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Abstract Cloud computing is an essential part of today’s computing world.
Continuously increasing amount of computation with varying resource require-
ments is placed in large data centers. The variation among computing tasks,
both in their resource requirements and time of processing, makes it possible
to optimize the usage of physical hardware by applying cloud technologies.

In this work, we develop a prototype system for load based management of
virtual machines in an OpenStack computing cluster. Our prototype is based
on an idea of ’packing’ idle virtual machines into special park servers optimized
for this purpose. We evaluate the method by running real high energy physics
analysis software in an OpenStack test cluster and by simulating the same
principle using the Cloudsim simulator software. The results show a clear
improvement, 9% - 48% , in the total energy efficiency when using our method
together with resource overbooking and heterogeneous hardware.

Keywords energy efficiency, OpenStack, Cloudsim, over-commit, heteroge-
neous hardware

1 Introduction

Outsourcing of computation has become more appealing and organizations
are optimizing their IT costs by adopting cloud technologies. Besides the com-
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mercial cloud providers, many academical cloud services have appeared, too.
Amazon being the driving force in this development and its de facto standard
API has been used in many other cloud frameworks [35,47,25]. Today, there
exists several open source cloud-computing projects, that implement this de
facto standard. The appearance of this new model of computing has made
companies reconsider their IT processes and it also has enabled new compa-
nies starting Internet based services without the initial hardware costs. As
several companies with different load patterns purchase their IT services from
the same cloud provider and the cloud resources are located in the same data
center, there is an obvious possibility to optimize the computing systems and
increase their energy efficiency.

The basic function of the cloud computing framework is to enable the users
to create and destruct virtual machines (VM) in a cluster of physical machines.
These virtual machines can be created in different sizes and placed on physical
machines, hypervisors, having the required resources; CPU, memory, network,
etc. Using a virtualized system for consolidating IT services, such as the cloud
framework, is already more energy-efficient than having just a single service
on each physical server as it has traditionally been done in computing centers.
The consolidation of VMs alone would be enough, if the workload of the virtual
machines were constant, but this hardly is the case. Workload changes as a
function of time and so the initially optimal placement of VMs may no longer
be optimal. Thus, the location of virtual machine in a physical server needs to
be changed.

OpenStack is one of many Amazon EC2 compatible open source cloud
computing software frameworks. OpenStack is widely used and has a large
community behind it. That is why CERN has also chosen it as a future plat-
form for particle physics computing at CERN [29], [28]. Like many other cloud
computing projects, OpenStack supports the basic features for creating, paus-
ing, and destroying virtual machines. Additionally, it provides a way to spread
virtual machines across a cluster of computers [23]. But like many other simi-
lar systems, it is missing a load based dynamic virtual machine management
system for minimizing the energy consumption.

Dynamic placement of virtual machines have received a lot of attention
among cloud computing researchers and practitioners during recent years (for
example, [43,38]). In practice, this means using a system that reacts to changes
in virtual machine workloads in near real time by moving VMs between phys-
ical machines. The basic idea is the same as with static virtual machine man-
agement: to fit the virtual machines in physical resources in a way that is either
power efficient or energy efficient, or otherwise allows the virtual resources to
run in an optimal way.

We have previously found that virtual machines have very small impact
on total load and power consumption when they are idle [24]. The less load
a single virtual machine has, a single physical server can handle the more
of them. In this paper we introduce a load balancing system that tries to
maximize the load on computing nodes and minimize the amount of active
computing nodes. We achieve this with dedicated hosts for storing idle virtual
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machines, active monitoring of resources, and load based active management
of virtual machines in the physical cluster.

In our work, we take both the system throughput and energy efficiency into
consideration by utilizing heterogeneous hardware in a dynamically managed
virtual machine cluster. We develop a system for virtual machine management
for OpenStack and introduce a new way of packing idle virtual machines into
dedicated park servers. By ’idle’, we mean that the virtual machine has little
or no workload to run at the moment and we define it by using the load
value of the operating system. We test the system with high energy physics
workload and also verify the algorithm with a simulator. We show that energy
efficiency of a cloud computing cluster can be improved by using dynamic
management of virtual machines and prioritizing on energy-efficient hardware
on the heterogeneous cluster.

We have structured the rest of the paper as follows. First, in Section 2 we
cover basics of cloud computing and existing cloud management systems. In
Section 3, we introduce our load balancing algorithm. Next, in Section 4, we
describe the test software and test environment used in this study, which is
followed by the results given in Section 5. Finally, we end with conclusion in
Section 6.

2 Related work

The adoptation of virtualization has resulted in a plethora of both commercial
and open source virtual machine management tools. At first, these tools were
mainly made to control single hypervisor systems or to help system admin-
istrators to manage their hypervisor clusters. Cloud management frameworks
making Infrastructure as a Service (IaaS)-type services possible, were the next
step in this evolution. They provide, on top of the basic hypervisor manage-
ment, a large collection of user management and monitoring tools.

2.1 Cloud management systems

Cluster management systems are often based on heuristics that use data gath-
ered from both physical and virtual machines. In the simplest form, these
systems make decisions based on the load of physical CPUs, while the com-
plex ones take into consideration additional aspects such as memory usage,
network traffic, service level agreements (SLA), server energy consumption,
server thermal state, virtual machine intercommunication etc. Even the sim-
plest cluster management algorithms improve energy efficiency of a cluster
that has a varying workload [5].

The basic idea of these management systems is to maximize the usage of
an active server and minimize the amount of them. One way to achieve this
is to pack already loaded servers more efficiently. Cloud management systems
can roughly be categorized into active and passive systems. As mentioned ear-
lier, OpenStack, like many other open source systems, do passive management
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where load balancing is done at the time of creation of new virtual machines.
Even though these algorithms can balance load between physical hosts, they
are limited in reaction to the load changes of instances. Active cloud man-
agement systems can better react to changing load patterns as they actively
move the virtual machines between physical machines to meet the goals of the
system. These goals can be energy efficiency, QoS, SLA, etc. Active systems
usually react to several events indicating that the system state is not optimal
or some thresholds have been breached.

Many authors have studied virtual machine management, i.e. consolidation,
and they have proposed several algorithms for solving the resource optimiza-
tion problem. These algorithms vary much in complexity and therefore their
comparison is difficult. As Srikantaiah et al. [41] note that development of
an algorithm is a compromise between time and performance. The algorithms
that produce the best results tend to require more time for calculations, e.g.,
the constraint programming algorithm by Hermier et al. [20]. However, even
the simplest algorithms, such as the one by Shrikantaiah [41] that picks the
most suitable migration target by computing a simple euclidean distance cal-
culation, can improve the energy efficiency of a cluster as then the system
reacts to the change of resource requirements. Like other algorithms based on
distance metrics, the euclidean distance algorithm assumes that the resource
requirements of the new task are known, which is not the case with many real
world workloads.

Many of the proposed cloud management systems use various bin packing
algorithms and are centrally managed [20], [45],[40], [31], [10], [26]. Verma et
al. [45] introduce pMapper cluster management system. Like many other other
centrally managed system, pMapper has a separate monitoring service to get
the latest hypervisor resource usage and the load of different virtual machines.
Based on this knowledge of the state and service constraints, a new virtual
machine placement is formed. Prerequisite for the functioning of pMapper is
forming of power models for different hardware. PMapper optimizes energy ef-
ficiency of a computing cluster by organizing virtual machines by their power
model. Virtual machines are placed using the first fit decreasing (FFD) bin
packing algorithm. The algorithm places virtual machines on servers where
their energy increase is minimal. Migration cost is only calculated from the
memory allocation of the virtual machine at the beginning of the migration ig-
noring the overhead introduced by the workload memory dirtying. This can be
quite inaccurate if the virtual machine is active. Hermier et al. [20], with their
Entropy consolidation manager, divide virtual machine management in a com-
puting cluster into two sub-problems; 1) virtual machine packing problem, and
2) virtual machine replacement problem. In the first phase a minimalist con-
figuration is determined as a constraint satisfaction problem (CSP) where VM
resource requirements (CPU and memory), are mapped to physical resources.
They use a dynamic programming approach to solve this multi knapsack prob-
lem. As the solution space is vast, the algorithm is given a reasonable lower
bound, the amount of physical nodes, and an upper bound with FFD. In this
way they can get a more optimized configuration in less time. In the second
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phase, the transition from the previous configuration to this new minimized
configuration is also considered as a CSP. A reconfiguration plan takes into
account migration cost and also possible linked migrations and temporary mi-
grations, e.g. VMs can be moved temporarily to another host or moved to their
destinations through intermediate hosts. The algorithm takes a long time to
complete, but compared to FFD, it provides some improvement to VM pack-
ing efficiency. Again, migration cost is calculated inaccurately directly from
VM memory allocation.

The previously mentioned active management systems have been central-
ized. Centralized systems require complex management and are more vulner-
able to failures than decentralized systems. The more machines there are, the
harder the optimization calculation becomes. To be able to scale, a decen-
tralized solution is needed. A decentralized version by Wang et al. spread the
load status of the cluster to every node with load vectors [46]. Physical nodes
communicate their state to random peers on regular intervals. These status
updates are stored into vectors and used when choosing a destination for vir-
tual machine migration. A migration decision is made at the time of the status
exchange if the load of a physical node either passes an upper threshold or is
less than a lower threshold. The virtual machine to be migrated is chosen such
that the migrations will cause the source system load to be between the lower
and upper thresholds. This is a simple solution that only considers CPU uti-
lization. For example, it omits the migration costs. Wuhib et al. have made a
similar system as Wang et al. on top of OpenStack using a gossip protocol [48].
Every node keeps track of host and virtual machine load changes and shares a
moving average load with the other hosts using the gossip protocol. The gossip
protocol also chooses a random sample of hosts for information sharing. The
algorithm is run on intervals and also as a result of a load balancing event.

There are also other studies such as Pahlavan et al. [34] who studied power
reduction in data centers by developing new server placement methods for
chassis consolidation, i.e. placing active servers on the same racks. The au-
thors see this as a similar approach as using virtualization technologies but it
avoids the virtualization overhead. Our method presented in this paper can be
combined with this approach. Finally, Hosseinimotlagh et al. [21] developed
new energy-aware scheduling methods for real-time cloud computing. The idea
is to run each host server on the energy-optimal level of workload. Our method
uses the same principle when making decisions on VM migrations.

As we can see, a lot of research has focused on amidst the dynamic man-
agement of a virtual computing cluster. All algorithms aim at minimizing the
need for physical servers. Some emphasize the optimal placement of virtual
machines in the cluster and do this by performing complex optimization cal-
culations. Some take into account migration cost at a very high level and loose
accuracy. Head to head comparison of these algorithms is difficult. The choice
of an algorithm depends on its application. Even the heaviest algorithms might
turn to be useful in an environment where load does not vary very much, e.g.
high-energy physics computing where single analysis tasks can last days and
their resource usage does not fluctuate during this time (See Section 4.1.1). On
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the other hand, outside supercomputing, we have web services that have very
fluctuating resource requirements. Running these optimally in virtual machine
cluster requires fast response from the management system.

2.2 Heterogeneous hardware in cloud computing

So far research on heterogeneous hardware in a cloud environment has mainly
focused on non-homogeneous hardware in big cloud environments such as
Amazon cloud [33], [18], [12], or to the use of specialized hardware such as
GPUs in clouds [49]. Cloud environments can have different types and gener-
ations of processors [33]. This can cause the performance of virtual CPU in a
virtual machine be different among virtual machines of the same type. Besides
being unfair to clients, the difference in hardware can also hurt performance.
For example, Gupta et al. [18] have found that the heterogeneous hardware of
a cloud environment can be harmful for HPC load when it is stalled by its syn-
chronous nature. As a solution, they suggest a method that picks homogeneous
hardware from the pool of VMs.

In this study, we propose improving the total efficiency of the system with
heterogeneous hardware and dynamic load migration. Some studies already
point out that exploiting heterogeneous hardware in a virtualized cluster can
be beneficial. Hirofuchi et al. [42] use dedicated servers for virtual machines
with less load, shared servers, and dedicated servers for running heavily loaded
virtual machines. In their system, virtual machines are moved between these
two types of hardware as a function of their processing needs. Shared nodes
would store idle virtual machines and dedicated nodes would run active virtual
machines. When a shared node CPU load exceeds 90% the most active virtual
machine is moved to a dedicated node. When the CPU activity of a virtual
machine is less than 50% it is returned to a shared node. Dedicated nodes
can have as many virtual machines as they have CPU cores and they are filled
such that the dedicated node with smallest number of empty slots is filled first.
In their work, the only difference between the shared node and the dedicated
node is the amount of memory.

Profiting from energy-efficient hardware was also studied by Verma et al
[45], but in their study the implementation was left at the level of power models
where different hardware had different power models. Further, the preference of
allocating virtual machines to more energy efficient hardware has been studied
by Nathu et al. while making the VirtualPower system [31].

2.3 Over-committing resources

Over-committing and overbooking are terms used with virtualization when
speaking about provisioning more resources to virtual machines than available
on their physical hosts [44],[13]. Over-committing offers a solution to make
better use of the existing hardware as the average utilization rates of virtual
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machines can be a fraction of the requested [4], [16]. The risk is that when
virtual resources are fully used, there is not enough physical resources to offer.
We can mitigate this problem by having safety margins for the resource over-
booking. The safety margin can be based on the history of virtual machine
loads and taken into account when new virtual machines are created. But the
margin can be wasteful if a certainty of the existence of resources is required.
This issue was studied by Li et al. [26] when developing EnaCloud. They added
an over-provisioning function to minimize the amount of migrations, but ended
up using more energy. To improve the utilization rate further, forecasting the
aggregate workload of the virtual machines could be used [16],[7].

3 Load balancing in heterogeneous clusters using migrations

New servers are becoming more efficient and energy-proportional, but their en-
ergy consumption range is still 20% to 100% of maximum energy consumption
[9]. Furthermore, the energy-consumption of new energy-proportional hard-
ware is not linearly related to load and the optimal load is between 40%-80%.
There are also clear differences inside a processor family in energy consump-
tion and 20% of the energy consumption of a powerful processor is much more
than that of an energy-efficient end of the lineup [22]. Generally, idle running
servers are not energy-efficient and also not very cost-efficient. It would be
more cost efficient to pack the existing virtual machines better, i.e., place the
idle VMs to a special hardware, and then shutdown the unnecessary hardware.

Computing clusters, in general, consist of a powerful front-end, special
hardware for storage, and a homogeneous group of computing nodes. In the
case of physics computing at CERN, the computing nodes are equipped with
2 GB of memory per computing core. Processors are usually from the mid-
range of the current processor family, because they are powerful enough but
not overly expensive. High-energy physics computing at CERN is performed
using batch systems in a distributed way. The significance of a single node
is minimal and in the case of node failure, its load can be re-run on another
node.

In a batch system, like in CERN, physical resources are divided into slots.
Every node has a fixed amount of slots and usually this number corresponds to
the number of CPU cores. Workload, consisting of high-energy physics (HEP)
analysis or simulation jobs, is distributed in a round robin way evenly into
the cluster independent of what kind of load the other slots are running. This
approach could have limitations related to memory management in NUMA
architectures but in the case of the HEP computing it generally works well,
since memory requirements of individual jobs are still quite small. Workload
runs a long time and has phases where it uses less CPU, e.g., waiting for the
data to be uploaded from the remote storage to the local storage. By remote
storage we mean a data storage in a different datacenter and by local storage, a
local storage system in the same datacenter. Since the job can analyse millions
of events possibly stored in different files, we cannot always transfer all required
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data before the job starts. This causes the physical node or at least the current
slot to rest idle. This idle waiting could be done in a server with less computing
power. The load is analogous to, for example, server-based computing systems
where desktop sessions may run idle for a long time or web servers where the
query rate fluctuates as a function of time of day. Although the load fluctuates,
the servers need to be online and ready to answer.

In our earlier work we have found that virtual machines have very small
impact on total load and power consumption when they are idle [24]. As it is
in the case of high energy physics analysis, when a computing job is waiting
for data and thus using very little CPU or memory resources on the physical
host. Similarly the resources are unutilized when a virtual machine is waiting
for the next job from a batch system. This waiting time could be spent on
an energy-efficient server, a server dedicated for parking idle virtual machines,
but still capable of network transfers. The less load a single virtual machine
has, a single physical server can handle the more of them.

The basic idea of our load balancer is to make space for active instances on
computing nodes, maximize the load on computing nodes and minimize the
amount of active computing nodes. This is achieved with specialized hosts for
storing idle virtual machines, active monitoring of resources, and load based
active management of virtual machines in the physical cluster.

In our cluster, we have two types of servers; park servers and computing
nodes. The park server is used to store idle virtual machines and its over-
commit ratio is high ,i.e. there can be multiple virtual machines per CPU
core. Instead, computing nodes are used by active virtual machines and have
one to one mapping of virtual and physical resources, i.e. no over-commitment
is used.

Virtual machines are considered to be either active or idle. Idle would
be a state where the virtual machine is waiting for work and in the active
state it is processing a given workload. Depending on the activity of a virtual
machine, it is placed either on an energy-efficient park server or on a computing
node. Idle virtual machines have minimal need for physical resources and it
is possible to over-commit physical resources to them without affecting their
quality of service. They can be stored into park servers where they can wait
for a more active state. This way the virtual machines, that require more
processing capacity, can be served with more dedicated hardware and the
virtual machines that are waiting for more work take less space as they can
be packed more densely. Active virtual machines need more resources and the
less they need to contend for physical resources the better the service level.

The load balance manager has three functions:

1. Move idle virtual machines to the park server.
2. Move a virtual machine from the park server to a computing node when

an idle virtual machine becomes active.
3. Pack virtual machines within the cluster to minimum number of servers.

Function 1 moves idle virtual machines from computing nodes to the park
server. Here the migration decision is based on the load of a virtual machine. If
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Fig. 1: Load balance functions

the load of virtual machine goes under a given threshold, the virtual machine
is migrated. Function 2 does the opposite and moves loaded virtual machines
from park server to computing nodes. It takes action if the load average of
a park server surpasses its threshold. The virtual machine to move is chosen
among the active virtual machines on the park server. Finally, Function 3
moves active virtual machines from underutilized computing nodes to better
utilized computing nodes. It attempts to optimize the load on computing nodes
and thus improve their energy efficiency.

4 Test environment

We evaluated and tested the functionality of our load balancing algorithm in
a small OpenStack test cluster and the scalability of the solution by using
the Cloudsim simulator software. Cloudsim was complemented with our load
balancing algorithm and modified to support heterogeneous hardware.

4.1 OpenStack test cluster

OpenStack [11] is one of the open source cloud management systems that
have gained popularity and is already used by many private and public com-
panies and institutes [11]. It has a lot similarities with other open source cloud
projects such as Eucalyptus and OpenNebula. They all support the Amazon
APIs; EC2 and S3 and support the main virtualization technologies; Xen,
KVM and VMWare for hypervisors through an interface, Libvirt 1.

1 http://libvirt.org/
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OpenStack is a collection of services, that operate hypervisors, handle vir-
tual machine images, enable network connectivity between virtual machines
between physical servers and many other user and resource management and
monitoring utilities2. The required services needed to run virtual machines are
called Nova, Glance and Keystone. Nova is responsible for the management
of virtual machines, Glance provides virtual machine images and Keystone
administers permission to different services. Other services are Horizon that
implements a graphical user interface and Cinder that provides permanent
storage for virtual machines. Without permanent storage, virtual machines or
instances, which they are called in cloud environment, do not save any state
when destroyed. Although, Nova comes with a network service, Neutron service
extends it by providing more fine-grained control over the network configura-
tion and also providing firewall and virtual private network creation. Our test
environment uses an earlier version of OpenStack, Havanne.

The Nova scheduler handles resource balancing in OpenStack. The Nova
scheduler comes with 3 different algorithms: a simple, random, and filter sched-
uler [27], but it also provides a possibility to add new schedulers as plugins.
OpenStack does not include a dynamic load based virtual machine manager
that would migrate virtual machines between physical hosts. Our load bal-
ancer extends Nova schedulers functionality and provides an active load based
manager, that commands Nova with Openstack API.

4.1.1 Test setup

We developed a centralized monitoring system for our active management
tests. This system stores information both from virtual machines and physical
servers. It uses the information that is gathered by the Oracle Grid Engine
(OGE) and additionally, CPU load, CPU utilization, and memory state are
periodically submitted by hypervisors. All the information is stored in a rela-
tional database. Our load balancing algorithm retrieves the system state from
the database through a web server with JSON.

In our tests we measure the energy efficiency of high-energy physics (HEP)
analysis software in a dynamically managed cloud environment and compare it
to standard static cloud. HEP computing used in the LHC experiment is both
CPU and data intensive. It comprises mainly the analysis of large amounts
of both generated and measured data. The generated data is produced with
simulations and compared against the real data measured by the experiments
at CERN. A single high-energy physics analysis can go through millions of
events [36]. This work can be parallelized easily as the analysis of a single
event does not depend on the analysis of another event. Normally, the analysis
starts from 600 - 1,000 separate processes and each of these analyze a subset
of input events. Physics events are stored in a database like container, ROOT
files [2]. Input file sizes in the ROOT format are about 100 - 300 MB and each

2 http://docs.openstack.org/juno/installguide/install/apt/content/ch overview.html
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file contains 700 - 2,000 events. An average analysis job would pass through
10 - 25 million events that are stored in 30,000 - 40,000 files.

For this purpose we set up an OpenStack installation using DevStack3.
Workload was distributed to the cluster as a batch of jobs using OGE4. Twelve
OpenStack t1.small virtual machines instances [17], worked as OGE execution
nodes. Submission intervals of the batch jobs follow a Poisson process [37] and
resemble the real distribution of job arrival rate in CERN clusters. Although
the workload was real physics computation, its duration was artificially limited.
The durations of analysis jobs were scaled down to allow more reasonable test
times. Batch jobs consisted of 4 minute, jobA, and 7 minute, jobB, jobs in
equal proportions.

Physical servers were installed with Ubuntu 13.10 and Devstack, a stateless
OpenStack installation5. Virtual machines were installed with Scientific Linux
at CERN 5 (SLC5), Cern virtual machine file system (CMVFS) [30] version
2.1.19 and OGE 6.2u5. CVMFS is a new way to bring CMS Software (CMSSW)
[15] to the computing nodes. It mounts the software to a local filesystem from
CERN servers and caches some of the used software locally as they are used.
In our tests, a version 6.2.8 of CMSSW was used.

Our test cloud consisted of three servers with two different hardware com-
positions. As a park server and as an OpenStack front-end we used Dell 210
with Intel X3430 processor and 32GB of memory. As computing nodes we used
the same servers with 12GB of memory. OpenStack servers were connected to
an NFS share, that contained virtual machine images. Servers were connected
using two gigabit networks. The first network was used for OpenStack com-
munication and the second was dedicated for NFS. Power usage data of the
servers was collected using a Watts up? PRO meter via a USB cable. Power
usage values were recorded every second. A separate PC was used to control
the tests and collect electricity measurements. The test setup is illustrated in
Figure 2.

Thresholds for the load balancing functions described in Section 3 are based
on the average load values of Linux. In the first function of our balancer,
the migration decision is based on the 1-minute average load of the virtual
machine. If the one minute average load of virtual machine goes under the
given threshold, the virtual machine is migrated to the park server. The second
function does the opposite and moves loaded virtual machines from the park
server to computing nodes. It takes action if the one minute load average of
the park server surpasses its threshold. In our tests, the thresholds of load
were 0.5, minimum and 1, maximum.

3 http://devstack.org/
4 http://en.wikipedia.org/wiki/Oracle Grid Engine
5 http://docs.openstack.org/developer/devstack/
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Fig. 2: Test environment setup

4.1.2 Tests on real hardware

In our test with real hardware, we compare basic OpenStack installation with
passive management to our own active management algorithm. Tests compose
of three different cases:

1. SP - Static placement of instances
2. AM - Active management of instances with heterogeneous hardware prior-

itization
3. AMP - Active management of instances with heterogeneous hardware pri-

oritization and active consolidation of active VMs.

In Case 1, instances are created permanently for the whole duration of the
test. In Cases 2 and 3, the placement of instances is static and virtual machines
are migrated between physical machines depending on the load. Starting con-
figuration in our test cases is slightly different. In the static placement scenario,
virtual machines are spread equally into all nodes. In the other two cases, the
virtual machines’ initial placement is on the park server. All the measurements
are repeated 10 times to get statistically comparable results.

4.2 Dynamic management simulation

In order to test our load balancer in a larger environment and to evalu-
ate whether the results from our physical environment are also relevant in
production-scale systems, a simulator was needed. Because of different aims of
the tests, the simulated results cannot be directly compared to the test with
real hardware. We decided to use an existing Java based simulator, Cloudsim,
that has been widely used for simulating cloud environments [1]. Cloudsim
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Type Memory (GB) Frequency (MHz) Cores
Park server 16 2400,3400 2
Computing node 4 3400 4
VM 1 2000 1

Table 1: Simulator server set up

provided most of the necessary features to simulate dynamic management of
cloud infrastructure and collect energy consumption information [8]. However,
adding support for heterogenous hardware was needed to be able to simulate
our test case. The load balancer, that was described earlier in Section 3, was
also implemented into the simulator; it uses the existing algorithms of the
simulator [6]. Also the separation between normal computing nodes and park
servers were implemented.

The Cloudsim simulator was set up to run 60 virtual machines in 15 phys-
ical hosts. The physical hosts were divided into park servers and comput-
ing nodes. The number of park servers was varied in the tests, but the total
server count remained constant. Every virtual machine had a separate input
file that described their CPU load for every scheduling interval. In our tests,
the scheduling interval was set to 30 seconds and the duration of one simulation
to 24h.

The input of the virtual machines is periodical. Constant idle periods are
separated with higher load periods that resemble real physics workload, a
physics job. Some randomness was added to the beginning of the input so
that the first high load period of a virtual machine would be in different spot
on every virtual machine. Three input sets were created with different idle
periods, such that we would have 50, 100 and 150 physics jobs of 8.5 minutes
in one simulation. In every input set, the simulation duration was the same 24
hours, 2880 scheduling intervals. We created 5 variations of every test set in
order to test the effect of the different random seeds. The input set randomness
had little effect and the deviation between results with different random seeds
was in the magnitude of one thousandth.

Two different power models were used. For the energy efficient server we
used a model that mimics the one of Intel Xeon E3-1260L (2.4 GHz)6 and for
the normal server we used the one of Xeon E31280 (3.4 GHz)7. These power
models define how much energy is consumed with different processor loads.
Power models were obtained from SPEC website and they are the results of
measurements with SPECpower ssj 2008 software 8 on real hardware.

In Table 1, we have the hardware parameters of the simulation set up. As
a park server, both hardware types were used in different tests to compare the
effect of hardware on energy efficiency.

6 ”http://www.spec.org/power ssj2008/results/res2011q2/power ssj200820110531-
00379.html”

7 ”http://www.spec.org/power ssj2008/results/res2011q3/power ssj200820110806-
00393.html”

8 https://www.spec.org/power ssj2008/
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5 Results

5.1 OpenStack cluster

The aim of the OpenStack test was to show that the load balancing method
works in practice and migrations do not cause a significant increase for energy
consumption or processing time. The energy saving potential of the method
will be demonstrated by using simulations.

As assumed, active management of virtual machines does not come without
a cost but the cost is reasonable. Figures 3 and 4 both show, that total en-
ergy consumption is higher and job durations slightly longer when the virtual
machines are moved in the cluster. Figure 3 shows the energy consumption of
three different test cases; SP test case where no active management is used,
AM where the first two functions of our load balance manager is used and
then AMP where the third, packing, function is added. We can see that the
migrations do not introduce much overhead to the energy consumption or pro-
cessing times. The energy consumption measurements do not take into account
the benefit gained by shutting down the unnecessary servers. This benefit is
presented in Table 2 at the end of this section.

We can also see that the energy efficiency increases with higher load values:
if we triple the submission rate, energy consumption increases by only 12%.
This is naturally explained by the relative high idle power of the computing
servers.

Fig. 3: Energy consumption of the test
cluster with different loads and schedul-
ing algorithms

Fig. 4: Processing times of two different
test jobs when running the same tests
with different loads and scheduling algo-
rithms

Improved energy efficiency usually comes with a cost as it is the case here
as well. We can see this cost in the form of slightly higher processing times of
physics jobs. In Figure 4, we have the run times of two different jobs, jobA and
jobB with different submission rates. We can see that the static placement gives
about 13% shorter times than the two active management cases. As we can
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see in Figure 4, the active consolidation of VM instances (the AMP method)
does not have a significant effect compared to the normal AM method.

Fig. 5: VMs in the cluster during rate 0.2
test
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Fig. 6: Cluster power consumption during
the rate 0.2 test

To illustrate movements of virtual machines among the physical servers
during different tests scenarios, we picked samples of migration data using the
tests without the active VM consolidation feature, i.e., the AM tests. Figures
5, 7 and 9 illustrate the movements of virtual machines between the three
physical servers. In Figure 5, we have the movements of one test with the rate
0.2, Figure 7 with the rate 0.4, and Figure 9 with the rate 0.6. Rates 0.2 and
0.4 are very low and two servers they can basically serve them. Based on the
tests, we can indicate that the AM and AMP functions are able to increase
the utilization of servers compared to the static placement of instances (the
SP method). On the right side of these figures we have the power consumption
of the corresponding tests in Figures 6, 8, and 10.

Since the AM scheduler without packing does not attempt to pack load,
i.e. consolidate VMs into smaller number of computing nodes, this results in
the physical servers running with low utilization. As we can see in Figure 7,
the computing node two runs a long time with just one virtual machine. These
under committed resources are corrected with the use of packing function.

Rate 0.6 is high enough to saturate the used test cluster. When this hap-
pens, the park server load is always moved to the most loaded computing
node that still has enough space left to support the additional load. Comput-
ing nodes are allowed to host only four virtual machines in order to guarantee
the one to one mapping of CPU resources. The park server, on the other hand,
can host more virtual machines.

A host power management system was not implemented into this cluster,
but we have previously shown that it is possible and beneficial for a batch
cluster [39]. Instead of making a similar solution, we have measured the idle
times of the test servers to show the benefits of active management of virtual
machines. In order to work, the controller of the OpenStack cluster needs
to be active all the time, thus we can only control the power states of the
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Fig. 7: VMs in the cluster during rate 0.4
test
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Fig. 8: Cluster power consumption during
the rate 0.4 test

Fig. 9: VMs in the cluster during rate 0.6
test
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Fig. 10: Cluster power consumption dur-
ing the rate 0.6 test

computing nodes. In Figure 11, we show the times that the computing nodes
run without any virtual machines, i.e., idle and ready for energy state change,
e.g. shutdown. In these values we have already taken into account the time
it takes to switch from a state to another; boot up and shutdown. In the
case of the test environment, the reboot time is approximately 76 seconds. So
this has been deducted from the idle times as many times as there are state
changes. In order to improve the performance and energy efficiency in our test
environment, the boot times could be optimized with operating system and
BIOS tuning or with faster hard drives.

Since the idle time does not necessarily indicate the potential energy sav-
ings alone, we estimated energy consumption based on the measured idle times
shown in Figure 11. With these times and the idle energy consumption of the
servers, 38W, we can calculated the energy saving estimates shown in Table
2. The energy savings potential, energy while idle, estimates how much energy
could be saved by turning off the unnecessary servers.
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Fig. 11: Time the computing nodes are without virtual machines

Table 2: Energy saving potential (Wh) with different submission rates

Rate 0.2 0.4 0.6
Avg. Stdev Avg. Stdev Avg. Stdev

NoEE 127.46 0.36 145.80 0.49 163.16 0.52
EE total energy 125.68 0.31 145.99 1.33 181.13 15.12

energy while idle 61.11 3.47 38.38 6.48 30.66 9.14
EE packing total energy 126.06 1.25 148.73 9.64 170.16 6.50

energy while idle 65.34 4.70 51.83 5.57 24.82 2.17

5.2 Simulation results

After the tests in the physical test cluster, the load balancing algorithm was
tested in a simulator. The simulator allowed us to test with a larger server
count and study the use of heterogeneous hardware.

We first tested how the virtual machines placement works in the simulator.
In Figure 12, we show the server usage from the beginning of the simulation.
It shows the number of free park servers and the number of free computing
nodes. In the beginning, when the workloads have not started yet, the virtual
machines are aggressively migrated to the park servers. As the workload in-
creases, the number free execution nodes decreases. In the case of lower load,
the need for execution nodes greatly varies. In the case of higher load, in Fig-
ure 13 the park servers are less important as the virtual machines are on the
computing nodes.

Then we tested how energy efficiency of the cluster is affected by different
threshold values in the second function of the load balancer, i.e., at which
park server load level, the virtual machines are moved from the park server
to computing nodes. In Figure 14 we can see the average energy consumption
per instruction for different variations of the test. It also shows how the choice
of park server hardware affects the energy consumption. Workload for these
results is the same 100 jobs per hour per virtual machine. We can see how
the energy efficiency improves as the load threshold and the number of park
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Fig. 12: Amount of idle computing nodes and park servers with rate 50 load (the x-axis is
time)

Fig. 13: Amount of idle computing nodes and park servers with rate 150 load (the x-axis is
time)

servers are increased. An increased number of park servers allows the system
to pack virtual machines more densely when there is less load.

Fig. 14: Average energy consumption per instruction with rate 100 load
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The improved energy efficiency has a drawback as the total amount of work
and service level decreases. Figure 15 shows how the total amount of work,
measured as the instruction count, is affected by the change of the park server
threshold and the number of park servers. Similarly, Figure 16 shows how
the service level decreases when the utilization level of park server increases.
In this case, the SLA (service level agreements) describes the percentage of
completed instructions, i.e., the service level.

Fig. 15: Simulation time instructions with rate 100 load

Fig. 16: SLA with rate 100 load

As seen earlier in Figures 12 and 13, the load of the system greatly affects
the energy efficiency and the importance of load balancing to and from park
servers. In Figure 17, we have similar results as earlier on the case of the rate
100 (Figure 14), but now with the higher load. The energy efficiency gets worse
than it would without the load balancing functions as migrations introduce
some overhead.
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Fig. 17: Average energy consumption per instruction with rate 150 load

6 Conclusions and Future Work

The aim of this study was to show that the energy efficiency of high-energy
physics computing could be improved in a cloud environment by using an
active load based management of virtual machines. We introduced an idea of
storing idle virtual machines on a dedicated hardware and load based over-
committing of resources of idle virtual machines.

For this study we set up a cloud test environment with monitoring system
and measured the effect of active management of virtual machines. We used
well-known open source tools for the environment and realistic physics load.
Our tests show that we can save 9% - 48% of energy when the virtual machines
are managed actively based on the load of the system. The same algorithm
was implemented into a simulator. Simulation results also show that the energy
efficiency is improved by up to 40% with active management and with the use
of heterogeneous hardware. The use of energy efficient hardware in park server
improves the energy efficiency about 4.5% - 10%. The results also show, that
the energy savings of the active management depends greatly on the workload.

In this study, we demonstrated that the dynamic management works with
very basic heuristics. With a more sophisticated heuristics the results could
be clearly better. For example, using load prediction methods [14], VMs could
be moved earlier, or sometime a migration would be omitted if VM’s load is
predicted to increase soon again. We could also apply a fuzzy heuristics [32]
to predict the memory consumption of VMs to avoid overloading of servers.
It would also be possible to extend the model to handle more than two types
of servers. This could improve efficiency, e.g. VMs running memory-intensive
workloads could be place large memory servers. Also, the hardware setup in
our tests was limited. Thus, the next steps would be to use a test system in
a larger cloud environment. Also, load predictions such as the one by Ghosh
et all [16] were not really considered in this study, but should be implemented
into the logic of choosing migratable virtual machines. In the future testing,
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also the load measurement should be reconsidered, since in the current tests
with real hardware we used the load values given by Oracle Grid Engine and
additionally the one minute load value given by the Linux kernel. It is possi-
ble that more real time load measurements and possible forecasting of future
load, would clearly improve the load balancing function. Finally, an interest-
ing future approach would be applying the same methods to containers [3,19].
Challenges can be related e.g. measuring their load and interactions between
containers, since they are not so isolated as virtual machines.
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