TMA), loop-mediated isothermal amplification (LAMP), helicase-dependent 

amplification (HDA), exponential amplification reaction (EXPAR), nicking 

enzyme amplification reaction (NEAR), nicking enzyme mediated amplifica-

tion (NEMA), rolling circle amplification (RCA), strand displacement amplifi-

cation (SDA), and signal-mediated amplification of RNA technology (SMART) 

(65-74).  

 

NASBA, SSSR, and TMA are very similar techniques, combining three differ-

ent enzymes to specifically amplify RNA or single-stranded DNA (ssDNA) 

within a time range of up to 90 minutes (75). These enzymes are an avian mye-

loblastosis virus reverse transcriptase, RNase H, and a T7 RNA polymerase 

(66,67,75). Although the amplification occurs isothermally (at 41 oC), NASBA, 

SSSR, and TMA require an initial heating step of either 95 oC (for DNA) or 65 
oC (for RNA) to prepare accessible single strands for the T7 RNA polymerase 

(75). The single-stranded products can be detected e.g., by hybridization 

probes to create a homogeneous, kinetic amplification system similar to real-

time PCR (see chapter 2.4.) (76).     

 

In LAMP, a strand-displacing DNA polymerase is employed with four to eight 

specifically designed primers to recognize six to eight distinct regions on the 

target DNA at a constant temperature of 60 oC (75). According to Tröger et al. 

different assays based on LAMP have run-times approximately 60 minutes 

and have shown a high amplification efficiency (75). Moreover, during the am-

plification, the DNA polymerase produces a large amount of pyrophosphate 

ion by-product, which forms an insoluble precipitate with divalent metallic 

ions, that can be observed with a turbidimeter or simply with the naked eye 

(63,71,75). LAMP amplification products can be detected also by common 

post-amplification techniques for NAATs (see chapter 2.4.). 
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The HDA mimics the naturally occurring process of DNA replication (69), in 

which the double-stranded target DNA is unwinded by a helicase at a temper-

ature of 37 oC. Additional proteins assist in the reaction by stimulating the hel-

icase and preventing re-hybridization of the separated ssDNA targets (77), en-

abling primer annealing and extension by a DNA polymerase. Target detection 

can be achieved within 120 minutes (75). Recent developments with a heat-

stable helicase from Thermoanaerobacter tengcongensis allows the reaction 

to occur at a temperature of 45 oC to 65 oC without the additional assisting 

proteins and with reduced assay run-time (30–60 minutes) (75).  

 

In EXPAR and its recent improvements NEAR and NEMA, a strand-displacing 

DNA polymerase with short oligonucleotides (referred as triggers) are em-

ployed to initiate amplification at a nick created by a nicking enzyme (70). The 

reaction yields a high amount of DNA under isothermal conditions within 

minutes (70). According to Tröger et al., the three techniques are most suitable 

for the detection of small microRNAs (75). The amplification products can be 

detected by a variety of standard methods such as real-time fluorescence, and 

capillary electrophoresis detection (75).   

 

RCA exploits specific linear oligonucleotide probes (called padlock probes) 

containing two target specific sequences at each end (72,73). After hybridiza-

tion, these probes circularize and ligate serving as template for the Phi29 bac-

teriophage polymerase, which continuously elongates the product displacing 

the generated strand. According to Tröger et al., the dual recognition in com-

bination with a ligation reaction ensures specificity of detection (75). Opti-

mized RCA has shown to be able to detect extremely low copy numbers of ge-

nomic bacterial DNA in less than 65 minutes (78-80).   

 

SDA includes two reaction steps, target generation and target amplification 

(68,81). During the first step, after the heat induced strand separation of the 

double-stranded (dsDNA), the first sequence specific primers introduce a re-

striction site into the product and bumper primers, which bind adjacent to the 

first primer, will be elongated by a strand-displacing DNA polymerase. Then, 
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a strand-limited restriction endonuclease or nicking enzyme will cleave the re-

striction sites and polymerase regenerates single stranded copy molecule with 

each displacement step (68,81). However, according to Tröger et al., SDA has 

two major limitations as compared to other iNAATs, a long processing time 

(more than two hours) and the limited use of suitable restriction enzymes (75).   

 

SMART is an iNAAT, which consist of two single stranded primers both capa-

ble of hybridizing abreast to the target sequence and to each other forming a 

three-way junction (74). According to Wharam et al. and Tröger et al., after 

the junction formation, the shorter extension primer is elongated by a DNA 

polymerase, based on the sequence of the template primer, which includes a 

T7 RNA polymerase promotor sequence. Subsequently, the transcription tem-

plate with promotor sequence will be produced, allowing for a multiplicative 

production of transcription RNAs by T7 RNA polymerase (74,75). SMART en-

ables efficient target amplification and detection at 41 oC within an hour. How-

ever, the amplification of dsDNA still needs an initial denaturation step of over 

90 °C.      

2.4 Post-amplification detection and analysis 

In order to visualize the amplified target(s) during or after amplification pro-

cess, additional techniques such as gel analysis, colorimetric detection, line 

probe assays, hybridization arrays, sequencing, or enhanced thermal cycler 

platforms allowing real-time target detection, are needed.   

 

The first detection method was visualization of amplified product in agarose 

gel after electrophoresis and ethidium bromide staining. This technique is, 

however, laborious and time-consuming, and it depends on a toxic dye (21). 

Moreover, gel electrophoresis requires separate post-PCR facilities to mini-

mize the risk of nucleic acid cross contamination. Thus, gel analysis is no 

longer favoured in routine microbiological diagnostics. Additional alterna-

tives, other than real-time detection platforms, are e.g., colorimetric micro-

titer plate, allele-specific hybridization, hybridization arrays, and sequencing 

(21). 
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According to Nolte et al. colorimetric microtiter plate systems are more con-

venient alternatives to traditional gel and blotting techniques. The amplified 

product is captured in microtiter plate wells by specific oligonucleotide probes 

coating the plastic surface. Bound product is detected by a colour change that 

takes place after addition of an enzyme conjugate and the appropriate sub-

strate (21). The redeeming feature of this technique is that it can be carried out 

in microtiter plate washers and readers commonly found in clinical laborato-

ries.  

 

In allele-specific or line probe assays, a series of probes with poly(T) tails are 

attached to nitrocellulose strips. Biotin-labelled PCR product is then hybrid-

ized to the immobilized probes on the strip. After hybridization, streptavidin 

labelled with alkaline phosphatase is added and binds to the biotinylated hy-

brids. The pattern of hybridization provides information about the nucleic acid 

sequence of the amplicon. This method is capable of detecting single-nucleo-

tide polymorphism and is used, e.g., for identification of mycobacteria, analy-

sis of drug resistance mutations, and genotyping of some microbial species 

(82,83).      

 

Hybridization arrays are small plates or chips in which hundreds or thousands 

of oligonucleotides are attached on their solid surface in precise patterns. A 

labelled amplification product is hybridized to the probes, and hybridization 

signals are mapped to various positions within the array (84,85). Hybridiza-

tion arrays have a number of applications in microbiology, including microbial 

and host gene expression profiling and diagnostic sequencing (21).  

 

Direct sequencing has been predicted to be the next revolutionizing technique 

in clinical microbiology diagnostics. Briefly, the nucleotide order of a given 

DNA or RNA is determined by laser and fluorescent dye terminator or pyro-

phosphate degradation (86-88). Although direct sequencing of PCR products 
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is a powerful research tool, its routine use in the clinical microbiology labora-

tory depends upon the development of high-throughput and cost-efficient 

platforms with integrated databases and data analysis software (21).  

 

The disadvantage of distinct post-amplification protocol is, however, that it 

will add an additional phase to NAAT analysis as compared to real-time detec-

tion platforms. Thus, the latter approach has been more popular in clinical 

microbiology diagnostics.    

2.4.1 Real-time PCR 

The term real-time or quantitative PCR (qPCR) refers to methods in which the 

target amplification and detection steps occur simultaneously in the same tube 

(homogeneous). These methods require special thermal cyclers with precision 

optics that can monitor the fluorescence emission from the sample wells. Also, 

a computer software is needed to support the thermal cycler. The software 

monitors the data throughout the PCR at every cycle and generates an ampli-

fication plot for each reaction (kinetic PCR).(13) Similar instrumentation can 

be utilized in iNAATs, without the thermal cycling steps, though. The time re-

quired for target detection in real-time PCR depends on the time required for 

thermocycling, and the speed of thermocycling depends on how quickly the 

instrument can change the temperature (21). Some instruments, such as the 

MIC qPCR cycler (Bio Molecular Systems), which uses magnetic induction, 

can change the temperature at a rate of over 20 oC per second, permitting anal-

ysis of up to 48 samples in as little as 25 minutes.  

 

During the early cycles of real-time amplification, there is commonly only little 

change in the fluorescence signal. This initial signal level defines the baseline 

for the amplification plot. An increase above the baseline indicates the detec-

tion and accumulation of amplification product. However, in some instances 

a fixed fluorescence threshold, which is set above the baseline, is needed. The 

cycle threshold (CT) is defined as the cycle number at which the fluorescence 

passes the fixed threshold. The CT improves the assay specificity, e.g., if the 
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sample template contains high background fluorescence or if there is any risk 

for primer dimer formation. 

 

In its simplest format, the real-time amplification product is detected as it is 

produced by using fluorescent dyes, e.g, SYBR Green I, that preferentially bind 

to double-stranded DNA (89-91). In the unbound state, the fluorescence is rel-

atively low, but when the dye is bound to double-stranded DNA, the fluores-

cence is greatly enhanced. However, the dye will bind to both specific and non-

specific PCR products. The specificity of the detection can be significantly im-

proved by using fluorescent resonance energy transfer (FRET) probes, such as 

the TaqMan probes (Thermo Scientific), labelled with fluorescent dyes or with 

combinations of fluorescent and quencher dyes (13,92-94). FRET probes are 

dual-labelled, one fluorescent dye serving as a reporter, which emission spec-

trum is quenched by the second fluorescent dye. During target amplification, 

the nuclease degradation of the hybridization probe releases the reporter dye, 

resulting in an increase in the peak fluorescent emission (13,95). The intensity 

of fluorescence is related to the amount of the product. Since the signal is gen-

erated only when the primer and probe are bound to the same template strand, 

the assay specificity is increased.  

 

Similar to the TaqMan probes, molecular beacons also make use of FRET de-

tection with fluorescent probes attached to the 5' end and a quencher attached 

to the 3' end of an oligonucleotide substrate (96). In contrast to TaqMan 

probes, which are quite short oligonucleotide strands that are cleaved during 

amplification, molecular beacons are hairpin-shaped, medium length, probes 

that remain intact and rebind to a new target during each reaction cycle. Due 

to this, molecular beacons enable both real-time and end-point detection of 

the target molecule. When free in solution, the close proximity of the fluores-

cent probe and the quencher molecule prevents fluorescence through FRET. 

However, when molecular beacon probes hybridize to a target, the fluorescent 

dye and the quencher are separated resulting in the emittance of light upon 

excitation (96).  
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Scorpion probes are modified versions of molecular beacons, that combine an 

amplification primer with a molecular beacon (97,98). The hybridization ki-

netics of Scorpion probes are generally faster than those of molecular beacons 

because the primer and probe are located on the same molecule. 

 

Probes containing fluorescent quencher may, however, be problematic, as they 

may yield background fluorescent signal during amplification process. With 

dark quencher probes, though, this issue can be avoided. These probes contain 

a fluorophore on the 5’ end and a non-fluorescent quencher molecule on the 3’ 

end (99). The fluorescence is quenched when the probe is a random coil and 

emitted when the probe anneals to the target sequence. Similar to molecular 

beacons and Scorpion probes, dark quencher probes are not degraded by the 

DNA polymerase. In addition, dark quencher probes incorporate a hybridiza-

tion-stabilizing compound, known as a minor groove binder (99). This is a 

small, crescent-shaped molecule that is covalently linked to the 3’ end of the 

probe that spans about 3 to 4 nucleotides and snugly fits into the minor groove 

of DNA, where it forms hydrogen bonds with the template. The minor groove 

binder allows for the use of shorter probes because of the increased Tm and 

enables improved Tm levelling, which increases the specificity of the detection 

reaction.  

 

Since real-time NAATs incorporate homogeneous target amplification (pri-

mers) and detection (probes), the instrument programming becomes chal-

lenging as compared to conventional PCR. As an example, the annealing tem-

perature for probes can be several degrees below the melting temperature of 

the primers. Moreover, primers and probes may have a high potential to form 

secondary structures, including self and cross-hybridization with other oligo-

nucleotides in the reaction, which increases the risk of nonspecific amplifica-

tion and decreases the assay specificity (13,95). This may become an issue, es-

pecially with complex assays such as isothermal amplification platforms, in 

which the reaction temperature remains constant and the molecules collide by 

chaotic nature. 
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2.4.2 Multiplex PCR 

The combination of multiple primer sets into a single amplification reaction 

(multiplex assays) for simultaneous detection of several targets is becoming 

more popular in clinical diagnostics (100). Co-amplification and detection of 

many targets in a single tube provide a great advantage over monoplex assays, 

as it broadens the detection capacity of the particular assay. Multiplex assays 

can be very useful when testing specimens from patients presenting with non-

specific symptoms attributable to a number of different pathogens. Multiplex 

assays, however, have proved to be even more complicated to develop and are 

usually less sensitive than real-time amplification assays with single primer 

sets (21). The primers and probes used in multiplexed reactions must be care-

fully selected in order to have similar annealing temperatures and lack com-

plementarity.  

 

Despite the complexity of designing multiplex assays, the introduction of plat-

forms equipped with optics capable of excitation and detection of multiple 

fluorophores in a closed system in real-time amplification has made multiplex 

pathogen detection a simple and viable option for molecular diagnostics in 

routine clinical laboratories (12). Recently, larger multiplex panels have be-

come available for use in clinical diagnostics (20,101). These test panels are 

typically capable of low-density multiplexing of four to six unique targets. The 

ability to multiplex only up to six targets can, however, be a limitation, espe-

cially when numerous microorganisms are able to cause similar symptoms 

such as gastroenteritis, upper respiratory illness, or bacterial sepsis (102,103). 

This limitation is imposed by the number of optical channels and inability to 

differentiate between fluorescent dyes with similar emission wavelengths. The 

optics on early PCR platforms, such as SmartCycler II (Cepheid) and first-gen-

eration BD Max (BD) were limited to a maximum of four channels. Newer plat-

forms, including the GeneXpert (Cepheid), LightCycler 2.0 (Roche), second 

generation BD Max (BD), and ABI 7500 Fast Dx and ABI Quant-Studio (ABI) 

are capable of detection in up to six different channels (21).  
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2.5 NAAT automation and robotics 

As described above, NAATs consist of three major steps: specimen processing 

(nucleic acid extraction and purification), nucleic acid amplification, and tar-

get detection. The most labour-intensive step is sample processing and it has 

represented the biggest challenge for manufactures of automated test systems 

(104,105). In the past several years, though, there have been considerable ad-

vances in this area with the availability of both semi-automated and fully-au-

tomated systems (12,23,26,48,105-108). The basic idea in all automated sam-

ple processing systems is that the manual steps, such as pipetting, and moving 

of the sample tubes, are replaced with robotic arm. Automation of the nucleic 

acid extraction process and robotics offers clinical laboratories several ad-

vantages, including ease of use, limited handling of the sample, reduced op-

portunity of cross contamination, improved reproducibility, and, for some sys-

tems, post-elution functions such as mixing samples and mastermix for am-

plification assays (105,108).  

 

The currently available automated systems vary in the types of nucleic acid 

extraction methods they provide including total nucleic acid, DNA-only, and 

RNA-only protocols (21). Furthermore, some systems provide protocols for 

various specimen types and volumes, variable elution volumes, the availability 

of target-specific and/or generic target extraction methods, and specimen 

throughput (21). Automated systems range from high-throughput instru-

ments, such as MagNa Pure (Roche) and m2000 specimen processor (Abbott), 

to those designed for a small number of specimens with random access capa-

bilities, such as BioRobot EZ1 (Qiagen) (105,108,109). The extraction time is 

typically 1–3 hours, depending on the system used.  

 

In addition to specimen processing, considerable advances in automation have 

also been made with the availability of real-time amplification and detection 

systems (chapters 2.4.1 and 2.4.2) , which enable rapid target amplification, 

higher capacity of samples per test run, variation in reaction volume, accurate 

optics, and detection of various fluorescent probe types (13,21,95).  
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Due to the recent technological developments, many microbiological labora-

tories have begun relying on centralized facilities with automated high-

throughput instruments but at the same time, by simplification of the testing 

process and miniaturisation of testing platforms, NAAT based point-of-care 

(POC) diagnostics has become more popular (110-112). Careful consideration 

of facility requirements, personnel qualifications, and work flow design is es-

sential before implementing NAATs in microbiology laboratories, like imple-

mentating any new type of testing method (113).  

2.6 Implementation and utility of NAATs in clinical microbio-
logy laboratory 

The appearance of modern NAATs has made many microbiologists reconsider 

the ways of performing clinical microbiological diagnostics (15,114). In the 

field of clinical bacteriology, NAATs have long been considered supplements 

to classical routine analyses (15). In recent years, though, increasing number 

of NAAT assays have become substitutes for classical microbiology tests. Main 

advantages of NAATs include the ability to detect even low numbers of patho-

gens signifying increased sensitivity and the possibility to obtain quick results. 

For example, NAATs can detect fastidious and slowly propagating bacteria 

such as M. tuberculosis in a few hours (115-118), as well as bacteria, such as 

Mycoplasma sp., that are difficult to grow as visible colonies with current cul-

ture-based methods  (119,120).  

 

However, the powerful exponential amplification achieved by NAATs produce 

a risk for false-positive signals due to contamination. Since up to 1012 copies of 

a specific target sequence can be generated in a single amplification reaction, 

even minimal amounts of aerosol can contain thousands of DNA copies. If con-

ventional PCR with post-PCR detection techniques such as gel electrophoresis 

is used, the essential measure to avoid cross contamination is to separate the 

pre-PCR and the post-PCR work areas – ideally in two separate buildings. 

However, in practise the “gold standard” (level 3 facilities) for a PCR labora-

tory performing conventional PCR and “in-house” assays should be considered 
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in clinical laboratories. According to Kwok, proper PCR laboratory includes 

four separate rooms, at minimum, with unidirectional workflow (from room 1 

through 4) and unidirectional airflow if individual airflow cannot be installed 

(121). Each room should be separated from any of the other rooms, and, if pos-

sible, a positive air pressure in rooms 1 and 2 and a negative air pressure in 

room 4 should be obtained. Moreover, rooms 1 and 2 should have a laminar 

air flow bench. In room 1, no DNA is permitted. This room is used for produc-

tion of mastermixes and setup of the individual PCR analysis except addition 

of sample DNA. Room 2 is used for extraction of clinical samples and adding 

the extracted nucleic acids to the premade PCR mixes. In Room 3, the thermal 

cyclers are placed. In Room 4, post-amplification procedures such as detection 

can be performed (121). In addition, all working surfaces should be cleaned 

before and after use, preferably with a reagent that destroys nucleic acid such 

as a 5% bleach solution. Gloves should be changed frequently, at least before 

beginning each of the separate tasks required in a dedicated work area and 

should always be changed if moving from one laboratory room to another. 

Moreover, the use of aerosol-resistant pipette tips and pipette tips long enough 

to prevent specimen contact with the pipetter aids in the prevention of speci-

men contamination (122). Conventional PCR applications have high require-

ment for space and skilled technologists and have, therefore, been considered 

to pose “a high methodological complexity”. They are not practical for smaller 

laboratories and are mainly seen in larger and more centralized laboratories 

(13,54,113,121). 

 

In contrast to conventional PCRs, real-time NAATs are performed in closed 

systems. Consequently, there is no need for individual air-controlled and post-

PCR laboratory rooms. The risk for release of amplified nucleic acids into the 

environment, i.e., contamination of subsequent analyses, is negligent com-

pared with conventional methods (13,54,113). However, real-time NAAT plat-

forms are able to provide sensitivities and specificities equivalent to conven-

tional PCRs combined with hybridization analysis. 
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Platforms like the m2000 (Abbott), and Cobas AmpliPrep (Roche) feature a 

two-instrument three-step system whereby automated nucleic acid extraction 

is followed by automatic addition of all reagents required for a real-time PCR 

on one instrument and real-time amplification on another instrument 

(108,123). According to Marshall et al., and Hochberger et al., the main ad-

vantage of these platforms is that up to 96 specimens per run can be processed 

with minimal hands-on time. Thus, these systems make high-throughput mo-

lecular detection possible even in mid-size laboratories lacking space and 

highly skilled technologists. However, in these platforms prepared specimens 

must still be moved manually from the extractor to the thermocycler to com-

plete analysis (108,123). In addition, proper cleaning of instrument compo-

nents, processing blocks, and surfaces is necessary. The need for human inter-

vention and a narrow time window for transfer of specimens to the thermocy-

cler limit the advantage of large capacity and may present problems for labor-

atories not well staffed on all shifts. Therefore, many manufacturers have cou-

pled automated nucleic acid extraction instruments with amplification and de-

tection systems to create medium to high-throughput, fully automated NAATs. 

The PANTHER system (Gen-Probe) and the BD MAX (BD) are examples of 

fully automated and integrated systems designed to perform sample pro-

cessing, nucleic acid amplification, and product detection all in one instru-

ment (108,124,125). Although these systems have less requirements for hu-

man intervention and space (only one or two separate laboratory rooms are 

needed), proper cleansing is still needed to minimize the risk of contamina-

tion.  

 

Advances in NAAT automation have enabled clinical laboratories to create 

value for decision making concerning e.g. infection control measures and 

choice of treatment. Many recent studies have demonstrated that the accuracy 

of automated and real-time NAATs to detect bacterial agents have been higher 

than that of traditionally used direct (antigen)immunoassay techniques (e.g., 

group A streptococcus from throat swabs or C. difficile toxins from faeces) 

(126,127). Real-time assays have also been shown advantageous in rapid de-

tection of organisms identified by specific cultures (e.g., group A streptococcus 
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from throat swabs, group B streptococcus from vaginal/anal swabs, or toxin 

producing C. difficile from faeces) (4,116,126,128).  

 

Enterotoxin producing C. difficile is a nosocomial and community acquired 

pathogen, causing clinical presentations ranging from asymptomatic coloni-

zation to self-limiting diarrhoea to toxic megacolon and fulminant colitis (115). 

According to Bartlett and Gerding, C. difficile infection (CDI) can be life 

threatening, with an attributable mortality of 6–15% (129). The clinical pre-

sumption of CDI should be proved by laboratory testing. The classic laboratory 

methods to detect C. difficile, e.g., cell culture cytotoxicity neutralization assay 

and toxigenic culture have prolonged turnaround times, impairing their usa-

bility (117,130). When enzyme immunoassays (EIAs) emerged, they were 

widely adopted by many laboratories because of speed, convenience, and eco-

nomical reasons. However, it has been demonstrated that immunoassays lack 

analytical sensitivity, which led in the era of NAATs for detection of C. difficile 

in clinical specimens (116,127,131-134). The sensitivity of real-time assays 

equals or exceeds the standard antigen or culture methods and the turnaround 

time for results is significantly shorter compared to culture-based method.  

 

Perhaps the most significant impact of a molecular test on prevention of hos-

pital-acquired infections (HAIs) has been the success of the methicillin (oxa-

cillin)-resistant S. aureus (MRSA) screen. It has been demonstrated that in-

fections caused by resistant strains, e.g. MRSA, have worse outcomes and 

higher associated costs than infections caused by sensitive strains, e.g. methi-

cillin (oxacillin)-susceptible S. aureus (MSSA) (135-137). Many studies have 

shown that surveillance screening of MRSA and isolation of carriers can sig-

nificantly reduce the incidence of nosocomial infections and be cost-saving 

(138). 

 

Culture-based surveillance of MRSA may be inadequate for efficient infection 

control as the time required for final results can take several days. Studies 

show great promise of real-time NAATs for MRSA to simplify the process by 

providing same day results (139-141). Targeted and on-demand NAAT-based 
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screening of MRSA has altered presurgery prophylaxis and proved to be cost 

effective (142-146). According to Olchanski et al., quick NAAT testing for high-

risk patients was found to defeat the culture-based methods in terms of fewest 

infections and greatest potential cost savings (147). In another study by Roisin 

et al., universal NAAT-based screening approach for MRSA on admission to 

hospital in an endemic setting shortened the time to implement isolation pre-

cautions (148).  

 
There has also been considerable interest to apply real-time NAATs for testing 

of bacterial agents causing community-acquired pneumonia, especially Strep-

tococcus pneumoniae, the most common agent associated with typical (lobar) 

community-acquired pneumonia. However, since colonization with S. pneu-

moniae under the age of five is fairly common, the NAAT assay for S. pneu-

moniae in this age group on a throat swab would be of limited value because 

this microbe is often a commensal in the upper respiratory tract (149,150). 

However, in adult patients’ pneumonia is accompanied by bacteraemia in ap-

proximately 10–30 % of cases, which increases the mortality of pneumococcal 

disease (5). Thus, a quick and reliable diagnostic method to detect the causa-

tive agent of blood-stream infections (BSI) is essential. 

 

Blood culture is the current “gold standard” of BSI diagnosis. The accurate 

identification of microorganisms and their portal of entry are central to the 

optimal management of BSI (151). Enrichment of microbes allows the possi-

bility of evaluating comprehensively antimicrobial susceptibilities which has 

still not been paralleled by any other technique available to date (20). Blood 

cultures are currently performed with continuous microbial monitoring sys-

tems using fully automated instruments and incubators. The instruments de-

tect microbial growth by the analysis of CO2 release using fluorescent sensors 

(Bactec 9240; Becton Dickinson) or colorimetric sensors (BacT/Alert; bioMé-

rieux, France) or, alternatively, by measuring pressure changes in the bottle 

headspace due to the consumption and production of gases (VersaTREK; 

TREK Diagnostic Systems) (20). After a positive signal, usually within 12 to 48 
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hours of incubation (152), a Gram stain is performed together with a prelimi-

nary evaluation of the antimicrobial susceptibility by disc diffusion or minimal 

inhibitory concentration (MIC) method directly from the blood culture bottle 

(153). Pathogens are still often identified by conventional biochemical tests 

which allow the identification of many pathogens commonly recovered from 

blood cultures within 16 to 24 hours; however, more time is often needed for 

final identification and antimicrobial susceptibility evaluation, especially 

when slow-growing pathogens such as yeasts or anaerobes are present 

(152,153). 

 
During the last few years, various methods have been developed to optimize 

the detection of the etiological agent of BSI including fluorescence hybridiza-

tion probes (154,155), pathogen specific and multiplex PCR (156,157), micro-

array (158), and MALDI-TOF MS (159,160). Despite the advantages of these 

assays many of them, however, comprise multiple assay steps to purify the mi-

crobes and/or to extract the target protein or DNA from the blood culture sam-

ples. Therefore, further simplification of these methods is desirable in order to 

reduce cost, labour-intensiveness, need for complex and expensive instrumen-

tation, and expertise on molecular biology. Modern automatization of nucleic-

acid based assays and development of detection technology have recently en-

abled interesting NAATs such as the FilmArray (bioMérieux, France) and the 

Verigene (Luminex, USA) systems for rapid multimicrobial detection from sig-

nal positive blood culture bottles  (157,161). 

 

In addition to NAATs that detect and identify pathogens from positive blood 

culture bottles, there are also NAATs that permit detection and identification 

directly from blood, serum, or plasma samples (20). According to Mancini et 

al., three types of detection strategies have been described, pathogen-specific 

assays targeting species- or genus-specific genes, broad-range assays targeting 

conserved sequences in the bacterial genome, such as the panbacterial 16S 

rRNA gene, and multiplex assays allowing the parallel detection of species- or 

genus-specific targets of different pathogens potentially involved in a certain 

infection type (20). 
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However, despite the remarkable technical advances of NAATs, i.e. short turn-

around time, high sensitivity, and specificity, their widespread use in the diag-

nostics of bacteraemia is still limited by insufficient cost-effectiveness (20). 

More studies are needed to evaluate the clinical usefulness of NAATs as en-

hancing the performance to blood culture. 

2.7 Small-scale point-of-care compatible platforms and ap-
plications 

The idea of miniaturization of available technologies was created already by 

Richard P. Feynman in his famous lecture in 1959 (162). According to Dario et 

al., the miniaturized systems in medicine and biology belong to one of the four 

areas of application, diagnostics, drug delivery, minimally invasive surgery, or 

neural prosthetics and tissue engineering (163). In clinical diagnostics, the re-

cent developments in combining electronic and non-electronic functions by 

new mechanical, optical, fluidic, and electronic functionalities with already es-

tablished NAAT applications has provided decisive advantages (75).  

 

These miniaturized systems can be characterized by an integration of nucleic 

acid extraction, target amplification and detection onto a single small-scale 

platform. Such system incorporates many of the required steps of a typical 

room-sized laboratory on a small chip or cassette (19,23,164,165). The minia-

turized and fully-automated systems offer the possibility to leave a clean lab 

environment, because of the incorporation of all necessary reagents on the de-

vice (75,166-170). Thus, contaminations are greatly reduced. 

 

As defined by Ehrmeyer and Laessig, POC testing is something that occurs 

near or at the patient instantly or in a very short time frame (171). Until the 

21st century, most existing POC tests consisted of immunoassays, namely ag-

glutination, immunochromatographic and immunofiltration tests (172). Dur-

ing the first decade of the 21st century, however, non-immunological POC tests 

based on NAAT detection have become available (19,125,166,167,169,173). In 

molecular diagnostics, POC testing could significantly decrease the delay due 
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to specimen transportation which abrogates one of the key advantages of 

NAATs, namely, rapid turnaround time (TAT). Moreover, POC compatible 

NAATs enable tests that are accessible to personnel without specific laboratory 

medicine training allowing quicker delivery of results that directly influence 

the clinical decision (165).  

 

There are two categories of on-demand sample-to-result NAAT available for 

molecular POC testing, small bench-top analysers, e.g., Alere i (Alere), Gen-

eXpert I, II and IV (Cepheid), Verigene (Nanosphere), Portrait (Great Basin), 

ePlex (GenMark), Illumigene (Meridian Bioscience, Inc) and FilmArray (Bio-

Fire / bioMérieux) (21,168,174,175), and hand-held single-use devises, e.g., co-

bas Liat (Roche Diagnostics) (168), and GeneXpert Omni. In these, the sample 

preparation consists of suspending the specimen into sample buffer and trans-

ferring the suspended solution into a disposable, single-use cartridge or chip, 

which contains all the reagents required for the sample extraction and analysis 

and which are then processed in the automated instrument. Assay run time on 

POC compatible NAATs varies from 20 to 90 minutes depending on the in-

strument (21,168,174). Currently, as being compact systems, many of these in-

struments allow only one or few sample analyses at a time. Another limitation 

is the price of most on-demand NAATs.  

 

As the number of different NAATs in microbial diagnostics is rapidly increas-

ing, the need for proper evaluation studies to determine the assay’s quality and 

usefulness in clinical laboratories are on the rise. According to Afshari et al., 

some of the published evaluation studies have suffered from shortcomings, 

such as the application of an inappropriate gold standard or a non-convincing 

cost-effectiveness analysis (176). When evaluating a new test system, valida-

tion of the instrument and test performance, as well as clinical relevance, cost, 

and ease of use should always be considered (177). Therefore, a detailed pro-

tocol for the validation of new test methods should be established by the la-

boratory.  

 



Review of Literature 
 

38 
 

 

According to Espy et al., after validation, external quality assurance programs 

are also necessary to demonstrate that a verified test continues to perform ac-

cording to the laboratory’s requirements (13). The follow-up procedures help 

ensure the consistency of the test results and that healthcare personnel remain 

competent to perform tests and report results (13). 
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3 AIMS OF THE STUDY 
The aim of this study was to evaluate the rapid detection of clinically important 

bacteria by new small scale fully-automated NAATs. More specifically, the the-

sis contains: 

 A performance and usability investigation of GenomEra 

MRSA/SA assay for routine use in a microbiological diagnostic 

laboratory enabling faster confirmation and reporting of nega-

tive and positive MRSA screening results (I).  

 A performance and usability investigation of GenomEra C. dif-

ficile, BD MAX C. difficile, and GenRead C. difficile, for rapid and 

simple detection of toxigenic C. difficile (III, IV, VI). 

 An evaluation of a one-step sample preparation of positive blood 

cultures for the direct detection of methicillin-sensitive and -re-

sistant S. aureus and methicillin-resistant coagulase-negative 

staphylococci, as well as S. pneumoniae using the GenomEra 

MRSA/SA and S. pneumoniae assays (II, V). 
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4 MATERIALS AND METHODS 

4.1 Bacterial isolates and clinical specimens 

The list of bacterial isolates and clinical specimens used in the studies are 

presented in Tables 1–3. Two kinds of sets of samples were used: retrospec-

tively collected culture collection isolates (n = 555), and consecutive clinical 

screening specimens (n = 2776). 

 
Table 2. Samples analysed with the GenomEra CDX system 

Bacterium and 
source 

Number of 
isolates / 
specimens  

Description of isolates / speci-
mens 

Referen-
ce 

Time in-
terval of 
collection 

Culture collec-
tion 

555 Retrospectively collected clinical 
and type culture collection iso-
lates 

  

MRSA 304 Clinical isolates, known geno-
types (spa, PFGE, and SCCmec) 

I 1996–
2010 

C. difficile 15 Clinical isolates, known ribotypes 
and virulence genes 

III 2012 

S. pneumoniae 37 Type culture collection isolates  V 2013 
Other isolates 217 Clinical isolates and type culture 

collection isolates 
I, III, V 2012, 

2013 
Clinical speci-
mens 

1616 Prospectively collected clinical 
specimens (including pharyngeal, 
nose, groin and wound swabs, 
faeces, and blood cultures) 

I, II, IV, V 2010–
2014 

 
 
Table 3. Samples analysed with the BD MAX system 

Bacterium and 
source 

Number of 
isolates / 
specimens  

Description of isolates / speci-
mens 

Referen-
ce 

Time in-
terval of 
collection 

Culture collec-
tion 

0    

Clinical speci-
mens 

302 Prospectively collected clinical 
faecal specimens 

IV 2014 

 
 
Table 4. Samples analysed with the GenRead system 

Bacterium and 
source 

Number of 
isolates / 
specimens  

Description of isolates / speci-
mens 

Referen-
ce 

Time in-
terval of 
collection 

Culture collec-
tion 

0    

Clinical speci-
mens 

1160 Prospectively collected clinical 
faecal specimens 

VI 2014 
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Clinical screening specimens consisted of swabs (from pharyngeal, nose, 

groin, and/or wound) (Study I), blood cultures (Study II, V), and faeces (Study 

III, IV, VI), and were collected during 2010–2014 at hospital district of Vaasa 

(Finland) (Study, I, II, III, IV), Pirkanmaa (Finland) (Study I, II, V, VI), Varsi-

nais-Suomi (Finland) (Study I, II), Pohjois-Pohjanmaa (Finland) (Study VI), 

and Grenoble (France) (Study VI). Sample analyses were performed at the cen-

tral hospital laboratory of Vaasa (Vaasa, Finland) (Study I, II, III, IV), Fimlab 

Laboratories (Tampere, Finland) (Study I, II, V, VI), Turku University Hospi-

tal Laboratory (Turku, Finland) (Study I, II), Nordlab Oulu (Oulu, Finland) 

(Study VI), and Grenoble University Hospital Centre (Grenoble, France) 

(Study VI).  

 
Culture collection isolates originated from clinical specimens collected during 

1996–2013 (Study I, II, III, V) and a set of type culture collection isolates 

(Study V). All isolates were stored at -70 oC prior thawing and re-culture of the 

samples. The collections were situated at HUSLAB Helsinki University Hospi-

tal Laboratory (Helsinki, Finland) (Study I), National Institute for Health and 

Welfare (Helsinki, Finland) (Study I, III), and Vaasa central hospital labora-

tory (Vaasa, Finland) (Study I, III). Genotyping and ribotyping of isolates were 

performed at the National Institute for Health and Welfare (THL) as previ-

ously described (178-184). 

4.2 Reference and conventional laboratory methods 

All culture collection isolates and clinical specimens were cultured on a suita-

ble media and incubated in appropriate conditions (Table 5). Colonies ex-

pressing typical morphology were identified using Gram-staining and bio-

chemical tests as described in Table 5. 16S rDNA sequencing was used if spe-

cies identification result was not clear (185) (Study I, II, and V). The antimi-

crobial susceptibility, particularly of the MRSA isolates, was tested according 

to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) (be-

fore 2012) or the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) (from 2012) using the disc diffusion method (Oxoid and Mast, UK) 
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and Etest agar gradient diffusion method (bioMérieux, France) on Mueller–

Hinton agar at 35°C (Study I, II) (186,187). 

 
Table 5. Culture based reference methods 

Target mic-
robe 

Culture me-
dium 

Source Incubation 
conditions 

Identifica-
tion tests 

Source 

S. aureus 
(MRSA or 
MSSA)  

Blood agar BD 35±2 oC with 
5% CO2 

API Staph bioMérieux 

Chocolate 
agar 

BD 35±2 oC with 
5% CO2 

Staph ID 32 bioMérieux 

CHROMagar 
MRSA / Chrom 
ID MRSA 

CHRO-
Magar / bio-
Mérieux 

35±2 oC with 
ambient air 

Tube coagu-
lase 

Labema 

SaSelect 
agar 

Bio-Rad 

Toxigenic C. 
difficile 

CCFA Oxoid 35±2 oC with 
anaerobic at-
mosphare 

C. DIFF 
QUIK 
CHEK® 

Techlab 

Fastidious an-
aerobe agar 
(FAA) 

Lab M 35±2 oC with 
anaerobic at-
mosphare 

Vitek MS bioMérieux 

S. pneu-
moniae 

Blood agar BD 35±2 oC with 
5% CO2 

Optochin test Oxoid 

Chocolate 
agar 

BD 35±2 oC with 
5% CO2 

Vitek MS bioMérieux 

Fastidious an-
aerobe agar 
(FAA) 

Lab M 35±2 oC with 
anaerobic at-
mosphare 

 
 
MRSA isolates were confirmed using either DNA-hybridization strip technol-

ogy (GenoType® MRSA, Hain LifeScience, Germany), in-house PCR assay, 

based on amplification of mecA gene and S. aureus specific nuclease gene 

(nuc) (188), or by the Xpert MRSA Nasal test, detecting S. aureus protein A 

(spa) and the mecA sequences (Study I, and II). More precise isolate genotyp-

ing was performed at the National Institute for Health and Welfare. 

 

Blood culture samples (Study II, V) were drawn from febrile hospitalized pa-

tients either in BacT/Alert FAN Aerobic (FA), Standard Anaerobic (SN), and 

Pediatric FAN (PF) bottles (bioMérieux, France) or in BACTEC™ Plus Aero-

bic/F, Plus Anaerobic/F, and Peds Plus/F (n027) bottles (Becton Dickinson, 

MD, USA). Blood cultures were incubated in the BacT/Alert 3D or BACTEC 

9240 automated continuous monitoring systems according to the manufactur-

ers’ instructions until they signalled positive or for a maximum of 7 days, after 

which they were interpreted as negative. Signal-positive cultures were Gram 
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stained and pure cultured on rich universal agars (Table 5). Species identifica-

tion was performed using conventional culture-based and biochemical meth-

ods, e.g., SaSelect™ identification agar (Bio-Rad, USA), tube coagulase, opto-

chin susceptibility, Staph ID 32, Strep ID 32, Vitek®2, or Vitek MS (bioMé-

rieux, France). 

 
Toxigenic C. difficile was screened either by culture (Table 5) (Study III, and 

IV), by the immunochromatographic antigen C. DIFF QUIK CHEK® test 

(Techlab, USA) targeting C. difficile-specific glutamate dehydrogenase (GDH) 

(Study III, VI), or by NAAT assays other than those investigated; namely illu-

migene C. difficile (Meridian Bioscience Inc, USA), and IMDx™ C. difficile for 

Abbott m2000 (Abbott Laboratories, USA) (Study VI).  

4.3 Nucleic-acid amplification techniques and sample prepa-
ration 

4.3.1 GenomEra CDX system 

GenomEra CDX (Abacus Diagnostica, Turku, Finland) is a computer con-

trolled thermal cycler with a fluorometer capable of time-resolved and prompt 

fluorescence measurements (189). The instrument dimensions are 54 × 32.5 

× 39.3 cm (depth, width, and height, respectively) and it weighs approximately 

33 kg.  

 

The GenomEra CDX uses disposable and optically transparent polypropylene 

reaction vessels, i.e., test chips, (41 × 11 × 1.5 mm) that are specifically designed 

for the instrument and readily contains all the PCR reagents required for the 

analysis, including the polymerase, in dry form. Each chip also contains an 

internal amplification control of a non-naturally existing DNA sequence, 

which is used to monitor for the presence of inhibitors and the integrity of the 

dried reagents. In the beginning of an assay run, the test chips are irreversibly 

sealed to minimize the risk of cross contamination. Subsequently, the bacterial 

cells in the sample are disrupted by heat to release their genetic material into 

the reaction. The amplification takes place when the chips are moving between 
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a range of heated blocks of different temperatures during the run. The metallic 

background of the chips ensures efficient transfer of heat from the thermocy-

cler to the PCR reaction and thus decreases the time required for the target 

amplification. In addition to the denaturation, annealing/extension and meas-

urement blocks, there are blocks that are set to more extreme temperatures. 

The extreme-temperature blocks are used to further increase the speed of tem-

perature change and to create a sharp thermocycling profile. The other func-

tions of the GenomEra CDX instrument include the detection and identifica-

tion of the inserted chips, and the homogeneous measurement of fluorescence. 

One to four chips can be analysed at the same time in one assay run. 

 

The detection of the amplification products, which in this study were S. aureus 

specific, highly conserved, gene (yet unpublished) and the marker of methicil-

lin resistance gene (mecA) (Study I, II), C. difficile toxin B gene (tcdB) (Study 

III, IV), and S. pneumoniae specific gene (yet unpublished) (Study V), is based 

on a proprietary technique called enhanced competitive hybridization where 

two partially complementary oligonucleotide probes are used. The label 

probes are labelled with a time-resolved lanthanide fluorescent label, such as 

terbium (Tb) or europium (Eu), while the other probes are labelled with a 

quencher molecule (190). In enhanced competitive hybridization, both oligo-

nucleotide probes contain additional terminal nucleotides that have no coun-

terparts in the other probe, but which can bind to the respective strand of the 

target nucleic acid. Accordingly, both probes bind to the target nucleic acid, 

which accumulates during PCR, more tightly than with each other. When 

bound to the target nucleic acid, the fluorescence of the label probe signifi-

cantly increases. Furthermore, as also the quencher probe preferentially binds 

to the target nucleic acid and hence competes less for the label probe in the 

presence of the target, the detectable fluorescence increases and leads to a 

highly sensitive detection of even low amounts of the target nucleic acid. 

 

End-point lanthanide fluorescence signals are measured in a time-resolved 

manner after completion of thermal cycling. Prior to measurement, all nucleic 

acids are denatured by heating the reaction mixtures for 10 s at 108 °C and for 
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60 s at 100 °C, after which the reaction vessels are transferred to the measure-

ment block kept at 50 °C. Signals are first recorded after 2.0 s (Eu) or 4.8 s 

(Tb) and again after 120 s at 50 °C. The measurement settings were as follows: 

excitation wavelength, 340 nm; emission wavelength, 545 and 615 nm for Tb 

and Eu, respectively. The rationale behind measuring the signals twice is to 

obtain signals when the probes were denatured and when they were hybrid-

ized, allowing accurate analysis of results without needing to compare the sig-

nals with negative controls or with a baseline signal determined using real-

time monitoring of PCR. The measurement of fluorescence is performed as a 

final step after the 45 cycles of the PCR amplification have been completed. 

The whole sequence takes approximately 50 minutes. The lanthanide chelate 

labels used in the assays are heat-stable and resistant against sample-induced 

interferences (190). The long-lifetime emission of the labels allows effective 

elimination of the background fluorescence (i.e., autofluorescence) that origi-

nates from the samples. Using the time-resolved fluorometric measurement 

technique, the test chips are excited with ultraviolet light, upon which the la-

bels fluorescence (106). By applying a short delay between the excitation pulse 

and the counting of the photons emitted by the labels, the autofluorescence 

can be excluded.  

 

A dedicated software is used for the interpretation of the results. Qualitative 

assay results are reported directly after the run by the software in written (pos-

itive, negative, or inconclusive) format with numerical signal values from -15 

(negative) to +100 (strong positive) for the target of interest (S. aureus, mecA, 

tcdB or S. pneumoniae). Borderline or so called ‘inconclusive’ results are ob-

tained when the signal values settle between -5 and +5, in other words below 

the limit of detection (LoD) of the assays. 

 

The GenomEra CDX system was used in this study with the following assay 

kits; GenomEra MRSA/SA Diagnose (Study I, II), GenomEra C. difficile 

(Study III, IV), and GenomEra S. pneumoniae (Study V). The sample prepa-

ration was performed as follows: readily enriched specimens such as blood 
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cultures or bacterial growth on solid media were diluted (25 μl of a liquid sam-

ple such as blood culture or one bacterial colony) into 1 ml of the GenomEra 

sample buffer followed by adding 35 μl of the sample suspension in the test 

chip. For the direct analysis of faecal specimens, 1 μl of stool was collected with 

a sterile loop and diluted in 1 ml of GenomEra sample buffer. Then, four hun-

dred microliters of the sample solution was aliquoted into a second tube con-

taining glass beads and was vortex-mixed for 5 minutes. In the last step, 35 μl 

of the sample suspension was added in the test chip.  

4.3.2 BD MAX system 

The BD MAX system (BD, USA) (previously known as the HandyLab Jaguar 

system; BD-HandyLab, Ann Arbor, MI) is a fully automated computer con-

trolled benchtop molecular diagnostic system, which contains two integrated 

subunits; an extraction unit and two 12-lane microfluidic qPCR unit (125,191). 

The size of the instrument is 75.4 × 94 × 72.4 cm (depth, width, and height, 

respectively), and it weighs approximately 125 kg. 

 

The extraction unit consists of a liquid handling head mounted on a robotic 

gantry and associated assemblies which allow cell lysis, nucleic acid extraction, 

and mixing of nucleic acid with master mix reagents. With no user interven-

tion, after the extraction, the system dispenses the sample into a microfluidic 

chamber where real-time PCR amplification and detection are performed. The 

instrument can process and analyse 1–24 specimens per run. Individual bar-

code for each BD MAX Sample Buffer tube is scanned by an external barcode 

reader and verified against the system Work List by an internal barcode 

reader, ensuring traceability throughout extraction and PCR. The qPCR unit 

has dedicated multi-colour LED optics: including 475/520, 530/565, 

585/630, 630/665, 680/715 nm excitation/emission wavelengths analysis. It 

allows qualitative, quantitative, and melt curve analysis.  

 
The sample processing proceeds as follows: specimens are first introduced 

into Sample Buffer tubes according to manufacturer’s instructions. Scanned 

barcode-labelled Sample Buffer tubes are then manually placed into a sample 
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rack. Sample information is entered via the keyboard, or by external barcode 

reader. Test selection is made using the BD MAX system software. The appro-

priate number of Unitized Reagent Strips (URS) needed for the run are placed 

in the sample rack and securely seated. Foil-sealed lyophilized extraction and 

PCR reagent tubes are snapped into the appropriate positions on each URS. A 

24-lane BD MAX Microfluidic Cartridge is placed into a drawer located behind 

each respective sample rack. Once the run is started, automatic verification of 

samples, strips, and reagents begins, followed by the extraction and purifica-

tion process. Sample lysis and DNA extraction take place in each URS. Sample 

lysis is done by chemical and physical reaction and the extraction is based on 

magnetic particle purification. DNA present in the sample is bound to mag-

netic beads which have been coated with a proprietary DNA affinity matrix. 

Extraction solution in the URS, is then prepared for PCR analysis. After ex-

traction, the purified nucleic acids are mixed with master mix, including 

probes and primers. The instrument transfers the PCR-ready sample into the 

sample injection port of the appropriate lane on the BD MAX Microfluidic Car-

tridge. After all programmed samples are injected, the drawer containing the 

BD MAX Microfluidic Cartridge is drawn into the reader, where automated 

PCR amplification and detection are performed. The BD MAX allows amplifi-

cation curve view in real time and supports multiple PCR technologies such as 

TaqMan®, hydrolysis probes, Scorpions®/Molecular Beacon, MGB Alert®, 

and SYBR® Green. 

 
The BD MAX system was investigated using a Cdiff assay kit (Study IV). For 

the assay, 10 μl of stool (or 50 μl, when a liquid-based microbiology (LBM) 

tube was used for specimen collection) was collected with a sterile loop and 

transferred to a BD MAX sample buffer tube containing 1.5 ml of buffer, which 

was then sealed with a septum cap and vortexed for 1 min before being placed 

in the BD Max System URS rack with BD MAX Cdiff Extraction Tube and one 

BD MAX Cdiff Master Mix tube. One BD MAX PCR cartridge is also placed on 

the BD MAX for every 12 specimens tested. The automated extraction proce-

dure uses achromopeptidase, an enzyme exhibiting strong bacteriolytic activ-

ity against Gram-positive bacteria (192), and magnetic-bead technology. Every 
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test includes a sample-processing control (SPC). During the extraction, 475 μl 

of the sample is extracted and eluted into 25 μl.  After 50 to 90 minutes of 

extraction (depending on the number of samples), the eluate was automati-

cally added to a master mix and inserted into 4-μl chambers. Real-time PCR is 

completed in less than 30 min (45 cycles of 30.3 s) in a microfluidic chamber 

system. The results are reported as positive, negative, or invalid. On-board mi-

cro valves automatically seal reaction chambers. The C. difficile tcdB signal is 

detected in the FAM channel, 475/520 nm. The internal control is detected in 

the channel, 585/630 nm. 

4.3.3 GenRead system 

The GenRead Instrument (Orion Diagnostica) is a small bench top instrument 

for isothermal amplification and real-time detection of nucleic acids. It 

weights approximately 3.6 kg, and has a size of 23 × 22.5 × 15 cm (depth, 

width, and height, respectively). The GenRead Instrument is a stand-alone, 

mains-power or Li-Ion battery operated in vitro diagnostic instrument capa-

ble of producing qualitative test results from various patient samples. The bat-

tery unit is charged automatically when the power cable is plugged in. The bat-

tery must be recharged periodically by connecting the external power supply 

for at least 1.5 hours. The complete charging time is 5 hours. The Orion Gen-

Read instrument has an in-built computer with touch screen. It is operated by 

touching the virtual buttons in touch screen with fingers or a stylus. The screen 

can be used both with bare fingers and with gloves on. There is always multi-

sensory feedback when a button is touched: the button will indicate the touch-

ing both visually, by changing appearance, and with an audible sound. It also 

provides the user with messages and prompts for performing the assays, and 

gives test results and error messages. The 15.1 × 9 cm (width, depth) touch 

screen is capacitive and has 800 × 480 pixels. 

 

The Orion GenRead amplification and measuring unit consist of a temperature 

controlled 12-hole thermal block enabling isothermal amplification of target 

in reagent tubes. Fluorescence is measured via the tube bottom by confocal 
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fluorescence sensors for 1-12 reactions simultaneously in real-time. The in-

strument can be equipped with one to three sensors. Each sensor is capable of 

measuring two different emitting wave lengths simultaneously. The self-con-

tained instrument is used together with Orion GenRead reagent kits for rapid 

detection of various pathogens and is suitable for use in laboratories of various 

settings and sizes. The GenRead assays use a proprietary SIBA® (Strand In-

vasion Based Amplification) technique for isothermal nucleic acid amplifica-

tion (173). The technology is based on amplification of nucleic acids at a con-

stant temperature of 40 oC. The probes are quenched conformational fluores-

cent probes, labelled with fluorophores such as Cy5 and ROX. The results are 

interpreted by special algorithms built into the device’s software. The algo-

rithm is encoded in a data matrix found on a barcode card in each kit. The data 

is transferred to the Orion GenRead by scanning the card with the instru-

ment’s barcode reader.  

 

In this study, GenRead C. difficile assay kit was used (Study VI). For the de-

tection of tcdB gene, a small amount of stool sample with a flocked swab was 

taken and transferred into a GenRead filtration vial consisting of 1.5 ml of lysis 

buffer. Three to five drops of the lysis buffer were squeezed from the vial to an 

empty micro-tube and the tube was heated in a heating block at 95 °C for 5 

minutes. The heat-treated sample was mixed with reaction buffer, and 40 μl 

of the mixture was pipetted into a reaction tube containing freeze-dried rea-

gents for the C. difficile assay and the IC reaction. 
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5 RESULTS 

5.1 Rapid verification of MRSA using the GenomEra 
MRSA/SA assay (Study I) 

The performance of the GenomEra MRSA/SA assay to detect various MRSA 

isolates was evaluated using 450 culture collection isolates. The culture collec-

tion consisted of 304 genotypically different MRSA isolates, including 68 dif-

ferent S. aureus protein A (spa) types, 51 different pulsed-field gel electropho-

resis (PFGE) types and subtypes, and ten different SCCmec genotypes, as well 

as 146 non-MRSA isolates. The GenomEra MRSA/SA reported all MRSA iso-

lates as MRSA-positive and all MSSA isolates as SA-positive only. In addition, 

all methicillin-resistant coagulase-negative staphylococci (MRCoNS) yielded 

mecA-positive and SA-negative results. Thus, the sensitivity and specificity of 

the GenomEra MRSA/SA assay was 100 % for MRSA confirmation from pure 

cultures incubated overnight.  

 

One coagulase-negative Staphylococcus species from the pure culture collec-

tion, identified as S. warneri / S. pasteuri with the Staph ID 32 and 16S rDNA 

sequencing, however, repeatedly gave a weak SA-positive signal (between +19 

and +35) by the GenomEra MRSA/SA assay when retested from different col-

onies on the same pure culture and after re-culture. Furthermore, this partic-

ular isolate was shown to be nuc- and mecA-negative in the reference nuc-

mecA-PCR. Consequently, the specificity of the SA-target alone on GenomEra 

MRSA/SA was 99.3 %. Three other S. warneri isolates from the culture collec-

tion yielded SA-negative results. 

 
Usability of the GenomEra MRSA/SA assay for daily use in a microbiological 

diagnostic laboratory was investigated with 145 clinical MRSA screening spec-

imens that were cultured on selective MRSA media and yielding MRSA sus-

pected growth after an overnight incubation. Of the 145 suspected colonies 

picked from chromogenic MRSA plates and analysed with the GenomEra 
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MRSA/SA assay, 125 were detected as MRSA-positive and 20 as MRSA-nega-

tive. Results were convergent with the conventional identification and suscep-

tibility testing methods and with the reference MRSA PCR methods. Only one 

pure colony from the screening plate was needed to obtain MRSA verification 

by the GenomEra MRSA/SA assay. As the hands-on time was approximately 

one minute per sample and assay run-time 50 minutes, confirmation of MRSA 

was attained within 55 minutes by the GenomEra MRSA/SA assay. By contrast 

with conventional methods, the confirmation of MRSA took additional 16 to 

24 hours. In this study, the overall PCR inhibition rate of the GenomEra 

MRSA/SA assay was 0.17 %. 

5.2 Rapid detection of toxigenic C. difficile (Study III, IV, VI) 

The performance of three automated NAATs, the GenomEra C. difficile, the 

BD MAX Cdiff, and the GenRead C. difficile assay, was evaluated for detection 

of toxigenic C. difficile from faecal specimens. Particularly, the aim was to as-

sess the utility of these assays for daily use in a microbiological diagnostic la-

boratory enabling faster detection and reporting of negative and positive C. 

difficile (toxigenic) screening results. 

5.2.1 GenomEra C. difficile assay (Study III, IV) 

The estimated analytical sensitivity of the GenomEra C. difficile assay was five 

CFUs per PCR reaction, as the minimal detectable number of viable C. difficile 

cells in the spiked stool samples varied from 1.40 × 102 to 1.50 × 102 cells/μl. 

However, this was presumptively assessed, because only a limited number of 

replicates were used in this study. From the culture collection isolates (n = 33), 

all tcdB-gene containing C. difficile isolates (n = 14) were detected as toxin-

positive by the GenomEra C. difficile assay. The C. difficile isolate not carrying 

toxin genes, and other clostridial species (n = 12), as well as non-clostridial 

isolates (n = 8) all yielded negative tcdB results with the GenomEra assay, as 

expected. The sensitivity and specificity of the assay from pure cultures was 

100 %.  
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Apart from culture collection samples, the performance of the GenomEra C. 

difficile assay and utility in diagnostic microbiology laboratory was assessed 

with 612 clinical stool specimens. One hundred and fifty-eight (25.8 %) were 

considered true positive for toxigenic C. difficile. Of these, the GenomEra C. 

difficile assay detected 155. Two specimens were reported positive only by the 

GenomEra, remaining negative by toxigenic culture and by other NAATs. The 

sensitivity of the GenomEra C. difficile assay for the screening of toxigenic C. 

difficile was 98.1 %, specificity 99.6 %, positive predictive value (PPV) 98.8 %, 

and negative predictive value (NPV) 99.3 %. The PCR inhibition rate of the 

GenomEra was 5.3 % with faeces in conventional containers and 0 % with fae-

ces in a LBM tubes, the FecalSwabs. 

 

The hands-on time for the GenomEra C. difficile assay was approximately 1 

minute for one sample and 3 minutes for four samples (the capacity of the in-

strument). The assay run-time was 50 minutes. Thus, the total turnaround 

time for one to four samples was less than one hour.  

5.2.2 BD MAX Cdiff assay (Study IV) 

The performance and usability of the BD MAX Cdiff assay was investigated 

with 302 clinical stool specimens. Of these, 79 (26.2 %) were considered true-

positive for toxigenic C. difficile. The BD MAX Cdiff detected 74 positive spec-

imens correctly. Three additional positive results were reported by the BD 

MAX, which, however, remained negative according to all other methods and, 

thus, were determined as false-positives. The respective sensitivity, specificity, 

PPV, and NPV were 93.7 %, 98.7 %, 96.3 %, and 97.8 % for the BD MAX Cdiff 

assay. The PCR inhibition rate was 4.4 % with faeces in conventional contain-

ers and 0 % with faeces in FecalSwabs.  

 

Hands-on time for analysing 1 to 4 specimens was 1.5 to 3 minutes, and for 24 

specimens, 10 minutes. The assay run time for 1 to 24 specimens was 85 to 135 

minutes.  
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5.2.3 GenRead C. difficile assay (Study VI) 

In this study, a total of 1160 faecal specimens were analysed with the GenRead 

C. difficile test. One hundred and eighty-four specimens (15.9%) were consid-

ered as true positives for toxigenic C. difficile. A total of 11 false positives 

(0.9%) and 16 false negatives (1.4%) were reported with the GenRead C. dif-

ficile. The overall sensitivity of the GenRead assay was 92.0 %, specificity 98.9 

%, PPV 94.4 %, and NPV 98.4 % as compared to the comparative methods. A 

total of 45 invalid results (3.9 %) were obtained with the GenRead test system 

during the study. 

 

The precision of the GenRead C. difficile test system was evaluated by a repro-

ducibility study, where the same sets of blind coded samples were tested at 

three separate laboratories. During a five-day testing protocol, five samples 

containing various amounts of toxigenic C. difficile or C. sordellii cells (in three 

replicates) were analysed twice per day by two laboratory technicians. A total 

of 449 samples (99.8 %) were in total agreement between the three laborato-

ries. Only one sample was reported as false positive (in one laboratory) due to 

a probable contamination caused by a user.  

 

The hands-on time with the GenRead C. difficile assay was approximately 5 

minutes per one sample. The assay runtime varied from 15 to 55 minutes de-

pending on the concentration of the tcdB gene in the specimen. 

5.3 Rapid detection of S. aureus, the marker of methicillin-
resistance, and S. pneumoniae in blood cultures using 
the GenomEra CDX system (Study II, V) 

In these studies, a total of 859 blood culture samples were analysed, including 

835 positive bottles containing Gram-positive cocci in clusters (n = 419) (Study 

II), Gram-positive or poorly stainable cocci either in chains or in diploid form 

(n = 110) (Study V), and other bacterial forms (n = 361) (Study II), as well as 

24 signal- and growth negative bottles (Study II). 
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In total, nine (1.2 %) MRSA, 159 (20.4 %) MSSA, 133 (17.1 %) MRCoNS, and 

97 (12.4 %) methicillin-susceptible CoNS (MSCoNS) isolates were identified 

by routine methods from the bottles containing Gram-positive cocci in clus-

ters. The GenomEra MRSA/SA assay detected 158 MSSA and all nine MRSA 

strains, yielding clinical sensitivities of 99.4 % for detection of MSSA and 

100.0 % for MRSA. Of the 133 MRCoNS positive samples, 132 were detected 

by the GenomEra assay, based on a positive mecA signal and a negative SA 

signal, yielding a sensitivity of 99.3 % for the presumable detection of 

MRCoNS. The one false negative MSSA and the one false negative MRCoNS 

results were obtained from two specimens containing polymicrobial growth. 

Analysis of the cell concentration in the polymicrobial samples revealed that 

the concentration of both MSSA and MRCoNS was suppressed to less than 

1:1000 of that of the competing species and hence fallen under the LoD of the 

GenomEra assay. For the detection of S. aureus and the marker of methicillin 

resistance, the minimum detectable number of viable cells using the Ge-

nomEra MRSA/SA assay was 4 × 104 CFU / ml. Thus, the estimated analytical 

sensitivity for intact MRSA cells was 30 CFU per PCR reaction. 

 

The specificity of the GenomEra MRSA/SA assay was 99.8 % for MRSA, 100 

% for MSSA and 100 % for MRCoNS. One false positive MRSA result and one 

weakly reactive result reported as an inconclusive ‘MRSA borderline’ result 

were seen from two specimens, one containing Serratia marcescens (strong 

positive) and the other containing Streptococcus pyogenes (weakly reactive).  

 
The sensitivity and specificity of the GenomEra S. pneumoniae assay with 90 

culture collection isolates, including 37 known S. pneumoniae (18 different 

serotypes) and 53 non-S. pneumoniae isolates, was 100 %. Of the 110 blood 

culture specimens, S. pneumoniae was recovered and identified from 46 spec-

imens (41.8 %) by the conventional culture based methods. Using the Ge-

nomEra S. pneumoniae assay, all 46 S. pneumoniae positive blood culture 

specimens were detected within 55 minutes after the preliminary Gram-stain-

ing. The remaining 64 blood culture specimens yielded a growth of various 

streptococci other than S. pneumoniae, enterococci, and other bacteria, and 
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were all negative by the GenomEra assay. These results indicated a 100 % sen-

sitivity and a 100 % specificity for the GenomEra S. pneumoniae assay. 

 

The hands-on time for one sample was less than 1 minute and for four samples 

approximately 3 minutes with both GenomEra assays. The assay runtime was 

50 minutes and thus, the total turnaround time with the GenomEra assay, in-

cluding extraction, for up to four samples (the capacity of the instrument) was 

approximately 53 minutes. The total PCR inhibition rate of the GenomEra as-

say from blood culture samples was 0.6 % (6 / 859). 
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6 DISCUSSION 

Clinically important bacteria such as S. aureus, toxigenic C. difficile, and S. 

pneumoniae are responsible for a significant number of infections in many 

healthcare facilities and in community, resulting in excess morbidity and 

healthcare costs (5,6,115,136,137,193-198). To address this challenge, 

healthcare organizations have implemented various infection control strate-

gies (199,200). According to Zimlichman et al., prevention through education 

is the most used strategy worldwide for HAI and healthcare-associated infec-

tion (HCAI) control (10). Other implemented measures are reinforcing hand 

washing, environmental cleaning practices, Antibiotic Stewardship Programs 

(ASPs), and improved communication and epidemiological surveillance sys-

tems (10). However, to efficiently control HAIs and HCAIs, clinicians and 

health care workers need to act quickly, which implies gathering all relevant 

information about the infection as soon as possible. Clinical microbiology la-

boratories play a key role here, enabling the early identification of infectious 

aetiology agent, characterization of possible antibiotic resistance patterns and 

recognition of outbreaks.  

6.1 The benefits and disadvantages of automated NAATs in 
MRSA screening 

As stated in chapters 1 and 2.6, conventional laboratory techniques such as 

culture typically require several days for the identification of clinically im-

portant bacteria until fully completed. Moreover, if conventional phenotypic 

susceptibility tests are used alone for the detection of resistant bacteria such 

as MRSA without NAAT confirmation, additional problems may be encoun-

tered. For example, borderline oxacillin (methicillin)-resistant S. aureus 

(BORSA or MOD-SA) isolates, lacking the clinically important mecA or mecC 

genes, may be misinterpreted as MRSA, due to their elevated MIC values to 

oxacillin and/or cefoxitin (201,202). In addition, some clinical MRSA isolates 

have shown to be in vitro oxacillin-susceptible while containing the mecA gene 

(203,204). Correspondingly, these OS-MRSA isolates may be misinterpreted 
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as MSSA, due to their reduced MICs to oxacillin or cefoxitin, if phenotypic tests 

are used without NAAT confirmation.  

 

Concurrently, advances in NAAT have made it possible for diagnostic infor-

mation to have a greater impact on decisions for isolation, treatment, and care 

(113). However, effective use of molecular diagnostic technology requires good 

understanding regarding the scope, suitability, and performance of the 

NAATs, as well as critical interpretation of the test results. 

 

In the first study of this thesis, the performance and utility of an automated 

small scale NAAT, the GenomEra MRSA/SA assay, utilizing a dual-target de-

tection of S. aureus specific and the mec genes (at that time only mecA), for 

MRSA screening in clinical microbiology laboratory was investigated. Imple-

mentation of a fully automated “plug-and-play” NAAT platform in a laboratory 

lacking special facilities for molecular diagnostics was surprisingly simple. 

Moreover, due to the small size of the GenomEra CDX instrument it could be 

easily set up anywhere in the laboratory and relocated into a new place if 

needed. The assay itself is straightforward to perform as the hands-on time 

with the GenomEra MRSA/SA assay is less than 1 minute. The capacity of one 

GenomEra instrument proved to be 32 sample analyses (4 samples per one 

assay run) within one 8-hour workday. Thus, being adequate for the laborato-

ries performing up to approximately 8,000 (on Monday to Friday) to 11,000 

(on every day) analyses per year. 

 

The GenomEra MRSA/SA assay demonstrated a high performance (100 % ac-

curacy) by detecting the vast variety of genotypically differing MRSA strains 

from culture collection isolates and not yielding any false-positive MRSA re-

sults. However, since the dual-target approach is known to provide false 

MRSA-positive results when detecting simultaneously the mecA gene from 

MRCoNS and the S. aureus specific gene from MSSA in specimens containing 

mixed growth of MRCoNS and MSSA (205), the suitability of the GenomEra 

MRSA/SA assay for clinical purposes was investigated using a dual-step algo-

rithm; culturing the specimen on a MRSA selective media followed by NAAT 
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confirmation using the GenomEra assay. This procedure permitted the detec-

tion of MRSA from patient samples within 24 hours. Consequently, MRSA-

positive results could be reported to clinicians one day earlier with the Ge-

nomEra MRSA/SA assay than using conventional culture-based identification 

and phenotypic susceptibility testing methods. However, a major limitation of 

this two-step approach is that the overall sensitivity depends on the sensitivity 

of the different screening agars (206-210). 

 

To overcome the limitation related to the performance of the preceding culture 

and to further reduce the time to MRSA detection, there is an alternative ap-

proach using NAAT; targeting the acquired right extremity sequence of the di-

verse genomic island complexes known as the staphylococcal cassette chromo-

some (SCCmec) including the chromosomal sequence of the open reading 

frame X (orfX), in combination with S. aureus specific marker and the medi-

ator of methicillin resistance genes (mecA and mecC) (139,140,169,210-214). 

Assays using this approach are specifically designed for direct screening of 

MRSA from swabbed samples without any preliminary enrichment steps 

(139,140,169,210,212,213,215,216). Benefits of such direct NAAT testing is the 

superiority in speed, total turnaround time varying from one to five hours (de-

pending on the system), and usage simplicity with highly automated systems 

as compared to conventional methods. Disadvantage, on the other hand, is 

that direct molecular screening is more costly than conventional culture and, 

for this reason, many clinical laboratories opt to use the culture-based screen-

ing. However, there are already few studies evidencing the clinical cost-effec-

tiveness of direct NAAT-based MRSA screening (217,218).  

 

Importantly, though, critical limitations related to both false-negative and 

false-positive results were reported shortly after the launching of NAATs tar-

geting the SCCmec-orfX junction (209,212,215,219-223). False-negative re-

sults are related to the highly variable SCCmec-orfX junction in S. aureus. Sis-

sonen et al. stated in their study that when using the assay, one has to bear in 

mind the possibility of mutating MRSA strains and to use regularly some 

other, strictly MRSA-specific test, particularly in low MRSA endemic regions, 
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like in Finland (215). The second issue regarding false-positive detection of 

MRSA can occur due to the S. aureus isolates which do not have a functional 

mecA gene but are detected by the primers targeting the SCCmec-orfX junc-

tion (220). For these limitations, dual-target detection of S. aureus specific 

gene and the mec genes is highly recommended in regions where the preva-

lence of MRSA is low but genetic variation in circulating isolates is high, e.g. 

in Nordic countries (141,212,223-225). This is because the S. aureus specific 

and the mecA genes do not variate as much as the SCCmec-orfX junction and 

currently used primers and probes are able to detect most, if not all circulating 

or emerging MRSA variants (178,180,181,226-230).  

 

The dual-target detection utilized by the GenomEra MRSA/SA could also be 

used for direct screening of MRSA in low endemic settings. No performance 

data has yet been published for the direct screening of MRSA using the Ge-

nomEra MRSA/SA assay, but preliminary data shows that the assay provides 

a high NPV but lacking some specificity. For the direct detection of MRSA, the 

hands-on time with the GenomEra MRSA/SA is approximately 5 minutes and 

the total turnaround time an hour. However, if all screening samples were an-

alysed by direct detection the capacity of the GenomEra instrument would be 

inadequate. The two-step MRSA screening algorithm, which was investigated 

here, has been shown to be more cost-effective approach in low endemic 

MRSA settings than a NAAT-only approach (217,218,231).  

 

Despite the excellent performance of the GenomEra system, though, emerging 

new MRSA variants, such as the MRSALGA251 isolate found in Europe, contain-

ing the mecC gene and the new type of SCCmec cassette (type XI) (57), pose 

diagnostic problems with the potential risk to be misdiagnosed as MSSA by 

NAAT targeting only the mecA gene (232). This may lead to adverse conse-

quences for patients. Thus, after implementation of any NAATs it is necessary 

to continue to monitor the performance of the assay, equipment, and reagents. 

Recently, the GenomEra MRSA/SA assay were updated to include both the 

mecA and the mecC gene targets to detect the new mecC MRSA variants, too. 

Since this diagnostic update was not available during the studies, all BORSA 
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isolates analysed here were confirmed later, just in case, using the mecC PCR 

assay (data not shown). 

 
An interesting feature of the GenomEra assay is that it can be performed with-

out any sample purification steps for many different specimen types including 

blood cultures. This is mainly due the proprietary, heat-stable and sample-in-

duced interferences resistant, label technology and robust DNA polymerase 

(106). Therefore, the GenomEra platform is suitable for many routine applica-

tions. Due to the lack of labour-intensive and hence costly sample preparation 

steps the GenomEra MRSA/SA assay was further investigated for rapid detec-

tion of staphylococci in blood cultures.  

6.2 The impact of NAATs in detecting bacteria from blood 
and blood cultures 

As pointed out in chapter 2.6, the rapid and reliable detection of microbes in 

severe BSI is essential (2,152,233-235). Kumar et al. have reported that for 

each hour of delay in the administration of effective antimicrobial therapy 

there is a 7.6 % increase in mortality (236). In regard to staphylococci, bacte-

raemia caused by S. aureus is known to associate with high morbidity and 

mortality rates whereas CoNS in blood cultures originated often from foreign 

body colonization such as catheter or cannula or refer to contamination (237-

243).  Thus, a reliable differentiation of S. aureus from CoNS, in signal-posi-

tive blood culture bottles is essential. In addition, the rapid detection of anti-

biotic (methicillin) resistance is significant in order to reduce the risk of inad-

equate empirical antimicrobial therapy (244-246). 

 
As compared to conventional methods, significant advantages were achieved 

with respect to speed and accuracy of staphylococci detection from blood cul-

ture samples by the GenomEra MRSA/SA assay. The culture-based methods 

and susceptibility testing took 16–48 hours for final identification of MSSA, 

MRSA or MRCoNS, whereas the results were obtained in only 55 minutes with 

the GenomEra. In addition, since the mecA gene itself is very rarely found in 
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species other than staphylococci (247), the GenomEra MRSA/SA assay pro-

vided assistance in the rapid detection of MRCoNS in blood cultures using pos-

itive mecA and negative SA amplification signals as an indicator. Similar ob-

servation has been made in another study with the Xpert MRSA/SA blood cul-

ture assay targeting mecA, spa and SCCmec genes (248). Although determin-

ing the significance of CoNS in blood culture can be difficult, its rapid detec-

tion may hasten the detection of nosocomial bloodstream infections of paedi-

atric (249), immunocompromised and haematological (250) patients with a 

central venous catheter. Among those patient groups the most common path-

ogen is usually CoNS, of which over 80 % may be methicillin-resistant (249). 

Accordingly, the GenomEra MRSA/SA assay is able to improve the diagnostics 

of bloodstream infections caused by staphylococci by decreasing the total turn-

around time and thus permitting an earlier implementation of appropriate an-

timicrobial treatment.  

 

Despite the high performance of the GenomEra MRSA/SA assay, two false-

negative (n = 2/261) and two false-positive (n = 2/520) results were encoun-

tered in the current study. Of the false-negatives, one was for MSSA and one 

for MRCoNS. These were due to polymicrobial growth resulting in suppressed 

growth of the species of interest, presumably due to a lower initial concentra-

tion, poorer condition of the cells, or unfavourable growth in the given condi-

tions as compared to the competing species. Although the average concentra-

tion of bacterial cells in signal-positive blood monocultures is remarkably high 

(251) and exceeds the detection limit of NAAT, mixed cultures encompass an 

inherent risk that the positive signal originates from the growth of a species 

other than the one of interest. In case of suspected polymicrobial growth, e.g., 

based on the Gram-stain, thorough mixing of the blood culture bottle prior to 

sampling is recommended to enhance the target microbe detection by ensur-

ing a maximal cell concentration in the sample. The ex vivo behaviour of mi-

crobes in multimicrobial infections is, however, difficult to anticipate, but it 

probably would affect similarly all NAAT systems (252). 
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Of the false-positives, one sample yielded MRSA-positive result and one sam-

ple weakly reactive MRSA-inconclusively positive result. However, both of 

these results were from samples, which would not normally be analysed by this 

assay, as neither of the sample bottles contained Gram-positive cocci in clus-

ters but only Gram-negative rods (S. marcescens) and Gram-positive cocci in 

chains (S. pyogenes). Both species are known to produce extracellular DNA 

nucleases (253,254), which may cause interference with the result interpreta-

tion by partially cutting the oligonucleotide probes in the test. Neither of the 

isolates yielded MRSA positive result after re-runs from isolated colonies, 

which supports the hypothesis of false positive result by nuclease activity. 

False-positive MRSA results from blood cultures can lead to an inappropriate 

patient care, e.g., unnecessary precaution measures and the use of suboptimal 

ineffective antimicrobial therapy. Therefore, pathogenic specific NAAT assay 

should be run only after Gram-staining. In addition, MRSA positive results by 

NAAT should be confirmed by other laboratory methods when mixed blood 

culture samples are suspected.  

 

The utility of pathogen-specific assays in the diagnostics of BSI is limited, 

though, due to the high variety of potential pathogens (255). Additional mi-

crobial targets are required to get full benefit of NAATs in sepsis diagnostics. 

Using a method that permits the detection of several significant pathogens 

would save investment costs and training expenses of the laboratory person-

nel. For the GenomEra CDX, another assay for the diagnostics of BSI is avail-

able, namely the GenomEra S. pneumoniae assay. Since S. pneumoniae is one 

of the most significant pathogen causing non-invasive and invasive infections 

(7) its rapid and reliable detection, especially from blood culture of seriously 

ill patients, is essential. The GenomEra S. pneumoniae demonstrated a highly 

accurate and reliable differentiation of all tested S. pneumoniae isolates from 

other streptococci. The GenomEra S. pneumoniae assay provided a clear ben-

efit over routinely used non-NAAT identification methods by reducing the 

time to species-specific identification in blood cultures significantly (<1 hour 

vs. 18–48 hours), yet with equivalent diagnostic sensitivity and specificity. A 

straightforward (hands-on time 1 minute for one sample) sample processing 
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for S. pneumoniae assay, identical to MRSA/SA assay, and the possibility to 

analyse different assays simultaneously in separate sample slots, makes the 

GenomEra CDX platform an attractive alternative in specific BSI diagnostics.   

 
The cost-effectiveness of various diagnostic methods or their combination has 

become an important topic. The use of a pathogen-specific NAATs following 

Gram-staining of positive culture bottle samples has been suggested to be 

more practical and cost-effective in blood culture diagnostics than the use of 

multiplex PCR or broad-range amplification followed by sequencing analysis 

(20). It should be noted though, that the performance of combination diag-

nostics depends on the sensitivity and specificity of the screening method, in 

this case, the blood culture system. It is well known that some bacteria, e.g. S. 

pneumoniae, may grow very poorly or not at all in blood culture bottles, espe-

cially when patients have received antibiotic treatment prior to specimen col-

lection (256-258).  

 

Implementing NAAT-based assays for the detection and identification of bac-

terial pathogens directly from blood, plasma, or serum samples would allow a 

significantly shorter turnaround time (within 6–8 hours) compared to classi-

cal blood culture-based methods (48–72 hours) (20). The combination of uni-

versal PCR targeting conserved regions with sequencing (259,260), or hybrid-

ization (261) has been applied for the direct detection of bacterial pathogens 

from blood samples. This approach may allow the direct detection of any cul-

tivable or non-cultivable bacterial pathogen, but it carries risks, too, such as 

contamination of samples with microbial DNA present in extraction or PCR 

reagents leading to false-positive results (262).  

 

Promising approaches for routine use in clinical laboratories are multiplex 

real-time NAATs in combination with DNA microarrays. These tests allow 

more specific and rapid identification of pathogens directly from a biological 

sample (263-265). However, most of these NAATs comprise multiple manual 

or automated sample preparation steps, rendering the tests laborious, expen-

sive, and/or requiring special skills in molecular biology. In addition, some of 
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these tests have a relatively poor sensitivity as compared to the blood culture 

method (263).  

 

According to Tomas et al., the detection of circulating microbial DNA (DNAe-

mia) with rapid NAATs does not necessarily indicate the presence of a viable 

microorganism responsible for a given infection (266). The high sensitivity 

needed for the diagnosis of sepsis may increase the risk of false-positive results 

due to carryover contamination or due to the detection of environmental DNA 

contaminating the blood sample. Moreover, DNAemia may be the footprint for 

transient bacteraemia not related to infection (266), or it may be related to the 

persistence of circulating DNA still detectable several days after successful 

anti-infectious therapy has been completed (267). Consequently, conventional 

blood culture systems have remained the standard methods for the enrich-

ment and identification of BSI pathogens. Thus, improving the species detec-

tion from signal-positive blood culture bottles may increase the probability of 

favourable clinical outcome, provided that the overall blood culture process is 

optimized and the results are hastily reported to physicians. In addition, quick 

delivery of the culture bottles in the incubator cabinet, and rapid reaction to 

the growth signal are significant factors in the process of BSI diagnostics.  

6.3 Utility of automated NAATs for the screening of toxi-
genic C. difficile in faeces 

Besides MRSA screening and NAAT assay application in BSI diagnostic, rapid 

detection of pathogenic microbes and/or toxin and other virulence markers in 

faecal matrix has been of general interest. However, since stool contains a lot 

of different substances inhibitory to NAATs, as well as an abundant microbial 

normal flora disturbing the detection of pathogenic microbes, the performance 

and accuracy of an assay is highly emphasised. In this study, the direct detec-

tion of toxin-producing C. difficile in faecal specimens was assessed using 

three different NAAT assays, the GenomEra C. difficile, the BD MAX C diff, 

and the GenRead C. difficile. None of the fore-mentioned tests actually detects 

the C. difficile but rather the conserved region of the tcdB gene specific for the 

toxigenic form of the species. Although some of the early assays detected C. 
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difficile toxin A (TcdA or the tcdA gene) exclusively, it is now generally recom-

mended that assays detect toxin B (TcdB or the tcdB gene) or both TcdA and 

TcdB, since TcdA-negative, TcdB-positive disease-causing strains and out-

break of severe infection caused by such strains have been well documented 

(115). Moreover, TcdB is referred to as the cytotoxin because it is 100- to 1,000-

fold more potent in vitro in cultured cells than TcdA (268). 

 

In overall, all the NAATs demonstrated excellent sensitivity and specificity in 

our sample material consisting of antibiotic associated diarrhoea patients, 

even though there were a few discrepant results in which the infectious agent 

was detectable by the NAATs only and not by culture and vice versa. These 

findings are consistent with previous studies investigating the performances 

of various NAAT assays for the detection of toxigenic C. difficile in faeces 

(127,128,269-272). While significant differences in sensitivity between the 

NAATs and culture could not be obtained, the total turnaround time for detec-

tion of toxigenic C. difficile decreased significantly with NAATs (0,5–2,5 

hours) as compared to toxigenic culture (48–72 hours). 

 

In comparison with the commonly used POC-compatible toxin A/B immuno-

assay (IA) test, on the other hand, NAATs improved significantly the detection 

of toxigenic C. difficile (P value <0.0001), a finding that is known from earlier 

reports (116,127,134,269-273). When toxin A/B IA tests are used as stand-

alone tests in clinical microbiological laboratories, many clinical presentations 

compatible with CDI may remain without confirmation or may be erroneously 

considered C. difficile-negative. Crobach et al. have suggested though, that the 

detection of CDI with IA or EIA tests could be improved using 2- to 3-step 

diagnostic algorithms (274). These approaches combine a preliminary IA 

screening test with more sensitive test such as toxin-detecting EIA, NAAT, or 

culture. However, recent studies have demonstrated that the sensitivity of 2- 

to 3-step algorithms may still be as low as 41–68 % (275). Moreover, some IA 

tests are prone to subjective result interpretation, unlike the automated 

NAATs which use accurate detection optics in combination with mathematic 

signal to noise detection algorithms.  
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The level of sensitivity needed for CDI diagnostic testing is not yet clear, as 

stated recently by Stellrecht et al. (191). It has been assumed that sensitive 

methods, such as culture or NAATs, are not able to discriminate between CDI 

and asymptomatic colonisation. Asymptomatic carriage of toxigenic C. difficile 

can be common among children and elderly inpatients, and among patients in 

extended care facilities i.e. nursing homes (276-279). However, the detection 

of asymptomatic carriage may have relevance, if the diagnostic purpose is to 

investigate the transmission of C. difficile in different health care settings 

(276,279). Thus, good practice requires careful consideration of testing indi-

cation, and in the case of CDI, attention should be paid to performing NAATs 

on symptomatic patients only (275). 

 

Due to the high cost of NAATs compared to conventional culture or IA and EIA 

tests, the issue of cost-effectiveness has been raised by some experts and ad-

ministrators (280,281). However, studies are beginning to emerge to address 

the impact on pharmacy costs and length of stay in isolation, with favourable 

results. For example, Peterson and Robicsek, and Brecher et al. highlighted 

that although the cost of a test is low, it is of little value if the result is inaccu-

rate and has to be repeated many times over several days to get an accurate 

result (275,282). In addition, Tenover et al. created recently a hypothetical 

model based upon testing of 1,000 patients, assuming a 10 % prevalence of 

CDI and using published performance characteristics of various test methods 

(283). Their observation was that NAAT testing alone, compared to a toxin 

EIA alone and to various two-step algorithms using IA detection, resulted in 

the largest number of patients with disease who would be placed in isolation 

within 24 hours. Furthermore, NAAT testing resulted in the largest number of 

patients who would be removed from isolation more quickly because the rapid 

NAAT would detect them more rapidly, and in the smallest number of patients 

with false-negative tests who would not be placed in isolation and conse-

quently who would continue to spread the organism within the hospital envi-

ronment (283).  
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6.4 The pros and cons of automated NAATs in clinical mic-
robiology diagnostics 

Short hands-on and total turnaround times with high performance are clear 

advantages of automated NAATs as compared to conventional culture-based 

method and IAs or EIAs. However, there are numerous different NAAT plat-

forms on the market with different characteristics. Of the three platforms in-

vestigated here, the BD Max is designed for laboratory use only requiring space 

and expertise in molecular biology as well as knowhow for robotics. Thus, it 

was the most complicated system to use. However, the capacity of the instru-

ment was 24 samples per one 2.5 hours run, making it suitable for medium to 

large-sized laboratories performing 24 or more sample analyses per day. In 

addition, the BD Max platform proved to be the most flexible system enabling 

“in-house” or user-design assays to be used on the system along with the com-

mercially available assays provided by BD. Moreover, the current assay menu 

was the widest (numerous multiplex assays for bacterial and virus targets). 

The GenomEra, on the other hand, proved to be less laborious than the BD 

Max system. Due to the simple sample preparation without manual DNA ex-

traction steps, closed test chip, user-friendly application, fast turnaround time 

(50 minutes), and scanty space requirement make the GenomEra platform 

suitable for smaller laboratories lacking room for larger PCR systems as well 

as for POC settings. However, the GenomEra system allows only 4 samples to 

be analysed per one assay run, which limits its usefulness, e.g., during epidem-

ics. 

 

The GenRead system, based on isothermal technology, proved to be an inter-

esting platform being suitable not only in microbiology laboratories but in 

POC facilities and resource-limited settings, as well. Being self-contained and 

only 0.0078 cubic meter in size and weighting ~3.6 kg, the GenRead instru-

ment can easily be carried, e.g., from a laboratory to wards or clinics. Moreo-

ver, since the instrument can be operated up to 8 hours using battery-power, 

it can analyse samples even during transport. The battery-powered technology 

minimizes also the problem regarding inconsistent or non-existent local elec-
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trical sources, particularly in resource-limited settings. The sample prepara-

tion and result interpretation of the GenRead system is simple, enabling diag-

nostic aid even in settings where little decision support is available. The test 

results are shown on the instrument touch screen within 15 minutes as its best, 

in a clear and unambiguous form as positive, negative, or in case of inhibition, 

as invalid. Transportable devices that are easy to use and interpret allow diag-

nostic laboratories to create mobile NAAT units where sample analysis can be 

initiated directly after specimen collection.  

 

As discussed by Peeling and Mabey, rapid and reliable POC tests for infectious 

agents could save many lives, especially in developing countries, by increasing 

access to proper diagnosis and treatment (284). Similarly, Buchan and 

Ledeboer stated in their recent review, that rapid and fully automated on-de-

mand or single-test formats have potential to affect health-care decisions at its 

earliest stage (12). They also state that the total cost of a patient care can be 

reduced by rapid diagnosis, even though the automated or single-test format 

are often more expensive than batched testing. iNAATs enable the construc-

tion of cheaper instruments that do not require stringent control or rapid 

changes of the temperatures like PCR. Such technologies allow more cost-effi-

cient NAAT POC-compatible platforms that could be more affordable also in 

developing economies.  

 
In addition to POC single-test analyses, the GenRead system can be adapted 

for use in high-throughput screening at centralized laboratories. The instru-

ment enables four batches of 12 sample runs (in total 48 samples) in less than 

3.5 hours and five batches (in total 72 samples) in less than 4.5 hours, with 

minimal space and energy requirement. The throughput with the GenRead 

system resembled the fully automated yet more complicated high-throughput 

NAAT systems. However, the hands-on time increases significantly if more 

than 24 samples are processed per day due to the pre-handling steps required 

for the GenRead C. difficile assay.  
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Despite the benefits of NAATs and iNAATs in clinical diagnostics, these tech-

niques still pose some challenges, as stated by Bunham and Carrol (115). Some 

concerns relate to the biology of a bacterium and how the detection of, e.g., 

genes that encode toxins correlate with expression of toxins. Also, given the 

heterogeneity of many microbial species, will strains emerge that are not de-

tected by a particular assay? The first point is more challenging, but the answer 

to the second question is a systematic external and internal quality assurance. 

The performance of each device and test must be monitored routinely to en-

sure the continuous performance of NAATs. Moreover, as some sample mate-

rials, e.g. stool, might be a challenging matrix for NAATs (12) and since PCR 

inhibition is known to have a notable effect on the diagnostic performance of 

the NAATs (29), all assays should have built-in controls (ICs) to assess inhibi-

tion. All assays investigated here have sample-relating ICs. The level of inhibi-

tion from fresh faeces with the GenRead C. difficile assay was approximately 4 

%, with the GenomEra C. difficile assay 4.4 % and with the BD Max C. diff 5.3 

%. By eliminating the problems due to inhibitors, NAATs are clearly superior 

to the conventional test methods. For example, by diluting the sample prior 

NAAT assay-run, inhibition may be avoided. Here, the level of PCR inhibition 

was decreased into 0 % when faecal specimens were collected (diluted) into 

LBM tube.  



Conclusion and Future Consideration 
 

70 
 

7 CONCLUSION AND FUTURE CONSIDERA-
TION 

Molecular techniques are developing and becoming more and more useful and 

usable in laboratory and POC settings. Along NAAT automation and robotics, 

more specimens can be analysed in clinical laboratories with less hands-on 

time. Accordingly, total turnaround times of many microbiological analyses 

become shorter and the test results are more readily available to clinicians ear-

lier. Moreover, movement towards NAAT-based POC testing, being pursued 

through simplification and miniaturisation of the testing process and test plat-

forms, allow more rapid sample-to-results answers thereby enhancing disease 

management and patient treatment even further (12,284,285). POC compati-

ble and low-cost iNAATs provide access to state of the art diagnostic support 

even in settings where health-care infrastructure is minimal.  

 

At present, the number of different commercialized NAATs is plenitude, each 

having its own benefits and shortcomings, as well as optimal indications for 

usage. Although NAAT-based POC testing has shown to reduce unnecessary 

test orders and the length of hospital stay, as well as shorten the time interval 

to appropriate therapy (286), the lack of published studies objectively exam-

ining quantifiable outcomes related to the use of POC testing is still evident 

(286). Thus, additional studies are needed to evaluate the utility and usability 

of POC compatible, particularly, mobile NAATs in clinical microbiology diag-

nostic. In this study, three NAATs, one suitable for mobile diagnostics, were 

investigated for the detection of three different pathogenic bacteria. Since, the 

development of new technologies is very intense, it is likely that additional 

tests will become available for the platforms tested here in the near future, as 

well as more new devices.  

 

A so-far underutilized potential of one of the systems tested in this study, the 

GenomEra assay, concerns direct testing of body fluid or abscess specimens. 

In preliminary studies, the assay has proven to be a promising aid in the rapid 
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detection of S. aureus and S. pneumoniae from liquor, and joint fluids. Con-

sequently, this should be studied further. Another interesting study project 

would the utilization of the portable GenRead device in the rapid detection and 

control of various outbreaks in health-care settings. However, additional tests 

are needed for the GenRead system before such a project can be started. 

 

In spite of many advances of NAATs, the major limitation of all molecular as-

says in clinical bacteriology is the lack of simultaneous provision of compre-

hensive antimicrobial susceptibility pattern. However, the number of re-

sistance markers that can be targeted by molecular techniques is increasing 

rapidly and in the near future many bacterial resistance genes may be rou-

tinely detectable. Along with this progress, molecular assays will eventually 

replace the current conventional methods in the detection of microbes in clin-

ical specimens.  

 

Continuous advances in the next-generation sequencing (NGS) methods have 

the strongest potential to transform diagnostics in clinical microbiological la-

boratories in the next few years. With NGS, organisms can already be accu-

rately identified and strain-typed for outbreak or transmission analyses (287-

289). As NGS technology becomes more amenable to use in the clinical labor-

atory and the associated cost decreases with the small-scale sequencing ma-

chines and advancement of the bioinformatics pipeline, there is likely to be a 

concomitant increase in use of sequencing in prediction of antimicrobial re-

sistance.  

 

In conclusion, it is important to familiarize with the new NAATs in sufficient 

depth to enable them to be properly implemented in clinical diagnostics. Ac-

quiring and utilizing an optimal set of modern NAATs requires microbiologists 

a know-how to compare and evaluate different solutions that best fit the labor-

atory or hospital environment. 
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