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ABSTRACT

In a recent paper, DeWitt (2016) and colleagues opti-
mise a gene editing approach utilising CRISPR/Cas9
in blood stem cells to correct the sickle cell disease
mutation, boosting hope for new gene therapy clini-
cal trials in the near future. In this review we discuss
sickle cell disease: its cause, current treatment, and
recent advances towards a gene therapy cure.

Keywords: Sickle cell disease, haemoglobin, hae-
matopoietic stem cells, gene therapy, CRISPR/Cas9,
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SICKLE CELL DISEASE AND CURRENT
TREATMENT

Pain crises, anaemia, and frequent infections are
but a few common symptoms of sickle cell disease
(SCD). SCD is a monogenic disease caused by the
autosomal-recessive inheritance of an A>T trans-
version in the 3-globin gene (HBB; Figure 1; Fren-
ette et al. 2007) that affects over 275,000 newborns
every year worldwide, mainly of African descent. As
such, it is a major cause of morbidity and mortality
(Modell et al. 2008).

Although SCD was the first disease to be described
on a molecular level, only one drug is currently
approved by the FDA for its treatment — hydroxy-
urea. With an excellent safety profile and high effec-
tiveness hydroxyurea is a useful treatment, but it
is not a definitive cure (Platt 2008). The only cure
currently available for SCD is a haematopoietic
stem cell transplant from an unaffected donor, an
expensive and complicated procedure that requires
a perfect donor match and is not free of severe com-
plications (eg graft vs. host disease). Therefore, the
search for alternative therapies for SCD is ongoing.
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Figure 1. The B-globin gene locus on chromosome 11 produces healthy adult haemoglobin (A), or
sickled adult haemoglobin in SCD patients (B). ¢ globin (in green) is expressed in the first 3 months of
embryonic gestation, after which it is silenced and is replaced by the fetal ®y and “y globins (in blue),
which dominate until about 6 months of age. From then on the adult 6 and B globins (in red) make up about
97% of blood haemoglobin content, the rest being residual amounts of fetal haemoglobin. SCD is caused by an
A-T transversion in the B-globin gene, and results in the production of sickled red blood cells.
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GENE THERAPY
HERALDS NEW HOPE

Cue gene therapy, a lucrative approach for treating
a monogenic disease caused by the lack of a func-
tional copy of a gene. Ongoing clinical trials uti-
lise lentiviral vectors carrying the HBB gene applied
to patient-derived bone marrow stem cells ex vivo,
which are later used for an autologous transplant
(Makis et al. 2016). The procedure circumvents the
need for a matching donor as well as the risk of
rejection, making it a more practical strategy. Alas,
the use of semi-randomly integrating lentiviruses
poses the risk of insertional mutagenesis, which
could potentially lead to malignant transformation
as in the case of a 2000 clinical trial for X-linked
severe combined immunodeficiency (SCID X-1;
Hacein-Bey-Abina et al. 2008).

Genome editing, the modification of a patient’s
genome in select cells, holds promise to revolutio-
nise medicine. It sidesteps the need for integrat-
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ing vectors by the transient expression of targeted
effector nucleases. The correction of the SCD muta-
tion in haematopoietic stem cells (HSC) has been a
much sought after solution to the aforementioned
risks and problems. However, progress has been
hindered by inefficient editing as well as difficulty
targeting true HSCs capable of providing lifelong
production of red blood cells carrying functional
haemoglobin (Genovese et al. 2014).

The CRISPR/Casg gene editing system has rev-
olutionised biomedical research. From functional
gene screens, through disease modelling, to tar-
geted editing for therapy, CRISPR allows a new
level of control over the genome (Barrangou et al.
20106). Comprised of a nuclease (Casg) directed to
a 20 nucleotide target DNA sequence by a single
guide RNA (sgRNA), CRISPR/Casg is a convenient
two-component, programmable system for cleaving
the genome. When combined with a DNA oligomer
bearing homology to the targeted locus (termed
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Figure 2. Schematic representation of a CRISPR/Cas9 ribonucleoprotein (blue) with a single guide RNA (sgRNA;
purple) targeting the sickle cell disease (SCD) mutation (red), which introduces double stranded breaks
(yellow) in the HBB gene (black); alongside a donor template containing the wildtype sequence with homology

arms (green).
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“donor template”), one can take use of one of the
cell's own DNA damage repair mechanism, homol-
ogy directed repair (HDR), in which it uses a sim-
ilar template to rewrite the cleaved site in its own
genome (Figure 2).

A CRISPR APPROACH
TO TREATING SCD

In a recent study published in Science Translational
Medicine, DeWitt — working at Jacob E. Corn’s lab
at the University of California, Berkeley — and col-
leagues (2016) optimised the gRNA and donor tem-
plate combination, allowing them to achieve cor-
rection of up to 25% of alleles in SCD patient HSCs.
Differentiation of these cells to erythrocytes pro-
duced red blood cells with significant amounts of
wild type (WT) haemoglobin. Interestingly, the
resulting erythrocytes also showed higher quan-
tities of fetal haemoglobin, a haemoglobin variant
comprised of the B-like y globin that is expressed
throughout the majority of gestation and is not
affected by the SCD mutation. A similar approach
previously reported by researchers at the Univer-
sity of California, Los Angeles, in collaboration
with Sangamo Biosciences, achieved comparable
results using different targeted nuclease (zinc fin-
ger nuclease) and donor template delivery method
(integrase-defective lentivirus; Hoban et al. 2015).
One caveat to the approach taken by the
researchers is the creation of unwanted mutations
caused by Casg cleavage. Other DNA damage repair
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mechanisms, notably non-homologous end joining
(NHE]), are more commonly used by the cell to cor-
rect double-stranded breaks, such as the ones intro-
duced by Casg. NHE] can result in small insertions
or deletions (indels) that are not corrected based
on the donor template (Ciccia et al. 2010), and the
formation of indels in the HBB gene may disrupt
its translation even further. Another potential risk
is off-target cleavage by Casog, ie cleavage of sites
not exactly homologous to the intended target
sequence. This could result in harmful mutations
in important genes, such as cancer genes, but is
exceedingly rare (Kim et al. 2010).

To minimise this risk, the researchers elected to
use ribonucleoproteins (RNPs), pre-synthesised
Casg proteins complexed with sgRNAs, targeting
the SCD mutation on the HBB gene. The use of
RNPs is preferable to DNA vectors (eg plasmids),
as they do not make use of transgenic DNA. More-
over, RNPs have been shown to have lower off-tar-
get activity and cytotoxicity than DNA vectors (Kim
et al. 2014). Overall, off-target activity in predicted
sites showed minimal cleavage, mostly in non-cod-
ing regions, demonstrating the safety of the method
employed in this study (DeWitt et al. 20160).

Perhaps the biggest obstacle to efficient, long-
term treatment using autologous HSC transplants
is the engraftment of edited, true HSCs, as opposed
to more differentiated progenitors (Genovese et al.
2014). These progenitors do not self-renew over
time, thus preventing the production of sufficient
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amounts of red blood cells carrying WT haemo-
globin. DeWitt et al’s (2010) in vivo experiments
showed promising results with long term engraft-
ment of the edited human cells in the mouse bone
marrow, spleen, and blood.

ALTERNATIVE STRATEGIES

Whilst the current study by DeWitt et al. (20106) pro-
vides a solid foundation for a gene editing approach
to treating SCD, other methods are currently being
developed. Of particular interest are two strategies
recapitulating naturally occurring hereditary per-
sistence of fetal haemoglobin (HPFH) mutations,
which reverse the silencing of fetal haemoglobin
and allow its production into adulthood (Lettre et
al. 2016). The Orkin and Bauer research laborato-
ries are currently pursuing the deletion of an eryth-
roid-specific enhancer of a transcription factor nec-
essary for fetal haemoglobin silencing known as
BCL11A (Canver et al. 2015). Somewhat similarly,
the Weiss lab is working on a deletion of a repres-
sor binding site in the promoters of the fetal hae-
moglobin genes: HBGr and HBGz (Traxler et al.
2016). These approaches are advantageous as they
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do not rely on the arduous HDR, reduce the risk of
unwanted mutations in the HBB gene, and could
potentially be used in vivo utilising non-integrating
viruses, such as the adeno-associated virus (AAV),
to transiently introduce the gene-editing machin-
ery into the bone marrow (Hoban et al. 2016). All
aforementioned methods are expected to begin
clinical trials within the next 5 years, alongside cur-
rent studies focusing on gene transfer.

In summary, DeWitt (2016) and colleagues
demonstrated that a homology-directed repair-
based method using CRISPR/Casg ribonucleopro-
teins and donor template is a viable approach for
the correction of the sickle cell mutation in sick-
le cell disease patient haematopoietic stem cells ex
vivo. Furthermore, they showed that corrected cells
can be successfully transplanted into mice, where
they engraft and provide long-term reconstitution
of the blood system. Together with similar gene
editing methods, it is expected that gene therapy
trials, and perhaps clinical use for SCD treatment,
will become available within the not-so-distant
future — a long awaited new treatment for an old
disease.
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GENOMIEDITOINTI TUO TOIVOA
SIRPPISOLUANEMIAPOTILAILLE

Solujen geenimuokkaus sirppisoluanemiassa on
erds mahdollinen tulevaisuuden hoitomuoto.
DeWittin (2016) tydryhméin uusi tutkimus kuvaa
erddn CRISPR/Casg-tekniikan kayttomahdollisuu-
den. Kuvaamme taudin taustaa, hoitoa seki tulevai-
suuden mahdollisuuksia uusiin terapioihin, jotka
perustuvat geenien kiyttoon ja muokkaukseen.

Avainsanat: sirppisoluanemia, hemoglobiini, hema-

topoieettinen kantasolu, geeniterapia, CRISPR/Cas9,
genomin muokkaus
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