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ON THE HARDY–CARLEMAN INEQUALITY

FOR A NEGATIVE EXPONENT

ZHANG DAOXIANG AND PING YAN

(Communicated by J. Pečarić)

Abstract. In this paper we settle an open problem raised by B. Yang (2005, Taiwanese Journal of
Mathematics 9, 469-475), by using Hölder’s and Bernoulli’s inequalities. We give a strengthened
Hardy-Carleman inequality for a negative exponent.

1. Introduction

The following inequality of Hardy’s is well known [2, Chap. 9.12]:
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Here p > 1, an � 0 (n ∈ N) and 0 < ∑∞
n=1 an < ∞ .

The constant ( p
p−1)

p in (1) is the best possible. As p tends to infinity the inquality
(1) reduces to Carleman’s inequality
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(a1a2 · · ·an)1/n < e
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an, (2)

where the constant e in (2) is still the best possible [2, Chap. 9.12]. The inequalities
(1) and (2) are important in analysis and its applications [3].

In [8], we proved the following strengthened version of (2).
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Some other strengthened versions of (2) and related results can be found in [1, 7, 8, 9,
11].
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If we set p = 1
r in (1), then we have 0 < r < 1, and (1) is equivalent to the

inequality
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where the constant ( 1
1−r )

1/r is the best possible.
Thanh et al. [6] discussed (4) for r ∈ (−∞,0) , and proved the following result: If

an � 0 for n ∈ N and 0 < ∑∞
n=1 an < ∞ , then
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if −1 � r < 0 and
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if r < −1.
If we replace r by −r , in (5) and (6) we obtain
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if 0 < r � 1 and
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if 1 < r < ∞ .
Recently, Yang [10] proved that the constant (1+ r)1/r in (7) is the best possible

for 0 < r � 1. At the end of paper [10], Yang posed the question:

Is the constant factor r
1+r2

1+r
r in (8) the best possible or not for 1 < r < ∞?

In this paper we solve this problem. We give a strengthened Hardy-Carleman
inequality for a negative exponent.

2. Main results

In this section, we prove the following theorem.

THEOREM 2.1. Let 1 < r < ∞ , an � 0 (n ∈ N) and 0 < ∑∞
n=1 an < ∞ . Then
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To prove Theorem 2.1, we use Hölder’s inequality (with negative exponent p ) (see
[4, page 29]) and Bernoulli’s inequality. For the convenience of the reader we start by
recalling these results.

LEMMA 2.1. (Hölder’s inequality) Suppose that p < 0 , 1
p + 1

q = 1 , f (x), g(x) �
0 for x ∈ [a,b] , and f ∈ Lp[a,b], g ∈ Lq[a,b] . Then

∫ b

a
f (t)g(t)dt �

(∫ b

a
f p(t)dt

)1/p(∫ b

a
gq(t)dt

)1/q

,

where equality holds only if there exist real numbers α and β , such that α2 +β 2 > 0 ,
and α f p(x) = βgq(x) , a.e. in [a,b] .

LEMMA 2.2. (Bernoulli inequality) Suppose that x � −1 and 0 < α < 1 . Then

(1+ x)α � 1+ αx,

where equality holds if and only if x = 0 .

We also need the following lemmas.

LEMMA 2.3. Suppose that 0 < α < 1 and x > 0 . Then

1+
αx

1+(1−α)x
< (1+ x)α .

Proof. We rewrite this inequality as

1+ x+ αx(1+ x)α < (1+ x)1+α .

We define
ϕ(x) = (1+ x)1+α −αx(1+ x)α − x−1 for x � 0.

Simple computation yields

ϕ ′(x) = (1+ x)α −α2x(1+ x)α−1−1,

ϕ ′′(x) = (α −α2)(1+ x)α−1−α2(α −1)x(1+ x)α−2.

It follows that ϕ ′′(x) > 0 for x > 0 and 0 < α < 1, ϕ ′(0) = 0 and ϕ(0) = 0. Thus,
ϕ(x) is strictly increasing and ϕ(x) > 0 for x > 0. This completes the proof of Lemma
2.3. �

LEMMA 2.4. Suppose that r > 1 and x � 1 . Then

(1+ x)
1+r
r − x

1+r
r >

1+ r
r

x
1
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Proof. We rewrite this inequality as
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) 1
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r
.

This is true. Since by Lemma 2.3, we have

(
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.

This completes the proof of Lemma 2.4. �

LEMMA 2.5. We have
(i) 2

1
r < 1+r

r for r > 1 .

(ii) r
1+r2

1+r
r > 1

r (1+ r)
1+r
r for r > 26

5 .

Proof. (i) By Bernoulli’s inequality we have
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(ii) We rewrite this inequality as
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By Bernoulli’s inequality, it follows

(
1+ r

2

) 1+r
r

=
1+ r

2

(
1+

r−1
2

) 1
r

<
1+ r

2

(
1+

r−1
2r

)
= − r2(r−5)− r+1

4r(1+ r)
+

r2

1+ r

<
r2

1+ r

for r > 26
5 .

This completes the proof of Lemma 2.5. �

Proof of Theorem 2.1. Let r > 1 and set p = − 1
r , a = 1, b = x > 1, f (x) = an ,

gn(x) = (x−1)
1

(1+r)r for x ∈ [n,n+1] and n ∈ N . Hölder’s inequality then yields
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It follows that(∫ x
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This completes the proof of Theorem 2.1. �

REMARK 1. By Theorem 2.1 and Lemma 2.5 (ii), we know that the constant
factor r

1+r2
1+r
r in (8) is not the best possible for r > 26

5 . We give a strengthened
Hardy-Carleman inequality (9) for a negative exponent.
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