
“main” — 2017/10/16 — 13:02 — page i — #1

Department of Computer Science
Series of Publications A

Report A-2017-4

Retention in Introductory Programming

Arto Hellas

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
VI, Forest House, on October 27th, at noon.

University of Helsinki
Finland

“main” — 2017/10/16 — 13:02 — page ii — #2

Supervisors
Jaakko Kurhila, Matti Luukkainen and Jukka Paakki
University of Helsinki, Finland

Pre-examiners
Nickolas Falkner, University of Adelaide, Australia
Mikko-Jussi Laakso, University of Turku, Finland

Opponent
Erkki Sutinen, University of Turku, Finland

Custos
Tommi Mikkonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright c© 2017 Arto Hellas
ISSN 1238-8645
ISBN 978-951-51-3797-5 (paperback)
ISBN 978-951-51-3798-2 (PDF)
Computing Reviews (1998) Classification: K.3.2, K.3.1, D.2.8
Helsinki 2017
Unigrafia

“main” — 2017/10/16 — 13:02 — page iii — #3

Retention in Introductory Programming

Arto Hellas

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
arto.hellas@cs.helsinki.fi

PhD Thesis, Series of Publications A, Report A-2017-4
Helsinki, October 2017, 68 + 88 pages
ISSN 1238-8645
ISBN 978-951-51-3797-5 (paperback)
ISBN 978-951-51-3798-2 (PDF)

Abstract

The introductory programming course is one of the very first courses that
computer science students encounter. The course is challenging not only
because of the content, but also due to the challenges related to finding a
place in a new community. Many have little knowledge of what to expect
from university studies, some struggle to adjust their study behavior to
match the expected pace, and a few simply cannot attend instruction due
to e.g. family or work constraints. As a consequence, a considerable number
of students end up failing the course, or pass the course with substandard
knowledge. This leads to students failing to proceed in their studies at a
desirable pace, to students who struggle with the subsequent courses, and
to students who completely drop out from their studies.

This thesis explores the issue of retention in introductory programming
courses through multiple viewpoints. We first analyze how the teaching
approaches reported in literature affect introductory programming course
pass rates. Then, changes on the retention at the University of Helsinki
are studied using two separate approaches. The first approach is the use
of a contemporary variant of Cognitive Apprenticeship called the Extreme
Apprenticeship method, and the second approach is the use of a massive
open online course (MOOC) in programming for recruiting students before
they enter their university studies. Furthermore, data from an automatic
assessment system implemented for the purposes of this thesis is studied
to determine how novices write their first lines of code, and what factors
contribute to the feeling of difficulty in learning programming.

iii

“main” — 2017/10/16 — 13:02 — page iv — #4

iv

On average, the teaching approaches described in the literature improve
the course pass rates by one third. However, the literature tends to neglect
the effect of intervention on the subsequent courses. In both studies at the
University of Helsinki, retention improved considerably, and the students
on average also fare better in subsequent courses. Finally, the data that has
been gathered with the automatic assessment system provides an excellent
starting point for future research.

Computing Reviews (1998) Categories and Subject
Descriptors:
K.3.2 Computer and Information Science Education
K.3.1 Computer Uses in Education
D.2.8 Software Engineering – Metrics

General Terms:
Design, Experimentation, Human factors

Additional Key Words and Phrases:
cognitive apprenticeship, course material, continuous feedback,
instructional design, programming education, best practices, learning by
doing, testing, automatic assessment, verification, distance education

“main” — 2017/10/16 — 13:02 — page v — #5

Acknowledgements

I am deeply grateful to my family and friends for tolerating my selfish
pursuit of my work. While some have argued that selfishness may be a
virtue that leads to social progress, there is little virtue in being mentally
or physically absent from the lives of those who truly matter the most.

My special thanks go to Matti Paksula and Matti Luukkainen who
asked me to take part in redesigning our introductory programming courses.
Their question led me to this research. I am also grateful to Jaakko Kurhila
and Thomas Vikberg, who have been a crucial part of the early stages of
this process. I am deeply grateful to Jukka Paakki and Tommi Mikkonen
who chose to champion my work even though it does not belong to the
traditionally conducted research at the Department of Computer Science.

Big thanks go to the past and current members and affiliates of the Ag-
ile Education Research Group, including Juho Leinonen, Henrik Nygren,
Leo Leppänen, Martin Pärtel and Jarmo Isotalo. I thank all the partici-
pants in the courses that I’ve given, the junior and senior advisors in the
programming courses, and the teaching assistants in general. As there are
thousands of you, I cannot name and list each of you here.

I am also grateful to all of my co-authors and those contributors whose
names do not appear in the articles. Thanks go out to the Computing Edu-
cation Research groups at the Aalto University and the Tampere University
of Technology, as well as to all of my past, present and future colleagues
across the globe. Big thanks also to Marina Kurtén that has corrected a
huge amount of mistakes in my work.

The financial support from the Technology Industries of Finland Cen-
tennial Foundation, the Department of Computer Science at the University
of Helsinki, Nokia Foundation, and the Doctoral Programme in Computer
Science is also gratefully acknowledged.

Helsinki, October 2017
Arto Hellas

v

“main” — 2017/10/16 — 13:02 — page vi — #6

Contents

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Methodology and Research Questions 3
1.3 Outline of the Dissertation 5
1.4 Original Publications and Contribution 5

2 Teaching Programming at Universities 9
2.1 Retention in Introductory Programming 9
2.2 Interventions and Improvements in Retention 10
2.3 Notes on Comparing Different Interventions 15

3 Extreme Apprenticeship method 17
3.1 Values and Practices . 19
3.2 Scalability . 22
3.3 Success in Subsequent Courses 24

4 A MOOC Focused on Programming 27
4.1 Scaffolding Students’ Work from Distance 27
4.2 Open Online Course in Programming 30
4.3 MOOC as an Entry Mechanism to Degree Studies 31

5 Mining Student Data 35
5.1 Source-code Snapshot Data 35
5.2 On the First “Hello World” Application 36
5.3 Feedback and Programming Assignment Difficulty 38

6 Conclusions and Future Work 41
6.1 Revisiting the Research Questions 41
6.2 Closely-related Work . 43
6.3 Limitations of the Work . 50
6.4 Future Directions . 53

References 55

vi

“main” — 2017/10/16 — 13:02 — page 1 — #7

Chapter 1

Introduction

During the last decades, we have witnessed the digitalization of our soci-
ety, seen in the large-scale adoption of technologies that keep individuals,
businesses, and governments connected through a variety of devices and
services. At the core of this change are individuals who understand the nu-
ances that make such devices and services tick, and are able to adjust the
behavior of such devices through seemingly arcane methods. These arcane
methods are used to conjure opportunities by methodologically chanting
and pressing buttons on a slab of plastic. Such conjurers – programmers –
are increasingly in demand.

As educational institutions have sought to answer the demand, it has be-
come evident that the task of training someone in the craft of programming
is not trivial [77]. This can be observed both in studies that have analyzed
programming course retention rates [13,114,123], as well as studies on how
students perform when working on programming tasks (see e.g. [70,91,101]).
When considering the retention rates alone, a survey from 2007 pointed out
that, on average, two thirds of students who take on an introductory pro-
gramming class complete it [13]. To put this into proportion, millions of
students take a programming class each year – thousands in Finland alone.

With such statistics, it is not surprising that introductory programming
courses receive plenty of attention within the emerging domain of Comput-
ing Education Research [95]. Several articles and theses have been devoted
to topics such as the use of visualization to help students grasp important
concepts [73, 83, 102, 103], tools that are designed to make taking the first
programming steps easier [50, 63], systems that help teachers with assess-
ment and facilitate faster feedback to students [53, 54], course design and
instruction practices such as constructive alignment for improving the visi-
bility of the learning objectives for both teachers and students [2], practices
to assess students’ knowledge [108], and pedagogies that help educators to
better convey the craft of programming to students [7, 104].

1

“main” — 2017/10/16 — 13:02 — page 2 — #8

2 1 Introduction

This thesis focuses on ways to improve retention in introductory pro-
gramming courses and consequently in computing studies, as well as the
use of automated assessment tools to support the process. A contemporary
interpretation of Cognitive Apprenticeship called the Extreme Apprentice-
ship method and its application is in specific focus, as is the use of a massive
open online course (MOOC) to bypass some of the issues related to students
struggling with the introductory programming course. In this thesis, “we”
refers to both the author and a number of people with whom the author
has been lucky to work; “we” varies across different chapters.

1.1 Context and Motivation

This thesis is contextualized within the field of Computing Education Re-
search [76, 95]. It focuses on the theme of retention in introductory pro-
gramming courses and discusses different ways of teaching programming
and how those approaches affect retention.

The case studies have been conducted at the University of Helsinki,
Department of Computer Science. The University of Helsinki is a research-
oriented university in southern Finland with 36,500 students. As with
other Finnish universities, there are no tuition fees and classes are typically
organized so that attendance is not mandatory. Students admitted to a
university have a right to study. Many, however, have families and/or take
part-time jobs already during their first-year studies, and cannot always
attend instruction.

The majority of the students have attended Finnish primary and sec-
ondary schools that, according to a number of studies, provide high-quality
education (e.g. PISA [67]). However, traditionally, little to no computing
has been offered as a part of primary and secondary school curricula, and
even when such courses are offered, they are elective. This means that
students have little to no knowledge of what computer science means, and
typically have no role models related to the topic. At the same time, stu-
dents must choose their major as they apply to the university. As such, a
number of students enroll to computer science (CS) studies only based on a
vague image of what the studies contain [60], and may end up dropping out
due to that image proving to be false. These drop-outs are typically most
visible in introductory programming courses, where a considerable number
of students fail [13, 123].

Even with constructive alignment, guidance, and nationally merited
education, at the beginning of this thesis work, the retention rate in the
introductory programming courses had been on average 55% over a period

“main” — 2017/10/16 — 13:02 — page 3 — #9

1.2 Methodology and Research Questions 3

of eight years (2002-2009). While this number is lower than the averages
reported in international studies (see e.g. [13, 123]), national reports of
retention rates from traditional instruction are often on the same level (see
e.g. [58, 74]).

1.2 Methodology and Research Questions

Much of the research described in this thesis has followed the principles
of design-based research, where the main goal is to positively influence
teaching and learning [89]. In design-based research, practitioners start
with a research question, and then identify issues – artifacts – that are
to be improved. The identification of these artifacts is interlinked with
the researcher learning about the context under study. After the initial
research question and related observations have led to a set of artifacts, the
artifacts are worked on in iterations. After each iteration, new artifacts may
be identified, which again can lead to new research questions. This natural
evolution and refinement is common in design-based research [89,98].

Our work started with the question what can we do to help our students
learn programming?, which initially led to a teaching intervention and the
creation of the Extreme Apprenticeship method. The Extreme Apprentice-
ship method is a contemporary interpretation of Cognitive Apprenticeship
– a theory of the process of how a master teaches a skill to an apprentice
– that attempts to bring the principles of one-on-one instruction to large
classes. Cognitive Apprenticeship was chosen as the starting point for the
work due to its specific applicability to teaching crafts where the men-
tal processes are typically hidden from view [27, 28], as well as the earlier
successes in teaching programming to novices using cognitive apprentice-
ship [7, 15,25,62].

As some of our students were unable to attend local instruction, tools
were developed to support learning at a distance. During the process, it
became evident that Finnish high schools do not provide sufficient opportu-
nities for programming instruction, which we also sought to remedy. This
led to the creation of a MOOC in programming, and the use of the MOOC
to recruit students to study Computer Science. From the beginning, the
tools that were designed to support learning were also designed to provide
data for research. This data has been used, among other things, to illumi-
nate what students do as they are learning to program and what types of
automatically identifiable factors contribute, e.g., to the feeling of difficulty
during the process has been a constant endeavor.

“main” — 2017/10/16 — 13:02 — page 4 — #10

4 1 Introduction

Overall, the decisions during the iterations have been based on data
and observations from the study environment, and the decisions on what
to alter and what sort of interventions to apply have been made based on
the existing literature and research. Among other results, this work has
created evidence-based claims on the applicability of a contemporary inter-
pretation of cognitive apprenticeship to the domain of learning to program,
thus answering the call that design-based research requires more than sim-
ply showing a particular design works but demands that the researcher
generate evidence-based claims about learning that address contemporary
theoretical issues and further the theoretical knowledge of the field [9].

The design-based research process has spawned numerous research ques-
tions that have been answered during the process. The research questions
included in this thesis are as follows:

RQ1: How do existing teaching interventions proposed in the literature in-
fluence introductory programming course pass rates?

RQ2: What types of short- and long-term effects in students’ course per-
formance does the reorganization of an introductory programming
course lead to?

RQ3: How do students admitted through a MOOC in programming perform
in their studies when compared to traditionally admitted students?

RQ4: What do students who have never programmed before do when they
take their first programming steps and what types of factors con-
tribute to the programming tasks feeling difficult?

Research question one is answered through a literature review, and re-
search questions two and three are answered through case studies orga-
nized at the University of Helsinki. For answering research question two,
we analyze how the introduction and use of the Extreme Apprenticeship
method influenced students’ performance in the introductory programming
courses as well as subsequent courses. Research question three is answered
by comparing the students who have been admitted through the MOOC to
students admitted through the traditional entrance exam. Finally, research
question four is answered by analyzing source code snapshot data gathered
from the students’ programming process.

“main” — 2017/10/16 — 13:02 — page 5 — #11

1.3 Outline of the Dissertation 5

1.3 Outline of the Dissertation

This dissertation is composed of three themes that have all served the pur-
pose of improving the retention rate in the studied context. The first theme
in Chapters 2 and 3 discusses the literature on teaching introductory pro-
gramming with a focus on reported interventions and their influence on
course retention. We also discuss a multi-year case study of the applica-
tion of the Extreme Apprenticeship method, a scalable way to organize
introductory programming education with a focus on pragmatic hands-on
activities and continuous feedback. For the case study, we focus on the
impact on retention rates of the introductory programming courses, as well
as on how those students who have taken the course using the Extreme
Apprenticeship method fare in their subsequent courses when compared to
earlier cohorts.

The second theme, in Chapter 4, discusses extending local instruction
to create open online courses available for everyone. We discuss necessary
automated programming assessment tools needed to provide feedback to
students who due to various reasons cannot attend local instruction. The
chapter then continues to describe a solution to the issue specific to the
Finnish education system, where students do not always know what they
enroll in when they enroll in tertiary level studies. The solution that we
studied is a massive open online course (MOOC) that is mainly targeted
to secondary level students and is also used as an entrance exam to degree
studies. With this study, we have sought to determine if the students’
study performance changes when the introductory programming courses
have been completed already before entering the University.

The third theme, in Chapter 5, describes some of the research that
has been conducted to understand the struggles that students face as they
are learning to program. We specifically focus on a narrow set of results
that have utilized source code snapshots that have been gathered from the
students’ learning process, and describe results from the analysis of such
data.

Next, as the original publications in this thesis are presented, these
thematic areas are denoted with roman alphabets.

1.4 Original Publications and Contribution

This part lists the publications included in this thesis. These articles are or-
ganized thematically, where the roman alphabet describes the theme, and
the ordinal number describes the order within that theme. Publications

“main” — 2017/10/16 — 13:02 — page 6 — #12

6 1 Introduction

I.1-I.4 include a systematic review of approaches for teaching introduc-
tory programming and a multi-year study of the Extreme Apprenticeship
method at the University of Helsinki (RQ1 and RQ2). Publications II.1-II.3
discuss extending an introductory programming course as a MOOC, using
the MOOC as an entrance exam to university studies, and discusses initial
results of students admitted via the MOOC to those admitted via a tra-
ditional entrance exam path (RQ3). Publications III.1-2 discuss the very
basic approaches and challenges that students face when starting to study
programming, and focuses on those students who have explicitly stated that
they have never programmed before (RQ4).

I.1 Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. A Sys-
tematic Review of Approaches for Teaching Introductory Program-
ming and Their Influence on Success. In Proceedings of the 10th
Annual Conference on International Computing Education Research
(ICER ’14). ACM, New York, NY, USA, 19-26.

I.2 Arto Vihavainen, Matti Paksula, and Matti Luukkainen. Extreme
Apprenticeship Method in Teaching Programming for Beginners. In
Proceedings of the 42nd ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’11). ACM, New York, NY, USA, pages
93-98.

I.3 Jaakko Kurhila and Arto Vihavainen. Management, Structures and
Tools to Scale up Personal Advising in Large Programming Courses.
In Proceedings of the 12th Conference on Information Technology Ed-
ucation (SIGITE ’11). ACM, New York, NY, USA, pages 3-8.

I.4 Hansi Keijonen, Jaakko Kurhila, and Arto Vihavainen. Carry-on Ef-
fect in Extreme Apprenticeship. In Proceedings of the 43rd Frontiers
in Education Conference (FiE ’13), pages 1150-1155. IEEE, 2013.

II.1 Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin
Pärtel. Scaffolding Students’ Learning Using Test My Code. In Pro-
ceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’13). ACM, New York, NY,
USA, 117-122.

II.2 Jaakko Kurhila and Arto Vihavainen. A Purposeful MOOC to Al-
leviate Insufficient CS Education in Finnish Schools. Transactions
on Computing Education. 15, 2, Article 10 (April 2015), ACM, 18
pages.

“main” — 2017/10/16 — 13:02 — page 7 — #13

1.4 Original Publications and Contribution 7

II.3 Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. MOOC
as Semester-long Entrance Exam. In Proceedings of the 14th ACM
SIGITE Conference on Information Technology Education (SIGITE
’13). ACM, New York, NY, USA, pages 177-182.

III.1 Arto Vihavainen, Juha Helminen, and Petri Ihantola. How Novices
Tackle Their First Lines of Code in an IDE: Analysis of Program-
ming Session Traces. In Proceedings of the 14th Koli Calling Inter-
national Conference on Computing Education Research (Koli Calling
’14). ACM, New York, NY, USA, pages 109-116.

III.2 Petri Ihantola, Juha Sorva, and Arto Vihavainen. Automatically De-
tectable Indicators of Programming Assignment Difficulty. In Pro-
ceedings of the 15th Conference on Information Technology Education
(SIGITE ’14). ACM, New York, NY, USA, pages 33-38.

All the articles have been peer-reviewed and accepted by the computing
education research community. The candidate, whose last name changed
from Vihavainen to Hellas on 1st of April 2016, has been at least an equal
contributor in all of the included articles.

“main” — 2017/10/16 — 13:02 — page 8 — #14

8 1 Introduction

“main” — 2017/10/16 — 13:02 — page 9 — #15

Chapter 2

Teaching Programming at
Universities

Introductory programming is taught essentially in all universities that teach
Computer Science or related subjects and it is a recurring theme in Com-
puting Education Research. Previously, however, no study had attempted
to quantitatively compare the impact that teaching approaches can have
on improving the pass rates of programming courses. To remedy this, a
review on teaching methodologies was conducted to assess the impact of
teaching approaches to introductory programming course outcomes (Pub-
lication I.1).

2.1 Retention in Introductory Programming

Table 2.1 contains descriptive statistics of the data (n=32 articles, 60 data
points). On average, the pass rates before the intervention were 61.4%,
and after intervention 74.4%. The data has plenty of variance, however; the
smallest pass rate before intervention was 22.6% and 36% after intervention,
while the largest pass rate was 94.2% before intervention, and 92.5% after
intervention. The population sizes in the courses also varied considerably.
The smallest pre-intervention n was 15 students, which was from a targeted
intervention to at-risk students, while the smallest post-intervention n was
9 students; the intervention strategy in the study was applied to a small
summer class. The largest number of students was 2298 before intervention,
where the study reported data from the past 16 iterations, and 1213 after
intervention, which was from a study that reported aggregate results from
multiple institutions.

9

“main” — 2017/10/16 — 13:02 — page 10 — #16

10 2 Teaching Programming at Universities

descriptive min max median mean sd (σ)

pass rate pre 22.6 94.2 63 61.4 15.5
pass rate post 36 92.5 74 74.4 11.7

students pre 15 2298 148 296.9 487.5
students post 9 1231 86 162.3 200.7

Table 2.1: Pass rates and study sizes before and after teaching intervention.

Five (8.3%) of the extracted data entries had a negative outcome (the
pass rates decreased), while in 91.7% of the entries the intervention had at
least a minor improvement on the overall results. On average, the inter-
ventions improved the pass rates 33.3% or nearly one third.

2.2 Interventions and Improvements in Retention

The articles in the final data (n=32 with 60 data points) were analyzed,
and the teaching interventions were manually coded to identify the com-
ponents in each intervention (see publication I.1 for further details on the
coding process). The ten most frequent intervention codes encompassed
the following activities:

• collaboration: activities that encourage student collaboration either
in classrooms or labs

• content change: at least parts of the teaching material was changed
or updated

• contextualization: activities where course content and activities were
aligned towards a specific context such as games or media

• CS0 : the creation of a preliminary course that was to be taken before
the introductory programming course; could be organized only for e.g.
at-risk students

• game-theme: a game-themed component was introduced to the course,
e.g. a game-themed project

• grading schema: a change in the grading schema; the most common
change was to increase the amount of points rewarded from program-
ming activities, while reducing the weight of the course exam

• group work : activities with increased group work commitment such
as team-based learning and cooperative learning

“main” — 2017/10/16 — 13:02 — page 11 — #17

2.2 Interventions and Improvements in Retention 11

intervention code n min max median avg σ

collaboration 20 -1 59 39 34 17
content change 36 -17 69 34 34 17
contextualization 17 18 69 37 40 17
CS0 7 18 76 41 43 19
game-theme 9 -39 42 21 18 23
grading schema 11 3 42 30 29 12
group work 7 36 59 44 45 7
media computation 10 24 69 49 48 16
peer support 23 -1 59 36 34 16
support 9 -29 67 36 33 19

Table 2.2: Ten most common intervention codes and the overall intervention
effects of the studies in which they appeared in. Number of studies including
the intervention denoted as n, realized pass rates reported using minimum,
maximum, median, average and standard deviation (σ) in percentages.

• media computation: activities explicitly declaring the use of media
computation (e.g. the book)

• peer support : support by peers in form of pairs, groups, hired peer
mentors or tutors

• support : an umbrella term for all support activities, e.g. increased
teacher hours, additional support channels etc.

Table 2.2 contains the ten most frequent codes and the realized gains in
the studies in which they appeared in. While the intervention types cannot
be compared with each others due to overlapping, the table provides an
overview of the realized improvements over different studies.

When considering the median improvement, the studies that had me-
dia computation as one of the components were most successful, while
studies with a game-theme were the least successful. Facilitating group
work and collaboration, and creating a preliminary programming courses
that was offered before the actual introductory programming course were
also among the high-performing activities. While the effect of an inter-
vention activity depends naturally on other activities as well, a noticeable
amount of variance was observed even within similar setups. This vari-
ance is caused, at least, by the natural variance of student populations over
different semesters, student intake, teacher effect, difference in grading cri-
teria among different institutions, and the difference in student workloads
between different institutions.

“main” — 2017/10/16 — 13:02 — page 12 — #18

12 2 Teaching Programming at Universities

The teaching interventions were further categorized into five categories;
(1) collaboration and peer support, (2) bootstrapping, (3) relatable content
and contextualization, (4) course setup, assessment and resourcing and (5)
hybrid approaches.

Collaboration and Peer Support

Approaches that include collaboration and peer support include peer-led
team learning activities [65], pair programming activities [126] and coop-
erative and collaborative practices [26, 122]. A total of 14 studies were
classified as having applied an intervention, which primarily consisted of
moving towards a collaborative, or peer support based approach. Three
specific approaches were identified: cooperative learning (3 courses), team-
based learning (5 courses), and pair programming (6 courses).

Cooperative learning was found to yield the largest absolute improve-
ment in CS1 pass rates (25.7% on average), and team-based learning was
found to yield the second largest absolute improvement (18.1% on aver-
age). Despite being frequently cited as an enabler for programming skills,
the pair programming approach was only found to yield an absolute im-
provement of 9.6% on average, and ranked 11 out of the 13 interventions
that were explored by this study. It was possible that courses to which this
intervention was applied already had good pass rates, and therefore there
was little scope for absolute improvement.

When considering realized changes, pair programming yielded a real-
ized increase of 27% in pass rates on average, but overall, this approach
was still ranked 11th out of the 13 interventions which were explored by
this study. Considering the results of all 14 courses combined, we found that
instructors who applied a collaborative or peer support based intervention
generally received the largest improvements in pass rates when compared
to the other groups examined in this study (16.1% improvement, realized
change 34.3%). A possible explanation is that collaboration increases com-
mitment as the student is no longer responsible solely to herself, but also
to her peers. Collaboration can also increase feedback opportunities, and
create situations where the student may learn from helping others. At the
same time, expected collaborative activities may also lead to a situation,
where some students who can not attend local instruction due to e.g. other
commitments are less likely to attend the course, if it is not mandatory for
them.

“main” — 2017/10/16 — 13:02 — page 13 — #19

2.2 Interventions and Improvements in Retention 13

Bootstrapping

Bootstrapping practices either organized a course before the start of the
introductory programming course [45, 97] or started the introductory pro-
gramming segment using a visual programming environment such as Scratch
or Alice [72]. Some of the activities were also targeted at at-risk stu-
dents [85]. A total of 9 studies were classified as having applied such an
intervention. Two specific approaches were identified: using visual pro-
gramming tools such as Scratch or Alice (5 courses), and introducing CS0
(4 courses). Out of all the interventions that were explored in this study,
using visual programming tools was found to yield the fifth largest abso-
lute improvement in pass rates (17.3% on average). A similar high ranking
was found when considering realized improvement (fourth, 38.6%), which
positioned using visual programming tools as the fourth overall best inter-
vention.

Whilst the absolute improvement for courses that introduced CS0 was
much lower than visual programming (10.5% increase), the realized change
that was yielded by this intervention was comparable (34.9% increase).
Considering the results of all 9 courses combined, we found that instruc-
tors who applied a bootstrapping intervention generally received the second
largest improvements in pass rates when compared to the other groups ex-
amined in this study (absolute change 14.3%, realized change 37.0%). It is
possible that the initial simplification offered by these forms of intervention
are able to assist students who might otherwise fail CS1, by suppressing
the syntax barrier until they have gained sufficient knowledge of the under-
lying concepts. This also ties into research on threshold concepts, which
suggested that reducing the level of complexity initially may be an effective
way to assist students in overcoming thresholds.

Relatable Content and Contextualization

Approaches that introduced relateable content sought to make program-
ming more understandable to students. These approaches include media
computation [109], introducing real world projects [30] as well as courses
that evolve around games [10]. A total of 14 studies were classified as hav-
ing applied an intervention, which primarily consisted of using relatable
content and contextualization as a means to improve CS1 pass rates. Two
specific approaches were identified: media computation (7 courses), and
gamification (7 courses).

Out of all the interventions that were explored in this study, using media
computation was found to yield the seventh largest absolute improvement

“main” — 2017/10/16 — 13:02 — page 14 — #20

14 2 Teaching Programming at Universities

in pass rates (14.7% on average), and a comparable improvement was found
for gamification (10.8% on average). However, when considering realized
changes, media computation was found to yield the largest realized change
across all interventions explored in this study (50.1% increase), whereas
gamification was found to only yield the tenth largest (27.4% increase).
Overall, and considering the results of all 14 courses combined, we found
that instructors who applied a relateable content or contextualization in-
tervention generally received the third largest improvements in pass rates
when compared to the other groups examined in this study (absolute change
11.6%, realized change 38.7%). As media computation (overall rank 2) con-
siderably outperformed gamification (overall rank 10), it could be the case
that whilst games provide a useful tool to contextualize a learning task,
there are still fundamental underlying programming concepts that can be
better served by adopting a media computation approach.

Course Setup, Assessment, Resourcing

Approaches that modify course setup, assessment and resourcing included
a broad range of practises starting from adjusting course content based
on data from an assessment system [92], introducing new content, a pro-
gramming tool that provides additional support and changing the grading
schema assessment [74, 82]. A total of 15 studies were classified as having
applied an intervention which primarily consisted of changing aspects of
the course setup, rather than changing elements of the teaching approach.
Three specific approaches were identified: changing class size (4 courses),
improving existing resources (2 courses), and changing assessment crite-
ria (9 courses). Overall, the largest absolute improvements in pass rates
were found by changing the class size (17.8% improvement) and improving
existing resources (17.5%).

However, when considering these improvements relatively, they were
among the five worst interventions found by this study. Similarly, making
changes to the assessment criteria applied in the course yielded on average
an absolute improvement of 10.1% and realized improvement of 22.5%. But
when considering these changes against the other 13 interventions explored
by this study, changing assessment criteria ranked 12th. Considering the
results from all 15 courses combined, we found that instructors who applied
an intervention based on course setup generally yielded the fourth largest
improvements in pass rates when compared to the other groups (absolute
change 13.4%, realized change 26.8%). The findings on changing class size
to improve pass rates are consistent with previous studies [13,123] that have
suggested that smaller classes generally have lower failure rates than larger

“main” — 2017/10/16 — 13:02 — page 15 — #21

2.3 Notes on Comparing Different Interventions 15

ones. However, overall, it is possible that this group of interventions was
ranked as one of the lowest because making changes to the course setup,
such as the assessment criteria, does little to adjust the likelihood of a
student overcoming thresholds understanding programming concepts.

Hybrid Approaches

Hybrid approaches are approaches that were not included in any of the pri-
mary categories. These include combinations of different practices [64, 81,
96]. A total of 8 studies were classified as having applied an intervention,
which primarily consisted of combining several different teaching interven-
tions to yield a hybrid approach. Three combinations were identified: media
computation with pair programming (2 studies), extreme apprenticeship (3
courses), and collaborative learning with relateable content (e.g. games) (3
courses).

Overall, combining media computation with pair programming, or adopt-
ing an extreme apprenticeship approach were found to yield mid-range im-
provements in pass rates, ranging from 13.5-16.5% in absolute terms, or
36.9-49.3% in realized terms. These approaches were ranked fifth and sev-
enth among the overall 13 interventions that were explored in this study.
However, combining collaborative learning with relateable content was found
to be the worst overall intervention, actually yielding a decrease in pass
rates of 9.7%, or 53.7% in realized terms. However, we note that some of
the courses, which switched to this approach already had a very high pass
rate (> 90%), and therefore the scope for improvement was minimal.

2.3 Notes on Comparing Different Interventions

The final question in the review was to determine whether there were any
significant differences in the post-pass rates of studies that applied different
types of interventions. Grouping the 60 post-intervention pass rates by
the five primary intervention categories, a statistical analysis suggests that
whilst substantial improvements in pass rates can be achieved by applying
different interventions, the overall pass rates after applying different types
of intervention are not substantially different.

Overall, it is challenging to analyze the effect of a pedagogy or teaching
improvement. When looking from the administrative point of view, one
often examines the effect broadly by e.g. investigating student throughput
and number of degrees, cost-effectiveness [14], faculty readiness to adopt
new teaching methods (see e.g. [40,100]), while not being able to extract the
true effect of the improvements in the learning within the inspected course.

“main” — 2017/10/16 — 13:02 — page 16 — #22

16 2 Teaching Programming at Universities

On the other hand, when looking from the relatively narrow point of view of
a teacher, the reports often emphasize the uniqueness of the course without
inspecting the effect on the subsequent courses [11,65]. However, extending
the view from a single course is important as the expertise accumulates
throughout the degree.

During the study, we found almost no reports on interventions that did
not yield an improvement. It is possible that educators who have tried an
intervention but received poor results simply have not been able to publish
their results due to a negative result. Similarly, the teaching interventions
almost always focused on a single course, and very few studies included data
from subsequent courses. It would be meaningful to study results from
long-term application of a teaching methodology, as well as consider the
implications of such interventions to students in their subsequent studies.

“main” — 2017/10/16 — 13:02 — page 17 — #23

Chapter 3

Extreme Apprenticeship method

In this chapter, we focus on a particular teaching approach called the
Extreme Apprenticeship method that has been used at the University of
Helsinki. We discuss the method, and how its application has influenced
the retention in the overall studies (Publications I.2-4).

The Extreme Apprenticeship method stems from Cognitive Apprentice-
ship, a theory of instructional practices used for teaching cognitive skills
and working practices that are invisible to the learner [27,28], and Extreme
Programming, a software development discipline that values software qual-
ity, responsiveness to changing environments and customer demands, and
working only on the requirements that are truly needed [12]. Extreme Ap-
prenticeship focuses on building the industry-relevant skills and profession-
alism of students from day one, scales the amount of individual instruction
to the extreme, helps to facilitate one-to-one instruction in classes with hun-
dreds of students, and, at the same time, reduces the overall costs related to
facilitating education. From the management perspective, one seeks to re-
duce the waste of resources – including the always-limited time of students
and instructors – whilst at the same time focusing the available resources
on activities that are known to help learn the topic at hand.

Adopting practices from Cognitive Apprenticeship to introductory pro-
gramming education is not a novel idea. On the contrary, it has been used
in teaching programming with promising results for nearly two decades [7,
15, 25, 62]. Cognitive Apprenticeship takes the model of apprenticeship
education, where a senior practitioner – a master – employs novices as a
workforce to help in on her daily tasks. At first, the tasks are simple, but
as the novice learns to handle the simpler tasks, more challenging work is
given. While the apprenticeship model has mostly been applied to manual
professions where the work is visible to both the learner and the instructor
(e.g. carpentry, c.f. [47]), the Cognitive Apprenticeship theory empha-

17

“main” — 2017/10/16 — 13:02 — page 18 — #24

18 3 Extreme Apprenticeship method

sizes learning cognitive skills and processes that are invisible. Many of the
practices are about making the thinking processes of a more experienced
practitioner visible to the novices – and vice versa.

Cognitive Apprenticeship theory discusses a number of steps that are
important in this interplay of thoughts; modeling, coaching, scaffolding,
articulation, reflection, and exploration. In the modeling stage the teacher
provides students with a conceptual model of the process e.g. by showing
how something is done or by providing guidelines that the students can fol-
low. When the students have acquired a mental model, they start working
under the guidance of the master. The master coaches students as they
work on their assigned task, and provides scaffolding when needed. Scaf-
folding – or instructional scaffolding – refers to facilitating and supporting
a learning process that promotes a deeper level of learning, which is tai-
lored to help the student reach her goals [22, 88]. The idea of scaffolding
is related to Vygotsky’s zone of proximal development [121], which is an
area of knowledge or skill that the learner cannot reach by herself, but can
achieve with the support from others. As learners can learn and adapt to
new situations and knowledge, the zone of proximal development is learner-
and time-specific, and thus, the scaffolding must be constantly adapted.

A part of the learning and teaching process is making the students’
thoughts visible, and helping them to understand the ramifications of the
choices. This is facilitated by having students articulate their solutions or
thoughts as they are working. This process can be made more explicit
by e.g. asking the students questions, interspersing scaffolding into the
articulation process. Questions that encourage students to create meaning
to their task via e.g. self-explanations [118] can be both used to guide
students’ thinking towards a desired outcome, as well as to help students
focus their thoughts. If students are shown the works of others, or provided
with sufficient hints or guidance, they can also reflect on their thought
process and solutions, and possibly, compare it to that of others.

Once the students have mastered smaller steps that they are expected
to complete, they are given the opportunity to explore. This room for
exploration can be given by e.g. providing open-ended assignments, as
well as adapting scaffolding. Although there is no limit on the amount of
guidance that a student can receive, or on the number of times that the
assignments can be returned, it is of utmost importance that as soon as
the student does not require scaffolding and can proceed on her own, the
scaffolding is faded, i.e. the support is reduced so that the student does
not become dependent on it. A cycle that involves many of these steps
takes place several times each week as each week typically contains several
learning objectives and tens of assignments.

“main” — 2017/10/16 — 13:02 — page 19 — #25

3.1 Values and Practices 19

When comparing to existing implementations in the domain of teaching
programming, Extreme Apprenticeship is mainly targeted for the domain of
introductory programming, takes the effort of an individual student to the
extreme, minimizes instructor-driven learning, and focuses also on the or-
ganizational aspect of facilitating instruction. The main learning method is
doing, and all instruction evolves around maximizing the amount of mean-
ingful effort that a student puts into working on assignments, as well as
supporting the learning of meaningful working practices. Instead of a tra-
ditional lecture-driven model, where the student attends a lecture – and
perhaps answers a few quizzes together with other students – lectures pro-
vide only the bare minimum information needed to start working on the
assignments. As learning starts on the very first day of the course, students
start working on assignments on the same day. Dozens of programming as-
signments that offer a stable progress are provided to the students from the
start. The students work on the assignments in a suitable space, where the
instructors coach and scaffold students.

3.1 Values and Practices

To help instructors adapt the Extreme Apprenticeship method into their
own context, a loose set of values and practices are provided in Publication
(I.2). These values and practices are rephrased below for the reader.

Values

When planning and executing instruction, all activities should be aimed to-
wards helping students become professionals in the craft they are learning,
and executed so that the students’ working processes are guided towards
those used by professionals. Motivation is crucial; one should help build
up the inner fire of a learner that feeds continuous improvement. This
supports and nurtures the growth of a mindset that embraces change and
deliberate, personal effort that needs to be taken to learn. The path to-
wards becoming a professional starts from day one, and the instructors
need to intermittently align their practices, tools and methodologies with
this explicit goal in mind.

The organization that facilitates instruction – from teachers to admin-
istration – needs to implement continuous feedback practices where the in-
formation flows into both directions. The student receives feedback from
the learning experiences, instructors and peers as she progresses, and the
instructor, material and tools guide her to improve her own practices. The
instructor monitors the student’s progress and challenges, and – if needed
– organizes, creates or facilitates scaffolding by e.g. altering the student’s

“main” — 2017/10/16 — 13:02 — page 20 — #26

20 3 Extreme Apprenticeship method

learning path, materials, or by providing just enough hints so that the
student is nudged in a direction where she can proceed. Moreover, data
is gathered to analyze long-term effects of choices made during the learn-
ing process, and to make long-term analyses and organizational decisions,
based on which instruction can again be adapted to better fit the context.

This feedback is also used to observe students’ progress as they are
working. If one notices that a student has not acquired enough experience
and practice in a specific topic, additional work can be provided. Any
skill is only mastered by actually practicing it, and the instructor must
provide plenty of opportunities for such practice. These opportunities must
be adapted to the learner’s level so that there are both opportunities for
practice as well as challenges where students need to search additional
information in order to proceed.

Every student is expected to live up to a set standard of the organiza-
tion, and no compromises are to be made. These standards can be set by
using learning objective matrices that outline expected competences and
learning outcomes, assignments that need to be completed, as well as tra-
ditional assessment methodologies where students can learn and measure
their skills. If a student has not reached the expected learning outcomes
and needs more practice, having the student proceed to challenges that she
is not ready to face is likely to lead to a failure. Instead of making the
progress of a student who is struggling easier, an instructor should seek to
make the challenges explicitly visible while at the same time supporting the
student to learn from the mistakes and challenges – akin to Fail Fast [94] –
so that the foundational knowledge that is needed to proceed is kept solid.

Practices

When providing instruction, an instructor should avoid preaching – that
is lecturing by e.g. reading out loud the instructional materials – and
only provide the minimum amount of information for the learners to start
with the assignments. If most of the instructor’s time is spent on lectures,
preparing for lectures, and on answering e.g. students’ emails, it is often
poorly used. Most of the instructor’s time should be directed to one-on-one
interaction with students who are working on course assignments, and to
improving learning materials and assignments based on the observations
and feedback. Lectures should cover only the minimum of what is needed
to get started with weekly assignments, and the examples should be relevant
to the assignments.

Work in a course – as well as in tertiary education – should start early.
Assignments and learning materials are to be provided to students in a
timely fashion – both encouraging eager students to start on the next set

“main” — 2017/10/16 — 13:02 — page 21 — #27

3.1 Values and Practices 21

as well as to avoid burdening students who schedule their work closer to
the deadline. Students should be directed to work on the assignments as
soon as possible, and they should have completed a considerable number of
assignments already during the first days of a course. This early and visible
success helps in building both a strong routine, as well as increases students’
self-esteem [18]. As much of professionalism and skill is about the countless
number of hours put into training and deliberate practice [36, 75], oppor-
tunities to train the routine are needed; the number of assignments should
be high and, to some extent, repetitive to increase students’ programming
routine.

When the students start to learn a new topic, the assignments and
material must provide clear starting points and structures on how to start
solving the task, as well as clear guidelines on how to proceed. Assignments
that are split into smaller parts with clearly set intermediate goals support
students as they are learning new constructs and practices; these small
intermediate steps help students feel that they are learning and making
progress when working on otherwise new concepts and topics. The assign-
ments and materials are a part of provided scaffolding, and when designing
assignments, the goals should be made explicit.

At the same time, when designing the assignments, the scaffolding needs
to also be dismantled based on students’ expected knowledge – which can
vary – thus, open assignments are also mandatory. Open assignments typ-
ically do not guide the students in designing the structure and provide
freedom in design choices. Instructors naturally help and provide feedback
on students’ choices.

Overall, the interaction with materials, assignments and peers is only a
part of the instruction, while the other part is the interaction with course
staff and other individuals. The organization needs to provide the facilities
that make it possible to have help available – a big part is to have a lab
where students can work on the assignments in the presence of instructors
and peers. Furthermore, the expectations should be made explicit, and as
the assignments are the main instrument in learning, the majority of the
assignments need to be mandatory to all students – there are no shortcuts
to learning. As the students learn, the level of guidance from the materi-
als and the peers can gradually decline in order to encourage to look for
information. Whilst at first, students are helped in the core tasks, they
gradually also are given more room and freedom to explore, which in turn
cultivates the information-seeking process that is a crucial skill of any pro-
fessional. In essence, students need to be expected to find out things that
are not covered during the lectures or in the material.

“main” — 2017/10/16 — 13:02 — page 22 — #28

22 3 Extreme Apprenticeship method

By following these values and practices, the instructor can create student-
centric assignment-driven instruction with high amount of one-to-one inter-
action. When adapting the Extreme Apprenticeship method to a specific
context, these values and practices are to be followed until the instructor
is able to inspect the impact of the method on the students. After this,
context-specific adaptation based on the inspected outcomes can be made.

3.2 Scalability

Providing one-to-one support and instruction is inherently resource-depen-
dent as practice needs a space with appropriate tools and feedback, while
support requires experienced personnel. Having sufficient space and hard-
ware is context dependent. At the University of Helsinki, the space has
not been an issue – most of the computer labs have been heavily underused
in the past, and many of them have already been dismantled due to the
lack of use. Most of the students have a laptop, and to further help in
the hardware issue, our department provides new students with laptops at
the very beginning of their studies. The computer labs also have sufficient
hardware. Software, when chosen in a sensible fashion, is also not an issue
– workstations can be equipped with open-source platform and tools, e.g. a
Linux distribution. Furthermore, reducing the amount of lectures reduces
the overall facility costs, as well as frees up the time of the lecturer.

Providing continuous feedback is more challenging to scale up without
a show-stopping increase in costs. As the practices in the Extreme Ap-
prenticeship method require a larger amount of feedback than traditional
instruction practices, it is important that the use of resources is optimized
over time dynamically by using tools, structures, and even voluntary human
resources. Automatic assessment of programming assignments provides a
somewhat limited solution due to the lack of focus in the working process;
one specifically tailored tool is discussed in Chapter 4.

One solution to the scalability issue is to use voluntary student advisors
to help in providing feedback. The students who participate as advisors
become legitimate peripheral participants [66] of the teaching community,
which is beneficial for all parties. They may increase retention [107] and
improve the learning context atmosphere [31]. At the same time, as the
students gain experience from teaching, the faculty gains knowledge of each
student’s strengths, based on which they can be e.g. recruited as teaching
assistants or research assistants.

At the University of Helsinki, we have sought to have some 10-20% of
our students as advisors. Such activity requires a coordinator, whose task

“main” — 2017/10/16 — 13:02 — page 23 — #29

3.2 Scalability 23

is to manage day-to-day activities and to allocate sufficient resources to
appropriate situations. The coordinator also takes a role in the recruitment
of advisors for the upcoming courses. While in the first course iterations,
the coordinator was a faculty member and received no compensation for
the task in our context, in the latter course iterations the role has been
given to a senior student who has been advising for a number of times.

Students can participate in three different roles. During the first semester
of advising, the student acts as a junior advisor, who helps others in the lab
and learns about teaching and learning. We chose to compensate the junior
advisors in the form of study credits, as learning to coach is essentially a
study experience. If a student opts in for another semester of advising, she
may be recruited as a more experienced senior advisor, who also receives
monetary compensation. After participating as a senior advisor, one of the
senior advisors is selected for a third semester to act as the advisor coordi-
nator – which also is a role that is monetarily compensated. Many students
are recruited into other junior (non-tenure) faculty teaching positions after
they have worked as senior advisors.

As having a large portion of first-year and second-year students par-
ticipate as advisors became a more natural activity at the department,
guidelines for teaching were established. A lab manifesto was published to
the advisors, and updated as experience of proper advising principles grew
during the courses. The manifesto states a few guidelines as pedagogical
practices and takes a stand on both the instruction practices as well as
guiding the advisor on how to behave in the class. In addition, advisors are
given guidelines on resource usage.

While the intensive one-on-one instruction was expected to be more
burdensome for the instructors, as has been reported related to mastery
learning (see e.g. [42]), a survey conducted by us indicated otherwise. We
anonymously surveyed advisors who have worked both as traditional teach-
ing assistants as well as advisors. The survey indicated that advising in labs
was seen as much more rewarding and meaningful, and that the advisors
considered the students’ rapid and visible progress as efficient use of advi-
sors’ time. Many pointed out that the experience was so rewarding, that
they volunteered (or “chilled out”) in the lab and advised students also
just for fun (for additional details, see Publication I.3 and [119]). Note
that while the overall cost – even with a significant increase in the num-
ber of assistants – is comparable to the traditional teaching model due to
facility management and course organization (Publication I.3).

With the influx of students who first participate as voluntary advisors
and learn to advise, after which they may apply to other positions, the

“main” — 2017/10/16 — 13:02 — page 24 — #30

24 3 Extreme Apprenticeship method

responsible faculty member only needs to be a part of the teaching team
– not the force of all instruction. When good enough teaching materials
and practices are in place, and there is sufficient support for the advisors,
it is completely acceptable that the advisors are not as experienced as
traditional teaching assistants are.

3.3 Success in Subsequent Courses

The change from the traditional teaching method (lecture-based with take-
home assignments) resulted in a statistically significant change in accep-
tance rates of our programming courses; the average rates of our introduc-
tory programming course and advanced programming course have increased
by 32% and 37% respectively (for additional details, see Publication I.4
and [115]) over a period of three years. As discussed in Chapter 1, this im-
provement was made over a situation where a lot of effort had already been
invested into the improvement of the introductory programming courses.

In the article “Carry-on Effect of Extreme Apprenticeship” (Publica-
tion I.4), we investigated the carry-on effect using three different measures:
(1) credit accumulation 7 and 13 months after the start of students’ stud-
ies, (2) success in the expected study path during the first semester by
examining the success in two of the subsequent courses right after the first
programming course, and (3) grade distribution in the first mandatory pro-
gramming course. The comparison was made between the populations that
started their studies with Computer Science as major subject during 2007-
2009 and 2010-2012. Between 2007 and 2011, the instructor in charge of
the introductory programming course was the same, but in year 2012, the
instructor was changed. The teaching approach was changed from a tradi-
tional approach to the Extreme Apprenticeship method in 2010. The 2012
cohort includes students who attained study positions through a MOOC in
programming (discussed in more detail in Chapter 4).

Table 3.1 includes details on students’ credit gains during the interval
of 7 and 13 months, based on the year when they enrolled at the university
and started their studies. Only students who attempted at least one course
are included. The table includes number of students and sum of credits
after 7 and 13 months of studying for each group. In addition to the sum,
normalized credit counts are also shown. The normalization is calculated
based on the student population, and year 2008 is used as the baseline as
the student intake was decreased from 2007 by 20 students. The table is
depicted as it was shown in the original article.

“main” — 2017/10/16 — 13:02 — page 25 — #31

3.3 Success in Subsequent Courses 25

Year Students Credits 7 (norm, scaled %) Credits 13 (norm, scaled %)

2007 136 1681 (2237, 91.6) 2558 (3404, 95.2)
2008 119 1605 (2441, 100) 2352 (3577, 100)
2009 120 1616 (2437, 99.9) 2686 (4051, 113.3)

2010 136 2030 (2701, 110.7) 3418 (4549, 127.2)
2011 140 2287 (2957, 121.1) 3352 (4334, 121.1)
2012 168 3042 (3277, 134.3) –

Table 3.1: Credit accumulation of student groups [59].

Table 3.2 displays the percentage of students who successfully transi-
tion from the first mandatory course (Introduction to Programming) to the
two subsequent mandatory courses (Advanced Programming and Software
Modeling). All of these three courses are mandatory for every starting CS
student, and all of them are scheduled to be taken during the first semester
of studies. Before the change to the way introductory programming is cur-
rently organized, less than half of the students were successful in completing
their first mandatory courses on their first attempt, and after the change,
almost 70% of the students completed the courses successfully.

Year Intro Prog. → Adv. Prog Intro Prog. → Software Modeling

2007 45.1 41.5
2008 39.2 48.8
2009 50 54.2

2010 68.5 63
2011 71.1 74.4
2012 70.3 72.2

Table 3.2: Percentage of students that successfully complete mandatory
courses on their first attempt, described as course pairs [59].

Overall, a statistically significant improvement over the baseline was
observed both in the introductory programming course, as well as in the
student credit gains. This is something that can not only be explained
through improved retention in the introductory programming courses – the
success in subsequent courses suggests that students have a better grasp
of the required skills than previously. For additional details, as well as
information on the change in grade distribution, consult Publication I.4.

“main” — 2017/10/16 — 13:02 — page 26 — #32

26 3 Extreme Apprenticeship method

“main” — 2017/10/16 — 13:02 — page 27 — #33

Chapter 4

A MOOC Focused on
Programming

Here, we discuss an automated assessment suite called Test My Code
(TMC) that is used to facilitate some of the one-on-one scaffolding in pro-
gramming courses (Publication II.1). Then, we outline the MOOC activity
in more detail and discuss how pupils in secondary education are recruited
to the University of Helsinki through the MOOC (Publication II.2). Finally,
we discuss the results of the first study that compared students who were
admitted through the MOOC to the CS programme to students who were
admitted to the CS programme via the more traditional entrance exam
(Publication II.3).

4.1 Scaffolding Students’ Work from Distance

In order to properly benefit from an automatic assessment system in dis-
tance education, the system has to accommodate scaffolding as well as
support the situative perspective on learning in apprenticeship-based edu-
cation [19]. The perspective views the situations where knowledge is devel-
oped and later applied as highly connected, as “methods of instruction are
not only instruments for acquiring skills; they also are practices in which
students learn to participate” [41]. According to the situative perspective,
abstracting theory from practice does not yield transferability [29]. As a
goal of instruction is to help students on their journey to becoming experts
in their field, the chosen tools and methods have to allow “participation in
valued social practices” [41] of the respective professional communities.

For aspiring programmers, the tools and practices of learning in their
training should be similar to those used in the software engineering industry.

27

“main” — 2017/10/16 — 13:02 — page 28 — #34

28 4 A MOOC Focused on Programming

Even in distance education, the main activity in learning to program should
be programming, using instruments that are relevant to the practice such
as integrated development environments.

While a vast number of systems for automatically assessing students’
programs exist [1, 33, 54], some of them created specifically for providing
faster feedback to the students [105], the emphasis on retaining the workflow
of a professional has not received enough attention. Traditional automated
assessment systems suggest a flow, where the student needs to download a
compressed template from a web-page, extract it, open it within the IDE,
solve the task, compress the solution files, and then submit the compressed
solution using a web-interface.

At the same time, as scaffolding should be well-timed and not overly ex-
cessive, having students go through an external system to receive feedback
on the progress could be improved. Ideally, the students should receive
feedback already within the environment that they program in.

The contribution in Publication II.1, Test My Code (TMC), seeks to
solve some of these issues. In addition to providing traditional automatic
assessment capabilities, book-keeping facilities and grading support, TMC
can provide support to students directly within the environment that they
are working in. The students’ tasks are retrieved to the programming envi-
ronment – here, we have explicitly chosen to build upon industry standard
IDEs such as NetBeans – and the work can be submitted directly from the
IDE. This enables a workflow that is similar to many modern workflows,
where a software developer first pulls her tasks from a version control sys-
tem, performs the tasks that she needs to do, and then commits her work
back to the version control system. Once the work has been committed, an
integration server runs a number of tests on the changes to provide feedback
for the developer. As TMC is integrated to an IDE, local testing facilities
are also in use, which makes it possible to provide rapid step-by-step sup-
port and feedback for the student.

Figure 4.1 shows a scaffolding message given to a student as she needs to
create a dictionary that utilizes a HashMap. As her solution is missing the
expected HashMap, TMC tells the student to create one. This scaffolding is
provided directly within the working environment with no need for external
systems or a visit to an external web page. The assignments are constructed
by an instructor or a course designer, and the feedback and scaffolding is
typically exercise-specific. TMC provides an API that makes it easier to
create scaffolding messages for exercises. In addition to the local guidance,
TMC provides capabilities for distance guidance via e.g. code reviews [38].
The code reviews are typically made within a web page – see Figure 4.2

“main” — 2017/10/16 — 13:02 — page 29 — #35

4.1 Scaffolding Students’ Work from Distance 29

Figure 4.1: Test My Code provides students with step-wise guidance within
the programming environment helping students design their work appropri-
ately. This feedback is constructed using an API that is provided to the
instructor, and can be used to e.g. guide class design or to do more tradi-
tional input-output testing.

Figure 4.2: The web interface of Test My Code provides the ability to per-
form code reviews on students’ solutions.

for an example. The reviews that are created by instructors, course staff
or students are then made available for the student via a notification in
the programming environment or in an e-mail – note that the use of such
functionality is meaningful in our context as there are plenty of junior
advisors who learn also from conducting code reviews.

In addition to the guidance facilities, TMC can collect key-level data
from the students’ learning process, which can be used to study how stu-
dents construct solutions to programming problems (Chapter 5 discusses
this topic). We have also published tools that can be used to study the stu-
dents’ learning progress. For further information, see e.g. CodeBrowser [48].

“main” — 2017/10/16 — 13:02 — page 30 — #36

30 4 A MOOC Focused on Programming

While the move to the use of an automated assessment system that
provides scaffolding as students are working has been rather mandatory
for successful facilitation of online education, it has its downsides as well.
Our experience has shown that increasing the use of automated assess-
ment has reduced both learner-to-learner interaction that helps learning
programming and learning interpersonal skills, as well as learner-to-teacher
interaction, which has been beneficial for students as they have feedback
opportunities and for teachers as they can see and fix the issues that stu-
dents face. Both are known to be important in online settings [6]. While
this may be acceptable to some level in order to reach specific goals in
distance education, one needs to take care to ensure the meaningfulness of
local instruction, both for the students and the student advisors.

4.2 Open Online Course in Programming

The Finnish education system provides schools with some freedom in what
elective courses to offer and how to organize teaching in classrooms. This
means that schools with eager teachers can certify third-party computing
courses if they choose to do so.

Since, at the time of writing this thesis, the curriculum in Finnish
schools does not include computer science or related studies in general
education, pupils who are interested in learning computing-related topics
rarely have the opportunity to study such subjects at their local schools.
This lack of computing-related topics means that many pupils fail to under-
stand the importance and dominance of computing in their everyday lives,
and at the same time may not be giving the topic the value it deserves.
They also do not know what computer science is, where it can be studied,
and whether studying it would suit them or not.

To remedy this issue, and to bypass bringing CS-related topics to the
national or regional school curricula (see e.g. [80, 111] for challenges), we
have offered our programming courses for all pupils in Finnish schools.
Schools that choose to offer our courses for their pupils do not need to
have a proficient teacher, only a teacher or a staff member who acts as a
supervisor in a possible course exam. To encourage teachers to take our
offer, we provide the course exam as well as mark it free of charge. At the
same time, additional incentives for completing the course fully are offered;
if a pupil completes a required number of weekly programming tasks, she
is invited to an interview, which can lead to a full study right in CS at the
University of Helsinki.

“main” — 2017/10/16 — 13:02 — page 31 — #37

4.3 MOOC as an Entry Mechanism to Degree Studies 31

This arrangement has been in operation since January 2012, and a
course with the option of securing a right for degree studies has since been
offered each spring. Six student populations (2012-2017) have started their
studies via the online course. In addition to the student recruitment, we
have stimulated the national discussion on the opportunities and benefits
of including CS-related topics and areas into the Finnish school curriculum,
as well as created discussion on alternative admission approaches.

As the course is open for all, no additional material than that what
is provided on the course web-site is required. Programming assignments
and a blended online material form the core of the course, and the learning
objectives are embedded into the assignments. All work is done with au-
thentic tools with the support from Test My Code as well as the learning
materials. As there is no need to provide other information than a valid
email address and to download the programming environment, participants
have indicated that starting the course is easy.

4.3 MOOC as an Entry Mechanism to Degree
Studies

In the first online course that we offered in early 2012, the participants
had to do at least 80% of the weekly programming assignments in order
to be able to attend an interview at the University of Helsinki and to
apply for a study right. The course had up to 30 weekly programming
assignments. The interview contained both a programming assignment as
well as a discussion with two members of the Computer Science department.
A majority of the participants who came to the interview performed well,
and were able to complete the given programming assignment. Only a
handful of participants had issues with e.g. program design or did not
reach a working program at all. Out of 52 participants who applied for a
study right during Spring 2012, 49 study rights were granted. From the 49
participants, 38 started their studies during the following semester. The
remaining had varying reasons not to start their studies: they were still
continuing their studies in secondary education, they postponed the start
due to the mandatory military service, or they took another study right.

When taking an administrative view to the students’ course records,
even while admitting “almost everyone” who worked through the intro-
ductory programming course, the admitted students are at least on par
with the normal intake. Table 4.1 shows an administrative comparison of
the study success of those students who started via the open online course
(N = 38) to those who started through a more traditional path (= 68),

“main” — 2017/10/16 — 13:02 — page 32 — #38

32 4 A MOOC Focused on Programming

CS Courses All Courses
MOOC NORM MOOC NORM

Credits
mean 33.08 23.96 44.08 33.76
standard deviation 11.32 15.3 17.58 21.96

Courses passed
mean 9.11 6.65 11.42 8.81
standard deviation 2.95 4.02 4.24 5.27

Courses failed
mean 1.74 2.31 2.66 3.15
standard deviation 1.83 2.37 2.16 2.73

Grade (scale 1-5)
mean 4.04 3.79 3.94 3.73
standard deviation 1.15 1.2 1.13 1.18

Table 4.1: Comparison of student performance during the first year of
studies. Data includes students from the first MOOC (N = 38) and the
students who started their studies through the traditional admission path
(N = 68). Study records between 1st of August 2012 and 24th of May 2013
are included (Publication II.3).

i.e. entrance exam, matriculation examination score, or a combination of
both. The comparison excludes the students who received the study right
but did not attend any courses, and the students who gained the study
right through the traditional path and took the introductory programming
course as a MOOC during the summer before the start of their studies. In
the comparison, the students who were admitted via the online program-
ming course fare marginally better during their first year, credit-, course-
and grade-wise.

Since 2012, due to increased awareness and interest, gaining the study
right via the open online course has become more challenging. Whilst
practically everyone who applied through the open course in 2012 was given
a study right, the number of participants has since annually increased and
the proportion of accepted participants consequently decreased. At this
point, we are still in a situation where the long-term benefits of admitting
students via an open online course in programming are yet to be studied.

We acknowledge that admission is just a single step, and studying the
admission system as an entity is challenging. The entrance criteria may
change over the years due to changing participant counts. Similarly, stu-
dents admitted through the MOOC no longer face the “traditional” hurdle

“main” — 2017/10/16 — 13:02 — page 33 — #39

4.3 MOOC as an Entry Mechanism to Degree Studies 33

in computer science studies – that is, the introductory programming course
– but, there are surely other challenges. These challenges, however, mani-
fest themselves over the years, and include things such as getting employed.

When building such a path as ours, the educational system needs to
support the transition from secondary education to tertiary education for
more students to succeed in degree studies [125], regardless of the admission
path. In our context the path for students who start their introductory
programming courses during the first semester has been well planned and
laid out, but organizing the courses that the MOOC intake takes in a
sensible fashion still requires work. Currently, only little effort has been
put into the MOOC cohort, i.e. offering a guided self-study CS2 course
during the first semester.

“main” — 2017/10/16 — 13:02 — page 34 — #40

34 4 A MOOC Focused on Programming

“main” — 2017/10/16 — 13:02 — page 35 — #41

Chapter 5

Mining Student Data

In the same way as Extreme Programming focuses on delivering additional
business value in every software iteration, an educator should focus on
delivering additional educational value and improvements in every course
and teaching iteration. When proper feedback processes are in place and
evidence is gathered from every course iteration, one can use data to decide
upon the next improvements. Even in a good situation one can likely always
improve – and, when processes for gathering educational data are in place,
data can be given to external researchers. The feedback and results from
external researchers can then again be used to increase the understanding
of the current context, which potentially can be used again to create further
actions – which again can be studied.

Next, we focus on the use of source code snapshots. First, we discuss
the gathering and use of source code snapshot data. Then, a study where
a manual analysis on the approaches that students take when writing their
very first “Hello World” program is given (Publication III.1), followed by a
study on the creation of automatically identifiable indicators of program-
ming assignment difficulty (III.2). Much of the work described here is basic
research, and many of the studies are experimental and have not been in-
tegrated to the everyday practice. However, information from the learning
context has already been used to create interventions, which have shown
promise (see e.g. [118]). For further studies where the data has been used,
see e.g. [52, 68,127].

5.1 Source-code Snapshot Data

For decades, there have been systems that record students’ working pro-
cesses while they work on programming assignments [54]. While at first

35

“main” — 2017/10/16 — 13:02 — page 36 — #42

36 5 Mining Student Data

these systems were used mainly for automated assessment and recorded
only students’ final submissions, systems that gather more than the end
result have been developed later. These contemporary systems typically
involve a software component that students need to install on their com-
puter, and capture snapshots – states in the source code as the student
works towards a solution – either using a defined interval or when students
perform an action such as saving of the current work [54,106].

Test My Code, which was described in Chapter 4, gives users the choice
of providing data for researchers. In the most up-to-date version, every key-
press within the programming environment can be recorded and stored with
a timestamp. A recent study by us showed that such detailed information
is beneficial as many students work on assignments that they never submit
for grading, and also work on assignments after they have been submit-
ted [116]. That is, when given the opportunity to investigate a fine-grained
programming process, more insight into the students’ challenges may be
gained. When comparing Test My Code to other efforts in data gathering
such as the BlackBox project [20], our approach is more fine-grained and
directly bound to the course materials, whilst the BlackBox project has a
more substantial user base.

A growing body of research that uses the programming process rather
than the final submissions exists [49]; weaker students, when editing their
programs, often delete larger code blocks (e.g. entire methods) and then
possibly rewrite those from scratch [3], at-risk students can be identified
to some extent [56, 86, 113, 124], challenging concepts and assignments can
be identified with the goal of refining the material [92], and hints can be
provided based on the students’ state [57].

The main benefit of data-driven approaches that look at how students
solve programming errors [56,124], how they schedule their time or whether
they pay attention to code quality [113] is that they are directly based
on programming behavior of a student and therefore can directly reflect
changes in their learning and skills over time. Moreover, as the data is
recorded from the students’ normal learning activity – programming – in-
stead of additional or external tests, there is no overhead of e.g. aptitude
tests [123].

5.2 On the First “Hello World” Application

Although a growing body of research exists on the struggles that students
face when writing code within educational environments (see e.g. [16, 21,
49]), little has been done on the issues that students encounter when learn-

“main” — 2017/10/16 — 13:02 — page 37 — #43

5.2 On the First “Hello World” Application 37

ing to program within standard, off-the-shelf programming environments.
This is somewhat surprising, as one of the implicit reasons for the cre-
ation of these educational environments is that the standard off-the-shelf
programming environments are not sufficient.

In order to fill this gap, we analyzed how students who have explicitly
stated that they have no previous programming experience write their first
programs inside an industry-standard programming environment (Publi-
cation III.1). The analysis was conducted by qualitatively inspecting how
students approach writing simple statements, and quantitatively inspecting
the source code compilation statistics and the most typical errors they face.

The results from the analysis of two weeks of programming data show no
indication that tertiary-level students could not start to learn to program
directly within a standard programming environment – on the contrary, the
analysis showed that the students made active use of the features provided
by the programming environment such as shortcuts and automatic com-
pletion of source code. Second, an analysis of source code errors from the
programming environment indicates that students’ struggles are different
to those in novice programming environments such as BlueJ [63], where stu-
dents need to run their applications to get feedback that indicates whether
their code is in a compiling state or not.

As a consequence, this suggested that methods for identifying at-risk
students that are based on data from novice programming environments
(e.g. Jadud’s EQ [56]) may be context-specific1, and that more work on
context- and tool-specific methods is needed. Finally, four strategies of
approaching the very first hello-world application were identified:

linear In the linear approach, students type the print command character
by character from left to right. In most cases, this is followed by
the IDE automatically adding parentheses and a semicolon at the
end of the method name. Typos and other errors may occur as later
discussed.

autocomplete Most IDEs support autocompletion. In addition to adding
parentheses at the end of method calls, the IDE suggests completions
for classes and objects. For example, when typing System. the IDE
will open a popup with alternative completions. Typing more char-
acters will limit the completions in the popup accordingly.

ide shortcuts such as sout As the print statement is commonly used
but rather long in Java, IDEs offer shortcuts such as sout that, when

1This suggestion was subsequently studied by us in [78].

“main” — 2017/10/16 — 13:02 — page 38 — #44

38 5 Mining Student Data

typed and followed by pressing tab, is automatically replaced with the
print command System.out.println(””);. In addition, the cursor
jumps inside the quotes so that the user can immediately go on to
type the contents of the string. The course material hints to the
students to try the command after they have worked on a number of
programming assignments.

copy-paste The last observed category of typing the print statement is to
copy and paste code from somewhere else and then edit the argument
only.

At the beginning of the course, many students copy-paste even simple
commands such as printing. Those, who do write the commands them-
selves, do several types of mistakes during the process. These mistakes
include:

1. Incorrectly mixing capital and small letter (e.g. system instead of
System and Out instead of out)

2. Using other characters than the dot to access class members (e.g.
System-out-println)

3. Various problems related to defining string literals, for example not
using quotes at all (i.e. System.out.println(Hello);) or using
parentheses instead of quotes (i.e. System.out.println((Hello));),
and forgetting .out from the print command.

4. Normal typos without obvious misunderstanding behind them.

After a while – already during the second week of the course – the use of
copy-pasting significantly reduces and students start to use shortcuts (e.g.
sout). Similarly, the mistakes related to writing the simple print statement
also almost disappear.

5.3 Feedback and Programming Assignment Dif-
ficulty

The difficulty of learning tasks is a major factor in learning, as is the feed-
back given to students. A teacher or educational environment can help a
student reflect on her progress by providing feedback that relates the stu-
dent’s performance to a particular goal or subgoal. Feedback on progress
should take into account the student’s background and prior performance

“main” — 2017/10/16 — 13:02 — page 39 — #45

5.3 Feedback and Programming Assignment Difficulty 39

as well as the difficulty of the task; a beginner completing a difficult task
may be applauded, but on the other hand, praising a student on success
on a task that the student herself sees as trivial can be detrimental to
self-efficacy and motivation [17]. Inappropriate feedback may also cause
students to learn to distrust the feedback provider.

While automatic assessment systems bring benefits such as easy acces-
sibility and low cost per student, the downside of many such systems is
that they fall short of a human tutor in terms of quality of feedback. A
part of this problem is that the feedback provided by automatic systems
is typically not personalized to take the learner and the learner’s present
knowledge into account. In order to provide better automatic feedback,
one needs to be able to judge how the individual learner relates to the
assignment at hand. For example, does she find it difficult?

Task difficulty impacts students’ motivation in several ways. For exam-
ple, as per expectancy–value theories of motivation [5], assignments that
are too easy are likely to have low perceived utility, while hard ones have a
higher cost of completion, which reduces motivation unless they have been
carefully designed to sustain interest. Excessive difficulty also contributes
towards poor self-efficacy [8], which hampers further learning. Another
form of scaffolding that impacts motivation is the feedback that learn-
ers receive. Hattie and Timperley [44] argue that the three main roles of
feedback are to help a learner understand 1) the goals of learning, 2) the
learner’s own progress towards those goals, and 3) the activities that are
needed to make better progress.

Research that seeks to improve the automatic assessment of students’
solutions to programming problems exists [54]. Typically, automatic feed-
back is provided after students take an action such as submitting a solution;
the feedback often consists of information on the correctness of the solu-
tion and perhaps some additional information about observed deficiencies.
The feedback may also praise the student for getting a good score or ex-
hort them to make an improved attempt. Two weaknesses of the typical
approach discussed above are: 1) The feedback is “passive”, as it is only
presented when the student requests it, e.g., by submitting a solution, in-
stead of being proactively offered, say, when the student is experiencing
difficulty. 2) Feedback messages are based on the features of the submitted
solution only, and are not influenced by other relevant factors such as the
student’s background or the difficulty of the task for the particular student.
For instance, an experienced student may receive excessive accolades for a
trivial assignment, which then undermines any praise received for more
challenging ones.

“main” — 2017/10/16 — 13:02 — page 40 — #46

40 5 Mining Student Data

When considering the snapshot data that Test My Code provides, it has
the benefit that it is collected from the natural learning process and makes
it possible to provide early, proactive feedback that the student does not
need to explicitly request by submitting an assignment. Since, as Hattie
and Timperley put it, “feedback is effective when it consists of information
about progress, and/or about how to proceed” [44], such data has the
potential to further enhance feedback.

In Publication III.2, we describe an exploration of indicators of pro-
gramming assignment difficulty that can be automatically detected for each
student from source code snapshots of the student’s evolving code, and then
– in the future – used for crafting more effective feedback mechanisms. Ini-
tially, the analysis was carried out to determine the correlations between
the programming assignment difficulty reported by students and individual
factors including (1) the time spent, (2) the number of keystrokes, (3) the
percentage of keystrokes and time in a non-compiling state, (4) the num-
ber of lines of code, and (5) the number of control-flow elements in the
program (e.g. if, else, while, for, return). Line and control-flow element
counts measure code complexity, and have previously been observed to be
decent indicators of perceived difficulty [4].

While the majority of the observed correlations were statistically sig-
nificant, the correlations were mostly medium-sized (0.3 < r < 0.5). In
only two of the cases, the individual factors show a high correlation with
difficulty (r = 0.55; r = 0.53); both factors being time. The pattern of
correlations was largely similar for students with and without prior pro-
gramming experience. After the analysis of individual factors, the factors
were combined using a decision tree. The result indicated that although
program size, complexity, and the degree to which the student maintained
her program in a compilable state had an effect, students generally viewed
time-consuming assignments as difficult.

The results show that metrics related to perceived difficulty can be
automatically extracted from data that describes students’ programming
process. This means that automatic feedback systems can be adjusted to
take task difficulty into account, which may improve the quality of feedback
of such systems in the future.

“main” — 2017/10/16 — 13:02 — page 41 — #47

Chapter 6

Conclusions and Future Work

In this final chapter, we provide a brief overview of the work, and link the
research questions to the results. We also discuss limitations of the study
and outline some of the potential future research directions.

6.1 Revisiting the Research Questions

RQ1: How do existing teaching interventions proposed in the
literature influence introductory programming course pass rates?

Almost every teaching intervention reported in the literature improved
the course pass rates at those institutions where the interventions were
studied (Publication I.1). At the same time, there was no “best practice”
that everyone should adopt, and one could state that the most important
thing for an educator is to try to improve. The results, however, are likely
biased: it is likely that teaching interventions that lead to worse results are
less likely to be published, be it due to the peer review process or to some
other factors.

RQ2: What types of short- and long-term effects in students’
course performance does the reorganization of an introductory
programming course lead to?

We created and implemented a contemporary variant of the Cogni-
tive Apprenticeship method for teaching programming to beginners (Pub-
lication I.2). The variant, called the Extreme Apprenticeship method,
draws upon industry best practices and Extreme Programming, and adopts
Cognitive Apprenticeship practices in the context of learning to program.
The Extreme Apprenticeship method emphasizes meaningful practice and
bi-directional feedback during the practice process, and scales to large
amounts of learners. This scaling is partially realized by providing stu-

41

“main” — 2017/10/16 — 13:02 — page 42 — #48

42 6 Conclusions and Future Work

dents with further learning opportunities via a deliberate apprenticeship
phase, where students learn to coach other students as well as revisit their
knowledge in the topics of the introductory programming courses (Publi-
cation I.3). For this to succeed, the teaching management must allow such
an arrangement, and the structures must provide facilities that can be used
for learning and coaching activities. Finally, the course instructors must
provide meaningful learning materials, trust the learners, give learners re-
sponsibility, and support them – that is, the instructors need to be present
and react when needed.

Overall, the observed effects are positive (Publication I.4). The reorga-
nization led to a significant improvement in students’ success during their
early studies, and students are eager to participate in the teaching activities
at the department. At the same time, students’ success in their subsequent
studies are influenced by their own choices in the subsequent courses –
something that is out of the scope of this study.

RQ3: How do students admitted through a MOOC in pro-
gramming perform in their studies when compared to tradition-
ally admitted students?

We created a MOOC in programming that was used to admit students
into the CS program at the University of Helsinki (Publication II.2). To
support students in the MOOC, a tool called Test My Code that can be
used to provide students with feedback during their programming process
was constructed (Publication II.1). The students who have been admitted
through the MOOC perform better during the first year than those students
who have been admitted through the traditional path (Publication II.3).
This does not mean, however, that the students that have been admitted
through the MOOC are better in some way. Our results simply indicate
that we are able to (1) bypass the introductory programming barrier that
many face, and (2) identify students who are motivated to study computer
science and willing to invest a few hundred hours even before being admitted
to a University. If we would have compared only those students who have
passed the introductory programming course at the University of Helsinki,
the results could have been different – this is out of the scope of this work
however.

RQ4: What do students who have never programmed before
do when they take their first programming steps, and what types
of factors contribute to the programming tasks feeling difficult?

In order to conduct such studies, Test My Code has the possibility to
record and store students’ programming process. The data from students
who had identified themselves as novices revealed four distinct approaches

“main” — 2017/10/16 — 13:02 — page 43 — #49

6.2 Closely-related Work 43

for constructing their very first programs (Publication III.1). Writing pro-
grams linearly and copy-pasting parts of the content was to be expected.
However, some of the students also relied on support from the programming
environment, and used built-in autocompletion mechanisms and shortcuts.
The study also explored the errors that students make as they are writing
the programs and showed that errors related to writing basic commands
disappeared rather early for most of the students. This effectively indicates
that – at least in the context of the study – there is no explicit need for a
separate programming environment for novices in which the more advanced
functionalities are disabled.

Overall, when considering the difficulty of a programming assignment,
the study showed that the time used on a task was one of the largest
contributors to the observed difficulty (Publication III.2). This does not
mean, however, that all activities that take time are seen as difficult. In
the learning materials used, tasks are often organized so that they are in
an order of increasing difficulty. Moreover, when a new topic or construct
is studied, students first practice the topic with smaller assignments, and
then work on a larger task in which they apply the constructs they have
learned.

6.2 Closely-related Work

The work described here spans multiple research areas. It includes reorga-
nizing the way introductory programming courses are taught by creating
and adopting pedagogical alternatives, creating tools that support students
as they are learning to program, creating new opportunities for entering
university in addition to traditional entrance exams, and using students’
learning process data to seek information that can be used for continu-
ous improvement of the instruction provided. Due to the span over these
multiple areas, the related work is scattered throughout this thesis.

Here, we seek to bring together the separate themes by reviewing related
work, with comparison to our own work. Note that, unfortunately, as the
field is vast and has been studied for decades, a larger review is out of the
scope of this thesis. As work on the scale of this thesis is rarely reported,
related work is visited in each of the research areas separately, starting
with rethinking the way in which introductory programming courses are
organized, and finishing with data-analytics and continuous improvement.

“main” — 2017/10/16 — 13:02 — page 44 — #50

44 6 Conclusions and Future Work

Rethinking introductory programming instruction

The notion of substituting lecture time with more meaningful activities has
been thought about in the past. One of the closest approaches to ours, lab-
centric instruction [110], reduces the role of lectures and uses lab sessions
as the primary resource for learning. The labs “[have] activities to be ac-
complished during a scheduled time under the supervision of a member of
the course staff”. When compared to the Extreme Apprenticeship method,
the learning activities in lab-centric instruction are more diverse, ranging
from answering to quizzes to brainstorming and design tasks. While there
are many similarities between lab-centric instruction and Extreme Appren-
ticeship, a number of differences do also exist – perhaps the most visible
differences are in the emphasis and quantity of programming assignments,
as well as in the way the labs are structured. In the context of Extreme
Apprenticeship, there are literally hundreds of programming assignments,
students who have just taken the course – junior advisors – participate in
teaching, and the course participants can come and go as they will – no
structured activities are used1. Benefits similar to those that have been
observed with the Extreme Apprenticeship method, e.g. cost-effectiveness
and feedback, have also been observed with lab-centric instruction [110].

The Cognitive Apprenticeship theory and the idea of apprentices have
been used in the past in the context of introductory programming as well.
One of the earlier discussions on tacit knowledge was written by Soloway
in “Learning to program = learning to construct mechanisms and explana-
tions” [101], where he analyzed students’ solutions to a seemingly simple
programming problem that required merging a number of programming
constructs together. Soloway emphasized instructing students in the use
of stepwise refinement when solving programming problems, and discussed
strategies that can be used to compose these solutions together. These ideas
can be seen as an operationalization of Cognitive Apprenticeship [77], and
the need for existing knowledge for crafting solutions to new programming
problems has also been one of the key reasons behind our emphasis on
practical programming assignments.

Another approach has been described by Astrachan and Reed, who
proposed the Applied Apprenticeship Approach [7]. It approaches learn-
ing to program by having students study and extend programs written
by more experienced practitioners as “students should be expected to read
and modify programs before writing them” [7]. One of the goals is to have

1At the time of the writing of this thesis, we have experimented with e.g. pair pro-
gramming assignments, but due to the large number of students, no specific structures
have been needed.

“main” — 2017/10/16 — 13:02 — page 45 — #51

6.2 Closely-related Work 45

students learn design practices from this process, and eventually to learn
to write such programs also from scratch. Astrachan and Reed also em-
phasize the need for relevant programming assignments, which in turn can
show programming as a useful craft, as well as provide incremental exam-
ples of program design. Some of the ideas have been inspired by the work
of Linn and Clancy [69], who describe the programs that students are to
study as case studies, and also advocate on written explanations of the
concrete design process – “Students need more assistance than just expert
code in order to learn design skills” [69]. Their argument is based on a
study where they compared populations where one population had access
to expert commentary of program code, while another did not. The pop-
ulation that had access to the commentary fared better: “even though the
students examined the expert code and answered study questions intended
to get them to infer the design process, this was not as effective as reading
the expert commentary” [69].

The same idea of starting by studying code written by experts has also
been proposed more recently. In “Enhancing Apprentice-Based Learning of
Java” [62], Kölling and Barnes propose the use of an educational program-
ming environment called BlueJ [63] that helps students who are learning
to program, and point out that in addition to being able to study code
written by experts, students should also be able to observe the concrete
working process. The observation is done in lectures, where an instructor
demonstrates the steps needed to complete a specific software engineering
task [62]. Many of these ideas have been collected to provide a starting
point for an instructor who is planning to design a programming course
by Caspersen and Bennedsen in “Instructional Design of a Programming
Course – A Learning Theoretic Approach” [25].

When comparing these threads to our work, we have significantly de-
emphasized the need for having students read expert solutions, and have
moved towards having students start with creating small programs from
early on in the course. By working on dozens of such programs, also under
guidance, the students can be coached towards desired outcomes and they
are likely to also learn good working practices at the same time. While we
have not emphasized the use of worked examples and having students study
programs in our articles, tutorials that can be seen as case studies have also
been embedded to the learning materials that students use. Moreover, in
our approach, the role of feedback and the learning community is more
significant, and the cost-effectiveness as well as the carry-on effect of the
approach have also been assessed.

“main” — 2017/10/16 — 13:02 — page 46 — #52

46 6 Conclusions and Future Work

Tools that support students as they are learning to program

Although there are numerous systems that have been designed to help
students learn programming [23], our focus here is on a narrow subset of
these systems. We focus on systems that both assess students’ programs,
as well as provide guidance to students as they are learning to program
by e.g. providing feedback based on a set of failed tests. While Test My
Code was created to fulfill a specific pedagogical need [120], rapid feed-
back and support for rapid progress, many of the traditional systems have
been created system-first to provide a full-fledged platform for instructors
(see e.g. [24, 35]). The very first automated assessment system is from the
early 1960’s, where an automatic grader was first used in the context of
learning to program – one of the baseline reasons for the creation of such a
system was to be able to increase the amount of students admitted to a pro-
gramming class [51]. Since the 1960s, numerous systems for automatically
assessing students’ programs have been designed [1, 33,54,87].

The systems closest to our work are most likely Web-CAT [35] and Mar-
moset [105], which have both been designed to improve the feedback cycle
as a student is learning to program. While Web-CAT has been developed
to support Test-Driven Development by allowing students to submit their
own tests in addition to the assignment solutions which are then evaluated
using both the code coverage of the students’ own tests as well as tests writ-
ten by an instructor, Marmoset puts additional focus on guiding students
to live without instructor-written tests by providing means to give limited
feedback before the deadline. As pointed out by Spacco, if students are
given full test results, they may adopt the habit of programming by ‘Brow-
nian motion’, where students make a series of small, seemingly random
changes to the code in the hopes of making their program pass the next test
case [105]. Moreover, while Marmoset can be used to gather fine-grained
data from the students’ programming process, Web-CAT mostly gathers
the students’ submissions.

In some aspects, such as providing the students with the ability to sub-
mit their own test cases, Test My Code is not as mature as it provides
only limited functionality for assessing the test cases, while in other as-
pects, it may be more advanced. This is only natural, as the design choices
and goals between the systems have been different. Our main design goal
was to provide feedback and guidance as students are working on assign-
ments with subgoals, and as the Extreme Apprenticeship method relies on
dozens of weekly assignments, the process of retrieving and submitting the
assignments was made as straightforward as possible.

“main” — 2017/10/16 — 13:02 — page 47 — #53

6.2 Closely-related Work 47

Perhaps the most significant contribution of Test My Code is the ability
to automatically download and submit programming assignments directly
within the programming environment, which may reduce the amount of
time that students spend on non-necessary tasks. At the same time, as-
sessment feedback and guidance are also shown directly within the pro-
gramming environment, and the creation of assignments, tests and feed-
back messages has been made straightforward. While both Web-CAT and
Marmoset also provide a plugin for uploading assignments directly from a
programming environment, in Test My Code the integration is tighter, and
there is e.g. no need to specifically define the assignment that the student
is about to submit. Due to this tighter integration, the data gathering
facility provided by Test My Code can also gather more fine-grained data
than Marmoset.

Even with the improvements, all of these systems still face the issue of
adaptation. That is, while the use of smart learning systems has increased
substantially during the last decades, issues with the adoption and dissem-
ination of such tools and practices still exist [23]. For example, to our
knowledge, although open source and generally available, Test My Code is
currently only used by a handful of universities, colleges and schools.

Open online courses and university admission

To date, there has been plenty of research into MOOCs, but many of the
articles are focused on more generic viewpoints such as participant de-
mographics, satisfaction and behavior (see e.g. [61, 90]), stakeholder per-
spectives (see e.g. [34, 93]), as well as on the large scale data that can be
gathered from MOOCs. MOOCs in programming have also gathered plenty
of attention [39,71].

Using a massive open online course (MOOC) for identifying students
who are to be admitted into university studies is a novel idea, and to our
understanding, the article “Multi-faceted support for MOOC in program-
ming” [117], on which the included article II.2 “A Purposeful MOOC to
Alleviate Insufficient CS Education in Finnish Schools” is built upon, is
the first article on introductory programming MOOCs as a vehicle for uni-
versity admission. While the work was performed to match a need, it is
possible that such a need is not as prevalent in contexts in which students
are expected to pay for tuition.

Perhaps the closest match to this work – while far-fetched – are studies
on programming aptitude, where numerous factors that contribute to the
ability of learning to program have been studied (see e.g. [37, 112]). How-
ever, while the open online course could in principle be seen as such a test,

“main” — 2017/10/16 — 13:02 — page 48 — #54

48 6 Conclusions and Future Work

we do not consider it as such, and see it more as a way for students to
see what studying Computer Science would include and to decide whether
that would be something for them. At the same time, the course is also
relatively far from advanced placement programs that are typical in the US
(see e.g. [99]).

Data analytics and continuous improvement

As pointed out in Chapter 4, a number of tools for gathering data from stu-
dents’ learning process have been developed. Our contribution to such tools
is Test My Code, which provides both the capability to scaffold students
within the learning environment as well as gathers fine-grained information
on the students’ learning process. The data is tightly woven into the as-
signments that the student is working on, providing a roadmap of learning
starting from the very first time that the student attempts programming.

In the data analytics part of this thesis, we have focused on two small
cases where source code snapshot data has been used. The first case de-
scribed an analysis of struggles that a novice programmer faces when learn-
ing a programming language within a standard programming environment.
To our knowledge, this study is the first one where fine-grained program-
ming behavior of novices has been observed within a programming envi-
ronment. The study provides an initial demystification of standard off-the
shelf programming environments that have traditionally been seen as too
complex to use for novices. Naturally, such arguments are already almost
a decade old (see e.g. [62]), so they may be based on observations that no
longer would hold.

Although no direct matches to the first study exist, there are stud-
ies that analyze source code snapshots but with different granularities and
environments. For example, in “Using CodeBrowser to seek differences be-
tween novice programmers” [48], we studied students’ struggles in a num-
ber of early programming assignments in a programming course. In the
study however, the granularity was more coarse and the number of partici-
pants smaller. Another contribution towards the understanding of students’
problem solving strategies was performed by Blikstein [16], who studied
fine-grained programming behavior of nine students learning to program
within the NetLogo environment. More recently, there has been a move-
ment towards browser-based learning environments, which have also been
studied. For example, the work by Helminen et al. [49] discusses patterns
that third-year students exhibit when learning to program using an inter-
active Python environment, and provides a good overview on work with
source code snapshots.

“main” — 2017/10/16 — 13:02 — page 49 — #55

6.2 Closely-related Work 49

Another stream of source code snapshot analysis is related to identify-
ing students who struggle, in order to provide guidance for them. One of
the first approaches to quantify students’ tendency to create and fix errors
was called the error quotient, which was calculated from subsequent source
code snapshots. The approach has mediocre correlation with course out-
comes [56]. Naturally the context should also be taken into account. More
recently, an improvement on the error quotient was proposed by Watson et
al., who noticed that the amount of time that students spend on program-
ming assignments is also an important factor in determining the struggling
students [124]. They proposed an improvement to the error quotient algo-
rithm, called Watwin-algorithm, which had an improved predictive power
over the error quotient in their context. Snapshots have been used to elicit
information on a finer detail as well. For example, Piech et al. [79] studied
students’ approaches to solving a programming task using Karel the Robot,
and found that the clusters created from the programming patterns were
indicative of course midterm scores.

The data from Test My Code has also been studied in other contexts,
for example Hosseini et al. have identified students’ behaviors within a
programming course – some students were more inclined to build their
code step by step, while others started from larger quantities of code, and
reduced their code in order to reach a solution [52]. Another approach
recently proposed by Yudelson et al. is to use fine-grained concepts ex-
tracted from source code snapshots, and to model students’ understanding
of these concepts as they proceed within a course based on the source code
snapshots [127].

The second case was related to identifying difficult programming as-
signments already during the students’ working process for the purpose of
providing more targeted guidance. While the importance of such knowledge
has been highlighted also in the past (see e.g. [16]), the closest study on
determining the difficulty of programming assignments has been performed
by Alvares and Scott [4]. While the difference in results are likely explain-
able with the number of participants and data gathering methodology, it
is evident that such information can be gathered and taken into use. In
our work, the results were based on data from Test My Code, which means
that guidance could potentially be given to the students within the working
environment already before they submit their work.

“main” — 2017/10/16 — 13:02 — page 50 — #56

50 6 Conclusions and Future Work

6.3 Limitations of the Work

Next, we outline limitations of the work and address both internal and
external validity concerns. Internal validity refers to how well the studies
have been conducted, and whether it is possible that there are other causes
for the outcomes of the research. External validity, on the other hand,
refers to whether the results generalize to other contexts as well. Internal
and external validity concerns for each theme are considered separately.

Theme 1: Retention in Introductory Programming Courses and
the Extreme Apprenticeship method

When considering the survey of existing work in teaching programming
(Publication I.1), one of the concerns with the work is that we excluded a
range of articles that did not report the teaching practices or the results in
a sufficient manner. It is possible that when relaxing the inclusion criteria,
the results could change due to this. Moreover, it is likely that the field
favors positive results, which means that there are likely several studies
with negative results that have never been published.

When considering internal and external validity concerns of the Extreme
Apprenticeship method (Publications I.2, I.3), there are multiple concerns.
First, we did not use control and treatment groups, nor did we use pre- and
post-tests for assessing students’ knowledge. Similarly, while the exams
before and after the transition contained many identical components, a
manual analysis by a third party indicated that the exams used after the
transition expect and assess a wider range of knowledge.

Moreover, our study did not attempt to tease out the individual ef-
fects of the components of the Extreme Apprenticeship method. That is,
our results come from using a combination of components, but we do not
know the individual effect of, for example, starting early, having smaller
tasks, having larger tasks that integrate knowledge from the smaller tasks,
having help available, using worked examples, using authentic working en-
vironments and so on. That is, it is possible that some of the components of
the Extreme Apprenticeship method may not be beneficial for the student.

When considering internal and external validity concerns of the so-called
“Carry-on Effect” of the Extreme Apprenticeship method (Publication I.4),
we acknowledge that the drive for improvement at the University of Helsinki
was not limited to the introductory programming courses. Other instruc-
tors may have sought to improve their courses, which may have an overall
net effect on the observed mentality at the Department of Computer Sci-
ence, which in turn may have influenced the results. That is, it is not clear

“main” — 2017/10/16 — 13:02 — page 51 — #57

6.3 Limitations of the Work 51

if the observed effect was due to the Extreme Apprenticeship method or
if there are other factors that contributed to the outcomes. Moreover, the
study included data from year 2012, where the student population also had
students who had been admitted through the MOOC. Nevertheless, the
analysis was conducted on the student population as a whole.

Overall, it is possible that some of the results could be explained by
population bias. Instructors play a role and, as the author of this thesis
has participated in teaching the studied courses, it is possible that taking
only the methodology to another context would not yield similar results.
There are, however, positive results of the method from other contexts (see
e.g. [32, 46, 84]). Applicability of this work in other contexts still remains
an open question – research on the methods proposed in this thesis has not
yet answered the questions of when they work, where they work, and most
importantly, when they do not work.

In our context, students have a right to study and they do not pay
tuition. In addition, students receive a number of benefits such as monthly
monetary support from the government, discounts from public traffic tick-
ets, and opportunities for low-cost housing. Such factors can have a large
influence. Similarly, the practicalities involved with empowering first-year
students and taking them as a part of the teaching staff may be a chal-
lenge in some contexts. For this thesis, the administration allowed us to
completely change how the first introductory programming courses are or-
ganized, which may not be as straightforward in other contexts.

Theme 2: Distance Education and a MOOC Focused on Program-
ming

When considering the internal and external validity concerns of the Theme
2, we must first note that the Test My Code system (Publication II.1) has
not been formally evaluated. We do not and cannot claim that Test My
Code would have improved students’ learning gains. Nevertheless, without
the system (or another similar system), offering the introductory program-
ming courses as a MOOC would not have been possible. We have con-
structed a MOOC that can be taken by anyone and offered it to Finnish
schools free of charge (Publication II.2), but we have not studied the extent
to which the course actually has been adapted in Finnish schools.

When considering the internal validity of our study of students who
have been admitted to study Computer Science through the MOOC in
Programming, the preliminary study included in this thesis (Publication
II.3) reported study success of different student cohorts. At the time of the
writing of the article, the goal was to report and show that this can be done

“main” — 2017/10/16 — 13:02 — page 52 — #58

52 6 Conclusions and Future Work

and to provide preliminary results. We deliberately chose to not conduct
tests for statistical significance as we thought that any results would be
preliminary. We acknowledge that this can be seen as a poor choice, but
also note that statistical tests can be calculated based on the data given in
the reported tables.

Moreover, we only studied the initial student population, and would
need subsequent studies that analyze the way the cohorts succeed in their
studies over the years. Conducting such a study is challenging, however,
as a range of factors contribute to students’ choices of continuing or not to
continuing to study.

When considering the external validity of our work, we do not know if
the approach would generalize to other contexts. It is possible, for example,
that other universities would not have similar pull as ours. Similarly, if all
universities would open a similar admission pathway, we do not know what
would happen. Our preliminary experiences, however, indicate that the
populace in the MOOC admission path and the traditional admission path
do not completely overlap, which means that at least considering multiple
admission paths is likely beneficial.

Theme 3: Mining Student Data

When considering the articles that focused on mining student data and the
internal and external validity of those studies, multiple issues are present.
In the article in which we studied how students write their very first lines of
code (Publication III.1), one internal validity concern is related to the way
the manual encoding was conducted. Instead of conducting the encoding
separately and using e.g. Cohen’s kappa to assess the encoding quality, we
analyzed the results together. While unlikely, it is still possible that other
researchers would have come up with different encoding.

Similarly, when considering external validity, we do not know if the
way students type their first programs presented in the article generalize to
other contexts. In the article, we compared other metrics such as typical
compilation errors to other relevant studies. We do not, however, know if
the reason why the results differ are actually due to the programming en-
vironment, or if other factors contribute to the results – in other terms, we
did not conduct a control study in which one population was given a spe-
cific programming environment and another population was given another
programming environment.

When considering the internal and external validity of the article in
which we sought for automatic ways to determine programming assignment
difficulty (Publication III.2), the results are only as valid as the method-

“main” — 2017/10/16 — 13:02 — page 53 — #59

6.4 Future Directions 53

ologies used. One of the primary internal validity concerns in the work is
related to the notion of difficulty; we do not know if the students perceived
the question on how difficult a programming assignment was in the way
that we intended the question. It is possible, for example, that difficulty
was at least partially mixed with perceived workload of the assignments.
Similarly, as we only received feedback from those students who completed
assignments, there is a possibility for selection bias in the data.

So far, we cannot state if the same results would apply in other contexts.
Thus, the external validity of the results are still an open question.

6.4 Future Directions

While in addition to programming the Extreme Apprenticeship method
has already been studied in teaching e.g. operating systems [32] and math-
ematics [46, 84], further studies of such issues as the practice, students’
views, as well as learning gains are needed. From the perspective of a re-
searcher, these studies should be randomized controlled trials where the
student population is split e.g. into treatment and control groups, while
from the perspective of an educator, creating such a study – especially if
there is prior belief on one method working better than the other – can be
perceived unethical for the students who have to study with the “worse”
method. Even with such concerns, numerous research directions exist. For
example, what are the long-term effects of having students participate as
educators already during their first year? What attributes do students
value from the peers who assist them? Can students’ actions and behavior
be guided towards such attributes? Even studying the components needed
in useful learning materials has a number of open questions, some of which
we have only recently scratched the surface of [43,118].

The strategy of reducing the number of lectures to increase the amount
of productive work can also be further studied. While the change has led
to an increase in students who succeed in their first year studies, students’
motivations and the driving factors of the method can be studied further.
For example, what is the effect of the step-wise assignments that students
work on in order to learn the relevant working practices, and what is the ef-
fect of e.g. pseudo-external factors such as course grading schemes? Plenty
of work that outlines the value of peer instruction, pair programming and
media computation also exists [81], and adopting practices such as pair
programming into the lab would be interesting to study e.g. from the per-
spective of a junior advisor.

“main” — 2017/10/16 — 13:02 — page 54 — #60

54 6 Conclusions and Future Work

The tools used to create and enable the open online course also warrant
further study. As we pointed out in the article on automatically detectable
indicators of programming assignment difficulty [55], the feedback that is
given to the students during the programming and learning process is im-
portant. Automatic assessment systems with better personalized feedback
can be created to support students who would rather work from home, but
one can ask whether that direction is the correct way to go. As the driving
factors of Extreme Apprenticeship include the bi-directional feedback and
the ability to work with students locally, as well as having the junior advi-
sors teach others, it is questionable if efforts that effectively help students
stay at home are beneficial – even if it may be more comfortable for them.

Similarly, while the amount of guidance and feedback such systems
should provide is an open question, there exists numerous paths of study
that are related to such learning environments. For example, what are the
long-term effects of having students follow specific practices such as coding
conventions – do they continue to use them when they are no longer required
by the environment? This could already be studied e.g. by performing a
post-hoc analysis of student programming projects, say, from years 2007-09
and 2010-12.

As Test My Code continuously collects data from students’ program-
ming process, the data also provides ample opportunities for additional
analysis and support. Building estimates on the students’ skill-level in or-
der to personalize their learning experience is mostly untapped – especially
in programming courses with hundreds of programming assignments. Sim-
ilarly, new opportunities for understanding the plans that students formu-
late when solving a programming problems arise, and perhaps such studies
could even provide further insight on how we learn crafts such as program-
ming. Questions on the differences between novices and professionals could
also already be answered since we have gathered students’ programming
background details already for the past few years.

And, now that we touched the topic of professional programmers, it
would be interesting to study whether the methodologies and tools outlined
in this thesis would be sensible to use when introducing professionals into
new domains.

“main” — 2017/10/16 — 13:02 — page 55 — #61

References

[1] Kirsti M Ala-Mutka. A survey of automated assessment ap-
proaches for programming assignments. Computer Science Education,
15(2):83–102, 2005.

[2] Satu Alaoutinen. Enabling constructive alignment in programming in-
struction. PhD thesis, Lappeenranta University of Technology, 2011.

[3] Anthony Allevato and Stephen H Edwards. Discovering patterns in
student activity on programming assignments. In 2010 ASEE South-
eastern Section Annual Conference and Meeting, 2010.

[4] Andres Alvarez and Terry A. Scott. Using student surveys in deter-
mining the difficulty of programming assignments. Journal of Com-
puting Sciences in Colleges, 26(2):157–163, December 2010.

[5] Eric M. Anderman and Heather Dawson. Learning with motivation.
Routledge, 2011.

[6] Terry Anderson. Getting the mix right again: An updated and theo-
retical rationale for interaction. The International Review of Research
in Open and Distance Learning, 4(2), 2003.

[7] Owen Astrachan and David Reed. AAA and CS 1: The applied ap-
prenticeship approach to CS 1. In ACM SIGCSE Bulletin, volume 27,
pages 1–5. ACM, 1995.

[8] Albert Bandura. Self-efficacy: Toward a unifying theory of behavioral
change. Psychological Review, 84(2):191, 1977.

[9] Sasha Barab and Kurt Squire. Design-based research: Putting a stake
in the ground. Journal of the Learning Sciences, 13(1):1–14, 2004.

[10] Jessica D Bayliss. The effects of games in CS1-3. In Microsoft Aca-
demic Days Conference on Game Development in Computer Science
Education, pages 59–63. Citeseer, 2007.

55

“main” — 2017/10/16 — 13:02 — page 56 — #62

56 References

[11] Jessica D. Bayliss and Sean Strout. Games as a ”flavor” of CS1. In
Proceedings of the 37th SIGCSE technical symposium on Computer
science education, SIGCSE ’06, pages 500–504. ACM, 2006.

[12] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional, 2004.

[13] Jens Bennedsen and Michael E Caspersen. Failure rates in introduc-
tory programming. SIGCSE Bulletin, 39(2):32–36, 2007.

[14] Eric P Bettinger and Bridget Terry Long. Does cheaper mean better?
The impact of using adjunct instructors on student outcomes. The
Review of Economics and Statistics, 92(3):598–613, 2010.

[15] Toni R. Black. Helping novice programming students succeed. Jour-
nal of Computing Sciences in Colleges, 22(2):109–114, 2006.

[16] Paulo Blikstein. Using learning analytics to assess students’ behavior
in open-ended programming tasks. In Proceedings of the 1st Interna-
tional Conference on Learning Analytics and Knowledge, LAK ’11,
pages 110–116, New York, NY, USA, 2011. ACM.

[17] Gary D. Borich and Martin L. Tombari. Educational Psychology: A
Contemporary Approach. Longman Publishing/Addison Wesley, 2nd
edition, 1997.

[18] David Boud, Rosemary Keogh, David Walker, et al. Reflection: Turn-
ing experience into learning. Routledge, 1985.

[19] John Seely Brown, Allan Collins, and Paul Duguid. Situated cogni-
tion and the culture of learning. Educational researcher, 18(1):32–42,
1989.

[20] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting.
Blackbox: A large scale repository of novice programmers’ activity.
In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education, SIGCSE ’14, pages 223–228, New York, NY, USA,
2014. ACM.

[21] Neil C.C. Brown and Amjad Altadmri. Investigating novice program-
ming mistakes: Educator beliefs vs. student data. In Proceedings of
the Tenth Annual Conference on International Computing Education
Research, ICER ’14, pages 43–50, New York, NY, USA, 2014. ACM.

“main” — 2017/10/16 — 13:02 — page 57 — #63

References 57

[22] Jerome Bruner. Vygotsky: A historical and conceptual perspec-
tive. Culture, communication, and cognition: Vygotskian perspec-
tives, pages 21–34, 1985.

[23] Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi,
Luciana Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu
Sirkiä, Sergey Sosnovsky, Jaime Urquiza, Arto Vihavainen, and
Michael Wollowski. Increasing adoption of smart learning content for
computer science education. In Proceedings of the Working Group Re-
ports of the 2014 on Innovation & Technology in Computer Science
Education Conference, ITiCSE-WGR ’14, pages 31–57, New York,
NY, USA, 2014. ACM.

[24] Peter Brusilovsky, Elmar Schwarz, and Gerhard Weber. ELM-ART:
An intelligent tutoring system on World Wide Web. In Intelligent
tutoring systems, pages 261–269. Springer, 1996.

[25] Michael E. Caspersen and Jens Bennedsen. Instructional design of a
programming course: A learning theoretic approach. In Proceedings
of the Third International Workshop on Computing Education Re-
search, ICER ’07, pages 111–122, New York, NY, USA, 2007. ACM.

[26] J. D. Chase and Edward G. Okie. Combining cooperative learning
and peer instruction in introductory computer science. SIGCSE Bull.,
32(1):372–376, March 2000.

[27] Allan Collins, John Seely Brown, and Ann Holum. Cognitive ap-
prenticeship: making thinking visible. American Educator, 6:38–46,
1991.

[28] Allan Collins, John Seely Brown, and Susan E. Newman. Cognitive
apprenticeship: Teaching the craft of reading, writing and mathe-
matics. In Knowing, Learning and Instruction: Essays in honor of
Robert Glaser. Hillside, 1989.

[29] Allan Collins and James G. Greeno. Situative view of learning. In
Vibeke G. Aukrust, editor, Learning and Cognition, pages 64–68.
Elsevier Science, 2010.

[30] Noe De La Mora and Christine F Reilly. The impact of real-world
topic labs on student performance in CS1. In 2012 Frontiers in Ed-
ucation Conference Proceedings, pages 1–6. IEEE, 2012.

“main” — 2017/10/16 — 13:02 — page 58 — #64

58 References

[31] Paul E Dickson. Using undergraduate teaching assistants in a small
college environment. In Proceedings of the 42nd ACM technical sym-
posium on Computer science education, pages 75–80. ACM, 2011.

[32] Gabriella Dodero and Francesco Di Cerbo. Extreme apprenticeship
goes blended: An experience. Advanced Learning Technologies, IEEE
International Conference on, 0:324–326, 2012.

[33] Christopher Douce, David Livingstone, and James Orwell. Auto-
matic test-based assessment of programming: A review. Journal on
Educational Resources in Computing, 5(3), September 2005.

[34] Anna Eckerdal, Päivi Kinnunen, Neena Thota, Aletta Nylén, Judy
Sheard, and Lauri Malmi. Teaching and learning with MOOCs: Com-
puting academics’ perspectives and engagement. In Proceedings of the
2014 Conference on Innovation & Technology in Computer Science
Education, ITiCSE ’14, pages 9–14, New York, NY, USA, 2014. ACM.

[35] Stephen H. Edwards. Rethinking computer science education from a
test-first perspective. In Companion of the 18th Annual ACM SIG-
PLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’03, pages 148–155, New York,
NY, USA, 2003. ACM.

[36] K. Anders Ericsson, Ralf T. Krampe, and Clemens Tesch-Römer. The
role of deliberate practice in the acquisition of expert performance.
Psychological Review, 100(3):363, 1993.

[37] Gerald E. Evans and Mark G. Simkin. What best predicts com-
puter proficiency? Communications of the ACM, 32(11):1322–1327,
November 1989.

[38] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182 –211, 1976.

[39] Katrina Falkner, Nickolas Falkner, Claudia Szabo, and Rebecca Vi-
vian. Applying validated pedagogy to MOOCs: An introductory
programming course with media computation. In Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’16, pages 326–331, New York, NY, USA,
2016. ACM.

[40] S. Fincher, B. Richards, J. Finlay, H. Sharp, and I. Falconer. Sto-
ries of change: How educators change their practice. In Frontiers in
Education Conference (FIE), 2012, pages 1–6, 2012.

“main” — 2017/10/16 — 13:02 — page 59 — #65

References 59

[41] James G Greeno. Response: On claims that answer the wrong ques-
tions. Educational Researcher, 26(1):5–17, 1997.

[42] Frank M. Grittner. Individualized instruction: An historical perspec-
tive. The Modern Language Journal, 59(7):323–333, 1975.

[43] Lassi Haaranen, Petri Ihantola, Juha Sorva, and Arto Vihavainen.
In search of the emotional design effect in programming. In Joint
Software Engineering Education and Training track of the 37th In-
ternational Conference on Software Engineering, JSEET/ICSE ’15,
2015.

[44] John Hattie and Helen Timperley. The power of feedback. Review of
Educational Research, 77(1):81–112, 2007.

[45] Michael Haungs, Christopher Clark, John Clements, and David
Janzen. Improving first-year success and retention through interest-
based CS0 courses. In Proceedings of the 43rd ACM Technical Sym-
posium on Computer Science Education, SIGCSE ’12, pages 589–594,
New York, NY, USA, 2012. ACM.

[46] Terhi Hautala, Tiina Romu, Johanna Rämö, and Thomas Vikberg.
Extreme apprenticeship method in teaching university-level mathe-
matics. In Proceedings of the 12th International Congress on Mathe-
matical Education, ICME, 2012.

[47] Anja Heikkinen and Ronald G Sultana. Vocational Education and Ap-
prenticeships in Europe. Challenges for Practice and Research. Uni-
versity of Tampere Department of Education Series B, No. 16. ERIC,
1997.

[48] Kenny Heinonen, Kasper Hirvikoski, Matti Luukkainen, and Arto
Vihavainen. Using codebrowser to seek differences between novice
programmers. In Proceedings of the 45th ACM technical symposium
on Computer science education, pages 229–234. ACM, 2014.

[49] Juha Helminen, Petri Ihantola, and Ville Karavirta. Recording and
analyzing in-browser programming sessions. In Proceedings of the
13th Koli Calling International Conference on Computing Education
Research, Koli Calling ’13, pages 13–22, New York, NY, USA, 2013.
ACM.

[50] Juha Helminen and Lauri Malmi. Jype - a program visualization
and programming exercise tool for Python. In Proceedings of the 5th

“main” — 2017/10/16 — 13:02 — page 60 — #66

60 References

International Symposium on Software Visualization, SOFTVIS ’10,
pages 153–162, New York, NY, USA, 2010. ACM.

[51] Jack Hollingsworth. Automatic graders for programming classes.
Communications of the ACM, 3(10):528–529, October 1960.

[52] Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. Exploring
problem solving paths in a Java programming course. Psychology of
Programming Interest Group Annual Conference 2014, 2014.

[53] Petri Ihantola. Automated assessment of programming assignments:
visual feedback, assignment mobility, and assessment of students’ test-
ing skills. PhD thesis, Aalto University, 2011.

[54] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä.
Review of recent systems for automatic assessment of programming
assignments. In Proceedings of the 10th Koli Calling International
Conference on Computing Education Research, Koli Calling ’10,
pages 86–93. ACM, 2010.

[55] Petri Ihantola, Juha Sorva, and Arto Vihavainen. Automatically de-
tectable indicators of programming assignment difficulty. In Pro-
ceedings of the 15th Annual Conference on Information Technology
Education, SIGITE ’14, pages 33–38, New York, NY, USA, 2014.
ACM.

[56] Matthew C. Jadud. Methods and tools for exploring novice compila-
tion behaviour. In Proceedings of the Second International Workshop
on Computing Education Research, ICER ’06, pages 73–84, 2006.

[57] Wei Jin, Tiffany Barnes, John Stamper, Michael John Eagle,
Matthew W. Johnson, and Lorrie Lehmann. Program representation
for automatic hint generation for a data-driven novice programming
tutor. In Proceedings of the 11th International Conference on Intel-
ligent Tutoring Systems, ITS’12, pages 304–309, Berlin, Heidelberg,
2012. Springer-Verlag.

[58] Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Rolf Lindén, Einari
Kurvinen, Ville Karavirta, and Tapio Salakoski. Comparing student
performance between traditional and technologically enhanced pro-
gramming course. In Proceedings of the 17th Australasian Computing
Education Conference, pages 147–154, 2015.

“main” — 2017/10/16 — 13:02 — page 61 — #67

References 61

[59] Hansi Keijonen, Jaakko Kurhila, and Arto Vihavainen. Carry-on ef-
fect in extreme apprenticeship. In Frontiers in Education Conference,
2013 IEEE, pages 1150–1155. IEEE, 2013.

[60] Päivi Kinnunen, Maija Marttila-Kontio, and Erkki Pesonen. Getting
to know computer science freshmen. In Proceedings of the 13th Koli
Calling International Conference on Computing Education Research,
Koli Calling ’13, pages 59–66, New York, NY, USA, 2013. ACM.

[61] René F. Kizilcec, Chris Piech, and Emily Schneider. Deconstructing
disengagement: Analyzing learner subpopulations in massive open
online courses. In Proceedings of the Third International Conference
on Learning Analytics and Knowledge, LAK ’13, pages 170–179, New
York, NY, USA, 2013. ACM.

[62] Michael Kölling and David J. Barnes. Enhancing apprentice-based
learning of Java. In Proceedings of the 35th SIGCSE Technical Sym-
posium on Computer Science Education, SIGCSE ’04, pages 286–290,
New York, NY, USA, 2004. ACM.

[63] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosen-
berg. The BlueJ system and its pedagogy. Computer Science Educa-
tion, 13(4):249–268, 2003.

[64] Jaakko Kurhila and Arto Vihavainen. Management, structures and
tools to scale up personal advising in large programming courses.
In Proceedings of the 2011 Conference on Information Technology
Education, SIGITE ’11, pages 3–8. ACM, 2011.

[65] Patricia Lasserre and Carolyn Szostak. Effects of team-based learn-
ing on a CS1 course. In Proceedings of the 16th Annual Joint Confer-
ence on Innovation and Technology in Computer Science Education,
ITiCSE ’11, pages 133–137, New York, NY, USA, 2011. ACM.

[66] Jean Lave and Etienne Wenger. Situated learning: Legitimate periph-
eral participation. Cambridge university press, 1991.

[67] Jari Lavonen and Seppo Laaksonen. Context of teaching and learning
school science in Finland: Reflections on PISA 2006 results. Journal
of Research in Science Teaching, 46(8):922–944, 2009.

[68] Marianne Leinikka, Arto Vihavainen, Jani Lukander, and Satu
Pakarinen. Cognitive flexibility and programming performance. Psy-
chology of Programming Interest Group Annual Conference 2014,
2014.

“main” — 2017/10/16 — 13:02 — page 62 — #68

62 References

[69] Marcia C. Linn and Michael J. Clancy. The case for case studies
of programming problems. Communications of the ACM, 35(3):121–
132, March 1992.

[70] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Di-
anne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas,
Ian Utting, and Tadeusz Wilusz. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. In
Working Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education, ITiCSE-WGR ’01, pages 125–180,
New York, NY, USA, 2001. ACM.

[71] Heather Miller, Philipp Haller, Lukas Rytz, and Martin Odersky.
Functional programming for all! Scaling a MOOC for students and
professionals alike. In Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 256–263. ACM,
2014.

[72] Paul Mullins, Deborah Whitfield, and Michael Conlon. Using Alice
2.0 as a first language. Journal of Computing Sciences in Colleges,
24(3):136–143, 2009.

[73] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann,
Rudolf Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi,
Myles McNally, Susan Rodger, et al. Exploring the role of visu-
alization and engagement in computer science education. In ACM
SIGCSE Bulletin, volume 35, pages 131–152. ACM, 2002.

[74] Uolevi Nikula, Orlena Gotel, and Jussi Kasurinen. A motivation
guided holistic rehabilitation of the first programming course. ACM
Transactions on Computing Education, 11(4):24:1–24:38, November
2011.

[75] Peter Norvig. Teach yourself programming in ten years.
http://norvig.com/21-days.html. Accessed: 2016-04-01.

[76] Arnold Pears, Stephen Seidman, Crystal Eney, Päivi Kinnunen, and
Lauri Malmi. Constructing a core literature for computing education
research. SIGCSE Bulletin, 37(4):152–161, December 2005.

[77] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Eliza-
beth Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A
survey of literature on the teaching of introductory programming. In

“main” — 2017/10/16 — 13:02 — page 63 — #69

References 63

ITiCSE Working Group Reports, ITiCSE-WGR ’07, pages 204–223,
New York, NY, USA, 2007. ACM.

[78] Andrew Petersen, Jaime Spacco, and Arto Vihavainen. An explo-
ration of error quotient in multiple contexts. In Proceedings of the
15th Koli Calling Conference on Computing Education Research, Koli
Calling ’15, pages 77–86, New York, NY, USA, 2015. ACM.

[79] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and
Paulo Blikstein. Modeling how students learn to program. In Pro-
ceedings of the 43rd ACM Technical Symposium on Computer Science
Education, SIGCSE ’12, pages 153–160, New York, NY, USA, 2012.
ACM.

[80] Kian L. Pokorny. What will they know? Standards in the high school
computer science curriculum. Journal of Computing Sciences in Col-
leges, 28(5):218–225, May 2013.

[81] Leo Porter and Beth Simon. Retaining nearly one-third more majors
with a trio of instructional best practices in CS1. In Proceeding of
the 44th ACM Technical Symposium on Computer Science Education,
SIGCSE ’13, pages 165–170, New York, NY, USA, 2013. ACM.

[82] Danijel Radošević, Tihomir Orehovački, and Alen Lovrenčić. New
approaches and tools in teaching programming. In Proceedings of
Central European Conference on Information and Intelligent Systems,
pages 49–57, 2009.

[83] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski.
Effectiveness of program visualization: A case study with the ViLLE
tool. Journal of Information Technology Education, 7, 2008.

[84] Johanna Rämö and Thomas Vikberg. Extreme apprenticeship–
engaging undergraduate students on a mathematics course. In Pro-
ceedings of the Frontiers in Mathematics and Science Education Re-
search Conference, FISER’14, 2014.

[85] Mona Rizvi and Thorna Humphries. A scratch-based CS0 course
for at-risk computer science majors. In 2012 Frontiers in Education
Conference Proceedings.

[86] Ma Mercedes T Rodrigo, Ryan S Baker, Matthew C Jadud, Anna
Christine M Amarra, Thomas Dy, Maria Beatriz V Espejo-Lahoz,
Sheryl Ann L Lim, Sheila AMS Pascua, Jessica O Sugay, and Emily S

“main” — 2017/10/16 — 13:02 — page 64 — #70

64 References

Tabanao. Affective and behavioral predictors of novice programmer
achievement. ACM SIGCSE Bulletin, 41(3):156–160, 2009.

[87] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. Fully automatic
assessment of programming exercises. In Proceedings of the 6th An-
nual Conference on Innovation and Technology in Computer Science
Education, ITiCSE ’01, pages 133–136, New York, NY, USA, 2001.
ACM.

[88] Robert Keith Sawyer. The Cambridge handbook of the learning sci-
ences. Cambridge University Press New York, 2006.

[89] AH Schoenfeld. Bridging the cultures of educational research and
design. Educational Designer, 1(2), 2009.

[90] Daniel T. Seaton, Yoav Bergner, Isaac Chuang, Piotr Mitros, and
David E. Pritchard. Who does what in a massive open online course?
Communications of the ACM, 57(4):58–65, April 2014.

[91] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto
Vihavainen. Do we know how difficult the rainfall problem is? In
Proceedings of the 15th Koli Calling Conference on Computing Edu-
cation Research, Koli Calling ’15, pages 87–96, New York, NY, USA,
2015. ACM.

[92] Steven C. Shaffer and Mary Beth Rosson. Increasing student success
by modifying course delivery based on student submission data. ACM
Inroads, 4(4):81–86, December 2013.

[93] Judy Sheard, Anna Eckerdal, Päivi Kinnunen, Lauri Malmi, Aletta
Nylén, and Neena Thota. MOOCs and their impact on academics.
In Proceedings of the 14th Koli Calling International Conference on
Computing Education Research, Koli Calling ’14, pages 137–145, New
York, NY, USA, 2014. ACM.

[94] Jim Shore. Fail fast. IEEE Software, 21(5):21–25, 2004.

[95] Simon. Emergence of computing education as a research discipline.
PhD thesis, Aalto University, 2015.

[96] Beth Simon, Päivi Kinnunen, Leo Porter, and Dov Zazkis. Experience
report: CS1 for majors with media computation. In Proceedings of
the Fifteenth Annual Conference on Innovation and Technology in
Computer Science Education, pages 214–218. ACM, 2010.

“main” — 2017/10/16 — 13:02 — page 65 — #71

References 65

[97] Robert H. Sloan and Patrick Troy. CS 0.5: A better approach to intro-
ductory computer science for majors. SIGCSE Bulletin, 40(1):271–
275, March 2008.

[98] Finbarr Sloane. Normal and design sciences in education: Why both
are necessary. Educational design research, pages 19–44, 2006.

[99] Lawrence Snyder, Tiffany Barnes, Dan Garcia, Jody Paul, and Beth
Simon. The first five computer science principles pilots: Summary
and comparisons. ACM Inroads, 3(2):54–57, June 2012.

[100] David L Soldan, William P Osborne, and Don Gruenbacher. Mod-
eling the economic cost of inadequate teaching and mentoring. In
Frontiers in Education Conference (FIE), 2010 IEEE, pages F3J–1.
IEEE, 2010.

[101] E. Soloway. Learning to program = learning to construct mecha-
nisms and explanations. Communications of the ACM, 29(9):850–
858, September 1986.

[102] Juha Sorva. Visual Program Simulation in Introductory Programming
Education. PhD thesis, Aalto University, 2012.

[103] Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic
program visualization systems for introductory programming educa-
tion. ACM Transactions on Computing Education, 13(4):15:1–15:64,
November 2013.

[104] Juha Sorva and Otto Seppälä. Research-based design of the first
weeks of CS1. In Proceedings of the 14th Koli Calling Interna-
tional Conference on Computing Education Research, Koli Calling
’14, pages 71–80, New York, NY, USA, 2014. ACM.

[105] Jaime Spacco. Marmoset: A programming project assignment frame-
work to improve the feedback cycle for students, faculty and re-
searchers. PhD thesis, University of Maryland, 2006.

[106] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jef-
frey K. Hollingsworth, and Nelson Padua-Perez. Experiences with
marmoset: Designing and using an advanced submission and test-
ing system for programming courses. SIGCSE Bulletin, 38(3):13–17,
June 2006.

“main” — 2017/10/16 — 13:02 — page 66 — #72

66 References

[107] Carolee Stewart-Gardiner. Improving the student success and re-
tention of under achiever students in introductory computer science.
Journal of Computing Sciences in Colleges, 26(6):16–22, 2011.

[108] Allison E. Tew. Assessing fundamental introductory computing con-
cept knowledge in a language independent manner. PhD thesis, Geor-
gia Institute of Technology, 2010.

[109] Allison Elliott Tew, Charles Fowler, and Mark Guzdial. Tracking an
innovation in introductory CS education from a research university
to a two-year college. In Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, pages 416–420. ACM,
2005.

[110] Nathaniel Titterton, Colleen M Lewis, and Michael J Clancy. Ex-
periences with lab-centric instruction. Computer Science Education,
20(2):79–102, 2010.

[111] Allen B. Tucker. K-12 computer science: Aspirations, realities, and
challenges. In Proceedings of the 4th International Conference on In-
formatics in Secondary Schools - Evolution and Perspectives: Teach-
ing Fundamentals Concepts of Informatics, ISSEP ’10, pages 22–34,
Berlin, Heidelberg, 2010. Springer-Verlag.

[112] Markku Tukiainen and Eero Mönkkönen. Programming aptitude test-
ing as a prediction of learning to program. Proceedings of the 14th
Workshop of the Psychology of Programming Interest Group, pages
45–57, 2002.

[113] Arto Vihavainen. Predicting students’ performance in an introduc-
tory programming course using data from students’ own program-
ming process. In Proceedings of the 13th International Conference on
Advanced Learning Technologies, ICALT ’13, pages 498–499, 2013.

[114] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. A sys-
tematic review of approaches for teaching introductory programming
and their influence on success. In Proceedings of the Tenth Annual
Conference on International Computing Education Research, ICER
’14, pages 19–26, New York, NY, USA, 2014. ACM.

[115] Arto Vihavainen and Matti Luukkainen. Results from a three-year
transition to the extreme apprenticeship method. Proceedings of the
13th IEEE International Conference on Advanced Learning Technolo-
gies, July 2013.

“main” — 2017/10/16 — 13:02 — page 67 — #73

References 67

[116] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. Analysis of
source code snapshot granularity levels. In Proceedings of the 15th
Annual Conference on Information Technology Education, SIGITE
’14, pages 21–26, New York, NY, USA, 2014. ACM.

[117] Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. Multi-
faceted support for MOOC in programming. In Proceedings of the
13th Annual Conference on Information Technology Education, SIG-
ITE ’12, pages 171–176, New York, NY, USA, 2012. ACM.

[118] Arto Vihavainen, Craig S. Miller, and Amber Settle. Benefits of
self-explanation in introductory programming. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education,
SIGCSE ’15, pages 284–289, New York, NY, USA, 2015. ACM.

[119] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko
Kurhila. Massive increase in eager TAs: Experiences from extreme
apprenticeship-based CS1. In Proceedings of the 18th ACM conference
on Innovation and technology in computer science education, ITiCSE
’13, pages 123–128, New York, NY, USA, 2013. ACM.

[120] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin
Pärtel. Scaffolding students’ learning using Test My Code. In Pro-
ceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’13, pages 117–122, 2013.

[121] L. S. Vygotsky. Mind in Society: The Development of Higher Psycho-
logical Processes. Harvard University Press, Cambridge, MA, 1978.

[122] Henry M Walker. Collaborative learning: a case study for CS1 at
grinnell college and austin. In SIGCSE Bulletin, volume 29, pages
209–213. ACM, 1997.

[123] Christopher Watson and Frederick W.B. Li. Failure rates in introduc-
tory programming revisited. In Proceedings of the 2014 Conference on
Innovation and Technology in Computer Science Education, ITiCSE
’14, pages 39–44, New York, NY, USA, 2014. ACM.

[124] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. Pre-
dicting performance in an introductory programming course by log-
ging and analyzing student programming behavior. In Proceedings of
the 13th International Conference on Advanced Learning Technolo-
gies, ICALT ’13, pages 319–323, 2013.

“main” — 2017/10/16 — 13:02 — page 68 — #74

68 References

[125] Paula Wilcox, Sandra Winn, and Marylynn Fyvie-Gauld. ’It was
nothing to do with the university, it was just the people’: the role of
social support in the first-year experience of higher education. Studies
in higher education, 30(6):707–722, 2005.

[126] Laurie Williams, Charlie McDowell, Nachiappan Nagappan, Julian
Fernald, and Linda Werner. Building pair programming knowledge
through a family of experiments. In Proceedings of the 2003 Inter-
national Symposium on Empirical Software Engineering, ISESE ’03,
Washington, DC, USA, 2003. IEEE Computer Society.

[127] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter
Brusilovsky. Investigating automated student modeling in a Java
MOOC. Proceedings of The Seventh International Conference on Ed-
ucational Data Mining 2014, 2014.

Publication I.1

I.1

Arto Vihavainen, Jonne Airaksinen, and Christopher Watson

A Systematic Review of Approaches for Teaching Introductory
Programming and Their Influence on Success

In Proceedings of the 10th Annual Conference on International Computing
Education Research (ICER ’14)

Copyright c©ACM New York, NY, USA 2014
http://dx.doi.org/10.1145/2632320.2632349

Reprinted with permission.

A Systematic Review of Approaches for Teaching
Introductory Programming and Their Influence on Success

Arto Vihavainen and Jonne Airaksinen
Department of Computer Science

University of Helsinki
Finland

{ avihavai, jonnaira }@cs.helsinki.fi

Christopher Watson
School of Engineering and Computing Sciences

University of Durham
United Kingdom

christopher.watson@dunelm.org.uk

ABSTRACT

Decades of effort has been put into decreasing the high
failure rates of introductory programming courses. Whilst
numerous studies suggest approaches that provide effective
means of teaching programming, to date, no study has at-
tempted to quantitatively compare the impact that differ-
ent approaches have had on the pass rates of programming
courses. In this article, we report the results of a system-
atic review on articles describing introductory programming
teaching approaches, and provide an analysis of the effect
that various interventions can have on the pass rates of intro-
ductory programming courses. A total of 60 pre-intervention
and post-intervention pass rates, describing thirteen differ-
ent teaching approaches were extracted from relevant ar-
ticles and analyzed. The results showed that on average,
teaching interventions can improve programming pass rates
by nearly one third when compared to a traditional lecture
and lab based approach.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms

Human Factors

Keywords

programming education, introductory programming, cs1, teach-
ing interventions, analysis, systematic review

1. INTRODUCTION
The mean worldwide failure rates of CS1 have been sug-

gested to be as high as one third of students failing the course
[3]. A recent study showed that despite advances in peda-
gogy, the worldwide failure rates of CS1 have not improved
over time, and that the failure rates are not substantially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICER ’14 August 11 - 13 2014, Glasgow, United Kingdom
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2755-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632320.2632349.

influenced by aspects of the external teaching context, such
as the programming language taught in the course [25].

Despite decades of research, internal factors based upon
traditional learning theories have also failed to explain the
CS1 failure rate phenomenon, and no factor to date has
been shown to influence programming performance across a
range of different teaching contexts [27]. More recently, re-
searchers have explored the relations between desirable as-
pects of programming behaviour and performance [23, 26].
But despite yielded promising results there is still no overall
understanding as to why many students are able to program,
whilst others endlessly struggle.

Many theories have been put forward as to why learning to
program is a difficult task. Some are attributed to the nature
of programming itself. Programming is not a single skill,
but rather a complex cognitive activity, where a student
must simultaneously build and apply several higher order
cognitive skills to solve a particular problem [17]. Other
reasons are attributed to aspects of the students. Students
may lack motivation, they may be unable to create a mental
model of how programs relate to the underlying system [2],
or create a clear model of program flow [10].

Further reasons are associated with the teaching method-
ology used. Whilst many students fail programming courses,
instructors face the additional challenge of adjusting their
expectations to the students’ level of ability [22]. These
challenges have been acknowledged, and decades of research
effort has been put into creating and applying teaching in-
terventions that facilitate students’ learning [17, 13]. These
interventions can include moving from a traditional lecture
and lab based approach to using pair programming, game
based learning, or extreme apprenticeship.

However, to date, no study has attempted to quantita-
tively compare the impact that these approaches can have
on improving the pass rates of failing programming courses.
Without any quantitative evidence on the relative strengths
of different approaches, the research community as a whole
will continue to lack a clear consensus of precisely which
methodologies provide the most effective means of teaching
programming and saving failing programming students.

2. RESEARCH METHOD
The purpose of this study was to explore the degree to

which various approaches of teaching programming could
improve pass rates. In order to gather data for use in this
study, a systematic review process was adopted, in an effort
to identify as many articles that provided details of pre-
intervention, and post-intervention pass rates as possible.

19

2.1 Research Questions
The questions answered in this study include:

1. How do teaching interventions reported in the litera-
ture increase students’ success in CS1?

2. What practices do the successful teaching interven-
tions comprise of?

3. Do so called best practices, or practices that are sig-
nificantly better than others exist?

2.2 Identification of Relevant Literature
To identify approaches for teaching introductory program-

ming and their influences on course success, an initial search
of articles published between the years 1980 - January 2014
was carried out. Searches were made in the ACM and IEEE
databases, after which further searches were made using
Google Scholar in an attempt to identify both published
and unpublished work which was not indexed by ACM and
IEEE. A final search was conducted by manually screening
the indexes of selected conference proceedings and journals
for relevant studies, including: (1) Transactions on Com-
puting Education, (2) SIGCSE, (3) ITiCSE, (4) ICER, (5)
SIGITE, (6) ICALT.

Initial articles were selected based on keywords where
boolean operators AND and OR were used to refine the
searches. More specifically, the search criteria used was:
(Improve OR Increase OR Decrease OR Lower OR Reduce)
AND (Retention OR Attrition OR Pass OR Fail OR Suc-
cess) AND (Programming OR Programming Course OR In-
troductory Programming OR CS1). Applying the criteria
resulted in over 1000 somewhat relevant articles being iden-
tified, on which two researchers performed an initial inclu-
sion screening. After applying an inclusion screening based
on title and abstract, 226 articles remained. From these,
further screening was made by including full text content,
excluding articles that did not describe a replicable teach-
ing intervention or an intervention that had overall been
attempted at least twice, articles that did not discuss CS1
or introductory programming courses, articles that did not
include pass-rates before or after the teaching intervention,
and articles that did not include the amount of students be-
fore or after the teaching intervention (or data from which
the numbers could be derived from). Finally, articles that
described previously reported results from another perspec-
tive and articles from which all results were included in sub-
sequent articles were excluded. The final number of articles
used for this study was 32.

2.3 Study Coding
From each article, the following data was extracted:

1. Article details: publication year, name, author(s).

2. Course and institution details.

3. Teaching intervention: year, semester, used practices.

4. Totals and percentages before and after teaching inter-
vention(s): n, pass, fail, withdraw, fail/withdraw.

All three authors performed extraction of details, at times
extracting details from the same articles more than once.
When conflicts occurred, the first author did an additional
review.

From the 32 articles, 60 data entries with information on
the amount of students as well as pass-rates before and af-
ter the intervention were extracted. When the intervention
was done on a separate section during the same semester,
the non-intervention and intervention results were paired. If
there were multiple sections, an average combining all sec-
tions from the same semester was used to reduce possible
instructor-related impact on the results. When results were
described from subsequent semesters, the pairs were formed
so that the pre-pair contained an average of all reported
semesters before the intervention, and each post-entry con-
tained details from one reported semester with the interven-
tion. If an article described combined results from multiple
institutions, it was included if the totals and percentages be-
fore and after the teaching intervention were included, and
that the teaching intervention was described in detail.

To utilize a comparable measure of success, the reported
totals and percentages in the articles were combined to de-
scribe a WDF-rate1, i.e. the rate of students that did not
withdraw, receive a D-grade2 and did not fail the exam. The
WDF-rate is a common measure used to describe course suc-
cess, and it provides a more realistic view on success due to
taking into account students that are not able to continue in
their studies (D-grade in some institutions), students that
fail in the exam, and students that withdraw from the course
before the exam. When the WDF-rate was not readily avail-
able and the calculation WDF-grade was not possible, we
chose the closest possible number assuming that the metric
was the same in both pre- and post-intervention details. In
this article, from now on we will use the term pass rate to
describe WDF-rate or the closest number available.

We acknowledge that some institutions use a grace pe-
riod during which students can drop out from the course
without any sanctions. Unfortunately, very few articles did
report such details, and thus it cannot be taken into ac-
count. Similarly, we acknowledge that the grading schema
and learning objectives vary among different universities;
unless otherwise noted in the articles, our assumption was
that the learning objectives and grading schema remained
similar between course instances, making the pre- and post-
intervention details comparable. Additionally, we did not
include demographic details or gender details into the study.

2.4 Classifying Teaching Interventions
Extracting teaching interventions was done in three phases.

In the first phase the articles were coded based on the inter-
vention types used. As an example, the article “Combining
Cooperative Learning And Peer Instruction In Introductory
Computer Science”[4] was coded with tags cooperative learn-
ing, student group work, team teaching, and undergraduate
teaching assistants. The coding reflects the content; the ar-
ticle discusses collaboration and cooperative learning as the
main activities, and the peer instruction discussed in the ar-
ticle describes the use of peer instructors, i.e. undergraduate
teaching assistants, not to be confused with Peer Instruction
by Eric Mazur. To give another example, the article“Experi-
ence Report: CS1 for Majors with Media Computation” [19]
was coded with tags media computation and peer instruc-
tion as the article mentions that “...one notable difference
between the courses was that the media computation course

1The acronym DFW was also visible in the literature; we
utilize the acronym WDF.
2Typically 40-49% of the overall course score.

20

was taught using Peer Instruction in lectures, and the tradi-
tional course was not...”. Although pair programming is also
used, it is not coded as it is used in both non-intervention
and intervention groups.

In the second phase, articles were supplemented with ad-
ditional, descriptive tags. For example, for each article that
was coded with the tag media computation, tags content:
media, contextualization, context: media, were added to de-
scribe that the content (material) of the course was updated
to contain media-type content, the course was contextual-
ized so that the content had more meaning to the students
that participated in the course, and finally, that the context
revolved around media. Similarly, for each article that was
coded with the tag peer instruction, tags interactive class-
room, student collaboration, reading before class, quizzes in
class, and collaboration in class were added. No limits were
set on the amount of tags that could be used as long as the
tags described the intervention properly. For example, an in-
tervention where a game-themed final project was added to
the course without additional modifications, the course was
not contextualized, but the content was updated to include
a game-theme component (tag content: game-theme).

Finally, in the third phase, equivalent or closely related
tags were combined, and the changes were reflected to the
article coding. At the end of the extraction phase, each
article had the majority of original tags as well as a set
of supplement tags that provided additional information on
the described teaching activities. In total, 40 different tags
remained after the combination phase, and each of the 60
data entries had on average 3.5 tags.

3. RESULTS
The results of the survey are analyzed from three different

viewpoints. First, in Section 3.1 an overview to the results
is provided, then in Section 3.2, the most common activi-
ties and their effect in the data are discussed, and finally in
Section 3.3, the teaching approaches are analyzed based on
a primary intervention type.

The results are considered in terms of realized improve-
ment, i.e. the absolute improvement divided by the poten-
tial, by which the room for improvement that varies between
different institutions is taken into account. For example, if
a pre-intervention pass rate were 70% and post intervention
pass rate were 85%, a potential change of 100-70 = 30% is
available for the intervention. Of this, 15/30 or 50% was re-
alized as the absolute improvement, or absolute percentage,
was 15%.

3.1 Descriptive Statistics
Table 1 contains descriptive statistics of the data. On

average, the pass rates before the intervention were 61.4%,
and after intervention 74.4%. Much variance in both pre-
and post-passrates exists; the smallest pass rate before in-
tervention was 22.6% and 36% after intervention, while the
largest pass rate was 94.2% before intervention, and 92.5%
after intervention. The studied student populations varied
also a lot. The smallest pre-intervention n was 15 students,
which was from a targeted intervention to at-risk students,
while the smallest post-intervention n was 9 students; the
intervention stragegy in the study was applied to a small
summer class. The largest number of students was 2298 be-
fore intervention, where the study reported data from past
16 iterations, and 1213 after intervention, which was from a

descriptive min max median mean sd (σ)

pass rate pre 22.6 94.2 63 61.4 15.5
pass rate post 36 92.5 74 74.4 11.7
students pre 15 2298 148 296.9 487.5
students post 9 1231 86 162.3 200.7

Table 1: Pass rates and study sizes before and after
teaching intervention.

study that reported aggregate results from multiple institu-
tions.

Five (8.3%) of the extracted data entries had a negative
outcome (the pass rates decreased), while in 91.7% of the
entries the intervention had at least a minor improvement
on the overall results. On average, before the intervention,
there was room for 38.4 percentage units of improvement,
while after the intervention there was room for 25.6 per-
centage units. In other terms, the interventions improved
the pass rates on average by 12.8 absolute percentage units,
the realized improvement being 33.3% or nearly one third.

3.2 Overall Intervention Effect
Table 2 contains ten most frequent tags and the realized

gains in the studies in which they appeared in. While the
intervention types cannot be compared with each others due
to overlapping, the table provides an overview of the realized
improvements over different studies. The intervention tags
encompass the following activities:

• collaboration: activities that encourage student collab-
oration either in classrooms or labs

• content change: at least parts of the teaching material
was changed or updated

• contextualization: activities where course content and
activities were aligned towards a specific context such
as games or media

• CS0 : the creation of a preliminary course that was to
be taken before the introductory programming course;
could be organized only for e.g. at-risk students

• game-theme: a game-themed component was intro-
duced to the course, e.g. a game-themed project

• grading schema: a change in the grading schema; the
most common change was to increase the amount of
points rewarded from programming activities, while
reducing the weight of the course exam

• group work : activities with increased group work com-
mitment such as team-based learning and cooperative
learning

• media computation: activities explicitly declaring the
use of media computation (e.g. the book)

• peer support : support by peers in form of pairs, groups,
hired peer mentors or tutors

• support : an umbrella term for all support activities,
e.g. increased teacher hours, additional support chan-
nels etc.

When considering the median improvement, the studies
that had media computation as one of the components were
most successful, while studies with a game-theme were the
least successful. Facilitating group work and collaboration,

21

intervention tag n min max median avg σ

collaboration 20 -1 59 39 34 17
content change 36 -17 69 34 34 17
contextualization 17 18 69 37 40 17
CS0 7 18 76 41 43 19
game-theme 9 -39 42 21 18 23
grading schema 11 3 42 30 29 12
group work 7 36 59 44 45 7
media computation 10 24 69 49 48 16
peer support 23 -1 59 36 34 16
support 9 -29 67 36 33 19

Table 2: Ten most common intervention tags and
the overall intervention effects of the studies in
which they appeared in. Number of studies includ-
ing the intervention denoted as n, realized pass rates
reported using minimum, maximum, median, aver-
age and standard deviation (σ) in percentages.

and creating a CS0 course were also among the high-perfor-
ming activities. While the effect of an intervention activity
depends naturally on other activities as well, a noticeable
amount of variance was observed even within similar setups.
The variance can be explained with the natural variance of
student populations over different semesters, student intake,
teacher effect, difference in grading criteria among differ-
ent institutions, and the difference with student workloads
among different institutions.

3.3 Primary Intervention Effect
Before comparing the impact of different interventions on

programming pass rates, it was first important to deter-
mine whether there existed any significant differences in the
pre-intervention pass rates of each intervention category, or
whether the courses which were included in this study all
had a comparable pre-intervention pass rate.

Grouping the 60 pre-intervention pass rates by the five
primary intervention categories, a one-way ANOVA was per-
formed. A Shapiro Wilk test confirmed the pass rates were
normally distributed for all groups (p > .05), with the excep-
tions of relatable content and contextualization (p = .01),
and hybrid approaches (p = .01). However as violations
from normality do not substantially affect the type I error
rate, and an ANOVA is considered relatively robust against
this violation, we proceeded. Homogeneity of variances was
confirmed by Levene’s test (p = .298). A one-way ANOVA
showed that there were no statistically significant differences
in pre-intervention pass rates for the five primary interven-
tion categories used in this study, F (4, 55) = 2.17, p =
.084. To ensure that the violation of normality had not im-
pacted the test result, we also performed a Kruskal-Wallis
test, which confirmed that there were no statistically signif-
icant differences between the pre-intervention pass rates of
each group, χ2(4) = 9.13, p = .18.

3.3.1 Collaboration and Peer Support
Approaches that include collaboration and peer support

include peer-led team learning activities [9], pair program-
ming activities [28] and cooperative and collaborative prac-
tices [4, 24]. Results are shown in Table 3. A total of
14 studies were classified as having applied an intervention,
which primarily consisted of moving towards a collaborative,

or peer support based approach. Three specific approaches
were identified: cooperative learning (3 courses), team based
learning (5 courses), and pair programming (6 courses). Out
of all the interventions that were explored in this study, co-
operative learning was found to yield the largest absolute
improvement in CS1 pass rates (25.7% on average), and
team based learning was found to yield the second largest
absolute improvement (18.1% on average). Despite being
frequently cited as an enabler for programming skills, the
pair programming approach was only found to yield a abso-
lute improvement of 9.6% on average, and ranked 11 out of
the 13 interventions that were explored by this study. It was
possible that courses to which this intervention was applied
already had good pass rates, and therefore there was little
scope for absolute improvement. When considering realized
changes, we note that on average, pair programming yielded
a realized increase of 27% in pass rates, but overall, this
approach was still ranked 11th out of the 13 interventions
which were explored by this study. Considering the results
of all 14 courses combined, we found that instructors who
applied a collaborative or peer support based intervention
generally received the largest improvements in pass rates
when compared to the other groups examined in this study
(16.1% improvement, realized change 34.3%). A possible ex-
planation is that the continuous feedback and cooperation
from peers acts as an enabler for programming skills, sup-
plementing feedback received from the compiler, which is
not always at a sufficient level for inexperienced students to
comprehend.

3.3.2 Bootstrapping
Bootstrapping practices either organized a course before

the start of the introductory programming course [20, 7]
or started the introductory programming segment using a
visual programming environment such as Scratch and Al-
ice [11]. Some of the activities were also targeted at at-
risk students [16]. Results are shown in Table 4. A to-
tal of 9 studies were classified as having applied such an
intervention. Two specific approaches were identified: us-
ing visual programming tools such as Scratch or Alice (5
courses), and introducing CS0 (4 courses). Out of all the
interventions that were explored in this study, using visual
programming tools were found to yield the fifth largest ab-
solute improvement in pass rates (17.3% on average). A
similar high ranking was found when considering realized
improvement (fourth, 38.6%), which positioned using visual
programming tools as the fourth overall best intervention.
Whilst the absolute improvement for courses that introduced
CS0 was much lower than visual programming (10.5% in-
crease), the realized change that was yielded by this inter-
vention was comparable (34.9% increase). Considering the
results of all 9 courses combined, we found that instructors
who applied a bootstrapping intervention generally received
the second largest improvements in pass rates when com-
pared to the other groups examined in this study (absolute
change 14.3%, realized change 37.0%). It is possible that
the initial simplification offered by these forms of interven-
tion are able to assist students who might otherwise fail CS1,
by suppressing the syntax barrier until they have gained suf-
ficient knowledge of the underlying concepts. This also ties
into research on threshold concepts, which suggested that
reducing the level of complexity initially may be an effective
way to assist students in overcoming thresholds.

22

3.3.3 Relatable Content and Contextualization
Approaches that introduced relateable content sought to

make programming more understandable to students. These
approaches include Media Computation [21], introducing
real world projects [5] as well as courses that evolve around
games [1]. Results are shown in Table 5. A total of 14 stud-
ies were classified as having applied an intervention, which
primarily consisted of using relatable content and contex-
tualization as a means to improve CS1 pass rates. Two
specific approaches were identified: media computation (7
courses), and gamification (7 courses). Out of all the in-
terventions that were explored in this study, using media
computation was found to yield the seventh largest abso-
lute improvement in pass rates (14.7% on average), and a
comparable improvement was found for gamification (10.8%
on average). However, when considering realized changes,
media computation was found to yield the largest realized
change across all interventions explored in this study (50.1%
increase), whereas gamification was found to only yield the
tenth largest (27.4% increase). Overall, and considering the
results of all 14 courses combined, we found that instructors
who applied a relateable content or contextualization inter-
vention generally received the third largest improvements in
pass rates when compared to the other groups examined in
this study (absolute change 11.6%, realized change 38.7%).
As media computation (overall rank 2) considerably outper-
formed gamification (overall rank 10), it could be the case
that whilst games provide a useful tool to contextualize a
learning task, there are still fundamental underlying pro-
gramming concepts that can be better served by adopting a
media computation approach.

3.3.4 Course Setup, Assessment, Resourcing
Approaches that modify course setup, assessment and re-

sourcing included a broad range of practises starting from
adjusting course content based on data from an assessment
system [18], introducing new content, a programming tool
that provides additional support and changing the grading
schema assessment [15, 12]. Results are shown in Table 6.
A total of 15 studies were classified as having applied an
intervention which primarily consisted of changing aspects
of the course setup, rather than changing elements of the
teaching approach. Three specific approaches were iden-
tified: changing class size (4 courses), improving existing
resources (2 courses), and changing assessment criteria (9
courses). Overall, the largest absolute improvements in pass
rates were found by changing the class size (17.8% improve-
ment) and improving existing resources (17.5%). However,
when considering these improvements relatively, they were
among the five worst interventions found by this study. Sim-
ilarly, making changes to the assessment criteria applied in
the course yielded on average an absolute improvement of
10.1% and realized improvement of 22.5%. But when con-
sidering these changes against the other 13 interventions ex-
plored by this study, changing assessment criteria ranked
12th. Considering the results from all 15 courses combined,
we found that instructors who applied an intervention based
on course setup generally yielded the fourth largest improve-
ments in pass rates when compared to the other groups
(absolute change 13.4%, realized change 26.8%). The find-
ings on changing class size to improve pass rates are con-
sistent with previous studies [3] that have suggested that
smaller classes generally have lower failure rates than larger

ones. However, overall, it is possible that this group of in-
terventions were ranked as one of the lowest because making
changes to the course setup, such as the assessment criteria,
do nothing to adjust the likelihood of a student overcoming
thresholds understanding programming concepts.

3.3.5 Hybrid Approaches
Hybrid approaches are approaches that upon discussion

were not included in any of the primary categories. These
include combinations of different practices [19, 14, 8]. Re-
sults are shown in Table 7. A total of 8 studies were classified
as having applied an intervention, which primarily consisted
of combining several different teaching interventions to yield
a hybrid approach. Three combinations were identified: me-
dia computation with pair programming (2 studies), extreme
apprenticeship (3 courses), and collaborative learning with
relateable content (e.g. games) (3 courses). Overall, com-
bining media computation with pair programming, or adopt-
ing an extreme apprenticeship approach were found to yield
mid-range improvements in pass rates, ranging from 13.5-
16.5% in absolute terms, or 36.9-49.3% in realized terms.
These approaches were ranked fifth and seventh among the
overall 13 interventions that were explored in this study.
However, combining collaborative learning with content was
found to be the worst overall intervention, actually yielding
a decrease in pass rates of 9.7%, or 53.7% in realized terms.
However, we note that some of the courses, which switched
to this approach already had a very high pass rate (> 90%),
and therefore the scope for improvement was minimal.

3.3.6 Comparing Primary Interventions
The final question, which remained from this study, was to

determine whether there were any significant differences in
the post-pass rates of studies that applied different types
of interventions. Grouping the 60 post-intervention pass
rates by the five primary intervention categories, a one-
way ANOVA was performed. A Shapiro Wilk test con-
firmed the pass rates were normally distributed for all in-
tervention groups (p > .05) and homogeneity of variances
was confirmed by Levene’s test (p = .487). A one-way
ANOVA showed no statistically significant differences in the
post-intervention pass rates for the five primary intervention
groups of this study, F (4, 55) = 2.02, p = .105. Similarly,
a Tukey post-hoc analysis revealed no significant pairwise
differences in post-intervention pass rates. This suggests
that whilst substantial improvements in pass rates can be
achieved by applying different interventions, the overall pass
rates after applying different types of intervention are not
substantially different.

4. DISCUSSION
The interventions reported in the literature increase in-

troductory programming course pass rates by one third on
average. A large part of the reported interventions increase
student and teacher collaboration and update the teaching
material and content in an attempt to make the content
more relatable to the students. Support is facilitated in
many ways; one approach is recruiting peer tutors that help
students as they are working, while another approach is to
build a CS0-course which acts as a bridge to the program-
ming studies. Some interventions also changed the grading
schema, which is known to affect students’ behaviour. What
may be missing however, are the reports on interventions

23

Absolute Change Realized Change
Intervention Courses Mean SD Rank Mean SD Rank Overall
Cooperative 3 25.7 3.8 1 / 13 47.7 10.0 3 / 13 1 / 13
Team Based 5 18.1 11.6 2 / 13 35.0 12.3 6 / 13 3 / 13
Pair Programming 6 9.6 10.1 12 / 13 27.0 23.7 11 / 13 11 / 13
Overall Intervention 14 16.1 16.1 1 / 5 34.3 18.6 3 / 5 1 / 5

Table 3: Improvements in Pass Rates for Courses which applied Collaborative and Peer Support Interventions

Absolute Change Realized Change
Intervention Courses Mean SD Rank Mean SD Rank Overall
Scratch and Alice 5 17.3 18.7 5 / 13 38.6 30.8 4 / 13 4 / 13
CS0 4 10.5 4.4 10 / 13 34.9 9.5 7 / 13 9 / 13
Overall Intervention 9 14.3 12.9 2 / 5 37.0 20.3 2 / 5 2 / 5

Table 4: Improvements in Pass Rates for Courses which applied Bootstrapping

Absolute Change Realized Change
Intervention Courses Mean SD Rank Mean SD Rank Overall
Media Computation 7 14.7 5.4 7 / 13 50.1 18.9 1 / 13 2 / 13
Games 7 10.8 6.0 9 / 13 27.4 8.3 10 / 13 10 / 13
Overall Intervention 14 12.7 11.6 4 / 5 38.7 18.3 1 / 5 3 / 5

Table 5: Improvements in Pass Rates for Courses which applied Relatable Content and Contextualization

Absolute Change Realized Change
Intervention Courses Mean SD Rank Mean SD Rank Overall
Class Size 4 17.8 16.6 3 / 13 34.0 43.2 8 / 13 6 / 13
Resource Improvement 2 17.5 2.8 4 / 13 32.1 5.2 9 / 13 8 / 13
Assessment 9 10.5 9.9 11 / 13 22.5 19.4 12 / 13 12 / 13
Overall Intervention 15 13.4 18.8 3 / 5 26.8 27.4 4 / 5 4 / 5

Table 6: Improvements in Pass Rates for Courses which applied Course Setup Interventions

Absolute Change Realized Change
Intervention Courses Mean SD Rank Mean SD Rank Overall
Media Computation with
Pair Programming

2 13.5 5.4 8 / 13 49.3 0.2 2 / 13 5 / 13

Extreme Apprenticeship 3 16.5 1.9 6 / 13 36.9 4.2 5 / 13 7 / 13
Collaboration with Games 3 -9.7 12.2 13 / 13 -53.7 67.9 13 / 13 13 / 13
Overall Intervention 8 6.0 13.2 5 / 5 6.0 61.6 5 / 5 5 / 5

Table 7: Improvements in Pass Rates for Courses which applied Hybrid Learning Approaches

24

that did not yield an improvement. Thus, educators that
have tried an intervention but received poor results should
also be encouraged and supported in reporting the results
to create a more stable picture of the field.

Whilst no statistically significant differences between the
effectiveness of the teaching interventions were found, margi-
nal differences between approaches exist. The courses with
relatable content (e.g. using media computation) with coop-
erative elements (e.g. pair programming) were among the
top performers with CS0-courses, while courses with pair
programming as the only intervention type and courses with
game-theme performed more poorly when compared to oth-
ers. However, these interventions were still able to improve
pass rates by a minimum of 10%, suggesting that although
they were not as strong as the other interventions in this
study, they were still beneficial when compared to the tra-
ditional lecture and lab approach they replaced. Do note
however, that many of the interventions did combine prac-
tices together, and e.g. the effect of a possible change in
teaching material may be left unreported.

Nevertheless, the data confirms that educators and re-
searchers are making a difference when trying out new teach-
ing interventions and pedagogical approaches. One of the
common denominator among all the interventions is change,
while the other side of the coin – the “past situation” – may
often be a state of complacency.

4.1 Related Work
While no such review exists from the field of introductory

programming, many reviews on the influences of teaching
approaches exist from other fields. The most notable one,
a synthesis of 800 meta-analyses on teaching and achieve-
ment in schools by John Hattie [6], combines the results of
multiple meta-analyses to form a picture of the efficiency
of different teaching approaches. Although the results from
Hattie’s study are from schools, they provide an additional
viewpoint to our findings. As an example, while collabora-
tive and cooperative approaches were among the most effec-
tive approaches in this study, in schools the practices that
require cooperation are above average in efficiency but in-
crease in efficiency as students get older [6]. Similarly, peer
tutoring in schools is not as efficient as in our study, which
further provides support on the suggestion that the ability
to support others and work in teams increases with age.

While many of the effects observed by Hattie were re-
lated to the teacher, such as the teacher clarity and instruc-
tional quality, little focus was on these aspects. The closest
matches from our tagging are different feedback approaches
and improving the course content; the first is also a part of
the collaborative approaches.

4.2 Limitations
As the results presented in this article are derived from

a synthesis of the results from other articles, a number of
validity concerns, including the justification of the synthesis
approach, can be raised which are discussed in this section.

Firstly, the teaching approaches that were used prior to
the intervention were rarely explicitly stated in a very de-
tailed fashion. For the most part, it was implied from the
articles that the current approach was one based upon a
traditional lecture and lab based approach. It is possible
that in some cases important details were not reported in
the articles, and thus were missed in the encoding process.

Similarly, the learning objectives of the introductory pro-
gramming courses were not considered for this study.

Secondly, the soundness of the teaching intervention de-
sign and experiments were not judged, and e.g. the qual-
ity of the used teaching material was not considered. It is
likely that some interventions were implemented and exe-
cuted better than others, which may lead to an imbalance
in the results. Thus, one should not refrain from trying out
the approaches that didn’t seem to work.

Thirdly, the final number of selected articles, n = 32
is low, especially when considering that introductory pro-
gramming courses have been studied for decades. A major
concern in our case is the possibility of selective reporting.
As only 8.3% of the studies contained negative results, it
is possible that interventions with negative results have not
often been reported. To counter this, we explored sources
of gray literature via generalized searches, but our efforts
were largely unsuccessful. The tendency to only encounter
results for studies where an intervention has been successful
however is a common limitation of systematic reviews.

Fourthly, whilst the results suggest that almost any planned
intervention improves the existing state, the results have
been gathered from studies that study university-level in-
troductory programming courses. Further analysis should
be performed when applying the results in other contexts to
verify whether such approaches can yield similar improve-
ments in pass rates at all levels of education.

Fifthly, the possible teacher effect and the effect of differ-
ent student populations among different institutions is not
taken into account. This is a deliberate choice due to the
small amount of final articles.

Sixth, the choice for primary interventions and the tag-
ging methodology has an inherent limitation as many of the
studies had more than one intervention. Thus, the results
shown here depend on the used classification, and different
classification approaches may yield different results.

Finally, we note the unavoidable limitation that the as-
sessment criteria of the individual courses were not the same
over all data entries. Studies within the UK generally de-
fined ’pass rate’ as consisting of those students who had
scored over 40% in the course. However, other studies de-
fined ’pass rate’ as consisting of those students who had
scored at least a ’C’, and others defined ’pass rate’ as con-
sisting of those students who had scored anything apart from
an ’F’. Other studies did not supply details at all. Therefore
this study unavoidably has to assume that a consistent no-
tion of ’pass rate’ exists and holds valid across the different
teaching contexts. However, we note that this is a common
limitation of other studies of this nature (e.g. [3, 25]).

5. CONCLUSION
In this article, we performed a quantitative systematic re-

view on articles describing introductory programming teach-
ing approaches, and provided an analysis of the effect that
various interventions can have on the pass rates of intro-
ductory programming courses. While the total amount of
articles was relatively low, a total of 60 pre-intervention
and post-intervention pass rates, describing thirteen differ-
ent teaching approaches, were extracted and analyzed.

The results showed that on average, teaching interven-
tions can improve programming pass rates by nearly one
third when compared to a traditional lecture and lab based
approach. While no statistically significant differences be-

25

tween the effectiveness of teaching interventions were ob-
served, marginal differences do exist. The courses with re-
latable content (e.g. using media computation) with cooper-
ative elements (e.g. pair programming) were among the top
performers with CS0-courses, while courses with pair pro-
gramming as the only intervention type and courses with
game-theme performed more poorly when compared to oth-
ers.

What the results of this analysis mean in practice, is that
educators and researchers that are applying teaching inter-
ventions are making a difference. Whilst there is no silver
bullet, no teaching approach works significantly better than
others, a conscious change almost always results in an im-
provement in pass rates over the existing situation.

6. REFERENCES
[1] J. D. Bayliss. The effects of games in CS1-3. In

Microsoft Academic Days Conference on Game
Development in Computer Science Education, pages
59–63. Citeseer, 2007.

[2] M. Ben-Ari. Constructivism in computer science
education. In SIGCSE bulletin, volume 30, pages
257–261. ACM, 1998.

[3] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. SIGCSE Bulletin,
39(2):32–36, 2007.

[4] J. D. Chase and E. G. Okie. Combining cooperative
learning and peer instruction in introductory computer
science. SIGCSE Bulletin, 32(1):372–376, Mar. 2000.

[5] N. De La Mora and C. F. Reilly. The impact of
real-world topic labs on student performance in CS1.
In Proc. Frontiers in Education, pages 1–6. IEEE,
2012.

[6] J. Hattie. Visible learning: A synthesis of over 800
meta-analyses relating to achievement. Routledge,
2013.

[7] M. Haungs, C. Clark, J. Clements, and D. Janzen.
Improving first-year success and retention through
interest-based CS0 courses. In Proc. SIGCSE, pages
589–594. ACM, 2012.

[8] J. Kurhila and A. Vihavainen. Management,
structures and tools to scale up personal advising in
large programming courses. In Proc. SIGITE, pages
3–8. ACM, 2011.

[9] P. Lasserre and C. Szostak. Effects of team-based
learning on a cs1 course. In Proc. ITiCSE, pages
133–137. ACM, 2011.

[10] I. Milne and G. Rowe. Difficulties in learning and
teaching programming - views of students and tutors.
Educ. and Information Technologies, 7(1):55–66, 2002.

[11] P. Mullins, D. Whitfield, and M. Conlon. Using alice
2.0 as a first language. Journal of Computing Sciences
in Colleges, 24(3):136–143, 2009.

[12] U. Nikula, O. Gotel, and J. Kasurinen. A motivation
guided holistic rehabilitation of the first programming
course. Trans. Comput. Educ., 11(4):24:1–24:38, Nov.
2011.

[13] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. In SIGCSE Bulletin, volume 39, pages
204–223. ACM, 2007.

[14] L. Porter and B. Simon. Retaining nearly one-third
more majors with a trio of instructional best practices
in CS1. In Proc. SIGCSE, pages 165–170. ACM, 2013.

[15] D. Radošević, T. Orehovački, and A. Lovrenčić. New
approaches and tools in teaching programming. In
Proc. of Central European Conference on Information
and Intelligent Systems, pages 49–57, 2009.

[16] M. Rizvi and T. Humphries. A scratch-based cs0
course for at-risk computer science majors. In Proc.
Frontiers in Education, pages 1–5. IEEE, 2012.

[17] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137–172, 2003.

[18] S. C. Shaffer and M. B. Rosson. Increasing student
success by modifying course delivery based on student
submission data. ACM Inroads, 4(4):81–86, Dec. 2013.

[19] B. Simon, P. Kinnunen, L. Porter, and D. Zazkis.
Experience report: CS1 for majors with media
computation. In Proc. ITiCSE, pages 214–218. ACM,
2010.

[20] R. H. Sloan and P. Troy. CS 0.5: A better approach to
introductory computer science for majors. SIGCSE
Bulletin, 40(1):271–275, Mar. 2008.

[21] A. E. Tew, C. Fowler, and M. Guzdial. Tracking an
innovation in introductory CS education from a
research university to a two-year college. In Proc.
SIGCSE, pages 416–420. ACM, 2005.

[22] I. Utting, A. E. Tew, M. McCracken, L. Thomas,
D. Bouvier, R. Frye, J. Paterson, M. Caspersen,
Y. B.-D. Kolikant, J. Sorva, and T. Wilusz. A fresh
look at novice programmers’ performance and their
teachers’ expectations. In Proc. ITiCSE Working
Group Reports, pages 15–32. ACM, 2013.

[23] A. Vihavainen. Predicting students’ performance in an
introductory programming course using data from
students’ own programming process. In Proc. ICALT,
pages 498–499. IEEE, 2013.

[24] H. M. Walker. Collaborative learning: a case study for
CS1 at grinnell college and austin. In SIGCSE
Bulletin, volume 29, pages 209–213. ACM, 1997.

[25] C. Watson and F. W. Li. Failure rates in introductory
programming revisited. In To appear in Proc.
Innovation and Technology in Computer Science
Education (ITiCSE). ACM, 2014.

[26] C. Watson, F. W. Li, and J. L. Godwin. Predicting
performance in an introductory programming course
by logging and analyzing student programming
behavior. In Proc. ICALT, pages 319–323. IEEE, 2013.

[27] C. Watson, F. W. Li, and J. L. Godwin. No tests
required: comparing traditional and dynamic
predictors of programming success. In Proc. SIGCSE,
pages 469–474. ACM, 2014.

[28] L. Williams, C. McDowell, N. Nagappan, J. Fernald,
and L. Werner. Building pair programming knowledge
through a family of experiments. In Proc. Empirical
Software Engineering, pages 143–152. IEEE.

APPENDIX

Due to space limitation and to serve as a starting point
for future researchers, a list of 32 references is provided at
http://bit.ly/1qkb8GI.

26

Publication I.2

I.2

Arto Vihavainen, Matti Paksula, and Matti Luukkainen

Extreme Apprenticeship Method in Teaching Programming for
Beginners

In Proceedings of the 42nd ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’11)

Copyright c©ACM New York, NY, USA 2011
http://dx.doi.org/10.1145/1953163.1953196

Reprinted with permission.

Extreme Apprenticeship Method in Teaching Programming
for Beginners

Arto Vihavainen, Matti Paksula and Matti Luukkainen
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ avihavai, paksula, mluukkai }@cs.helsinki.fi

ABSTRACT
Learning a craft like programming is efficient when novices
learn from people who already master the craft. In this pa-
per we define Extreme Apprenticeship, an extension to the
cognitive apprenticeship model. Our model is based on a set
of values and practices that emphasize learning by doing to-
gether with continuous feedback as the most efficient means
for learning. We show how the method was applied to a CS
I programming course. Application of the method resulted
in a significant decrease in the dropout rates in comparison
with the previous traditionally conducted course instances.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education Computer Science Education

General Terms
Design, Human Factors

Keywords
cognitive apprenticeship, course material, continuous feed-
back, instructional design, programming education, motiva-
tion, best practices, learning by doing

1. INTRODUCTION
Teaching programming is hard. Lots of research from

many different perspectives has been devoted to the topic
during the past couple of decades (see eg. [23, 21]), but
there is still no consensus on what is the most effective
way to teach programming. Most universities are still us-
ing a traditional format in the introductory programming
courses (CS I courses). The traditional format consists of
lectures, take-home assignments and perhaps also demo ses-
sions where model solutions to the exercises are shown (see
eg. [7, 24]). Lectures tend to be structured according to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

the language constructs, rather than the more general ap-
plication strategies. This approach is used despite various
research results [31, 23, 25] indicating that the problem is
not to learn the syntax or semantics of individual language
constructs, but to master the process on how to combine
constructs to meaningful programs.

The language constructs introduced in lectures are typ-
ically applied in programming exercises. With very little
support to the programming process, doing exercises is hard
for part of the student population [7, 24], to those who in
the literature are characterized as stoppers [22] or ineffec-
tive novices [23]. Many of these end up dropping the course
due to not being able to solve problems and therefore feel-
ing inadequate. Another problem of take-home exercises is
that students may learn bad work habits from solving the
problems by themselves.

The context in which students do exercises themselves can
be regarded as a minimally guided environment. It is well
known in educational psychology (see e. g. [20]) that, due
to the nature of human cognitive architecture, a minimally
guided approach is not optimal for novices learning a cogni-
tively challenging task, such as programming.

In this paper we will describe a variation of Cognitive Ap-
prenticeship called Extreme Apprenticeship that has a strong
emphasis on guided programming exercises. We also report
the experiences from its first application at the University
of Helsinki Department of Computer Science.

2. PEDAGOGICAL BACKGROUND
The dropout rates of introductory programming courses

tend to be high1, so it is quite evident that the traditional
approach shoud be improved.

One of the most interesting approaches in programming
instruction is Cognitive Apprenticeship Model [9, 10], where
the focus is on the process rather than just on the end prod-
ucts. Cognitive Apprenticeship also puts a heavy emphasis
on optimizing coaching and guidance available to the stu-
dents.

Numerous studies have shown that both the motivation
and the comfort level of students have a remarkable effect
on learning [5]. Cognitive Apprenticeship already has many
ingredients to boost both, but also the role of programming
exercises is remarkable.

1E.g. in University of Helsinki the long term average drop-
out rate has been c.a. 45 %.

93

2.1 Cognitive Apprenticeship
The Cognitive Apprenticeship Model has recently had ma-

ny applications in teaching programming with positive re-
sults (see e. g. [1, 6, 8, 16]). The model is based on the an-
cient model of apprenticeship education where a profession
is learned while working under the guidance of a senior mas-
ter. Traditionally the apprenticeship model has been mostly
applied in context of learning professions that require phys-
ical skills such as shoe making. In Cognitive Apprenticeship
the emphasis is more on acquiring cognitive skills.
The key observation in Cognitive Apprenticeship is that

when teaching novices, masters of a skill do not usually take
into account the complex process that leads to end products
[9, 10]. As stated previously this is far too common also in
teaching programming.
Cognitive Apprenticeship divides instruction into three

stages: modeling, scaffolding and fading. In the modeling
stage the teacher gives students a conceptual model of the
process, with which an expert performs the task under study.
One effective way of modeling is to base the lectures on
worked examples [8] instead of concentrating on language
structures. A worked example shows e.g. completion of a
programming task from start to finish. While completing
the task, the teacher is thinking aloud all the time, explain-
ing the decisions made during the process.
After the modeling stage, students move to the scaffolding

stage. Typically this means that the students are exposed
to exercises that are made under the guidance of an expe-
rienced instructor. Scaffolding refers to the way support is
given to the students. The key idea is that students are not
given straight answers, but rather just enough hints to be
able to discover the answers to their questions themselves.
Scaffolding is based on Vygotsky’s idea that learning is most
efficient when a student is given just enough information
that is enough to boost the student’s ability to finish the
task [27].
When the student starts to master a task by himself, the

scaffolding should be dismantled. This is the fading stage of
apprenticeship learning.
The Apprenticeship-based approach to learning program-

ming seems to be advocated also by the Agile and Software
Craftsmanship people in the industry, such as Robert Mar-
tin who has stated that ”Software is a craft that takes years
to learn, and more years to master. The only way to prop-
erly learn the craft is to be taught at the side of a master”
[19]. Martin calls for apprenticeship-type mentoring to the
software industry, where the recently graduated apprentices
would work in a software project context with constant in-
teractive guidance by journeymen and masters.

2.2 The roles of programming exercises
Somewhat surprisingly the applications of Cognitive Ap-

prenticeship to programming instruction have not had much
emphasis on the role of programming assignments. It seems
evident that the exercises are crucial in learning program-
ming, and there also exists empirical data to support this
fact [12].
The Active Learning [14]-based methods (eg. [28, 11]) do

raise the programming activity of students to a big role, but
seem to still stress collaborative aspects more than individ-
ual effort.
Programming exercises can have an even more important

role than just applying the theory taught in lectures, as

Roumani [24] stated ”we think of them (assignments) as
teaching instruments that complement lectures by teaching
the same material but in an exploratory fashion”.

In addition to being an important learning instrument,
programming exercises have a huge impact on the motiva-
tion of the students. It is well known that the level of mo-
tivation correlates positively to success in learning [15, 18].
Empirical evidence for this exists also from the field of pro-
gramming instruction [5].

It has especially been shown that students who are per-
forming activities for the activities themselves, i.e., intrin-
sically motivated students perform better than those who
seek extrinsic rewards [17]. Giving too difficult program-
ming assignments is a certain way to kill the motivation of
weaker students, but suitably challenging and relevant ex-
ercises with short-term goals that students can achieve are
known to raise intrinsic motivation [17, 26, 18].

The way students get instructional feedback also has an
effect on their motivation. Talking with students about their
solutions and problem solving strategies while giving them
hints on how to improve them is known to have a positive
impact on student motivation [18], so from the motivation
point of view, the type of programming exercises and the
guidance available when solving exercises are crucial for the
effectiveness of the scaffolding phase in the apprenticeship
type of instruction.

Besides motivation, the comfort level of a student has been
shown to have a remarkable impact on learning (see eg. [5,
30, 29]. Their comfort level incorporates students orien-
tation to themselves (self-esteem) and judgement of their
capabilities to execute the required tasks (self-efficiency) [2,
5]. According to Bandura [2], the most important source of
self-efficiency is the student’s evaluation of the outcomes of
his attempts to perform activities. Thus, suitable exercises
with proper guidance and feedback are an essential tool for
building students’ comfort levels.

3. EXTREME APPRENTICESHIP METHOD
One of the ideas in Extreme Programming [4] is to take a

group of software development best practices and take those
to the extreme levels. For example, in order to improve the
quality of written code, development teams should have code
reviews. In Extreme Programming this practice becomes
integrated as a technique called pair programming where
the practice is taken to an extreme level: code is written
under constant reviewing.

We took a similar approach in teaching of programming
where we constructed our method on top of the Cognitive
Apprenticeship model. Especially the scaffolding stage of
the model is stressed.

Extreme Apprenticeship Method
The following values are stressed during all the course ac-
tivities:

• Learning by doing. The craft will only be mastered
by actually practicing it.

• Continuous feedback. Continous feedback must be
implemented in both directions. The student receives
multi-level feedback from his progress and instructors,
and the instructor receives feedback by monitoring the
students progress and challenges.

94

• No compromise. The skills to be learned are prac-
ticed as long as it takes for each individual.

• An apprentice becomes a master. The ultimate
goal of instruction should be that the student will even-
tually become the master.

The values above induce a set of the following practices
that are applied in actual course implementation:

• Avoiding tons of preaching. Since the effectiveness
of lectures in teaching programming is questionable,
the lecturing should cover only the bare minimum to
get started with exercises.

• Relevant examples. Topics covered in the lectures
have to be relevant for the exercises.

• Start early. Exercises start right after the first lec-
ture of the course. During the first weeks of the course
all the students are already solving an extensive amount
of simple exercises. This gives all the students a strong
routine of code writing and a motivation boost right
at the start of the course.

• Help available. Exercises are completed in a lab in
the presence of instructors who are offering the scaf-
folding style of guidance.

• Small goals. Exercises are split into small parts with
clearly set intermediate goals.

These small intermediate steps guarantee that students
feel that they are learning and making progress all the
time.

• Exercises are mandatory. Since the exercises are
the main instrument in learning, the majority of the
exercises are mandatory for all the students.

• Train the routine. The amount of exercises should
be high and to some extent repetitive in their nature.

• Clean guidelines. Exercises have to provide clear
starting points and structures on how to start solving
the task.

• Encourage to look for information. While do-
ing the exercises students are also required to find out
things that are not covered during the lectures.

4. APPLYING THE METHOD
The method was applied in introductory programming

courses at the Department of Computer Science at the Uni-
versity of Helsinki. For administrative purposes the one
semester CS I introductory Java programming course is given
in two separate parts. The courses Introduction to Pro-
gramming and Advanced Programming are taught as sep-
arate units where Advanced programming further deepens
the knowledge built during the Introduction to programming
course. Both parts last 6 weeks, totalling the length of one
semester.
Introduction to programming covers assignment, expres-

sions, terminal input and output, basic control structures,
classes, objects, methods, arrays and strings. Advanced pro-
gramming concentrates on advanced object oriented features
such as inheritance, interfaces and polymorphism, and famil-
iarizes students with the most essential features of Java API,
exceptions and file I/O.

4.1 Study material and lectures
The study material and lectures play a key role in the

modeling phase in teaching the skills to be learned. On the
other hand, as programming is a craft, it requires plenty of
practice.

In order to avoid tons of preaching we reduced the number
of lectures from the usual 5 hours per week to just 2 hours.
Lectures and the supporting material did not even try to
cover every detail of the language. Rather only the required
overview for the exercises was given and students were sup-
ported and encouraged to look for information themselves.

All the material shown in the lectures was available to
students on-line. The material was a web page, written
in book-like format. The material followed the structure
of exercises, allowing students to read the material as they
proceeded with the exercises, providing scaffolding for the
actual process of learning by doing.

In the material and lectures all the constructs were always
presented with relevant examples from the point of view of
exercise solving. This allowed students to remember that the
programming tasks in exercises were often just variations of
the examples shown in the lectures.

In addition to knowing a collection of language constructs,
problem-solving skills are needed in programming. In the
material and the lectures the main idea was to give worked
examples, not just to show working code or show direct an-
swers, but to demonstrate step by step how a solution could
be devised for a problem. This approach helped students to
identify good ways of solving programming problems already
during the lectures.

4.2 Exercises
It is expected that students use most of the time they

devote to the course in active solving of programming exer-
cises. This trains the routine and gives a constant feeling
of success by achieving small goals. The exercises espe-
cially in the beginning of the course were aimed to build
up programming routines and confidence, partly motivated
by the Software Craftsmanship community’s idea of Code
Katas, which are small exercises which help programmers
to improve their skills through practice and repetition. As
Corey Heines puts it ”practising the solution to a Kata un-
til the steps and keystrokes became like second nature, and
you could do them without thinking. In this way, you can
internalize the process/technique you are practicing until it
is under your fingers” [13].

For each week we introduced a set of new exercises, an
amount ranging from 15 to almost 40. Most of the initial
exercises were small, like ”output numbers from 1 to 99”.
Sequentially done small exercises combined as bigger pro-
grams. This approach in composing bigger programs showed
students how to split a big task to smaller sub-tasks – a vital
skill in programming.

The exercise difficulty was worked out to be incremental.
The first ones of the weekly exercises were used to ”warm
up” students, providing the first small goals to get started
and keeping students in their comfort level.

Each task had a short textual description of the expected
behavior of the program. Two additional implementations
of technical scaffolding were also introduced: Output- and
Main-driven Programming. These two techniques provided
additional support for the student.

95

Output-driven Programming

Similarly to Test-driven Development [3] where the unit test
for the code is implemented first, our exercises showed the
output of the program that the student was supposed to
match with his implementation. A typical exercise looked
like this:

"Write a program that asks user’s name and then
outputs it"

Give your name: Matti

Hello, Matti!

This allowed students to understand the textual descrip-
tion of the task better. The expected output also allowed
students to verify that their program is working correctly
and the small goal is achieved.
The expected output can also provide additional hints for

structuring the program. An example of this is shown in the
next example.

"Write a program that reads a number from the user.
The program checks if the range of the number is
between 0 and 100."

Give a number: -2
Please give a number between 0 and 100!

Give a number: 102
Please give a number between 0 and 100!

Give a number: 2
Thank you!

From the above output it is possible to determine required
parts and their behaviors, providing a starting point for the
implementation: the output suggests that there is some kind
of loop in the program code combined with reading and con-
ditions.

Main-driven Programming

Later when the tasks became more complicated Main-driven
Programming, an extension of Output-driven Programming,
was introduced. We gave a small testing program that could
be inserted into the main method of a Java program.
In the next example the task is to design a TravelCard-

class, which would have an owner and balance.

Copy this to your main-method:

TravelCard artosCard = new TravelCard("Arto");
System.out.println(artosCard);

Expected output:

Owner Arto, balance 0.0 euros

To complete this task the student has to create a new
class named TravelCard and figure out how to implement
a toString()-method and required attributes for the class.
This ensures on some level that the structure in the final
program will be good.

4.3 Exercise Sessions
Exercise sessions were organized in computer labs where

students worked to solve the exercises. Help was continu-
ously available during the exercise sessions in the form of

teachers and teaching assistants, e.g. the instructors. Any-
one could enter the class without having to reserve a specific
slot. Every week had 8 hours of exercise sessions, and stu-
dents could attend as many sessions as needed.

An important principle in our approach was that the pro-
gramming started as early as possible. The first exercise
session was right after the starting lecture of the course. For
the first week the students already had 30 small exercises.
Due to the guidance available in exercise sessions even those
with no previous experience of programming managed well
with the start early approach: 88% of the students finished
over 25 exercises during the first week. The quick and en-
couraging start raised the self-confidence and comfort level
of students, and also had an immense effect on their moti-
vation.

In order to enforce good programming habits, students
had to have their finished solutions accepted by the instruc-
tors. If an instructor noticed a flaw in the approach (bad
naming or indentation, too complex solution logic for the
problem, etc.), he pointed it out, and the student had to
redo parts of the exercise. In general we allowed no compro-
mises in the solutions of students. This way, each student
refined their solutions to the point where the solutions could
be passed as ”model answers”.

4.4 Continuous Feedback
During the course we implemented continuous feedback to

provide fast evaluation and a continuous feeling of progress
for the students. During the exercise sessions students re-
ceived positive reinforcement in the form of instructors that
were aiding them forward.

If a student did not have specific questions during the ex-
ercise session, the instructors still actively engaged with him
to make sure he was working towards the right direction. If
something to correct was noticed, the instructor nudged the
student to the right direction by questioning the approach
or by providing constructive feedback. This was the key
continuous feedback as the hints received during the learn-
ing process are essential for acquiring good programming
and problem-solving habits. Instructors were not allowed to
give direct solutions to the exercises, and the key idea was
to support the students so that they could figure out the
solutions themselves.

In addition to instructor feedback, students had their com-
pleted exercises marked down to a check-list, allowing them
to see the check-list filling with marked exercises. We feel
that the list played an important role in feedback; every
check was a small victory. Check-lists were also updated
to the course web-page at the end of every day, allowing
students to see the progress of other students as well.

In addition to evaluation during exercises, students were
evaluated with 3 small biweekly exams done with the com-
puter and a final traditional exam. Small exams provided
valuable feedback for students and also to instructors through-
out the courses.

The final exam was constructed to be as similar as possible
to the usual programming exams conducted at our university
to provide meaningful comparison of the course results. The
exam was a paper exam consisting mostly of programming
on paper. It was not allowed to use any material in the
exam. A student had to get 50 % of the total maximum
score in order to pass the course.

96

5. COURSE RESULTS
The introductory programming courses at the Depart-

ment of Computer Science at the University of Helsinki are
taught during both fall and spring semesters. Fall semesters
consist mostly of students who are majoring in computer
science, while spring semesters have mostly students who
have computer science as a minor subject. Some of the stu-
dents minoring in computer science participate only in the
Introduction to programming course and do not proceed to
Advanced programming.
Until spring 2010 the introductory programming courses

have followed the traditional lecture and take-home exercise
model. The first course implementation following Extreme
Apprenticeship was during the spring semester 2010.
Next we will compare the outcome of the Extreme Ap-

prenticeship-based course to the previous course instances
from past 8 years in terms of percentage of passed stu-
dents. The results are reported separately in the tables
below for Introduction to programming and Advanced pro-
gramming. The Extreme Apprenticeship-based implemen-
tation in spring 2010 is highlighted using bold face. The
column titled n denotes the number of total participants.
As stated in the previous section, the paper exam in the

spring 2010 implementation was similar to the ones that
had been used in the course for years already. Because it
has always been a requirement to get 50% of the exam score
to pass the course, the numbers should be comparable for
all the course implementations.

Introduction to Advanced
Programming Programming

n passed
s02 92 38.0 %
f02 332 53.6 %
s03 98 39.8 %
f03 261 64.0 %
s04 84 61.9 %
f04 211 59.2 %
s05 112 46.4 %
f05 146 54.1 %
s06 105 41.9 %
f06 182 65.4 %
s07 84 53.6 %
f07 162 53.0 %
s08 72 58.3 %
f08 164 56.1 %
s09 53 47.7 %
f09 140 64.3 %
s10 67 70.1 %

n passed
s02 88 26.1 %
f02 249 56.2 %
s03 65 30.8 %
f03 228 59.2 %
s04 66 43.9 %
f04 177 66.1 %
s05 70 57.1 %
f05 125 56.0 %
s06 52 44.2 %
f06 147 67.3 %
s07 53 58.5 %
f07 136 59.6 %
s08 29 51.7 %
f08 147 56.5 %
s09 22 50.0 %
f09 121 60.3 %
s10 44 86.4 %

Let us first analyze data from Introduction to program-
ming. The long-term average (excluding spring 2010) for
passed students in fall semesters is 58.5 % and in spring
semesters 43.7 %. One of the reasons for the higher dropout
rate in spring courses might be the student population. In
spring terms most of the participants are minoring in com-
puter science, and quite likely have weaker backgrounds for
programming. As can be seen, the percentage of passed stu-
dents in spring 2010 was higher than it has previously been,
70.1 % of the students starting the course passing it, the sec-
ond highest pass-rate being 65.4 %. Extreme Apprenticeship

seemed to bring clear benefits, especially in comparison to
normal spring term results.

The trend in the Advanced programming course is simi-
lar: the average passing percentage in fall terms is 60.1 %
and in spring 45.3 %, both being marginally higher than the
acceptance percentages for the introductory course. This
is most likely due to the fact that most of the students
that fail the Introductory course do not take part in Ad-
vanced programming. The acceptance percentage in spring
2010 was 86.4 %, an all-time high in the department with
a clear margin. The most natural explanation for the re-
markably high passing rate is that the programming routine
built during normal course implementations has been quite
fragile for an average or below average student. In the Ex-
treme Apprenticeship-based course those students who sur-
vived from the initial shock of Introduction to Programming
seem to have been getting better and better all the time.
With a strong routine built during the introductory course
the challenging new concepts encountered in the advanced
course have been rather easy to master.

6. CONCLUSIONS
The Extreme Apprenticeship presented in this paper pro-

vides a good structure for teaching skills that require build-
ing routine and learning best practices from the masters.
Emphasizing scaffolding in combination with the set of val-
ues and practices yields very promising results as seen in the
initial implementations with 67 and 44 students, the most
important result being the significant decrease in dropout
rates.

We believe that the Extreme Apprenticeship method’s
idea of taking continuous feedback and scaffolding to an ex-
treme level provides enough support to also help some of the
inefficient novices, who usually drop programming courses,
to learn programming.

The role of relevant exercises for making learning by doing
a reality is a key factor in this approach. The amount of
work that a student puts into exercises can have a negative
impact on motivation if the exercises do not support his
learning process in a meaningful way.

The majority of the anonymous student feedback indi-
cated that learning by doing was considered motivating and
rewarding. A quote from an anonymous feedback summa-
rizes the positive outcome of this approach: ”The best thing
on the course was the amount of exercises and exercise groups
and the availability of teachers. It was very rewarding to be
on a course where you could understand the course content
by simply working diligently. Making mistakes also helped to
learn things.”

The outcome of our initial experiment was so encouraging
that the same approach is currently being applied to the fall
semester course with almost 200 participants.

7. ACKNOWLEDGMENTS
We thank The Head of Studies, PhD Jaakko ”Gandhi”

Kurhila for his support and inspiration.

8. REFERENCES
[1] O. Astrachan and D. Reed. AAA and CS 1: the

applied apprenticeship approach to CS 1. In SIGCSE
’95: Proceedings of the twenty-sixth SIGCSE technical

97

symposium on Computer science education, pages 1–5.
ACM, 1995.

[2] A. Bandura. Social foundations of though and action:
a social cognitive theory. Prentice-Hall, 1986.

[3] K. Beck. Test Driven Development: By Example.
Addison-Wesley, 2002.

[4] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

[5] S. Bergin and R. Reilly. The influence of motivation
and comfort-level on learning to program. In
Sroceedings of the 17th Workshop on Psychology of
Programming, PPIG’05,, 2005.

[6] T. R. Black. Helping novice programming students
succeed. J. Comput. Small Coll., 22(2):109–114, 2006.

[7] R. E. Bruhn and P. J. Burton. An approach to
teaching java using computers. SIGCSE Bull.,
35(4):94–99, 2003.

[8] M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: a learning theoretic
approach. In ICER ’07: Proceedings of the third
international workshop on Computing education
research, pages 111–122. ACM, 2007.

[9] A. Collins, J. Brown, and S. Newman. Cognitive
apprenticeship: Teaching the craft of reading, writing
and mathematics. In Knowing, Learning and
Instruction: Essays in honor of Robert Glaser.
Hillside, 1989.

[10] A. Collins, J. S. Brown, and A. Holum. Cognitive
apprenticeship: making thinking visible. American
Educator, 6:38–46, 1991.

[11] S. Grissom and M. J. Van Gorp. A practical approach
to integrating active and collaborative learning into
the introductory computer science curriculum. In
Proceedings of the seventh annual consortium on
Computing in small colleges midwestern conference,
pages 95–100, USA, 2000. Consortium for Computing
Sciences in Colleges.

[12] M. Hassinen and H. Mäyrä. Learning programming by
programming: a case study. In Baltic Sea ’06:
Proceedings of the 6th Baltic Sea conference on
Computing education research: Koli Calling 2006,
pages 117–119. ACM, 2006.

[13] C. Heines. http://katas.softwarecraftsmanship.org/.

[14] K. Huffman and M. Vernoy. Psychology in Action.
Wiley, 2003.

[15] T. Jenkins. The motivation of students of
programming. In ITiCSE ’01: Proceedings of the 6th
annual conference on Innovation and technology in
computer science education, pages 53–56. ACM, 2001.

[16] M. Kölling and D. J. Barnes. Enhancing
apprentice-based learning of java. In SIGCSE ’04:
Proceedings of the 35th SIGCSE technical symposium
on Computer science education, pages 286–290. ACM,
2004.

[17] M. R. Lepper. Motivational considerations in the
study of instruction. Cognition and Instruction,
5(4):289–309, 1988.

[18] L. Lumsden. Motivation, Cultivating a Love of
Learning. ERIC Clearinghouse on Educational
Management, University of Oregon, 1999.

[19] R. Martin. Review of the Pete McBreen’s book
Software Craftmanship,
http://www.mcbreen.ab.ca/SoftwareCraftsmanship/.

[20] R. E. C. Paul A. Kirschner, John Sweller. Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist,
problem-based, experiental, and inquiry-based
teaching. Educational Psychologist, 41(2):75–86, 2006.

[21] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. In ITiCSE-WGR ’07: Working group
reports on ITiCSE on Innovation and technology in
computer science education, pages 204–223. ACM,
2007.

[22] D. Perkins, C. Hancock, R. Hobbins, F. Marsin, and
R.Simmons. Conditions of learning in novice
programmers. In Studying the novice programmer,
pages 261–279. Lawrence Erlbaum, 1989.

[23] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13:137–172, 2003.

[24] H. Roumani. Design guidelines for the lab component
of objects-first cs1. In SIGCSE ’02: Proceedings of the
33rd SIGCSE technical symposium on Computer
science education, pages 222–226. ACM, 2002.

[25] J. C. Spohrer and E. Soloway. Novice mistakes: are
the folk wisdoms correct? Commun. ACM,
29(7):624–632, 1986.

[26] D. Stipek. Motivation to Learn: From theory to
practice. Prentice Hall, 1988.

[27] L. S. Vygotsky. Mind in Society: The Development of
Higher Psychological Processes. Harvard University
Press, Cambridge, MA, 1978.

[28] K. J. Whittington. Infusing active learning into
introductory programming courses. J. Comput. Small
Coll., 19(5):249–259, 2004.

[29] S. Wiedenbeck, D. LaBelle, and V. Kain. Factors
affecting course outcomes in introductory
programming. In Workshop on Psychology of
Programming, PPIG’04, pages 97–109, 2004.

[30] B. C. Wilson and S. Shrock. Contributing to success
in an introductory computer science course: a study of
twelve factors. In SIGCSE ’01: Proceedings of the
thirty-second SIGCSE technical symposium on
Computer Science Education, pages 184–188. ACM,
2001.

[31] L. Winslow. Programming psychology - a
psychological overview. SIGCSE Bulletin, 27:17–22,
1996.

98

Publication I.3
I.3

Jaakko Kurhila and Arto Vihavainen

Management, Structures and Tools to Scale up Personal Advising
in Large Programming Courses

In Proceedings of the 12th Conference on Information Technology Education
(SIGITE ’11)

Copyright c©ACM New York, NY, USA 2011
http://dx.doi.org/10.1145/2047594.2047596

Reprinted with permission.

Management, Structures and Tools to Scale up Personal
Advising in Large Programming Courses

Jaakko Kurhila and Arto Vihavainen
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ kurhila, avihavai }@cs.helsinki.fi

ABSTRACT

We see programming in higher education as a craft that ben-
efits from a direct contact, support and feedback from peo-
ple who already master it. We have used a method called
Extreme Apprenticeship (XA) to support our CS1 educa-
tion. XA is based on a set of values that emphasize ac-
tual programming along with current best practices, cou-
pled tightly with continuous feedback between the advisor
and the student. As such, XA means one-on-one advising
which requires resources. However, we have not used abun-
dant resources even when scaling up the XA model. Our
experiments show that even in relatively large courses (n =
192 and 147), intensive personal advising in CS1 does not
necessarily lead to more expensive course organization, even
though the number of advisor-evaluated student exercises in
a course grew from 252 to 17420. A thorough comparison
of learning results and organizational costs between our tra-
ditional lecture/exercise-based course model and XA-based
course model is presented.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education Computer Science Education

General Terms

Human Factors

Keywords

course cost, resource allocation, individual education, con-
tinuous feedback, instructional design, programming educa-
tion

1. INTRODUCTION
We have organized our CS1 courses (and nowadays also

other programming and data structure courses) for the last

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGITE’11, October 20–22, 2011, West Point, New York, USA.
Copyright 2011 ACM 978-1-4503-1017-8/11/10 ...$10.00.

three times using a method called Extreme Apprenticeship
(XA). One of the key points of XA is that it emphasizes
doing over everything else, questioning the utility of lectures,
and focuses on active teacher-student collaboration. To be
more specific, there are two core values that are stressed in
all course activities (adapted from the original description
in [16]):

• The craft can only be mastered by actually practicing it,
as long as it is necessary. In order to be able to practise
the craft, the students need to do lots of meaningful
exercises. The exercises are designed to build up both
skill and knowledge.

• Bi-directional continuous feedback makes the learning
process meaningful and effective. It is vastly more ef-
ficient if a learner receives even small signals that tell
her that she is progressing and into the correct direc-
tion. In order to give out those signals to the learner,
the advisor must be aware of the successes and chal-
lenges of the learner. In other words, the advisor must
be aware of the student’s activities.

The results of applying XA have been impressive in the
context of our university, as the drop-out rate, pass rate
and grade distribution are all improving1. The reasons be-
hind the success stem from the fact that without a prior
experience, learning to program has been considered a hard
task to master in higher education [15, 3, 14, 12]. Personal
XA-based advising sees to it that every individual student
practices with tens of simple exercises already during the
first week of the course, enforces active participation, and
seeks to disable students’ ability to procrastinate until the
eve of the exam. Learning achievements become visible to
the student and internal motivation goes up.

It is easy to believe that organizing XA-style personal
learning is straightforward when there is a handful of ea-
ger, knowledgeable students and enough competent, hard-
working teachers. However, a formal educational organiza-
tion has its organizational objectives that go beyond a single
CS1 teacher; often it means that there are volumes of stu-
dents with varying backgrounds, i.e. no prior programming
experience and relatively low intrinsic motivation toward the
subject matter.

This paper describes what kind of human resources and
tools are needed in order to enable XA-style education in a
large CS1 course. In other words, it is a description of how

1Data in an unpublished manuscript in preparation [10].

3

XA-based education can be scaled up to meet the needs of a
formal educational organization that has to serve some two
hundred students in CS1. This type of research has been
relatively rare and is often only available in a form of policy-
level meta-discussion (see e.g. [13]). The empirical evidence
behind our attempt is largely based on three separate cycles
of XA-based CS1 courses2. The first cycle of our CS1 courses
(Part I and Part II) consisted of 67 and 44 students. When
we scaled up the course for Fall 2010, we applied the XA
model for significantly larger (192 and 147 students) CS1
courses. In Spring 2011, we applied the XA model with no
lectures.

The next section describes the XA method and establishes
its value by presenting the improvement in learning results.
The remaining sections discuss the issues that arise when
one scales up the XA method.

2. EXTREME APPRENTICESHIP
Extreme Apprenticeship (XA) builds on Cognitive Ap-

prenticeship [7, 8], a classic model for learning. First, the
student is provided with a conceptual model of the process.

Second, students are exposed to tasks (i.e. exercises) that
are to be completed under material and advisor scaffolding.
Scaffolding refers to supporting students in a way that they
are not given answers, rather, just enough hints to be able
to discover the answers to their questions themselves. Scaf-
folding works especially well if students are in the zone of
proximal development [17]: not too hard, not too easy, just
able to do if properly advised.

Scaffolding is faded away when the student starts to mas-
ter a task.

Practical operation of XA

Many earlier applications on programming education that
rely on Cognitive Apprenticeship exist [1, 2, 4, 9]. Extreme
Apprenticeship differs from these by the practical issues in-
volved:

1. start with exercises; use small incremental exercises
that ensure achievable tasks; exercises need to provide
clear guidelines on how to start solving the task and
when a task is considered finished

2. exercises define lecture form and content; minimize lec-
turing and maximize number of exercises

3. advisor must be present in a same space when student
is working on the exercises

4. best up-to-date programming practices are emphasized
throughout the scaffolding phase

5. students are encouraged to extend their knowledge be-
yond the instruction provided

Practices 3–5 pose a challenge to the resource consump-
tion and allocation when the number of participants in a
course grow. Practice 3 requires added resource consump-
tion, and Practices 4 and 5 require competence from advi-
sors. Issues with practices 4 and 5 are out of the scope of

2In Fall 2010, we used XA-based approach also in our
”Computer as a tool” course; in Spring 2011 XA was used
partly in our CS2 course (called ”Data Structures”) and in a
new course called ”Clojure Programming”. The XA-related
statistics concerning these courses other than CS1 are out
of scope of this paper.

this paper, since we did not try to purposefully improve the
competence of the advisors, even though it is a benefit for
the student if the advisor is competent in versatile ways.

2.1 Extreme Apprenticeship in CS1

Course contents

Our semester-length (6+6 weeks) CS1-type introductory Java
programming course consists of two separate parts: Intro-
duction to Programming (part I) and Advanced Program-
ming (part II). Topics covered in both the courses are typ-
ical: assignment, expressions, terminal input and output,
basic control structures, classes, objects, methods, arrays
and strings; advanced object-oriented features such as in-
heritance, interfaces and polymorphism; the most essential
features of Java API, exceptions, file I/O and GUI.

In addition to the exercises, all the study material shown
in the lectures is available to students on-line as a web page
but written in concise XA style. The material blends both
exercises and supporting material, providing students scaf-
folding as they proceed.

Lectures

As the principles of XA state, lectures are not a necessity in
learning to program. This is also evident in our experiments.
In Spring 2010, we reduced the number of lectures from
the usual 5 hours per week to 2 hours for the first part of
CS1, and from 4 to 2 in the second part. In Fall 2010, the
responsible lecturer was willing to reduce his lecture hours
from 5 to 4 per week. The second part remained the same,
4 hours a week.

It should be noted that there is no minimum in the number
lectures in XA-based education. In our Spring 2011 CS1
course, there was only one 1 hour lecture in the whole course
(parts I and II combined). Yet the results from the first part
are even better than our previous XA-based courses (see the
stats in section 2.2).

Exercises

It is expected that students in XA-based courses use most
of the time they devote to the course in active solving of
programming exercises – either in the computer lab or at
home, if the student feels that she has less need for scaffold-
ing. This trains the routine and gives a constant feeling of
success by achieving small goals.

For each week a set of new exercises is introduced. We
have had number of exercises ranging from 15 to 40. Es-
pecially at the start of the course, most of the exercises are
small and relatively straightforward. Sequentially completed
small exercises combine into larger, more complex programs,
which are substantially more challenging than the exercises
in our traditional CS1 courses. An added benefit is that
combination of smaller parts show the learner how to split
a big programming task into sub-tasks.

Exercise sessions with continuous feedback

All exercise sessions need a computer lab or a room with
computers with suitable software to conduct the actual pro-
gramming. XA-based advising is constantly available to the
students present during the exercise sessions. Anyone can
enter the lab without having to reserve a specific time slot.

If a student does not have specific questions during the
exercise session, the advisors are actively observing that the

4

students are working towards the right direction with good
working habits, with plenty of verbal constructive feedback.

2.2 Learning results
Comparing the outcomes of the Extreme Apprenticeship

-based courses to the previous course instances in terms of
percentage of passed students shows clearly that the results
have improved after the introduction of XA.

Results are reported separately in the tables below for CS1
part I (Introduction to programming) and Part II (Advanced
programming). The XA-based implementations are high-
lighted in bold face. The column titled n denotes the number
of students in each course. The pass-rates are comparable
for all the course implementations as the course exams have
been kept similar3. Significant difference between Spring
and Fall semesters that re-occur every year has previously
been explained by the fact that courses on Fall semesters
consist mostly of CS majors, while Spring semesters consist
mostly of CS minors – in XA implementations we have not
noticed considerable differences between the skills of minors
and majors.

CS1 part I
n passed

s02 92 38.0 %
f02 332 53.6 %
s03 98 39.8 %
f03 261 64.0 %
s04 84 61.9 %
f04 211 59.2 %
s05 112 46.4 %
f05 146 54.1 %
s06 105 41.9 %
f06 182 65.4 %
s07 84 53.6 %
f07 162 53.0 %
s08 72 58.3 %
f08 164 56.1 %
s09 53 47.7 %
f09 140 64.3 %
s10 67 70.1 %
f10 192 71.3 %
s11 80 73.8 %

CS1 part II
n passed

s02 88 26.1 %
f02 249 56.2 %
s03 65 30.8 %
f03 228 59.2 %
s04 66 43.9 %
f04 177 66.1 %
s05 70 57.1 %
f05 125 56.0 %
s06 52 44.2 %
f06 147 67.3 %
s07 53 58.5 %
f07 136 59.6 %
s08 29 51.7 %
f08 147 56.5 %
s09 22 50.0 %
f09 121 60.3 %
s10 44 86.4 %
f10 147 77.6 %
s11 84 67.1 %

Table 1: Learning results. Courses before Spring
2010 have been organized using traditional lecture
format.

3. SCALING UP EXTREME APPRENTICE-

SHIP
It is clear that both of the core values of XA (i.e., hands-on

practicing and bi-directional feedback) are inherently resource-
dependent. Practicing needs a space and a computer with
appropriate software; continuous feedback requires advisor
input for the student.

The first value proved not to be a problem when scaling up
the course. Almost every student of ours has nowadays her

3The low acceptance rate in CS1 part II of Spring 2011 might
be explained by the number of tedious experimental exer-
cises that were created by perhaps overly eager TAs – which
in turn caused a high drop-out rate. The exam acceptance
rate was high: 88 %.

own laptop4. Most of the computer labs have been disman-
tled and the remaining few have been heavily underused.
Therefore, it was not a problem to just book the labs for the
purpose. Moreover, introductory programming does not re-
quire state-of-the-art computers or expensive software. Our
lab workstations are equipped with no-cost Linux together
with no-cost NetBeans as the pre-installed development en-
vironment.

The second value, continuous feedback when practicing,
is clearly more difficult to scale up without a direct hit to
resource consumption. Moreover, resource usage for contin-
uous feedback is amplified significantly with XA, as there
are tens of exercises for every individual. To make this dif-
ference more clear, we will present actual numbers from CS1
part I courses: For Fall 2009, our traditional approach typi-
cally had 7 exercise groups (of 25 students); every week there
were 6 exercises given out. In exercise sessions, one student
presented her solution in front of the group and received
feedback from the teaching assistant5. During the 6-week
course, the total number of individual feedback for exercises
for all the students combined is 252 (7 * 6 * 6). In the end
of the XA-based course in Fall 2010, there were a total of
17420 individually evaluated exercises.

Key solution for overcoming the challenge of resource con-
sumption is to optimize the allocation over time dynamically
by using tools, structures, and even voluntary human re-
sources. These issues are discussed in detail next.

3.1 Dynamic coordination of XA advisors and
tools

When we scaled up the XA lab for Fall 2010, we designated
one of the advisors as advisor coordinator. This was neces-
sary in order to manage day-to-day activities of the XA lab
and allocate sufficient resources to appropriate situations.
The advisor coordinator had also a final say when recruiting
new advisors. The coordinator was a faculty member and
received no compensation for the task.

All other advisors worked under the advisor coordinator.
The rest of the advisor structure emerged implicitly. All the
advisors were compensated equally even though some of the
advisors stepped up more than others during the courses.
So-called apprentices, i.e. fellow students who started to
grow into the role of an advisor, emerged during the courses
but were not formally recognized nor financially compen-
sated. Some of these apprentices were recruited for the next
course as proper advisors, thus enabling continuous flow of
advisors to be present.

In traditional courses, teaching assistants (that correspond
to advisors in XA-based courses) are compensated with 39
euros/hour. The rationale behind the relatively high pay
per hour is that there is a need for preparation for hosting
an exercise session. In all XA courses, the advisors are com-
pensated only 17 euros/hr, typically 2-6 hrs per week per
advisor. The rationale for the relatively low pay is that the
advisors cannot prepare for the XA sessions, as the advisors
encounter students’ programs fresh in the lab. No advisor

4In addition, our department has provided new CS majors a
mini-laptop computer at the very beginning of their studies.
Albeit not very suitable for programming, they have been
used in the XA labs.
5In traditional formats at out University, it is also common
that when a TA asks for questions, the student do not dare
to voice their concerns in a group.

5

complained about the lower per-hour salary, and at no point
of time there has been a shortage of very competent students
that want to work as advisors.

Many of the advisors are in the early stages of their stud-
ies, and their teaching experiences are limited to student
tutoring at most. Some were truly novice programmers as
they did not have any programming experience outside the
CS1 courses. The only common denominator among the ad-
visors is the attitude: ready to work with other students,
active and eager to help. Even so, learning results and stu-
dent feedback has been impressive.

Some of the advisors took a strong role very early in the
course but started to fade away towards the end as they felt
that their expertise was not sufficient in the latter parts of
the course. However, when someone started to fade, there
were always advisors who started to step up. This process
was ”natural” and did not need any management.

Each advisor had the possibility to choose the most prefer-
able time slots for him or her. On-demand service was en-
sured using IRC6. On situations where there were too many
students, the advisor were able to ask for extra assistance
on-line. We aimed for 1/10 advisor/student ratio in the lab.
The communication tool worked also as a fast way to help
and share information on problems that a specific advisor
himself had faced earlier – similarly the advisors were able
to ask for tips on problems they could not help to solve. In
addition to IRC, the advisors used text messages and mo-
bile phones to communicate to other advisors. Dynamical
resource allocation was welcomed by the advisors.

As ad hoc recruitment was practiced, there was no pos-
sibility for formal training. Fellow advisors informally and
implicitly trained the new advisors. In addition, a ”XA lab
Manifesto”was established. The manifesto was published in
a wiki and updated slightly as experience of proper advis-
ing principles grew during the courses. It simply stated few
guidelines as pedagogical practices. Note that the practises
were worded as personal imperatives, in order to make them
more personal:

• You will advise everyone in trouble

• You will not give out solutions but guide the student
as much as needed in order to nudge the student to
find the solutions herself.

• Advisors do constant round-robin in the lab. Observe
and comment on students’ progress even if no-one asks
anything.

• You will pay attention to the code style: students will
learn to program according to Clean Code principles.

• Correct solutions is not enough. You need to push the
style towards more understandable and maintainable
code.

• Even if there is a slow moment in the lab, you as an
advisor cannot sit still minding your own business!

The key issue to keep the lab records correct on a day-
to-day basis was an addendum to the XA lab Manifesto,
called ”Bookkeeping 101”. As every advisor understood that
XA-based courses can potentially be overly expensive, we

6In practise, any instant messaging tool, e.g. Facebook
Chat, Google Talk, Skype or MSN Messenger, can be used
– our advisors used mainly classic IRC as they were already
using it.

communicated clearly the no-waste approach to education
and resource usage:

• Prior to course formally agreed lab-hours should be
marked down

• If you are alerted to the lab when there is a need for
extra advisor, lab-hours are marked down.

• If your lab-time ends but there is less than 10 students
remaining and you will stay, lab-hours are marked down.
Note: Only one advisor will mark down her hours.

• If your lab-time ends but there is less than 5 students
remaining, no advisor will mark down her hours except
in special cases.

• If you are advising in the lab for fun, e.g. when not
needed or outside our normal hours, you will not mark
down your hours.

• Mark your hours by the end of the day.

For bookkeeping of student exercises and allocation of ad-
visors, we utilized online spreadsheets in Google Docs with
our own macros, which allowed us to keep track of the money
spent so far and the demand for advisors during specific
times.

In exercise sessions, students had their completed exer-
cises marked down to a check-list, allowing them to see the
check-list filled with their completed exercises. We feel that
the list played an important role in feedback; every check
was an achievement. Check-lists were also updated to the
course web-page at the end of every day, allowing students
to see the progress of other students as well. In a way, this
additional feedback for the students was nearly cost-free, as
the records were kept in any case.

4. RESULTS WHEN SCALING UP XA
Key numbers about the scalability are composed into the

tables 2 and 3; participants is the number of active students
in the course; eval. exercises corresponds to the number of
exercises that the advisors evaluated from the students; ad-
visors is the number of advisors in the advisor pool in that
course. The roles and thus their individual working hours
varied significantly, from just few hours to 41 hours; advi-
sor hours is the total hours the advisors used in total for
the course; total advisor cost is total cost for advisor salaries
during the course; cost for lectures is the cost for lectures7;
n/a means that in the initial XA courses advisor hours were
not separately tracked. It should also be noted that the ad-
visor coordinator was taking part in the XA labs as tenured
faculty developing education, so his salary is not included
in XA courses, even though he was actively conducting XA-
style advising in the labs.

Fall 2009 courses are traditional and thus based on lec-
tures and exercises; all the other three course instances are
full XA-based courses.

We can see from Table 2 that there is a difference in ad-
visor cost (called TA in traditional Fall 2009 course). How-
ever, it is more than compensated by the number of exercises
(17420) and contact hours (310) the advisors did for the stu-
dents.
7Lectures in CS1 have been given by tenured teachers, there-
fore, the cost is hypothetical but based on our actual salary
table for the external teachers. In reality, the price tag could
be higher as tenured lecturers often do not handle other
tasks during courses.

6

term f09 s10 f10 s11

participants 140 67 192 80
eval. exercises 252 6409 17420 10648
advisors 5 3 13 11
advisor hours 72 n/a 310 223
total advisor cost 2808 n/a 5270 3791
cost for lectures 3861 1544 3088 129

Table 2: CS1 part I: Introduction to Programming.

term f09 s10 f10 s11

participants 121 44 147 84
eval. exercises 252 5056 7349 9961
advisors 4 7 13 11
advisor hours 72 n/a 271 166
total advisor cost 2808 n/a 4607 2822
cost for lectures 3861 1544 3088 0

Table 3: CS1 part II: Advanced Programming.

In addition, Spring 2011 course shows that there is a pos-
sibility to save on lectures; in CS1 part I, lectures were cut
to only 1 hr (cost of 129 compared to traditional course cost
3088), and in part II, there were zero lectures. Even with
minimal lecturing, the course results (Table 1) are higher
than ever, even among constantly high-achieving XA-based
courses. As stated before and in the principles of XA, lec-
tures are not a necessity.

Because of the increased number of students in Fall 2010,
we pre-booked 20 lab hours every week in Fall 2010. In
Spring 2010, every week had 8 hours of pre-booked lab time
available for the students. In our cost structure, additional
lab hours did not pose an additional burden to the budget,
since lab reservations can be made free-of-charge. For us,
hosting a course entirely in a computer lab would be the
cheapest option, as lecture halls and other seminar rooms
are rented with high hourly rates. However, money saved by
room allocation is not considered in the statistics above, as
the rent allocation scheme is a speciality for our university.

Involuntary charity work?

Since the advisors knew the limit for resource usage and
could follow the time and money spent into advising, it is
possible to think that some of them started to mark down
fewer-than-real hours they spent in the XA lab. We can
examine the progress of weekly time spent in XA-labs for
the advisors (Table 4). It is clear from the figures in Table 4
that this was not the case: the total hours by the advisors
correspond to the overall course timeline. Therefore, there is
no sign that the advisors felt pressure to do ”charity” work,
i.e. work without the pay.

Week
Term 1 2 3 4 5 6

f10 - CS1 part I 40 51 56 51 50 50
f10 - CS1 part II 31 45 53 28 47 67
s11 - CS1 part I 37 38,5 34,5 41,5 35,5 36
s11 - CS1 part II 28 31 32,5 28,5 23 23

Table 4: Weekly hours used by advisors.

Advisor feedback

It is expected that the advisors think that XA requires more
work than being a traditional teaching assistant. However,
the advisors compared their experiences in XA-style advis-
ing to traditional models as ”much more rewarding”and ”not
perceived consuming since it feels so meaningful”. Rapid,
visible progress of the students was considered efficient use
of advisor time. In fact, the advisor feedback revealed that
the experience was so rewarding, that many advisors volun-
teered (or ”chilled out”) in the computer lab and advised the
students just for fun.

We sent out a web-form to advisors to collect feedback on
the experience on a five-point likert scale8. We measured the
following dimensions: ”rewarding for the assistant” (reward-
ing), ”laborious for the assistant”(laborious), ”instructive for
the student” (instructive) and ”timewise efficient” (efficient).
In addition to the previous four dimensions, we presented a
meta-question ”has improved my own knowledge” (improv-
ing). We present answers from only the advisors (n = 9)
that have been assisting in both traditional exercise sessions
and XA sessions. The statistics for the five dimensions are
shown in table 5.

Question Traditional XA

rewarding 3.22 4.44
laborious 2.66 3.11
instructive 2.88 4.55
efficient 2.44 4.66
improving 3.77 4.44

Table 5: Feedback averages using five-point likert
scale when comparing traditional exercise session
format with XA exercise sessions.

Table 5 clearly displays the advantage of XA exercise ses-
sions over traditional exercise sessions. Note that all the in-
terviewed advisors had been working in both XA style and
traditional exercise sessions.

We also gathered anonymous comments from the advi-
sors. The easy going-feeling of XA sessions is reflected in
the following advisor comment.

“XA exercise sessions work as a drop-in-model. You can
just walk to the lab and start scaffolding. Exercises are small
for the advisor as well, which helps guiding lots of students”.

Another advisor reflected students’ views in a few sen-
tences, commented on the challenges of being constructive
in large groups, and pointed out that students still tend to
procrastinate during the weeks.

“Traditional exercise sessions cause far more stress for all
parties. As a student one spends energy due to the anxiety
of possibly having to go to the front to present your solution,
and to understanding the lacks and extras in the presenta-
tions from others. As a TA you have an insane judgement-
and quality control-role, that cannot be handled easily in a
constructive manner for the whole group. In the XA labs it
causes frustration that many students want to mark down
their exercises during the last days of the week.”

81: strongly disagree, 3: neither agree nor disagree, 5:
strongly agree

7

5. CONCLUSIONS
Extreme Apprenticeship provides a solid structure to or-

ganize education that aims to build good routine in program-
ming along with good programming habits such as principles
of Clean Code [11] and integrated testing [5, 6]. A key com-
ponent is that there are advisors who already master part
of the craft and are willing to interact with students to help
them to grow into expertise. Emphasizing scaffolding in
combination with the core values and the derived practices
has lead to clearly improved learning results. In fact, the
results in learning and the overall feeling towards program-
ming as a tool have helped us at the department to start
to re-structure a significant part of our BSc degree courses
in CS to benefit from programming. It does not mean that
there is a lack of more abstract or theoretical concepts; on
the contrary, we have started to see that learning the ab-
stract can benefit from hands-on programming if the student
is allowed to ”code and play the abstract”, not just ”see and
hear about the abstract”. Programming is a helpful tool for
most of the issues in the CS education.

It is obvious that hands-on programming practice with
timely and constructively helpful feedback needs resources
and flexibility in arrangements. Our experiments have shown
that even if it is heavy work for all the involved parties
(students, teachers and administration), it is possible to re-
ceive significant benefits without using significantly more re-
sources. We have been able to match the resources well
by adding awareness and interaction between advisors using
appropriate tools along with solid processes of organization.
We can sum up two principles that we applied when man-
aging XA-based advisor structure in our context — in other
words, ”Extreme Management”:

1. Known and visible upper boundary for resource usage.
It is vital that every person involved in resource consumption
knows the absolute limit for resource use and can view the
resource consumption in (semi-)real time. This alleviates
the problem that there is the last part of the course going
on but all the resources are already used.

2. Maximum flexibility in organizational structures. When
there are thousands of exercises to be checked by a dozen
advisors in one course, not every detail of every aspect of
the course is critical. Many of the rough edges (e.g. advisor
differences) balance out during the course as there is ample
interaction between the advisors and students. In practice,
advisors will support each other and do not need to be under
explicit supervision.

6. ACKNOWLEDGMENTS
Feedback and comments from all the advisors of all the

XA-based courses have been invaluable. We want to thank
all the advisors (in no particular order) for making XA pos-
sible; Aurora, Pekka, Juhana, Antti, Joel, Samuli, Niko,
Matti’s, Jenny, Jarkko, David, Lasse, Kimmo, Sebastian,
Tuomas, Martin, Janne, Joonas, Aleksi – and Thomas!

7. REFERENCES
[1] O. Astrachan and D. Reed. AAA and CS 1: the

applied apprenticeship approach to CS 1. In SIGCSE
’95: Proc. 26th SIGCSE technical symposium on
Computer science education, pages 1–5. ACM, 1995.

[2] T. R. Black. Helping novice programming students
succeed. J. Comput. Small Coll., 22(2):109–114, 2006.

[3] R. E. Bruhn and P. J. Burton. An approach to
teaching java using computers. SIGCSE Bull.,
35(4):94–99, 2003.

[4] M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: a learning theoretic
approach. In ICER ’07: Proc. third international
workshop on Computing education research, pages
111–122. ACM, 2007.

[5] H. B. Christensen. Systematic testing should not be a
topic in the computer science curriculum! In Proc. 8th
annual conference on Innovation and technology in
computer science education, ITiCSE ’03, pages 7–10,
New York, NY, USA, 2003. ACM.

[6] H. B. Christensen. Experiences with a Focus on
Testing in Teaching, pages 147–165. Springer-Verlag,
Berlin, Heidelberg, 2008.

[7] A. Collins, J. Brown, and S. Newman. Cognitive
apprenticeship: Teaching the craft of reading, writing
and mathematics. In Knowing, Learning and
Instruction: Essays in honor of Robert Glaser.
Hillside, 1989.

[8] A. Collins, J. S. Brown, and A. Holum. Cognitive
apprenticeship: making thinking visible. American
Educator, 6:38–46, 1991.

[9] M. Kölling and D. J. Barnes. Enhancing
apprentice-based learning of java. In SIGCSE ’04:
Proc. 35th SIGCSE technical symposium on Computer
science education, pages 286–290. ACM, 2004.

[10] J. Kurhila. Carry-on effect in extreme apprenticeship.
In preparation.

[11] R. Martin. Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall, 2008.

[12] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. In ITiCSE-WGR ’07: Working group
reports on ITiCSE on Innovation and technology in
computer science education, pages 204–223. ACM,
2007.

[13] L. B. Resnick and M. Williams Hall. Learning
organization for sustainable education reform. J.
American Academy of Arts and Sciences,
127(4):89–118, 1998.

[14] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13:137–172, 2003.

[15] H. Roumani. Design guidelines for the lab component
of objects-first cs1. In SIGCSE ’02: Proc. 33rd
SIGCSE technical symposium on Computer science
education, pages 222–226. ACM, 2002.

[16] A. Vihavainen, M. Paksula, and M. Luukkainen.
Extreme apprenticeship method in teaching
programming for beginners. In SIGCSE ’11: Proc.
42nd SIGCSE technical symposium on Computer
science education, 2011.

[17] L. S. Vygotsky. Mind in Society: The Development of
Higher Psychological Processes. Harvard University
Press, Cambridge, MA, 1978.

8

Publication I.4

I.4

Hansi Keijonen, Jaakko Kurhila, and Arto Vihavainen

Carry-on Effect in Extreme Apprenticeship

In Proceedings of the 43rd Frontiers in Education Conference (FiE ’13)

Copyright c©IEEE 2013
http://dx.doi.org/10.1109/FIE.2013.6685011

Reprinted with permission.

Carry-on Effect in Extreme Apprenticeship

Hansi Keijonen, Jaakko Kurhila, Arto Vihavainen
Department of Computer Science
University of Helsinki, Finland

{hkeijone, kurhila, avihavai}@cs.helsinki.fi

Abstract—We argue that the first undergraduate courses are
the most important ones on the student’s path towards becoming
a computer scientist. Therefore, during 2010-2012, we have
exercised extensive effort in order to improve the first-semester
Computer Science (CS) courses. We have been able to use a
learning-by-doing approach called the Extreme Apprenticeship
(XA) method accompanied by personal advising even for courses
with hundreds of students. We claim that when high demands are
met with sufficient support, students learn valuable programming
skills that become a foundation that carries them in their further
CS courses. In this paper, we analyze how the effects of a three-
year effort of renovating our introductory programming courses
propagate to further studies. Compared to the control cohorts
of 2007-2009, we observe a carry-on-effect caused by the XA
method in student success that is visible in the per-student average
accumulation of credits after 7 and 13 months after the start
of studies. In addition, we can see the effect propagating to
mandatory subsequent courses, even without the XA method.

I. INTRODUCTION

It is well known that learning to program is hard [1]. As
computer science is typically not taught in high schools, first-
year Computer Science (CS) students experience difficulties
that are manifested in high failure and drop-out rates in the first
programming courses (often referred to as CS1). Improving the
operation of the first programming course has been a popular
topic for years in the CS education community.

A challenge in examining the improvements in education
is that the examination is oftentimes either too broad or
too narrow. The administrative view to teaching development
emphasizes the student throughput and number of degrees,
cost-effectiveness [2], faculty readiness to adopt new teaching
methods (see e.g. [3], [4]) but does not elicit the true effect of
the improvements in the learning within the CS1 course. On the
other hand, a teacher’s view and reports thereof emphasize the
uniqueness of the course without inspecting the effect on the
subsequent courses [5], [6]. Extending the view from a single
course is important as the expertise accumulates throughout
the degree.

At our department, we have exercised extensive effort on
improving the first-semester Computer Science courses that
our university students encounter. Due to the teaching improve-
ments and efforts, our department has been awarded various
national teaching prizes during the last decade. During the last
three years, we have made effort to investigate and apply a
learning-by-doing approach accompanied by personal advising
even for courses with hundreds of students. The application of
the method to our introductory programming courses has both
increased students success rates as well as actual learning. The
results are significant, as the improvements have been made in

a context, where the teaching has already been praised both
by the students and the nation.

We purposefully and openly press our students to immerse
themselves into a mode of building a strong programming
routine by deliberate practise from day one of their studies.
Contrary to many other approaches, we do not seek a silver
bullet that would allow our students to spend fewer hours
on learning. Instead, we want our students to really put the
effort into purposefully guided learning-oriented activities. We
claim that when high demands are met with sufficient support,
students learn valuable hidden skills that become a foundation
that carries them during their further studies.

Now, after three years of applying the method to our first
semester, we are ready to examine the long-term effect of
the learning in the students’ first CS1 course. It is known
that “teacher-induced learning has low persistence, with three-
quarters or more fading out within one year” [7]. However, we
have observed a rise in the skills of the students that suggests
there is a carry-on effect from the first course to subsequent
courses.

In this paper, we present the data that shows that the
increase in programming skills in the first course enables more
students to continue on a path to become a computer scientist.
We observe an effect on the success of the studies 7 and 13
months after the initial programming course, as well as the
courses immediately after the first programming course.

II. BACKGROUND AND CONTEXT

In Finland, there are no tuition fees for anyone in studies
in higher education. There are more study positions in STEM
(science, technology, engineering, and mathematics) subjects
in higher education than there are high school students with
a suitable high school course selection, and naturally, every
institution wants to recruit good students. Unfortunately Com-
puter Science is not among the most desirable study subjects,
therefore, it is not very difficult to secure a study right in
CS. The entrance exam for CS studies is based on logical and
analytical skills and does not require programming knowledge.
The studies start with no expectation of previous knowledge
on the subject.

The Department of Computer Science at the University of
Helsinki has been selected as a national Centre of Excellence
(CoE) in higher education twice in a row, 3 years at a time.
This is a remarkable achievement for the department, since in
the last round of CoE, the status was awarded only to 10 units
in the whole country. The CoE status was received based on ten
years of well-documented department-wide teaching improve-
ments, such as formalized study circles, detailed and explicit

learning outcome rubrics for all mandatory and steadily recur-
ring courses, and arranging the study environment according
to the so-called constructive alignment [8]. Thus, it is safe to
say that the education and teaching provided by the department
has been highly valued and in a solid form already before the
advent of the latest development that is in the focus of this
paper.

Contrary to the common attitude, where faculty draws
away from undergraduate education in order to teach graduate
courses and fulfill research demands [9], we have exercised ex-
tensive effort to improve the undergraduate education starting
from the very first courses. The most recent work in this area
has been an improvement to both teaching arrangements and
the content of our software engineering-related courses [10].

During the improvement, we have created and started
applying a pedagogical method that we call the Extreme Ap-
prenticeship (XA) method. As the first undergraduate courses
are important on a student’s path towards becoming an ex-
pert computer scientist, meaningful support activities must be
organized for early courses. Approaching the early student
population with too much distance can be detrimental to the
learning community, students and teachers alike. Therefore,
one important aspect of XA is to reduce the distance be-
tween the students and the teachers. In practice, this means
constant emphasis on two-way feedback (interaction) between
the teachers and the students.

A. The Extreme Apprenticeship method

Extreme Apprenticeship (XA) [11] is a method of orga-
nizing programming instruction in an effective and scalable
manner [12]. It is not only about learning about expertise
but becoming an expert in the practiced skill, e.g. program-
ming. XA is influenced by Extreme Programming [13], where
software development best practices such as code reviews are
taken to the extreme, and Cognitive Apprenticeship [14], where
emphasis is put on making tacit processes visible for the
students via modeling, after which the students are scaffolded
as they work on the task at hand themselves.

Exercises play a crucial role in XA education. Our courses
are carefully structured around collaboratively produced learn-
ing objectives and assessment criteria that are visible to the
students and teachers alike. Each learning objective is covered
using several of exercises, that build on top of each other in
a stepwise fashion. The stepwise increment is an adaptation
of test-driven development [15] and the Spiral approach in
education, where students deepen their knowledge on the topic
step-by-step validating their work during each step.

Exercises are designed to help students start easy and
deepen their knowledge in an iterative manner. An easy start
provides feelings of success and helps students achieve their
comfort level. Feelings of success feed the motivation that is
known to be fluctuating strongly even within a course [16]. As
the students work through the easier exercises, they practice
skills that have been relevant in the earlier parts in the course,
as well as are introduced to new topics in a gentle fashion.
As students proceed within a course, the learning objectives
of the exercises start overlapping each other, and more focus
is put on facilitating deliberate practise [17].

As students start their work on a task, they first build a
mental model of the problem at hand e.g. via well-structured
exercise design, process recordings, or during lectures. Once
the modeling phase has been continued to a state, where the
student feels that she is confident about working on the task,
she works on the task under guidance of a more experienced
instructor, e.g. a teaching assistant. The teaching assistant
scaffolds the student if she needs support, and even in such
cases the student is only nudged towards a direction, where
she can again proceed on her own.

In our context, the students are constantly helped in com-
puter labs by course instructors, who actively engage the
students that work on the exercises; students typically receive
help within minutes, depending on the time of day, and the
amount of students in the labs. Scaffolding provided by the
instructors and learning material are designed to help the
students to reach their zone of proximal development [18].
There are tens of weekly exercises, some of which provide
step-by-step guidance for completing them, mimicking the
solution process that a master can utilize while solving them,
while other exercises are open-ended and allow students a
larger degree of freedom for designing and programming a
solution for them. While the students receive support and
guidance in the labs, we also provide (semi-)weekly code
reviews for some of the open-ended exercises.

Although there is no limit on the amount of guidance
that a student can receive, or on the amount of times that
the exercises can be returned, it is of utmost importance that
as soon as the student does not require scaffolding and can
proceed on their own, the scaffolding is faded, i.e. the support
is reduced. The cycle of modeling, scaffolding, and fading
takes place several times each week as each week typically
contains several learning objectives and tens of exercises; the
exercise sets for each week also have a strict deadline, after
which they cannot be returned. Even if a solution that the
student ends up with is correct, it may still require refinement.
Depending on the quality of the solution, the student may
be directed to further improve her work in the lab and apply
practices such as clean code [19].

In practice, the most significant differences between XA
and the traditional operation from the organizational perspec-
tive are: 1) there are no lectures in XA (or if there is, the
lectures serve the exercises); 2) students are encouraged and
expected to use as much time as needed to master the skills
(thereby different students use very varying amounts of time
in the XA lab during the week). Students are free to come
and go as they wish to the XA labs. With careful allocation
of resources, XA does not cost more than the traditional way
of organizing lecture-based education [12].

So far the results in our XA-based programming edu-
cation within the programming courses have been impres-
sive. The change from traditional (lecture-based with take-
home assignments) has resulted in a statistically significant
change in acceptance rates of our programming courses; the
average rates of our introductory programming course and
advanced programming course have increased by 32% and
37% respectively (see [20] for further details). This is a
noteworthy improvement as a lot of effort was already put into
the improvement for the introductory programming course.

B. Students as voluntary TAs

In XA-based programming courses, most of the work is
typically done in computer labs, where the teaching personnel
scaffolds the students that work on the exercises. Since starting
to apply XA, we have observed a substantial increase in
students that are willing to help others in the labs, even on
a voluntary basis. As a response to the increase, we have
welcomed the student teaching assistants; many of them are
in a very early phase of their studies, and are participating in
the teaching community even as early as during their second
semester [21].

The students that participate as teachers become legitimate
peripheral participants [22] of the teaching community. Having
young student members as part of the teaching community
is beneficial for all parties, as it may increase the retention
rate [23] and create a more enjoyable learning context [24].
Between fall 2010 and spring 2013, in addition to the course
faculty, we have had 93 junior teaching assistants participating
in making the XA experience as positive as possible to the
students in the classes. Contrary to some other laudable efforts
in using students as agents of educational reform [25], we aim
to have some 20% of our students involved in XA labs as TAs.

III. STUDY SETTING

The carry-on-effect of XA-based education is studied using
three different measures: (1) grade distribution in the first
mandatory programming course; (2) credit accumulation per
average student 7 and 13 months after the start of their studies,
and (3) success in the expected study path during the first
semester by examining the success in two of the subsequent
courses right after the first programming course. In all of these
examinations, the point of introduction of XA-based education
is the year 2010.

The data used in this study is extracted from the official
study records of the University of Helsinki, and contains
records for students that have enrolled at the university with
CS as their major subject since 2007. In total, the database
extract has information on 895 students. The yearly intake of
students has been aimed at 130 (except 2007 when it was
150). In practice, there is year-by-year fluctuation since a
part of the accepted students do not register for CS (as they
probably have succeeded in landing a more preferable study
place somewhere else). “Overbooking” in the student intake is
typically something around 35% but fairly difficult to predict.
This is the reason for normalizing the numbers year-by-year
so that we can compare the relative, not absolute changes in
the results.

The application of Extreme Apprenticeship method for the
first courses was started in 2010. Hence, years 2010-2012 are
post-XA years, and 2007-2009 are pre-XA years in the data.
Pre-XA years means a more traditional way of organizing
education around a fixed number of weekly lectures, exercise
sessions, and study groups. The teacher responsible for the
courses Introduction to Programming and Advanced Program-
ming has been the same during 2007-2011, while a different
teacher was assigned to the courses during 2012.

A. Grade Distribution

Even though the first programming course has been com-
pletely revamped with the advent of XA, the paper-based final
exam has been deliberately kept mandatory and as closely
corresponding to the exams during the pre-XA era as possible.
Therefore, the grade distribution of the course Introduction to
Programming is comparable on a yearly basis. It is important to
note that the grade distribution at our university is completely
decidable by the teacher responsible for the course. In other
words, the grades do not need to be forced into a bell curve.
Changes in grade distribution can therefore truthfully reflect
the changes in student skills and knowledge.

We acknowledge the fact that since XA is about heavy
practice, students are likely to accumulate a stronger pro-
gramming routine and other desirable qualities that are not
captured by the traditional final exam. In order to emphasize
the thinking and not just the doing – as Allendoerfer et al. [26]
aptly put it – a paper-based final exam that requires higher-
order thinking skills is a valid addition to the educational
arrangements, even when XA is employed.

B. Credit Accumulation

Possible differences in credit accumulation were analyzed
by extracting the number of computer science credits that each
student had gathered in 7 and 13 months since the start of their
studies. As there is always a handful of students that do not
start their studies during the same year they enroll, we removed
the students that had not attempted to take any courses from
the analysis.

As the number of students starting their studies each year
differs, the credit accumulations have been normalized based
on the number of active students, i.e. students, that have at
least attempted a single course. After normalization, the results
are directly comparable. As the students start their studies on
August 1st, the 13 month accumulation for year 2012 is not
available during the time of writing this article.

C. Early Study Path Success

In addition to the credit accumulation for each student
group, we analyze if there is any difference in study path
success between students. The student cohorts are built based
on the year when they took their first introductory program-
ming course, which is considered as the first step in computer
science studies, as it is mandatory for every student.

We analyze two different course pairs for each student co-
hort: (1) Introduction to Programming and Advanced Program-
ming (both changed to XA after 2010), and (2) Introduction
to Programming and Software Modeling (the latter has not
been changed to XA). The courses are organized right after the
course on Introduction to Programming in the same semester.

The method employed here resembles the research con-
ducted by Carrell and West [27]. However, as the organization
of courses and allocation of teachers is not so structured at
our department and administratively collected student feedback
infrequent, we cannot examine the effects of XA in such a
comprehensive fashion.

IV. DATA AND RESULTS

In this section, we show the data and the results extracted
from the study registry. First, we discuss how the grade
distribution has changed within our introductory programming
course. Then, we focus on the overall credit accumulation
between students that have started during different years, and
finally, we consider students’ early study path success.

It should be noted that there have not been other significant
organizational arrangements that can interfere with the results.
The required study path for BSc students has been the same
from 2007 to 2012. The number of teachers has remained
the same, and no differences in student intake can be evoked.
However, as the yearly intake in 2007 was 150 and only 130
from 2008 to 2012, we use the year 2008 as a baseline, as
one could argue that the student cohort of the year 2007 was
somehow inferior to the subsequent years.

Another worthy detail is that all teachers responsible for
these courses are tenured teachers, not adjunct or contingent.
All of the courses have had several students as paid TAs; the
number and the “quality” of TAs is comparable year-by-year.

A. Grade Distribution

The grade distribution in the introductory programming
courses from 2007 to 2012 is visible in Figure 1. The areas
in dark color, i.e. grade 0, depict the number of students
that have failed the course, while the areas in brighter color
indicate students that have passed the course. In the XA-based
courses, 38.5% of the students have received the highest grade
available, i.e. 5, which is indicated by the brightest color.
The grade 5 has been awarded to 22.6% of the students in
traditional courses. During 2007-2009, 42.3% of the students
failed the course Introduction to Programming on the first
try, while during 2010-2012, 28.2% of the students failed the
course on the first try.

It is clearly visible that the grade distribution and pass
rate has been improving. However, as we do not employ tests
similar to ACT/SAT, we are not able to directly compare e.g.
grade inflation [28], as is possible in several other countries.
However, in our context, there are no direct or hidden incen-
tives tied to the grade distribution, and the teacher responsible
for every course instance has been a tenured teacher who
also teaches many of the subsequent courses to the very same
students; “letting the students off easy” would be harmful for
the teacher herself.

Successful start on the study path is a valuable first step,
as it is a clear signal for a student that she is doing a good
job and is appropriately rewarded. A successful first step can
start a virtuous cycle for the student but only if the student
truly has learned the required skills. Grade inflation would be
counterproductive in XA-based education.

B. Credit Accumulation

Credit accumulation describes the number of credits that
students have received during an observed interval. The stu-
dents are grouped based on the year when they enroll at
the university and start their studies. The number of credits
has been aggregated from the student groups. Table I shows
number of students, sum of credits after 7 months of studying

Fig. 1. Grade distribution for the course Introduction to Programming
between 2007 and 2012

and credits after 13 months of studying for each student group.
In addition to the sum of credits, normalized credit counts and
comparison to year 2008 are also shown. The normalization is
done based on the student population size, and year 2008 was
chosen as a baseline as the student intake was decreased from
2007 by 20 students. Note that the data only contains students
that have started their studies, i.e. at least attempted a single
course.

TABLE I. CREDIT ACCUMULATION FOR STUDENT GROUPS FROM
DIFFERENT YEARLY INTAKES

Year Students Credits 7 (norm, scaled %) Credits 13 (norm, scaled %)

2007 136 1681 (2237, 91.6) 2558 (3404, 95.2)
2008 119 1605 (2441, 100) 2352 (3577, 100)
2009 120 1616 (2437, 99.9) 2686 (4051, 113.3)

2010 136 2030 (2701, 110.7) 3418 (4549, 127.2)
2011 140 2287 (2957, 121.1) 3352 (4334, 121.1)
2012 168 3042 (3277, 134.3) n/a

When looking at the years 2010-2012, we observe a clear
increase in the number of credits that students gain during
their early studies when compared to the years 2007-2009.
The higher number of freshmen in 2012 is explained by
an experiment, where we utilized a massive open online
course (MOOC) in programming as an entrance exam to CS
studies [29]. The number of students that received a study
place through “the normal way” was not influenced by the
experiment.

To compare whether there is a difference between the 2007-
2009 and 2010-2012 cohorts, analysis of variance (ANOVA)
was conducted on the credit gains after 7 and 13 months. With
three samples in both groups, there is a statistically significant
difference between the groups (p < 0.05). In the 13 month
groups, where the numbers from 2012 is missing, there is no
statistically significant difference (p = 0.062).

This may be partially explained by the number of samples,
and partially by the introduction of XA. XA was introduced
during spring 2010, and some of the students that failed first
programming courses during fall 2009 retook their program-
ming courses during spring 2010. Typically, spring versions of
the programming courses are populated by CS minor students,
whereas fall versions are for CS major students.

In addition, we analyze the credit gains of students that
attempted their studies, i.e. enrolled to at least a single class,
and students that passed courses.

When analyzing the students that attempted their studies,
the students in the pre-XA group gained 13.1 credits during
the first 7 months (n=375, σ=11.6), while the students in
the post-XA group gained 16.6 credits (n=444, σ=11.1). The
two groups were also compared using an ANOVA test, which
indicated that there is a statistically significant difference for
the pre-XA and post-XA groups after 7 months of studies
(p < 0.01).

When considering the credit gains after 13 months, where
year 2012 has been excluded due to currently unavailable data,
the pre-XA group gained 20.3 credits on average (n=375,
σ=18.6), while the post-XA group gained 24.5 credits on
average (n=276, σ=19.0). A statistically significant difference
was observed using an ANOVA test (p < 0.01).

When considering students that passed courses, i.e. they
have passed at least a single course, the students in the pre-
XA group gained 17.0 credits during the first 7 months (n=289,
σ=10.4), while the students in the post-XA group gained 19.6
credits (n=376, σ=9.3). An ANOVA test indicated that there is
a statistically significant difference for the pre-XA and post-
XA groups after 7 months of studies (p < 0.01).

When considering the credit gains after 13 months, where
year 2012 has been excluded due to currently unavailable data,
the pre-XA group gained 25.6 credits on average (n=297,
σ=17.4), while the post-XA group gained 29.3 credits on
average (n=231, σ=17.1). A statistically significant difference
was observed using an ANOVA test (p < 0.05).

C. Early Study Path Success

In order to validate the effect of XA, we want to examine
the mandatory first course (Introduction to Programming) and
see whether the success in two mandatory subsequent courses
(Advanced Programming and Software Modeling) benefits
from the fact that the first course is based on XA or not. To
validate the effect even further, one of the subsequent courses
(Advanced Programming) is also XA-based, but the other one
(Software Modeling) is not. All of these three courses are
mandatory courses for every BSc student in CS, and all of
the three courses are scheduled to be taken during the first
semester.

In the following examination, study path success describes
the student percentage that has succeeded in a specific course
pair on the first attempt. The percentage for yearly course pairs
is shown in Table II.

TABLE II. STUDY PATH SUCCESS WHEN MOVING FROM
INTRODUCTION TO PROGRAMMING TO ADVANCED PROGRAMMING AND

INTRODUCTION TO PROGRAMMING TO SOFTWARE MODELING

Year Intr. Prg. & Adv. Prg Intr. Prg. & SW. Modeling

2007 45.1 41.5
2008 39.2 48.8
2009 50 54.2

2010 68.5 63
2011 71.1 74.4
2012 70.3 72.2

Before XA, the year with the best success was 2009, where
50% of the students that enrolled in both Introduction to
Programming and Advanced Programming passed both courses
on their first attempt. A similar result is visible in the course
pair Introduction to Programming and Software Modeling;
54.2% of the students that started both courses passed both
on their first attempt.

The lowest scores after the introduction of XA are from the
year 2010. Here 68.5% of the students passed both program-
ming courses on their first attempt, and 63% of the students
passed both Introduction to Programming and Software Mod-
eling. However, a clear difference can be observed between
the pre-XA and post-XA courses. An interesting issue is that
the effect of the first course using XA appears to carry over
to the subsequent course, irrespective of the use of XA in the
subsequent course.

When conducting an ANOVA test for the course pair Intro-
duction to Programming and Advanced Programming, there is
a statistically significant difference (p < 0.01) between the pre-
XA and post-XA groups. Statistically significant difference is
observed also for the course pair Introduction to Programming
and Software Modeling (p < 0.05).

V. DISCUSSION

We have described results from a long-term study of
student performance before and after applying a method called
XA in our early programming courses. Our results indicate that
the grade distribution, pass-rate, overall credit accumulation,
and student success in staying on the desired study path have
all improved after applying XA, when looking at students’
performance after 7 months and 13 months of studying.

At our university, the teachers are not rewarded for per-
forming well, nor are they punished for performing poorly. As
a matter of fact, it is very difficult for a teacher to even know
how they are performing, as there are no formal measures
other than student grades that the teacher herself decides. The
administration oversees the study progress on a larger scale
but has no measures to evaluate learning. Many times even
the formal course feedback received from the students has little
impact as the teacher herself is the main actor in processing the
feedback. Fortunately, in our context where teaching is valued
and teachers want to be good teachers rather than bad teachers,
our introductory programming courses have always received
excellent feedback and been held in high esteem. Therefore,
the improvements described in this paper are valuable, as they
extend beyond a single course and improve an already well-
functional educational arrangement.

The results and XA that are described in this paper are
a part of a larger change, which was started in late 2009.
Every change requires people willing to change; we have been
lucky to have teachers eager to deliberately practice and hone
both their skills and knowledge, and apply their knowledge
fully into teaching. Communication and bi-directional feed-
back valued by XA requires that the teachers are on the same
level as the students, as students work on their exercises: both
receive feedback on what they are doing well, and what could
be improved, which allows a cycle, where the courses can be
aligned to match the needs of individual learners.

ACKNOWLEDGEMENTS

We gratefully acknowledge Matti Luukkainen and Arto
Wikla, who have both done great work in improving the
programming education at our department. We also gratefully
acknowledge the grant from the Dean of Faculty of Science for
this project. Part of the research is funded by the Centennial
Foundation of the Finnish Technology Industries.

REFERENCES

[1] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137–172, 2003.

[2] E. P. Bettinger and B. T. Long, “Does cheaper mean better? the
impact of using adjunct instructors on student outcomes,” The Review
of Economics and Statistics, vol. 92, no. 3, pp. 598–613, 2010.

[3] D. L. Soldan, W. P. Osborne, and D. Gruenbacher, “Modeling the
economic cost of inadequate teaching and mentoring,” in Frontiers in
Education Conference (FIE), 2010 IEEE. IEEE, 2010, pp. F3J–1.

[4] S. Fincher, B. Richards, J. Finlay, H. Sharp, and I. Falconer, “Stories of
change: How educators change their practice,” in Frontiers in Education
Conference (FIE), 2012, 2012, pp. 1–6.

[5] P. Lasserre and C. Szostak, “Effects of team-based learning on a
CS1 course,” in Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education, 2011, pp.
133–137.

[6] J. D. Bayliss and S. Strout, “Games as a ”flavor” of CS1,” in
Proceedings of the 37th SIGCSE technical symposium on Computer
science education, ser. SIGCSE ’06. ACM, 2006, pp. 500–504.
[Online]. Available: http://doi.acm.org/10.1145/1121341.1121498

[7] B. A. Jacob, L. Lefgren, and D. P. Sims, “The persistence of teacher-
induced learning,” Journal of Human Resources, vol. 45, no. 4, pp.
915–943, 2010.

[8] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
education, vol. 32, no. 3, pp. 347–364, 1996.

[9] D. M. Shannon, D. J. Twale, and M. S. Moore, “TA teaching effec-
tiveness: The impact of training and teaching experience,” Journal of
Higher Education, pp. 440–466, 1998.

[10] M. Luukkainen, A. Vihavainen, and T. Vikberg, “Three years of
design-based research to reform a software engineering curriculum,” in
Proceedings of the 13th annual conference on Information technology
education. ACM, 2012, pp. 209–214.

[11] A. Vihavainen, M. Paksula, and M. Luukkainen, “Extreme apprentice-
ship method in teaching programming for beginners,” in Proceedings
of the 42nd ACM technical symposium on Computer science education.
ACM, 2011, pp. 93–98.

[12] J. Kurhila and A. Vihavainen, “Management, structures and tools to
scale up personal advising in large programming courses,” in Pro-
ceedings of the 2011 conference on Information technology education.
ACM, 2011, pp. 3–8.

[13] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[14] A. Collins et al., “Cognitive apprenticeship: Making things visible.”
American Educator: The Professional Journal of the American Feder-
ation of Teachers, vol. 15, no. 3, pp. 6–11, 1991.

[15] K. Beck, Test driven development: By example. Addison-Wesley
Professional, 2003.

[16] A. Dillon and J. Stolk, “The students are unstable! cluster analysis of
motivation and early implications for educational research and practice,”
in Frontiers in Education Conference (FIE), 2012, 2012, pp. 1–6.

[17] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer, “The role of delib-
erate practice in the acquisition of expert performance.” Psychological
review, vol. 100, no. 3, p. 363, 1993.

[18] L. Vygotsky, “Mind in society,” 1978.
[19] R. C. Martin, Clean code: a handbook of agile software craftsmanship.

Prentice Hall, 2008.

[20] A. Vihavainen and M. Luukkainen, “Results from a three-year transition
to the extreme apprenticeship method,” Proceedings of the 13th IEEE
International Conference on Advanced Learning Technologies, July
2013.

[21] A. Vihavainen, T. Vikberg, M. Luukkainen, and J. Kurhila, “Massive
increase in eager TAs: experiences from extreme apprenticeship-based
CS1,” in Proceedings of the 18th ACM conference on Innovation and
technology in computer science education, ser. ITiCSE ’13. New
York, NY, USA: ACM, 2013, pp. 123–128. [Online]. Available:
http://doi.acm.org/10.1145/2462476.2462508

[22] J. Lave and E. Wenger, Situated learning: Legitimate peripheral par-
ticipation. Cambridge university press, 1991.

[23] C. Stewart-Gardiner, “Improving the student success and retention of
under achiever students in introductory computer science,” Journal of
Computing Sciences in Colleges, vol. 26, no. 6, pp. 16–22, 2011.

[24] P. E. Dickson, “Using undergraduate teaching assistants in a small
college environment,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011, pp. 75–80.

[25] G. Herman, K. Trenshaw, and L.-M. Rosu, “Work in progress: Em-
powering teaching assistants to become agents of education reform,” in
Frontiers in Education Conference (FIE), 2012, 2012, pp. 1–2.

[26] C. Allendoerfer, M. Kim, E. Burpee, D. Wilson, and R. Bates, “Aware-
ness of and receptiveness to active learning strategies among stem
faculty,” in Frontiers in Education Conference (FIE), 2012, 2012, pp.
1–6.

[27] S. E. Carrell and J. E. West, “Does professor quality matter? evidence
from random assignment of students to professors,” Journal of Political
Economy, vol. 118, no. 3, 2010.

[28] I. Y. Johnson, “Contingent instructors and student outcomes: An artifact
or a fact?” Research in Higher Education, vol. 52, no. 8, pp. 761–785,
2011.

[29] A. Vihavainen, M. Luukkainen, and J. Kurhila, “Multi-faceted support
for MOOC in programming,” in Proceedings of the 13th annual
conference on Information technology education. ACM, 2012, pp.
171–176.

Publication II.1

II.1
Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel

Scaffolding Students’ Learning Using Test My Code

In Proceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’13)

Copyright c©ACM New York, NY, USA 2013
http://dx.doi.org/10.1145/2462476.2462501

Reprinted with permission.

Scaffolding Students’ Learning using Test My Code

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, Martin Pärtel
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ avihavai, tvikberg, mluukkai, partel }@cs.helsinki.fi

ABSTRACT

As programming is the basis of many CS courses, meaning-
ful activities in supporting students on their journey towards
being better programmers is a matter of utmost importance.
Programming is not only about learning simple syntax con-
structs and their applications, but about honing practical
problem-solving skills in meaningful contexts. In this article,
we describe our current work on an automated assessment
system called Test My Code (TMC), which is one of the
feedback and support mechanisms that we use in our pro-
gramming courses. TMC is an assessment service that (1)
enables building of scaffolding into programming exercises;
(2) retrieves and updates tasks into the students’ program-
ming environment as students work on them, and (3) causes
no additional overhead to students’ programming process.
Instructors benefit from TMC as it can be used to perform
code reviews, and collect and send feedback even on fully
on-line courses.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education Computer Science Education

General Terms

Experimentation, Human Factors, Measurement

Keywords

programming, testing, automatic assessment, verification,
extreme apprenticeship, situated learning

1. INTRODUCTION
We organize our programming courses using the Extreme

Apprenticeship method (XA) [16]. One of the success fac-
tors in XA is that all learning-oriented activities are as “gen-
uine” as possible, e.g. programming is done using industry
strength tools while honing good programming practices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’13, July 1–3, 2013, Canterbury, England, UK.
Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

The work that students are required to do must be well de-
fined and achievable with students’ existing knowledge, es-
pecially in the early phases of a course. Early success allows
students to build both self-confidence and their program-
ming routine, which helps them to transition towards seeing
more than simple syntax.

Success in the early parts of the courses relies heavily on
small and relatively easy exercises, which are designed to
help understand course-specific learning objectives. For ex-
ample, during the first week of our CS1 course, the students
practice basic input and output, and build programs that
use conditionals with almost 30 different exercises 1. As
students progress in the course, the small exercises combine
into bigger programs. This is to demonstrate and teach how
larger programs are solved in a step-wise manner.

The students work on the exercises in computer labs where
their learning is scaffolded by numerous teaching assistants
(TAs) [17]. Scaffolding means providing well-timed support
to the learners’ learning process, so that they can achieve
such learning objectives that they could not reach on their
own [18]. In addition to scaffolding, the instructors assess
exercises, and provide feedback on student’s programming
practices and program design.

Although scaffolding and bi-directional feedback is usu-
ally beneficial for both the student and the instructor, parts
of scaffolding tends to be repetitive. As there are tens of
students in the labs at the same time, it is hard to build a
larger picture of a students’ progress.

Test My Code (TMC) has been developed to reduce the
amount of repetitive tasks of the TAs, i.e. exercise check-
ing and some parts of the scaffolding, and to increase the
amount of time instructors have for mentoring and support-
ing students. TMC also supports gathering snapshots from
the students’ programming processes, as well as providing
long-distance support via code reviews. It can be useful for
instructors and CS education researchers alike, as one can
choose how it is to be utilized in a class; it can be used as
an assessment service and a data gathering tool.

This paper is organized as follows. In section 2, we moti-
vate the work on a new assessment system, after which we
give a description of programming exercises in an XA con-
text. Section 4 describes the structure of TMC, after which
we describe how it can be used to scaffold students’ learning.
Finally, we give an overview of the performed evaluations,
the impact of TMC on our courses, and lay down planned
future work.

1See Object-Oriented Programming with Java at
http://mooc.fi.

117

2. MOTIVATION FOR A NEW SYSTEM
Several of the programming courses at the University of

Helsinki are organized using the Extreme Apprenticeship
(XA) method, which is a modern interpretation of appren-
ticeship-based learning [16]. XA emphasizes students’ in-
dividual effort and communication between the learner and
the advisor. Core values in XA include:

• A craft can only be mastered by actually practicing
it, for as long as is necessary. To be able to practice
the craft, students need meaningful activities, i.e. ex-
ercises.

• Continuous feedback between the learner and the ad-
visor. The learner needs confirmation that she is pro-
gressing and in a desired direction. Therefore, the ad-
visor must be aware of the successes and challenges of
the learner throughout the course.

In order for XA to properly benefit from an automatic as-
sessment system, the system has to accommodate scaffolding
as well as support the situative perspective on learning in
apprenticeship-based education [3]. The perspective views
the situations where knowledge is developed and later ap-
plied as highly connected, as “methods of instruction are not
only instruments for acquiring skills; they also are practices
in which students learn to participate” [9].

We want our students to become proficient in program-
ming, not only to know about programming. According to
the situative perspective, abstracting theory from practice
does not yield transferability [5]. As a goal of our CS educa-
tion is to help students on their journey towards becoming
experts in their field, chosen tools and methods have to allow
“participation in valued social practices” [9] of the respective
professional communities. For aspiring programmers, the
tools and practices of learning [9] in their training should be
similar to those used in the software engineering industry.
Industry best practices, such as code reviewing [8], has to
implemented in a way that enable instructors to perform the
tasks in a non-intrusive manner.

Scaffolding of students’ learning has to be well-timed and
not over excessive. Due to the nature of XA, accumulated
knowledge of the learning of students process is continuously
gathered through the bi-directional feedback of the courses.
The ability to transform this knowledge iteratively into the
exercises and tests of the courses has to be featured in the
automated assessment system.

There exist lots of automatic systems that are designed
to assess students’ programs [6, 1, 11]. However, as pointed
out by Ihantola et al. [11], most of them are created for a
specific course or as a part of a research project, and are
not made available for distribution or modification. Two of
the exceptions are the Marmoset project [14], and the Web-
Cat project [7], both of which are available as open source
projects.

Most of the currently available assessment systems are
web-based, which means that in order to solve an exercise, a
student has to download a template from a web-page, solve
it, and then submit it using a web-GUI. If the tests in the
assessment system are built to provide feedback to the stu-
dent, retrieving the feedback from a web-page causes an ex-
tra step. In addition to poorly supporting the learning of
specific tools and practices, the use of a web-GUI for down-
loading and submitting each would cause lots of unnecessary

overhead. Constantly zipping and unzipping of projects is
also not something we wish to teach our students as it does
not belong to the workflow of a professional software engi-
neer.

2.1 Requirements for Test My Code
Almost all CS and IT curricula contain courses on web-

development and algorithmics, both of which benefit from
tools that can be utilized to support students during their
learning process.

In order to create a realistic web-development environ-
ment, the students should be able to e.g. configure down-
loading of dependencies and deploy the same application
both locally and online. Local deployment is useful e.g. as
students practicing web development should also learn to
debug web applications using tools such as integrated devel-
oper consoles in web browsers. In order to properly assess
and scaffold good development practices, support for testing
both frontend and backend functionality is of great impor-
tance.

In algorithmics courses the learning objectives are usually
a mix of analysis of run-time complexity, and the creation
of implementations. Many of the current assessment sys-
tems handle algorithm run-time analysis using naive run-
time clocking. Although this is sufficient for most of the
cases, our large-scale courses have peaks e.g. during dead-
lines, which can cause false negatives in the tests. Additional
false negatives are caused due to the use of cloud-based vir-
tual machines that have fluctuations in the available process-
ing power. One approach for handling this is deterministic
algorithm analysis using bytecode counting, see e.g. [12].

As an ongoing effort, Test My Code (TMC) is currently
designed to

• be as minimally intrusive as possible; the assess-
ment service does not introduce any additional over-
head to the students’ working process. TMC down-
loads the exercises directly to the working environ-
ment, and supports both local and server-side tests

• support timely scaffolding within the exercises;
new goals can be made visible only after previous ones
have been finished, and adding scaffolding messages to
the tests is easy

• allow awarding points for completing smaller
goals, not just for completing full exercises

• support bidirectional feedback; TMC supports code
reviews as well as direct feedback regarding the exer-
cises both from the students’ and the instructors’ per-
spective

• make testing visible; the actual testing process is
made visible, which eases students into the thought of
writing their own tests

• support web-application development courses;
testing of both front-end and backend functionalities,
as well as ad-hoc downloading of dependencies, is made
possible using Maven2

• support algorithm testing in unstable environments

2http://maven.apache.org

118

From the course instructor’s perspective, TMC

• causes no additional overhead from the man-
agement perspective; the system has a clean inte-
gration interface for reading in assessed exercises

• allows mistakes in the exercise generation pro-
cess; if an exercise contains mistakes, updated versions
can be easily published to students

• allows honing software engineering practices for
exercise developers; generating exercises and tests
does not substantially differ from work done in a nor-
mal software engineering context

• gathers data from students’ programming pro-
cess for future analysis and e.g. plagiarism detection

In addition, TMC is open source and is freely available3.

3. TEST MY CODE
In its current state, TMC consists of several components

that are organized using client-server architecture, see Fig-
ure 1. The NetBeans plugin

• retrieves and updates course exercises from an assess-
ment server

• displays built-in scaffolding messages during the work-
ing process

• submits exercises to the assessment server

• allows giving and receiving direct feedback regarding
the exercises

• gathers data from students’ programming process

In addition, the plugin introduces a new menu option
called TMC and three new toolbar buttons. The TMC
menu contains options for changing settings (e.g. username,
course, exercise directory), checking for new exercises, sub-
mitting answers, and requesting and viewing code reviews.
The toolbar buttons are added for (1) running the currently
modified application independently of any accidentally se-
lected main project, (2) running local tests, and (3) sub-
mitting the solution TO the the assessment server. If the
student presses the “run tests locally” button, locally avail-
able tests for the exercise are run and possible scaffolding
messages are shown immediately.

The web-interface allows students to register to a course,
view their statistics, and optionally submit exercises out-
side the IDE. Course instructors use the web interface for
administrative tasks such as the creation of new courses, re-
freshing exercises, viewing submissions, responding to code
review requests, and viewing course-related statistics.

Requests to the TMC backend are routed using one or
more web servers. Each course has a git-repository that
contains the course exercises. Students’ submissions and
information are entered into a database. Once a student
submits an exercise, the exercise is verified on one of the
sandbox servers that run transient user-mode Linux4 virtual
machines. Each sandbox server has an optional Maven cache
for storing library dependencies for e.g. web development-
related exercises.
3http://github.com/testmycode
4http://user-mode-linux.sourceforge.net/

Figure 1: TMC architecture

3.1 Code Reviews
Code reviews are designed to identify defects and point

out improvement opportunities in the reviewed software [8].
Depending on the programming language used, some of the
code reviewing can be automated. For Java typical tools
are e.g. Findbugs [10] and Checkstyle, and even they fail to
point out improvement opportunities in the program design
and architecture. Hence, manual review is still often useful.

TMC provides code review capability in the web inter-
face, see Figure 2. Once the students have submitted their
projects, the instructors can browse the submitted code on-
line. If students request a review for their code, the requests
are visible on the TMC main page. Problems identified dur-
ing a review process are communicated to the developer,
who then further works on the issues.

Reviews can either be requested manually in the IDE,
or the instructors can spontaneously review students’ code.
Once a review has been performed, the student is notified via
email or directly within the IDE. As the student opens the
IDE (or if the IDE is running), she sees the review comments
immediately.

In our programming courses, in addition to the scaffolding
in XA labs, we often perform manual code reviews at least

Figure 2: Reviewing students’ code (the input win-
dow is resizeable).

119

for open exercises that do not impose a specific structure for
the program. A single code review usually takes between 5
and 10 minutes, and each student typically receives at least
one weekly review (assuming she has programmed during
that week). Having manual code reviews is possible due to
the way we organize our instruction [13].

3.2 Creating Exercises and Tests
Creating a new exercise and its tests starts with creating a

programming project (e.g. a standard Maven project), and
continues by working on the exercise using the same steps
that one would while using TDD [2]. For each part of the
exercise, one first creates the tests and error messages that
indicate what went wrong, and afterwards add the function-
ality that makes the tests pass.

Once the exercise is finished, further work is needed. The
finished exercise files are used as both the model solutions
and the template that the students receive from TMC. The
content in the version that students receive needs to be al-
tered. Altering content is done based on comments within
the project files. For example, a source file that starts with
a comment // SOLUTION FILE is never sent to the student.

After altering the source code files is finished, the tests
usually need modification. The modified version does not
usually contain all the files that are referenced by the orig-
inal tests. Depending on the programming language used,
the tests need to be modified to tolerate conditions such as
missing classes and methods. TMC provides a Java DSL
that allows convenient access to student code via reflection,
and provides user-friendly scaffolding messages in common
error situations.

Once the tests are finished, points that the students re-
ceive for the exercise are added. Points for an exercise or
a subtask are given based on annotations on test methods
and classes. For example, if a test class has an annotation
@Points("007"), the student is awarded points for the ex-
ercise ”007”, given that all the tests in the class pass, and no
other class or test with the same annotation fails.

The exercise is published by adding it to the course git
repository and refreshing the course in TMC. This causes a
HTTP push event, which can be identified by the NetBeans
plugin. Alternatively, the exercise (or an update to the ex-
ercise) is available the next time the student opens up the
IDE.

Instructors may choose to have a separate branch for ex-
ercises that need to be tested internally before publishing.
One can e.g. create a separate course for more eager stu-
dents, who are willing to work as exercise testers. Once a set
of exercises is tested well enough, and deemed ready for pub-
lishing, the branch is merged to the branch that is visible to
the whole course. This is especially useful when performing
team teaching and collaborative crafting of material.

3.3 Deterministic Profiling
Algorithm-related tests are usually assessed simply by in-

vestigating the algorithm run-time with different sized in-
puts. This is problematic as operating system-related tasks
and e.g. JVM garbage collection tasks launch arbitrarily,
causing additional load on the assessment system. This may
lead to false negatives, even if the assessed algorithm is im-
plemented perfectly. One common approach is to average
the running time over a specific number of iterations. How-

ever, this simply tries to avoid the actual problem: assessing
a program based on execution time.

TMC has a bytecode counting component that is inspired
by ByCounter [12]. Counting bytecode instructions makes
it possible to conduct repeatable benchmarks of students’
algorithms. One can demand e.g. that an algorithm must
run in a linear time or faster based on the size of an input.

Setting up a deterministic test needs an input for the al-
gorithm and a method to invoke. In the following example,
students need to create an algorithm for calculating the Fi-
bonacci numbers that is linear to its input size or faster.
The method must be created to a method called fibonacci

in a class called Fibonacci. The method takes an integer
as a parameter, and returns an Integer as output. The In-

tegerImpl is a wrapper that expects an integer as a return
value from the method.

@Test
public void linearFibonacci() {

IntegerImpl impl = new IntegerImpl();
impl.setClassName("Fibonacci");
impl.setMethodName("fibonacci");

List<Integer> input = Arrays.asList(2, 10, 100);
Output<Integer> output = impl.runMethod(input);
ComplexityAnalysis.assertLinear(output);

}

The complexity analysis component also provides a graph
view which allows easy visualization of the algorithm run-
ning times.

4. SCAFFOLDING STUDENTS WITH TMC
The driving learning method in XA is individual effort

through practical work by students. This means that the
exercises are the most important part of a course, and de-
signing them is the most important task for the teacher in
charge. Every instructional goal in a course is learned via
working through a set of exercises designed to help building
understanding on the topic at hand. Being able to solve an
exercise is not enough: one must focus on both the process
and quality while crafting the solution. Course instructors
monitor and help students as they work on the exercises,
which helps students in achieving their goals as well as pro-
vides feedback for the instructors on upcoming exercises that
should be created [17].

Exercises that the students start with are usually com-
posed of small incremental tasks, which combine into bigger
programs. Incremental tasks are used to imitate a typical
problem-solving process: as the students work through the
tasks, they explicitly practice building software from smaller
components.

The written-out thought process that was used to form the
exercises constantly influence the students’ programming.
This provides scaffolding for learning of good programming
practices, as students’ work is constantly guided by the pre-
performed subtask division. Exercises are intentionally writ-
ten out to be as informative as possible, and often contain
sample input/output descriptions or code snippets with ex-
pected outputs, which provide further support for verifying
the correctness of a crafted program.

As an example of a scaffolding assignment, let us exam-
ine a sequence of exercises that demonstrates the use of
methods. Just before the assignment, the course material
presents the use of void methods and how a method can call

120

another user-defined method. Before this set students solve
one simple warm-up assignment involving only parameter-
less methods. The assignment belongs to the 2nd week of
our 14-week CS1 course, and the students have practiced
with loops and variables starting from week 1.

Assignment: Printing a Christmas tree

Task 1: Printing stars Modify the method printStars so that
it prints the given amount of stars and a line break. Use the
following body:

private static void printStars(int amount) {
// you can print one star with System.out.print("*");
// call it ’amount’ times

}

public static void main(String[] args) {
printStars(2);
printStars(9);

}

The program should output:

**

Task 2: Printing a rectangle Create a printRectangle(int
width, int height)-method that prints a rectangle using the
printStars method. Calling printRectangle(17,2) should pro-
duce the following output:

Task 3: Printing a left-aligned triangle Create a method
printLeftAlignedTriangle(int size) that prints a triangle us-
ing the method printStars. Calling the new method with 3 as a
parameter should produce the following output:

*
**

Task 4: Printing stars and whitespaces omitted

Task 5: Printing a right-aligned triangle omitted

Task 6: The tree Create a method called xmasTree(int
height) that prints a Christmas tree using at least some of the
previously defined methods. A Christmas tree consists of a tri-
angle of given height and a stand. The stand is a single star
located at the middle of the triangle bottom. The method call
xmasTree(3), for example, has the following output:

*

*

While performing the steps in the above exercise, stu-
dents practice creating and using methods with parameters,
work constantly using a divide-and-conquer approach, and
see how a simple algorithmic challenge, e.g. printing a tree,
is solved.

Scaffolding within the exercises can also be used to direct
the students away from bad habits such as the use of un-
necessary instance variables or unclear method names. As
the students work on the exercises, their workflow resembles
the workflow of TDD [2] that the instructor that created
the exercise previously had followed. However, in most of
the cases, the tests are now pre-defined. A clear metalevel
motivation for the incremental style is to guide students to

follow a working process similar to that of good professional
programmers: proceed in small steps and validate your code
after each step [2].

The scaffolding is implemented in the tests of the exer-
cises. The tests are written so that they help students to
focus on progressing in small steps even within a single ex-
ercise: it is important to concentrate on making tests pass
one by one in a meaningful order. A typical sequence might
be:

1. implement class MainProgram

2. define a static method printStars(int amount)

3. ensure that the method prints the correct amount of stars

4. ensure that a newline is printed after the stars

5. define a static method printRectangle(int width, int height)

6. ensure that the method prints the correct amount of stars
when called as printRectangle(1, 1)

7. ensure that printRectangle(1,1) calls printStars(1)

8. . . .

4.1 Open Exercises
As any instruction should aim towards the student being

able to do the problem solving themselves, it is important
that scaffolding is eventually faded [4]. In our programming
courses, fading is realized by using open exercises that do
not enforce any specific program structure or approach.

Open assignments in early programming classes are inten-
tionally complex enough so that programming a solution to
a single file (e.g. class) causes chaotic design, but simple
enough so that using an “implement a single requirement,
refactor if needed”approach will eventually create a nice ob-
ject design. The exercises often utilize a well-known domain
(e.g. airport, airplanes or student, courses, registrations),
which makes it easier to design required domain objects.

The following exercise is an example of an open exercise
from week 6. In addition to the problem description, the
students receive a sample input/output description, which
has been left out due to space considerations.

Assignment: Bird Observations

Design and implement an observation database for a bird
observer. The database contains birds, each of which have
name and latin name. The database also tracks how many
times a bird has been observed. The program should have
a text UI and should respond to the following commands

add - adds a bird

observation - adds an observation

statistics - prints all birds and observations

show - prints one bird

quit - terminates the program

The database should store the observations into a text file
for future use.

The open exercises only define how the application is sup-
posed to work for a given user input. In early programming
courses the input may be given e.g. via command line, or
as system input, while in web-development courses the tests
for open exercises typically monitor e.g. a given database
while inputting data to input fields with specified names or
ids, or require that a given REST API exists and works as
desired.

121

5. CONCLUSIONS AND FURTHER WORK
The automated assessment system, TMC, has been suc-

cessfully used in our CS1, CS2 andWeb-development courses,
as well as in various other courses, including MOOCs [15] in
programming. We have also utilized TMC and NetBeans for
younger students in a “game programming for youth” out-
reach course that has been created as an attempt to raise
awareness towards programming. The youngest students so
far have been 11, and given the challenges of learning Java
at a young age, TMC itself has worked well.

As TMC can provide some of the scaffolding for the stu-
dents to learn programming, it has allowed better allocation
and use of resources in our courses. Instructors now spend
more time on more demanding scaffolding and have time to
reflect in the labs when compared to the past, where the
exercises were checked manually. This has contributed to
improvements in the learning results in our CS1 courses,
and made the task of working as a TA a valuable learning
experience [17].

The blended learning environment that TMC and XA cre-
ates resembles the genuine working environment of a soft-
ware developer. Our students are immersed in this environ-
ment from day one of their studies, working with industry
strength tools and pushed towards programming best prac-
tices. As TMC is not a course or topic specific tool, it can
be used in a similar fashion throughout our curriculum. The
following spontaneous testimonial is from a web backend de-
velopment course held during fall 2012.

TMC was great! It was great to be able to work
on so many web applications. Receiving many of
the configuration files with tests that said what
to do aided a lot during learning. In addition,
it was good that I didn’t have to waste the time
of TAs for showing exercises that I was confident
about. TMC was very easy to install, and in-
credibly easy to use.

Currently TMC supports Java (and other JVM-based lan-
guages), and we are in the process of developing a more mod-
ular, language-independent, assessment backend, as well as
integration to other IDEs. We are considering integrating
static analysis tools such as PMD and Checkstyle with TMC,
which would enable us to better address code conventions
(eg. indentation, variable naming, method length and com-
plexity) that are currently evaluated in the labs in an ad-hoc
fashion. In addition, a component that flags submissions
that are potentially copied from other students or model
answers is under development.

We continuously wish to improve our CS education. An-
alyzing snapshot data from the programming process of our
students, gathered by TMC, will help to improve both the
exercises and the accompanied tests in our courses. This will
benefit our students and teams of teachers as the learning of
the students is better understood and can therefore be more
effectively scaffolded.

6. ACKNOWLEDGEMENTS
We thank all the students who have worked on building

TMC so far: S. Hiltunen, J. Isotalo, K. Kaltiainen, V. Knu-
uttila, T. Koivisto, T. Kovanen, A. Majander, P. Marjanen,
J. Mynttinen, K. Nordman, M. Rannanjärvi, K. Rantanen,
O. Rissanen, T. Simsiö, J. Turpeinen and K. Viiri.

7. REFERENCES
[1] K. Ala-Mutka. A survey of automated assessment

approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

[2] K. Beck. Test Driven Development: By Example.
Addison-Wesley, 2002.

[3] J. Brown, A. Collins, and P. Duguid. Situated
cognition culture of learning. Educational Researcher,
18(1):32, 1989.

[4] A. Collins, J. S. Brown, and A. Holum. Cognitive
apprenticeship: making thinking visible. American
Educator, 6, 1991.

[5] A. Collins and J. G. Greeno. Situative view of
learning. In V. G. Aukrust, editor, Learning and
Cognition, pages 64–68. Elsevier Science, 2010.

[6] C. Douce, D. Livingstone, and J. Orwell. Automatic
test-based assessment of programming: A review.
Journal of Educational Resources in Compututing,
5(3), Sept. 2005.

[7] S. Edwards. Using test-driven development in the
classroom: Providing students with automatic,
concrete feedback on performance. In Proceedings of
the EISTA’03, volume 3. Citeseer, 2003.

[8] M. E. Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(3):182 –211, 1976.

[9] J. G. Greeno. Response: On claims that answer the
wrong questions. Educ. Researcher, 26(1):5–17, 1997.

[10] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Not., 39(12):92–106, Dec. 2004.

[11] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic
assessment of programming assignments. In
Proceedings of the 10th Koli Calling. ACM, 2010.

[12] M. Kuperberg, M. Krogmann, and R. Reussner.
ByCounter: portable runtime counting of bytecode
instructions and method invocations. In Proceedings of
the ETAPS’08, 2008.

[13] J. Kurhila and A. Vihavainen. Management,
structures and tools to scale up personal advising in
large programming courses. In Proceedings of the
SIGITE ’11. ACM, 2011.

[14] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
Marmoset: designing and using an advanced
submission and testing system for programming
courses. In Proceedings of the ITICSE ’06. ACM, 2006.

[15] A. Vihavainen, J. Kurhila, and M. Luukkainen.
Multi-faceted support for MOOC in programming. In
Proceedings of the SIGITE ’12. ACM, 2012.

[16] A. Vihavainen, M. Paksula, and M. Luukkainen.
Extreme apprenticeship method in teaching
programming for beginners. In Proceedings of the
SIGCSE’11. ACM, 2011.

[17] A. Vihavainen, T. Vikberg, M. Luukkainen, and
J. Kurhila. Massive increase in eager TAs:
Experiences from extreme apprenticeship-based CS1.
To appear in Proceedings of the ITiCSE’13, July 2013.

[18] D. Wood, J. S. Bruner, and G. Ross. The role of
tutoring in problem solving. The Journal of Child
Psychology and Psychiatry and Allied Disciplines,
17(2):89–100, 1976.

122

Publication II.2

II.2

Jaakko Kurhila and Arto Vihavainen

A Purposeful MOOC to Alleviate Insufficient CS Education in
Finnish Schools

In Transactions on Computing Education. 15, 2, Article 10 (April 2015)

Copyright c©ACM New York, NY, USA 2015
http://dx.doi.org/10.1145/2716314

Reprinted with permission.

10

A Purposeful MOOC to Alleviate Insufficient CS Education
in Finnish Schools

JAAKKO KURHILA and ARTO VIHAVAINEN, University of Helsinki

The Finnish national school curriculum, effective from 2004, does not include any topics related to Computer
Science (CS). To alleviate the problem that school students are not able to study CS-related topics, the
Department of Computer Science at the University of Helsinki prepared a completely online course that is
open to pupils and students in all schools in Finland. The course is a Massive Open Online Course (MOOC),
as the attendance scales without an upper bound. Schools in Finland have offered the MOOC as an elective
CS course for their students and granted formal school credits for completing (parts of) it. Since our MOOC is
exactly the same programming course as our university-level CS1 course, we are able to use the MOOC also
as a long-lasting entrance exam to the CS BSc and MSc degrees. After two spring semesters of operation, we
have observed that there are school students dispersed around Finland who are ready and willing to take
on a challenging programming course online, and bridging the MOOC to a full study right makes a strong
incentive to keep working on the programming assignments, even without traditional teaching.

Categories and Subject Descriptors: K.3.2 [Computer and Information Science Education]: Computer
Science Education; K.3.1 [Computer Uses in Education]: Distance Learning

General Terms: Design, Human Factors

Additional Key Words and Phrases: Entrance exam, high-performing students, open online course, program-
ming education

ACM Reference Format:
Jaakko Kurhila and Arto Vihavainen. 2015. A purposeful MOOC to alleviate insufficient CS education in
Finnish schools. ACM Trans. Comput. Educ. 15, 2, Article 10 (April 2015), 18 pages.
DOI: http://dx.doi.org/10.1145/2716314

1. INTRODUCTION

Ever since the world’s first GSM phone call was made in Finland in 1991, Finland
boasted about being a country of high technology. Because the notion of Finland as
a high-tech nation was so pervasive, it was a common thought that there was no
need to separately learn computing or Computer Science (CS). In the national school
curriculum for basic education, effective from January 1, 2004, CS is not mentioned;

This work is in part supported by the Centennial Foundation for the Finnish Technological Industries.
(Current address) Department of Computer Science, PO Box 68, FI-00014 University of Helsinki, Finland.
Authors’ addresses: J. Kurhila, University of Helsinki Open University, PO Box 53, FI-00014 University of
Helsinki; email: jaakko.kurhila@helsinki.fi; A. Vihavainen, University of Helsinki, Department of Computer
Science, PO Box 68, FI-00014 University of Helsinki; email: avihavai@cs.helsinki.fi. Jaakko Kurhila is
currently the director of the University of Helsinki Open University. During the work described in this
article, he was the head of studies at the department of computer science as well as the director of the
department’s center for school collaboration called Linkki, part of the Finland’s Science Education Center
LUMA. Arto Vihavainen is a university teacher at the department of computer science and the former
coordinator for Linkki center.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1946-6226/2015/04-ART10 $15.00

DOI: http://dx.doi.org/10.1145/2716314

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:2 J. Kurhila and A. Vihavainen

the only reference is to Information and Communication Technology (ICT), which was
to be integrated into all existing school subjects but not as an independent subject.

A recent European Union (EU)-wide survey made it clear that ICT has not become
properly integrated into school work in Finland [European Commission 2013]. When
compared to other EU countries, Finnish classrooms are excellently equipped, but the
facilities are heavily underused to support learning; for example, for grade 11 in schools,
Finland holds the last place in the use of desktops or laptops for learning purposes.
The lack of computing or CS as a separate (elective) school subject in the national
basic education curriculum means that very few school students have a possibility
to experience computing education. The problem persists after basic education; the
most recent estimate is that only some 2% of Finnish upper secondary school students
(grades 10–12) have studie programming in school [Lappi 2008].

The Finnish education system provides schools and teachers with a high degree of
freedom in what elective courses to offer and how to organize teaching in classrooms.
The freedom has its benefits: Schools that employ eager teachers can seek to organize
computing courses and programming education. Eager teachers are still quite rare:
During 3 years (2008–2010) of surveying first-semester university students starting as
CS majors at our department, not a single student named an inspiring school teacher
as a reason to choose CS. The same (unpublished) surveys were conducted on first-
semester university students starting in mathematics. Many mathematics students
did name their school teacher in mathematics as one of the key reasons for choosing to
study mathematics.

Since the curriculum in Finnish schools does not include CS or related studies, and
many have considered even the use of computers something that students learn on
their own, even those students who are interested in computing usually do not have
the study opportunities during their school years. Lack of such topics in school subjects
means that many students do not know what CS is, where it can be studied, and
whether studying it would suit them or not. To remedy this issue, and to bypass the
troubles on a road to bring computing-related topics to the national or regional school
curricula (see, e.g., Pokorny [2013] and Tucker [2010]), the Department of Computer
Science at the University of Helsinki has built and offers Massive Open Online Courses
(MOOCs) that can be taken by any student in any Finnish school.

Schools that choose to offer our MOOC for their students do not need to have a
proficient teacher, only a teacher or a staff member (e.g., a student counsellor) who can
act as a supervisor in a possible course exam. There is an additional twist in our MOOC
on programming. If a student completes a required number of weekly programming
tasks, she is invited to an interview. After a successful interview,she is granted a full
study right (BSc and MSc) in CS at the University of Helsinki.

This arrangement has been in operation since January 2012. More than 2,000 stu-
dents have participated in the MOOC, some of them also applying for the right to
study. In a study conducted in 2013, students who had received the full study right via
MOOC had less drop-outs when compared to students who had been selected based
on a traditional entrance exam [Vihavainen et al. 2013]. The course matches exactly
our introductory programming course for degree students. By offering it for school stu-
dents as a flexible online course that ties directly to the CS degree, we offer students a
genuine experience of what it is like to study rigorous CS. The benefit for us is that we
can harvest eager students throughout the country to apply to us by promising them a
secured study place while they are still at school. As an ongoing effort, we are showing
the existing demand for CS education in Finnish schools and are building momentum
with a goal to having enough participants for locally organized CS courses. By pro-
viding free course material, courses, and success stories, we try to stimulate national
discussion on the opportunities and benefits of including CS-related topics and areas
into the Finnish school curriculum.

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:3

In this article, we describe the Finnish educational system and how computing has
being taught in schools over the years. At the same time, we propose a solution to
the current situation, in which teachers have little opportunities to teach computing
due to a lacking domain knowledge or low student enrollment. Our analysis focuses
on comparing the study performance and behavior of those students who are still in
school to adult students.

Throughout this text, we use the word “school” when referring to schools for basic
education (grades 1–9) and general upper secondary schools (voluntary grades 10–12)
in Finland. Learners in basic education are referred to as “pupils”; learners in upper
secondary schools are “students.” In addition, the term “MOOC” refers only to our own
MOOC in programming. It is important to make this distinction because other highly
publicized MOOCs employ a different mode of operation that suits a different need.
Our MOOC has a distinctive pedagogical model that emphasizes actual programming,
and it is formally accredited and part of the university core operation, whereas the
most well known MOOCs offered mainly by various top-tier U.S. universities are not.

The term “ICT” is used to refer to the use of computers and computer applications,
whereas the term “CS” means “computer science.” The term “CS1” refers to a university-
level introductory programming course. Whenever possible, we have cited articles that
are written in English. When referring to pupils and students, we use the feminine
form whenever possible.

The rest of the article is organized as follows. Section 2 describes the Finnish edu-
cational environment, Section 3 discusses MOOCs and explains the pedagogical and
technical decisions behind our MOOC. Section 4 discusses results from operating the
MOOC over a period of 18 months and describes how high school-aged participants in
Finland perform in the course when compared to older participants. Section 5 discusses
the results in the light of the limitations of the study. Finally, Section 6 concludes this
article and presents further directions of development in Finland’s school curriculum
work in CS.

2. SCHOOLING ENVIRONMENT IN FINLAND

2.1. Educational System

There are some noteworthy issues in Finland’s educational system. First, access: Even
if a student drops out from compulsory schooling when legally allowed (after the age of
16), she is always welcome to continue her studies, even to the highest degrees available
(i.e., university doctorate). In other words, even if a student chooses vocational studies
as her educational path, it never blocks her possibilities to advance her education in an
academic track. This is shown in Figure 1 by the horizontal arrows between vocational
education and general education. Second, education is open for everyone. Openness
means that, from elementary to university education, there are no tuition fees in Fin-
land. Access to the highly desired study places, such as medicine, drama, and teacher
education, is restricted by stringent entrance exams and multipart selection processes.

Figure 1 shows the Finnish educational system as a chart with desired yearly time
frames for each educational block. In practice, students have a flexibility with time that
they use frequently in upper secondary schools but especially in universities. Median
graduation times are typically longer than the 3+2-year model curriculum defined by
the European standard; only 49% of Finnish university students complete their BSc
or MSc degree in 5.5 years [Statistics Finland 2011]. Horizontal moves between the
different blocks are common in Finland because many of the starting students at the
Department of Computer Science have a background in polytechnic bachelor studies
(either with a finished or unfinished polytechnic degree).

The typical path to university studies is via general upper secondary education,
which typically means 12 years of schooling. During those 12 years, there is only one

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:4 J. Kurhila and A. Vihavainen

Fig. 1. Finnish educational system [Finnish National Board of Education 2011].

standardized test: the national matriculation exam after the 12th grade. Matriculation
is a rigid and classic set of pen-and-paper tests that has remained relatively unchanged
for decades. Students are free to choose (within clear limits) which subject exams they
take from the set of offered exams and when. Even if CS-related courses are offered in
a school, the matriculation exam does not contain any CS.

Since there is only one high-stakes test during the 12 years, the test has a significant
impact on the activities of both students and teachers. Many students start to prepare
for the matriculation exam quite early on during their 3-year upper secondary studies.
Because CS is not a part of the matriculation exam, many choose not to take CS courses,
even if such courses are offered by the school.

2.2. Educational Policies

The Finnish law that dictates the aims and hourly distribution of basic education
states that “the aim is that the pupils learn the basics of mathematical thinking and
mathematical application as well as master information and communication technolo-
gies” (1435/2001, Chapter 2, subsection 3).1 In addition, the nationwide basic education

1The newest Government Decree for the aims and hourly distribution of the Finnish basic education
(422/2012) was issued on June 28, 2012, and is for grades 1–6 only. It does not state anything specific

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:5

curriculum (effective from 2004 onward) states that the ability to effectively use com-
puters and technology is a necessary skill that is to be learned at school and that the
teaching should be integrated between existing subjects. However, although the tools
and technology exist in classrooms, the integrative actions have failed, and the facil-
ities remain heavily underutilized when compared to other EU countries [European
Commission 2013].

2.3. Teacher Qualification

Teachers in Finland are required to have a master’s degree (5 years, a total of 300
ECTS2). In principle, basic education teachers for grades 1–6 have a master’s degree
in general classroom teaching, whereas teachers for grades 7–9 and grades 10–12 have
a master’s degree with a major in a subject such as mathematics, biology, or English
language. In addition to the major, teachers are required to complete a minor both
in school pedagogy (60 ECTS including training in an actual school) and in a second
school subject to be taught (60 ECTS) that can be chosen freely.

Even if computing courses are relatively rare in Finnish schools [Lappi 2008], it is
still possible to study to become a teacher for computing for grades 7–9 and 10–12 in
Finland. Since there is no real demand for such teachers, studying CS even as a minor
is quite rare, thus creating a “chicken-and-egg” problem. Since there is no national
curriculum, teacher training for CS is not well defined. And since there are not many
students willing to study to become such teachers, there are not many courses in the
universities that are aimed at school teachers for the purpose; most of the CS courses
in a university are aimed at people who will work in industry or academia.

2.4. Sociocultural and Historical Issues of Computing in Schools

Finland has long been a country with high penetration of mobile phones, personal com-
puters, and broadband connectivity [International Telecommunication Union 2012].
Finnish students are confident in their abilities to use technology and the internet,
but, on the other hand, when compared to other EU countries, Finnish teachers show
little interest in learning about information technology and the internet on their own
time [European Commission 2013].

Finnish schools started to be equipped with computer labs in the 1980s. Eventually,
schools were required to offer elective computing courses [Tedre and Apiola 2013],
but no guidelines on the curriculum were offered by the national core curricula. In
practice, the teachers in a school decided the contents for the elective courses. Courses
were offered both for the upper secondary level (in grades 10–12) and at the basic
education level (grades 7–9). One course is typically about 30 classroom hours in total.
In the 1980s and ‘90s, many schools offered elementary BASIC or Pascal programming
courses.

The situation has remained the same in Finnish schools to date: Some schools of-
fer some elective courses, but no curriculum or materials are offered. In a typical
school, there are no computing courses. In many schools, there is one elective course
that could be labeled as “computer as a tool.” Programming education has declined
considerably: During the school year 1982–1983, 12% of the students participated in

about ICT, let alone CS. There is a reference to technology: “The aim of the education is a broad common
knowledge, expansion and deepening of the world-view. This requires knowing the needs and emotions of
humans, as well as the basics of culture, arts and literature, environment and nature, history and society,
religions and worldviews, in addition to economy and technology.”
2European Credit Transfer and Accumulation System (ECTS) is a standard for comparing the study attain-
ment and performance of students in higher education across the EU. One academic year corresponds to 60
ECTS-credits.

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:6 J. Kurhila and A. Vihavainen

programming education, whereas in 2008 only 2% of the students participated in pro-
gramming education in upper secondary schools in Finland [Lappi 2008]. During the
1980s, programming was also supported by a major Finnish bank that sponsored a
nationwide programming competition “Datatähti” (Datastar), helping the facilitation
of the competition at local schools. During the 1980s and early 1990s, the Datatähti
competition gathered some 4,000 participants each year. The decline was rapid fol-
lowing the end of the sponsoring contract: In 2010, the number of participants in the
Datatähti competition was only 20 [Hyyrö et al. 2011].

It can be argued that one reason for the success of Finnish technology companies
in the late ‘90s and early 2000 was due to the programming education in the 1980s,
which allowed students to get acquainted with technology and was well-timed with the
increasing number of personal computers at home. Even the currently thriving Finnish
gaming industry has its roots in the late 1980s and early 1990s movement, in which
students and self-taught aficionados continued to pursue program optimization and
computer graphics tricks further in their free-time, contributing and competing in the
so-called demoscene. The demoscene was particularly thriving in the Nordic countries
and in Germany [Reunanen and Silvast 2009].

Currently, if computing courses are offered in schools, they are always elective, thus
resembling the situation in many other countries (see, e.g., Wilson et al. [2010]). Due to
a low demand, the offered courses are often cancelled prior to their start [Lappi 2008].
Even if a computing class exists and is run by the school, there is no guarantee of the
educational value and content quality because the content is heavily teacher dependent;
a class that is marketed as a CS class may, in the end, be about using a Word processor
or Excel formulas. No guidelines are provided by government or regional officials, as
there are in some other countries and regions (e.g., Hubwieser [2012]). No textbooks
in the Finnish language for CS in schools are offered by common school textbook
publishers. Some successful efforts for CS studies between the universities and local
schools have been conducted in Finland; however, the efforts tend to be isolated and
restricted in scope, such as game programming clubs or a permission for select school
students to attend university classes (see, e.g., Randolph and Eronen [2007], Sutinen
and Torvinen [2003], and Grandell [2005]).

3. MOOC CONTENTS AND OPERATION

MOOCs were originally defined to “integrate the connectivity of social networking, the
facilitation of an acknowledged expert in a field of study, and a collection of freely
accessible online resources” in a way that they may share “conventions of an ordinary
course, such as a pre-defined timeline and weekly topics for consideration,” but typically
should carry “no fees, no prerequisites other than Internet access and interest, no
predefined expectations for participation, and no formal accreditation” [McAuley et al.
2010]. MOOCs from edX, Coursera, and Udacity have attracted tens of thousands of
registered participants for many different courses.

When comparing our MOOC to other contemporary programming MOOCs offered
around the world, our MOOC differs in three key aspects:

(1) The course follows a pedagogical method called Extreme Apprenticeship that is
particularly suitable for programming education [Vihavainen et al. 2011; Kurhila
and Vihavainen 2011]. Students start programming immediately with a real-world
programming environment and construct working solutions to hundreds of pro-
gramming assignments during the course.

(2) The course uses stepwise assignment-driven material that is suitable for indepen-
dent study. The programming environment has a purpose-built assessment solution

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:7

checker that supports the stepwise progress of the students as they work on the
programming assignments [Vihavainen et al. 2013].

(3) By successfully completing the MOOC and participating in an interview, a student
is granted formal credits and admitted to the university to major in CS [Vihavainen
et al. 2012].

3.1. Learning Objectives and Competencies

The MOOC has explicitly stated learning objectives that are visible to all participants.
The MOOC follows the structure of the CS1 at the University of Helsinki and, there-
fore, is split into two parts because of the quarterly term system at the University
of Helsinki. The first part (5 ECTS) comprises four different main themes. The first
theme is a general introduction to algorithms and control structures, the second theme
is about variables and types, the third theme is about subprograms and classes, and
the fourth theme is the introduction to classes, objects, and encapsulation.

In the second part (+4 ECTS), on top of the 5 ECTS, the students mainly focus on
deepening their understanding of concepts in object-oriented programming, where the
students learn techniques for class specification, when and why to use inheritance,
and the difference between checked and unchecked exceptions and how to create and
handle them. Finally, the students learn programming techniques such as splitting
the application into meaningful packages and how different types of programs work:
programs that ask for information, command-line interpreters, filters, and event-driven
programs.

The learning objectives are presented in more detail in Appendix A.

3.2. Examination and Certification

The MOOC serves three purposes: (i) It is the compulsory programming course offered
to on-campus students at the University of Helsinki, (ii) it acts as an upper secondary
school course that can be freely embedded into any school curriculum, and (iii) it acts
as an entrance exam. If a school chooses to offer the course to its students and wants
to organize local examinations, the University of Helsinki has agreed to take care of
providing and grading the exams free of charge. Schools are free to choose the number
of credits they give for attending the course.

In cases (ii) and (iii), the MOOC will eventually be acknowledged as the first pro-
gramming courses (9 ECTS) if the student chooses to start studying at the University
of Helsinki. This means that school students can benefit twice from the MOOC because
they typically get credits at school and also at the University.

3.3. Enhancing Cooperation via MOOC

There are some schools in Finland that have made agreements with local universities
to allow general upper secondary school students to study CS courses even before they
have gained admission to the university. Because there is no general CS curriculum in
upper secondary schools, teachers have not been active in contributing to the courses
within universities. Therefore, the MOOC is offered as a full CS1 course. It is bene-
ficial for the schools: MOOC is a way to extend optional course offerings for schools
becausethe complete operation is conducted outside the school.

For the University of Helsinki, the reason for making the extra effort is clear. Every
university in Finland tries to attract the best students with the most suitable back-
ground. Students who are admitted via MOOC have already proved that they know
what they are expected to study with us, and they have succeeded in it. This flying
start is a significant bonus for us because no other university in Finland can expect
any background in CS; typically, every CS1 course with newly admitted students starts
with zero background expectation. In addition, the data gathered from the students

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:8 J. Kurhila and A. Vihavainen

as they participate in the MOOC is one of the datasets used for computing education
research at the University of Helsinki.

3.4. Funding MOOC as a Long-Term Student Recruitment Vehicle

Running a MOOC on programming requires additional resources. Posting and grading
exams sent to schools does not scale without limits. However, because the MOOC is
an integral part of our on-campus CS1 course, the marginal cost when extending it to
basic and upper secondary school students is unnoticeable for a large CS department
in a country with a population of 5.5 million. Using MOOC as a recruitment vehicle is
directly beneficial for our student intake process because students admitted via MOOC
are less likely to retake exams and drop out from their first-year studies [Vihavainen
et al. 2013].

4. RESEARCH AND RESULTS

The purpose of this research is to (i) gather background information of the MOOC
students such as gender, age, and previous programming experience; (ii) measure how
the participants perceive the difficulty and educational value of the MOOC; (iii) identify
how the participants have proceeded in the MOOC; and (iv) study the participants’ use
of time and, therefore, working practices.

The MOOC in programming has been attended by 2,109 participants during the first
18 months of operation (two student intake iterations). Because the participants are
not required to enter any other details than a working email address while registering,
parts of this research has been conducted using a web survey. A total of 358 answers
were received, which means that the numbers reported here have a 4% margin of error
with a 90% confidence interval (calculated using the formula for a single proportion).
In the answers, 27.6% of the respondents were 19 or younger; 1.1% of the respondents
were 14 or younger. We eliminated data from participants who reportedly were 14 or
younger from this study because it is unlikely that they are in an upper secondary
school.

When analyzing programming behavior, the statistics have been gathered from the
automated assessment and support system in our MOOC. If a student has completed a
single assignment for a specific week (12 weeks total), she is considered to have partici-
pated in the course during that week. Initial participation is based on a student having
completed the first assignment, creating a program that prints out “Hello World!”

The participants have been divided into two groups based on their age. We assume
that most of the 15- to 19-year-old students are in general upper secondary schools
and that most of the 20-year-old and older students are not in general upper secondary
schools. This is a reasonable assumption because more than 60% of Finnish students
attend general upper secondary schools, and CS studies are very rarely approached
directly from vocational qualifications.

Based on these assumptions, we have formulated four research questions that ex-
amine the differences between school students and others. The research questions are
presented in the following subsection headers labeled RQ.

4.1. RQ 1: Do the Groups Differ in Gender and Programming Experience?

Table I displays the participants’ gender distribution. As is typical for technical study
fields in Finland, the proportion of females is low in both groups. This is even more
visible in the 15–19 age group, in which only 5.2% of the participants have identified
themselves as female. The low percentage of female participants in the 15–19 group
can be partially explained by school teachers; it is typical that a programming course
is suggested to a mathematically talented male student more often than to his female
counterpart [Malmivuori 2001].

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:9

Fig. 2. Perceived difficulty of the assignments for participants grouped in two groups; participants between
15 and 19 years old, and participants 20 or older.

Table I. Gender Distribution

Group Female Male Not Disclosed

15–19 5.2% 91.7% 3.1%
20– 12.8% 85.3% 1.9%

Table II. Programming Experience

Age Programmed Previously

15–19 20.7%
20– 33.5%

Previous programming experience of participants is shown in Table II. In the survey,
the participants were asked whether they had programmed before and, if yes, how
many hours on their own estimate. In addition, details on which programming lan-
guages were used were asked for. Here, those participants who reported more than 10
hours of programming experience are categorized as having programmed previously.
The results show that 20.7% of the under-20-year-old participants have programmed
before, and, as the participants’ age increases, the number of participants with exist-
ing programming experience also increases. In the group of participants 20 years and
older, 33.5% have previous programming experience.

As an answer to RQ 1, we observe a clear difference in gender and programming
experience between the two groups.

4.2. RQ 2: Are Difficulty and Educational Value of the Assignments Perceived Similarly
by Both Groups?

Every time a participant submits a solution to a programming assignment, she has the
option of answering two questions. The first question, “How difficult was the assign-
ment? (1: easy, 5: hard)”, measures the difficulty of the assignment on a scale from 1
to 5, and the second question, “How much did you learn while working on the assign-
ment? (1: nothing, 5: a lot)” measures the educational value of the assignment. During
the first 18 months, a total of 39,303 answers regarding the difficulty and educational
value of the assignments have been received. The results here are averaged based on
these answers, and the standard deviation has been between 0.5 and 1.2.

Figure 2 shows the difficulty of the assignments for the two groups. Although, on
average, the 15–19 age group considers the assignments easier than the other group,
there is no statistically significant difference (p = 0.057) between the groups. One

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:10 J. Kurhila and A. Vihavainen

Fig. 3. Perceived educational of the assignments for participants grouped in two groups; participants be-
tween 15 and 19 years old, and participants 20 or older.

of the possible reasons is Finnish school students’ high confidence with computers as
tools, noted in the EU survey [European Commission 2013]. It is also possible that
many of the students have been working on the assignments in a school environment
with other students and possibly a teacher, hence receiving more support.

Figure 3 shows the educational value of the assignments for the two groups. The
15–19 age group considers the assignments less educational on average than the other
group (p < 0.01). One possible explanation is the association of the educational value
with learning in general; students live in an environment where they have teachers
and may consider that learning is what happens when someone teaches them. On
the other hand, the older participants have more experience in programming, and it
can be hypothesized that they reflect their learning process on their previous learning
experiences and simultaneously understand more.

When looking at Figures 2 and 3, we observe a continuous but slow ascent. The idea
is that, in order to reach a goal (e.g., learn the basics of programming), it is more likely
that a student is able to reach the top if she has a long but relatively easy road than
if she would have to “climb steep mountains.” In addition to the steady ascent, there
is also a week-by-week variation. Weekly assignment sets are designed to include easy
and straightforward assignments that ensure accomplishments that help the internal
motivation of the student.

As an answer to RQ 2, there is no statistically significant difference in the reported
difficulty between the two groups, but there is a statistically significant difference in
the educational value. However, one can observe that both groups perceive the difficulty
and educational value in a remarkably similar fashion.

4.3. RQ 3: Do the Groups Differ in How Far They Proceed?

Figure 4 displays the percentage of participants who have completed at least one
assignment during the week, defined by the y-axis. Again, two groups are observed;
those aged 15–19, and those aged 20 or over. After a week of programming, 81% of 15- to
19- year-olds are still participating, whereas for the older group the percentage is 88%.
After 6 weeks, 57% of the 15- to 19-year-old students and 63% of the older participants

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:11

Fig. 4. The percentage of students who have worked on the assignments for a specific week grouped in two
groups; participants between 15 and 19 years old, and participants 20 or older.

are still participating. During the final week of the course, 36% of the participants in
both groups have solved at least one of the assignments.

One explanation for the observed early drop in the 15–19 age group is that the
students may receive credits for completing parts of the course; however, because the
MOOC is deliberately advertised as “free to use in schools as anyone wishes,” we cannot
pursue this further because the crediting schema at specific schools is not known to us.
Overall, the number of participants who work on the final exercise set of the course is
similar for both groups.

Overall, based on the results discussed in this subsection, we can say that the answer
to RQ 3 is that there is no significant difference between the progress of the two groups
in the course.

4.4. RQ 4: Does the Behavior Differ between the Two Groups?

RQ4 is set up to examine whether groups differ in their need to invest time and effort
in the MOOC in order to achieve the same progress we saw in the answer for RQ3.

The working behavior of the participants is aggregated from the assignment submis-
sions. Each submission has a timestamp, which describes the time when the assign-
ment was submitted for automatic grading. The weekly assignment deadlines were set
for 11:59 p.m. on Sundays. Figure 5 displays how the participants’ programming has
been split on different days of the week. For both age groups, 15–19 and 20 and over,
most of the submissions are done on Sunday, which is typically a free day for all. It is
also likely that the deadline has an effect on the students’ work. Students tend to work
more during the weekend than their counterparts and work less during the week. The
age group 20 and over has a more stable working behavior (i.e., the number of daily
submissions between Monday and Saturday stays in the same range), whereas the
15–19 age group works less on Tuesday and Wednesday, perhaps due to school-related
schedules.

Figure 6 displays the percentage of submissions during specific hours of day during
weekdays (Monday to Friday). Age group 15–19 works more during the afternoon and
early evening, whereas the age group 20 and older have a more stable working schedule.
Upon investigation, the observed peak between 12 and 13 for the 15–19 age group can

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:12 J. Kurhila and A. Vihavainen

Fig. 5. Percentage of programming performed during specific days.

Fig. 6. Weekday hours during which the assignments have been worked on.

be explained by the lunch break at school. The more stable working schedule of the 20
and older age group can be explained by parts of them not being employed and being
students at universities or polytechnics.

Figure 7 shows how the submissions are dispersed during weekends (Saturday and
Sunday). Groups 15–19 and 20 and over work relatively stably during the day on
weekends. No clear midnight peak that could be explained by the course deadlines can
be observed.

As an answer to RQ 4, the 15–19 age group tends to work more during the weekends
and less on Tuesdays and Wednesdays than the other group. The working intensity
during the day resembles each other more on weekends, less on weekdays. Differences
in the working habits do not lead to different level of progress (RQ3).

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:13

Fig. 7. Weekend hours during which the assignments have been worked on.

5. DISCUSSION: LIMITATIONS OF THE STUDY

The main limitation of the study is caused by the dataset used. We cannot deduce
causal relationships within two different age groups. Study setting was designed to
examine whether eager students who do not have access to school CS courses can cope
with a demanding university-level programming course. The results show that age is
related to some differences in working habits, previous experience, and gender balance.
However, these differences do not lead to differences in the ability to produce solutions
to the programming assignments.

Another limitation is that we cannot measure the effect caused by the MOOC on a
national level. We have seen an increse in MOOC attendance and in student admission
to CS degree studies. However, demand in the software industry, success stories of
software startup businesses in mainstream media, and overall MOOC hype are likely
to play a significant role in the uptake.

As seen in Table I, gender imbalance is one of the most problematic issues in our
current MOOC. The intake to BSc degree in CS at our university is 18.3% female,
yet in the MOOC it was as low as 5.2% among the 15–19 age group. It is obvious
that unless a remedy is found, we cannot pursue strengthening the use of MOOC as a
student recruitment vehicle for degree studies. On-campus degree students in CS use
exactly the same MOOC as their compulsory CS1 course but do not drop out of studies
any more frequently than they did before introducing the MOOC as CS1. However,
our MOOC for the general population is not compulsory. Another off-putting aspect
of the MOOC is that it aims to be a comprehensive and effective treatment of Java
programming and makes little effort to explain why programming is interesting and
what kind of meaningful benefits it can bring to the society. In other words, it assumes
interest in programming before starting the MOOC.

We acknowledge that our MOOC is not for every school student. The course itself is
a long-lasting and demanding set of tasks that requires continuous concentrated effort
for completion. Therefore, it is expected that there is a strong self-select bias among
the participants. It is risky to interpret the results to apply to a larger audience. For
example, a version of CS0 could be a more inclusive and accessible way to introduce
school students to computing concepts. In its current form and without marketing or
any other push from the university, the MOOC finds an audience in schools in Finland

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:14 J. Kurhila and A. Vihavainen

that fits the operation well. This type of natural fit might not be always easily found
(see, e.g., Feaster et al. [2011]).

6. CONCLUSION AND FUTURE WORK

In the past, having a school provide true CS education for its students in Finland has
been considered a luxury because even schools with competent teachers have simply
had to cancel the course offerings due to insufficient student attendance. There are
some isolated projects and attempts to include school students in univerisity-level
study of CS (for a recent effort, see, e.g., Lakanen and Isomöttönen [2013]). However,
nationwide efforts also are needed in Finland, as demonstrated in other countries in
recent years (see, e.g., Caspersen and Nowack [2013] and Bell [2014]) and even decades
(see, e.g., Armoni and Gal-Ezer [2014]).

Our approach has been able to help schools that lack the chance to provide opportuni-
ties otherwise. We acknowledge that the view on CS from the MOOC is narrow because
the course is specific to programming. At the same time, programming has been the
first step in CS curricula for a long time (see, e.g., Joint Task Force on Computing
Curricula and Society [2013, p. 41]) and is known to be a challenging topic for many
[Bennedsen and Caspersen 2007; Watson and Li 2014]. Students who are admitted
through the MOOC have already passed the course.

Admittedly, the attendance is still fairly small in absolute numbers. However, the
yearly graduation from Finnish generic upper secondary schools is roughly 35,000
students, so the number of participants calculated based on the number of potential
students (e.g., using spoken language as the baseline) means that our MOOCs are
comparable to the largest MOOCs offered in the world.

Another beneficiary of the MOOC is the school student. In Finland, universities are
detached from schools. Universities have complete freedom to design their admission
procedures for student intake. There is no version of the U.S.- and Canada-based Ad-
vanced Placement (AP) process in Finland. A long gap between upper secondary school
matriculation and successful university entrance exam is largely thought to be one of
the main reasons why Finnish students are 2 years older when starting their univer-
sity studies, when compared to other EU or Organization for Economic Cooperation
and Development (OECD) countries [Orr et al. 2011]. The MOOC can bridge the gap
from school to university studies, thus resembling AP CS [Arpaci-Dusseau et al. 2013].
Unfortunately, our MOOC is currently limited to only one university.

When comparing the upper secondary school participants in the MOOC to older
participants, no significant differences exist between the populations. This means that
upper secondary school students who choose to attend the course are, on average, on the
same level as the other course participants. Being able to formally credit the students’
progress and help the local schools with setting expectations and verifying the work
plays a large part in the success of the operation. The media attention that MOOCs
have gathered as a phenomenon during the past 2 years has opened up the eyes of
teachers who previously would not have considered officially acknowledging students’
work in an online course organized outside the school.

In Spring 2014, the Ministry of Education indicated that it has plans for introducing
programming into Finnish elementary schools starting in August 2016. At the moment,
the plan is to include some programming in the mathematics curriculum, but comput-
ing will not be a separate school subject in basic or upper secondary level. Schools can
continue to offer elective courses.

Mathematics teachers in Finland face a problematic situation because many of them
have no education to organize or facilitate school classes around programming tasks.
Although the MOOC we offer is not likely to be a sufficient solution, the dislocality
of the Finnish educational system and the sudden need of computing-related teacher

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:15

training creates a number of openings for its use. In any case, flexible and scalable
teacher training, as well as up-to-date teaching materials, are helpful in supporting
teachers to meet classroom challenges.

The MOOC is the main part of our departments’ outreach policy, and the operation
can continue even if the number of participants increases radically. Currently, the
additional resources needed are non-noticeable due to the use of cloud server technology
in the assessment process. Because our MOOC is organized in Finnish, the number of
participants cannot grow beyond the boundary of potentially allocable resources for a
large university CS department.

APPENDIX A. LEARNING OBJECTIVES OF THE MOOC

The first part of the MOOC (5 ECTS) comprises four different main themes. The
first theme is general introductions to algorithms and control structures. The learning
objectives are explicitly stated, made visible to all participants, and are as follows.

—formulates simple algorithms
—explains the concept “algorithm state”
—understands how logical expressions are statements on an algorithm’s state
—knows how to use basic control structures
—understands the concept of a program that asks for input data and writes output

data, and can implement one
—knows the concept of arrays and can program sequential search, binary search, and

some way to sort the elements of an array.

The second theme in the 5 ECTS part is about variables and types. A student:

—can use variables and write expressions using types int, double, boolean, and string
—knows the difference between primitive types and reference types
—knows the significance of assignment compatibility in programming
—understands the behaviour of formal parameters and local variables
—knows how to use classes as types and how to index an array.

The third theme is about subprograms and classes; the student can or knows how to:

—define and call subprograms, Java methods
—describe and use formal and actual parameters
—utilize a method to change the value of a parameter, if the parameter’s type allows it
—overload methods and also knows how to program overloaded methods and construc-

tors in practice.

The last theme in the first 5 ECTS package is the introduction to classes, objects,
and encapsulation. A student can or knows how to:

—program instance variables and accessors
—use the technique for encapsulation and can apply it in programming
—use the concept of “object state”
—understand the lifespan of an object and how it differs from the lifespan of the local

variables of methods
—pass objects as parameters and use reference types
—understand the significance of automatic garbage collection.

The latter part of the MOOC, +4 ECTS on top of the 5 ECTS, concentrates mainly
on deepening the understanding of concepts in object-oriented programming. The first
part of the latter package is about techniques for class specification. A student can or
knows how to:

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:16 J. Kurhila and A. Vihavainen

—use static and nonstatic variables as well as methods in programming
—use the possibilities and problems associated with scope rules: private attributes,

package-level attributes, visibility to subclasses, public attributes.

The second theme is about inheritance. A student can or knows how to:

—use the relationship between superclass and subclass and how to program subclasses
—use the value of encapsulation of inherited fields
—understand that constructors are not inherited and what the consequences are, and

can take this into consideration when programming
—override inherited methods and inherited fields.
—use (abstract or nonabstract) superclass- or interface type variables on reference-

type values, and can thus implement generic classes and methods; understands
polymorphism

—understand what kind of additions inheritance brings to the scope rules.

The third theme is about handling of exceptions. A student knows:

—different methods for handling exceptions.
—the principle of checked and unchecked exceptions, and can create a program where

exceptions are handled at the Exception level.

The last theme is about programming techniques. A student knows or can:

—use primitive types and their assignment compatibility rules, as well as explicit type
changes from broader to narrower primitive type.

—explain the function of a simple recursive method
—understand the principle of packages
—use source material to create programs that can read and write text files
—use a few generic collection classes, understand their concept, and can use material

to program with them
—understand different principles for how programs work: programs that ask for infor-

mation, command-line interpreters, filters, event-driven programs; in addition, also
construct programs with the three first-mentioned methods.

ACKNOWLEDGMENTS

The authors wish to thank the Department of Computer Science for supporting the creation and mainte-
nance of the MOOC. The rest of the Agile Education Research group has been an integral part of this effort
and provided us valuable feedback for this manuscript. We wish to thank all the reviewers for their sugges-
tions and feedback that helped to focus and improve the article significantly. We also thank the voluntary
support personnel in the online community at #mooc.fi that motivates and helps the students in our MOOC.
Two separate grants supporting the creation of MOOCs for upper secondary and basic education from the
Centennial Foundation of the Finnish Technological Industries are gratefully acknowledged.

REFERENCES

Michal Armoni and Judith Gal-Ezer. 2014. High school computer science education paves the way for
higher education: the Israeli case. Computer Science Education e-publication (2014), 1–22. DOI:http://dx.
doi.org/10.1080/08993408.2014.936655

Andrea Arpaci-Dusseau, Owen Astrachan, Dwight Barnett, Matthew Bauer, Marilyn Carrell, Rebecca
Dovi, Baker Franke, Christina Gardner, Jeff Gray, Jean Griffin, Richard Kick, Andy Kuemmel, Ralph
Morelli, Deepa Muralidhar, R. Brook Osborne, and Chinma Uche. 2013. Computer science prin-
ciples: Analysis of a proposed advanced placement course. In Proceeding of the 44th ACM Tech-
nical Symposium on Computer Science Education (SIGCSE’13). ACM, New York, NY, 251–256.
DOI:http://dx.doi.org/10.1145/2445196.2445273

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

A Purposeful MOOC to Alleviate Insufficient CS Education in Finnish Schools 10:17

Association for Computing Machinery (ACM) Joint Task Force on Computing Curricula and IEEE Computer
Society. 2013. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. ACM, New York, NY. 999133.

Tim Bell. 2014. Establishing a nationwide CS curriculum in new zealand high schools. Communications of
the ACM 57, 2 (Feb. 2014), 28–30. DOI:http://dx.doi.org/10.1145/2556937

Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory programming. SIGCSE
Bulletin 39, 2 (June 2007), 32–36. DOI:http://dx.doi.org/10.1145/1272848.1272879

M. E. Caspersen and P. Nowack. 2013. Computational thinking and practice - a generic approach to computing
in danish high schools. In Proceedings of the 15th Australasian Computing Education Conference (ACE
2013) (CRPIT), Angela Carbone and Jacqueline Whalley (Eds.), Vol. 136. ACS, Adelaide, Australia,
137–143. http://crpit.com/confpapers/CRPITV136Caspersen.pdf.

European Commission. 2013. Survey of Schools: ICT in Education. Benchmarking Access, Use and At-
titudes to Technology in Europe’s Schools. Retrieved from http://ec.europa.eu/digital-agenda/en/news/
survey-schools-ict-education.

Yvon Feaster, Luke Segars, Sally K. Wahba, and Jason O. Hallstrom. 2011. Teaching CS unplugged in
the high school (with limited success). In Proceedings of the 16th Annual Joint Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE’11). ACM, New York, NY, 248–252.
DOI:http://dx.doi.org/10.1145/1999747.1999817

Finnish National Board of Education. 2011. Education in Finland. Retrieved from http://www.oph.fi/
download/124278_education_in_finland.pdf.

Linda Grandell. 2005. High school students learning university level computer science on the web—a case
study of the DASK-model. JITE 4 (2005), 207–218.

Peter Hubwieser. 2012. Computer science education in secondary schools – the introduction of a new
compulsory subject. Transactions in Computer Education 12, 4, Article 16 (Nov. 2012), 41 pages.
DOI:http://dx.doi.org/10.1145/2382564.2382568

Heikki Hyyrö, Erkki Mäkinen, Timo Poranen, and Antti Laaksonen. 2011. Koululaisten tietotekniikkakil-
pailut Suomessa. Tietojenkasittelytiede 33 (Dec. 2011), 27–42.

International Telecommunication Union. 2012. Measuring the Information Society. Retrieved from http://
www.itu.int/en/ITU-D/Statistics/Documents/publications/mis2012/MIS2012_without_Annex_4.pdf.

Jaakko Kurhila and Arto Vihavainen. 2011. Management, structures and tools to scale up personal advis-
ing in large programming courses. In Proceedings of the 2011 Conference on Information Technology
Education (SIGITE’11). ACM, 3–8. DOI:http://dx.doi.org/10.1145/2047594.2047596

Antti-Jussi Lakanen and Ville Isomöttönen. 2013. High school students’ perspective to university CS1. In
Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE’13). ACM, New York, NY, 261–266. DOI:http://dx.doi.org/10.1145/2462476.2465585

Linnea Lappi. 2008. Ohjelmoinnin opetus Suomen lukioissa (Programming Education in Schools, in Finnish).
Academy of Finland National Science Competition for Upper Secondary Schools (Viksu), 6th best work
in 2008. Valkeakoski, Finland: Valkeakosken lukio (2008).

Marja-Liisa Malmivuori. 2001. The Dynamics of Affect, Cognition, and Social Environment in the Reg-
ulation of Personal Learning Processes: The Case of Mathematics (PhD thesis). Retreived from
http://ethesis.helsinki.fi/julkaisut/kas/kasva/vk/malmivuori/.

Alexander McAuley, Bonnie Stewart, George Siemens, and Dave Cormier. 2010. The MOOC Model for Digital
Practice. Retreived from http://davecormier.com/edblog/wp-content/uploads/MOOC_Final.pdf.

Dominic Orr, Christoph Gwosc, and Nicolai Netz. 2011. Social and Economic Conditions of Student Life in
Europe. Synopsis of Indicators. Final report. Eurostudent IV 20082011. W. Bertelsmann Verlag, Bielefeld.
Retrieved from http://www.eurostudent.eu/download_files/documents/Synopsis_of_Indicators _EIII.pdf.

Kian L. Pokorny. 2013. What will they know? Standards in the high school computer science curricu-
lum. Journal of Computer Science Collection 28, 5 (May 2013), 218–225. http://dl.acm.org/citation.
cfm?id=2458569.2458616.

Justus Joseph Randolph and Pasi Eronen. 2007. Developing the learning door: A case study in youth partic-
ipatory program planning. Evaluation and Program Planning 30, 1 (2007), 55–65.

Markku Reunanen and Antti Silvast. 2009. Demoscene platforms: A case study on the adoption of home
computers. In History of Nordic Computing 2, John Impagliazzo, Timo Järvi, and Petri Paju (Eds.).
IFIP Advances in Information and Communication Technology, Vol. 303. Springer, Berlin, 289–301.
DOI:http://dx.doi.org/10.1007/978-3-642-03757-3_30

Statistics Finland. 2011. Official Statistics of Finland (OSF): Progress of studies. Retrieved from http://www.
stat.fi/til/opku/2011/opku_2011_2013-03-20_tie_001_en.html.

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

10:18 J. Kurhila and A. Vihavainen

Erkki Sutinen and Sirpa Torvinen. 2003. The candle scheme for creating an on-line computer sci-
ence program – experiences and vision. Informatics in Education 2, 1 (2003), 93–102. Available in
http://www.vtex.lt/informatics_in_education/htm/INFE009.htm.

Matti Tedre and Mikko Apiola. 2013. Three computing traditions in school computing education. In Im-
proving Computer Science Education, Djordje Kadijevich, Charoula Angeli, and Carsten Schulte (Eds.).
Routledge, 100–116.

Allen B. Tucker. 2010. K-12 computer science: Aspirations, realities, and challenges. In Proceedings
of the 4th International Conference on Informatics in Secondary Schools - Evolution and Perspec-
tives: Teaching Fundamentals Concepts of Informatics (ISSEP’10). Springer-Verlag, Berlin, 22–34.
DOI:http://dx.doi.org/10.1007/978-3-642-11376-5_3

Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. 2012. Multi-faceted support for MOOC in program-
ming. In Proceedings of the 13th Annual Conference on Information Technology Education (SIGITE’12).
ACM, 171–176. DOI:http://dx.doi.org/10.1145/2380552.2380603

Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. 2013. MOOC as semester-long entrance exam.
In Proceedings of the 14th Annual ACM SIGITE Conference on Information Technology Education
(SIGITE’13). ACM, New York, NY, 177–182. DOI:http://dx.doi.org/10.1145/2512276.2512305

Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme apprenticeship method in teaching
programming for beginners. In Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education (SIGCSE’11). ACM, 93–98.

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013. Scaffolding students’
learning using Test My Code. In Proceedings of the 18th ACM Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE’13). ACM, New York, NY, 117–122. DOI:http://dx.doi.
org/10.1145/2462476.2462501

Christopher Watson and Frederick W. B. Li. 2014. Failure rates in introductory programming revisited.
In Proceedings of the 2014 Conference on Innovation and Technology in Computer Science Education
(ITiCSE’14). ACM, New York, NY, 39–44. DOI:http://dx.doi.org/10.1145/2591708.2591749

Cameron Wilson, Leign Ann Sudol, Chris Stephenson, and Mark Stehlik. 2010. Running on empty: The
failure to teach K-12 computer science in the digital age. Association for Computing Machinery. Retrieved
from http://www.acm.org/runningonempty/fullreport2.pdf.

Received April 2013; revised December 2014; accepted December 2014

ACM Transactions on Computing Education, Vol. 15, No. 2, Article 10, Publication date: April 2015.

Publication II.3

II.3

Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila

MOOC as Semester-long Entrance Exam

In Proceedings of the 14th ACM SIGITE Conference on Information Tech-
nology Education (SIGITE ’13)

Copyright c©ACM New York, NY, USA 2013
http://dx.doi.org/10.1145/2512276.2512305

Reprinted with permission.

MOOC as Semester-long Entrance Exam

Arto Vihavainen, Matti Luukkainen, Jaakko Kurhila
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

Fi-00014 University of Helsinki
{ avihavai, mluukkai, kurhila }@cs.helsinki.fi

ABSTRACT

MOOCs (massive open online courses) became a hugely pop-
ular topic in both academic and non-academic discussions in
2012. Many of the offered MOOCs are somewhat “watered-
down versions” of the actual courses given by the MOOC
professors at their home universities. At the University of
Helsinki, Department of Computer Science, our MOOC on
introductory programming is exactly the same course as our
first programming course on campus. Our MOOC uses the
Extreme Apprenticeship (XA) model for programming ed-
ucation, thus ensuring that students are proceeding step-
by-step in the desired direction. As an additional twist, we
have used our MOOC as an entrance exam to studies in Uni-
versity of Helsinki. In this paper, we compare the student
achievement after one year of studies between two cohorts:
the MOOC intake (n=38) and the intake that started their
studies during the fall (n=68). The results indicate that stu-
dent achievement is at least as good on the MOOC intake
when compared to the normal intake. An additional benefit
is that the students admitted via MOOC are less likely to
drop out from their studies during their first year.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education Computer Science Education

General Terms

Experimentation

Keywords

entrance exam, admission, first-year experience,
student achievement

1. INTRODUCTION
MOOCs or massive open online courses have been a source

for an intense debate recently in academia, both in adminis-
tration and among teachers (see e.g. [5]). MOOCs come in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGITE’13, October 10-12, 2013, Orlando, Florida, USA.
Copyright 2013 ACM 978-1-4503-2239-3/13/10 ...$15.00.
http://dx.doi.org/10.1145/2512276.2512305.

a variety of forms; however, most of the current high-profile
MOOCs tend to be based on short lectures (8-12 min videos,
animations and screencasts) interspersed with quizzes that
are used to keep up the students’ attention to the learning
material1. A key issue in MOOCs is to facilitate and allow
massive attendance.

MOOCs have been aptly described as “textbooks on ste-
roids” [6]. In other words, the students that are successful
in MOOCs tend to be autodidacts, to the extent that e.g.
more than 70% of the starting MOOC students already have
an undergraduate or postgraduate degree [13].

Our MOOC at the University of Helsinki Department of
Computer Science differs from typical MOOCs in two key
aspects [16]:

• Students start by installing a real-world programming
environment and start to program immediately. All
learning materials are built to support hands-on pro-
gramming. The emphasis is heavily on a learning pro-
cess that allows and requires the learners to produce
working solutions. There are hundreds of program-
ming assignments that the students are expected to
construct during the course.

• By successfully completing the MOOC and participat-
ing in an interview, a student is granted admission to
the university to major in Computer Science.

In Finland, the students choose their major before en-
tering a university, making the decision often based on a
relatively vague idea of the area and whether the studies
suit the student. Using a traditional entrance exam as a
way to select students provides insufficient results2 as some
of our first-year students fail to succeed in e.g. the very first
required programming courses, effectively forcing them to
seek another study.

The most important part of MOOC as semester-long en-
trance exam is the process of learning to program, during
which the student sees if CS/IT is the desired area of study
for her. Successfully completing the MOOC provides us and
the student herself the evidence that shows that she has the
aptitude for CS/IT.

1A notable exception are so-called connectivist MOOCs that
rely more on facilitated discussions among networked learn-
ers [14, 7, 12].
2Attempts to pinpoint identifiable markers for aptitude to
succeed in CS/IT studies have yielded non-conclusive results
(see e.g. [10, 1, 15, 8]), making it impossible to derive a set
of markers for revising the traditional entrance exam.

177

In practice, our MOOC is exactly the same course as the
entry-level programming course in our university. This in
itself acts as a validation measure to see whether a student
is able to handle the first and often the most challenging
courses.

In the first 18 months of operation, our MOOC has had
2109 participants, from which some 200 students have ap-
plied for a study position. The MOOC in programming was
first used as an entrance exam in spring 2012. In addition
to the new admission path via MOOC, the traditional ad-
mission procedure was kept intact and also offered to high-
school students.

In this paper, we compare the success of students admitted
via a MOOC to the traditional entrance exam-based intake.
As our work on using MOOCs as an entrance exam to uni-
versity studies has been active only for a short while and we
are still adjusting the level that we require from the MOOC
participants for them being admitted, we have deliberately
chosen not to include statistical analysis to avoid drawing
premature conclusions at this stage.

2. EDUCATIONAL SYSTEM IN FINLAND
Before starting undergraduate higher education in Fin-

land, students typically have 12 years of schooling. Dur-
ing those 12 years, there is only one standardized test: the
matriculation exam after the 12th grade. Major subject is
chosen before starting the University studies.

Universities can use the results of the matriculation exam
to grant study rights. However, most study disciplines in
the universities use the matriculation exam results only as
a small addition to university- and subject-specific entrance
exams, especially in highly desirable subjects. In STEM
subjects, the admission is typically more generous due to the
lack of applicants. Admission can be granted based on ei-
ther 1) solely the entrance exam, 2) solely the matriculation
exam, or 3) a combination score from entrance exam and
matriculation exam. At the Univ. Helsinki Dept of Com-
puter Science most of the admitted students have taken the
entrance exam (402 applicants in 2013) and received some
extra points based on their matriculation exam. Entrance
exams for CS/IT – and other subjects as well – are classic
pen-and-paper tests conducted in a lecture hall under strict
surveillance so that candidates are using only their brains to
answer the exam questions.

As computer science (computing, or any IT-related topic)
is not among the mandatory study subjects in high school in
Finland, it is not part of the matriculation exam 3. There-
fore, the entrance exam to CS/IT does not contain program-
ming per se; instead it contains logical problems and essay
writing. Many of the students who are admitted to com-
puter science do not have an accurate image of the subject,
and many drop out soon after their studies have started.

Another issue worth noting is that there are no tuition
fees for anyone in Finland (from elementary schools to uni-
versities). Instead, the government supports students by a
monthly allowance for living expenses, including rent sup-
port. As CS/IT is not among the most highly sought-out
study subject, some students apply for CS/IT as a fallback

3Many schools offer computing as an elective course. How-
ever, as there is no national curriculum for courses in com-
puting, courses often concentrate on the use of computer
applications and computer literacy. The situation in Fin-
land as such resembles many other countries, e.g. USA [20].

position, and accept the study right in order to get the stu-
dent benefits. Instead of studying CS/IT, they use the ex-
tra year for e.g. preparing for an entrance exams to a more
preferable study subject.

In order to alleviate the problem of having an incorrect
mental image of CS/IT studies, we wanted to allow high-
school students (esp. grades 10 to 12) in Finland to ex-
perience CS/IT studies. Therefore, we opened up our in-
troductory programming course (CS1) to the whole coun-
try4, targeting especially high-school students who have no
programming education in their schools, or who seek more
advanced courses than their local high school offers5.

The most significant benefit is that the MOOC partici-
pants get a more realistic view of the studies they would be
encountering if they took CS/IT as a major subject, and can
themselves evaluate if they are up to it. By completing the
MOOC in programming, the students show us at the depart-
ment that they are both competent and persevering enough
to study CS/IT. Therefore, it is only natural to grant those
students full study rights for a degree.

3. MOOC AS AN ENTRANCE EXAM
Starting the MOOC is straightforward, as there is no need

to provide any other information than a valid email address
when registering. If the student seeks admission, she is re-
quired to enter full personal information. The option for
applying for the study right is available for the first two
months.

3.1 Course Content and Pedagogy
The MOOC in programming is content-wise exactly the

same as our CS1, which is taught in Java using an objects-
early approach. The course contains 12 weekly exercise sets,
and covers topics typical to any introductory programming
course; assignment, expressions, terminal input and output,
basic control structures, classes, objects, methods, arrays
and strings, advanced object oriented features such as inher-
itance, interfaces and polymorphism, and familiarizes stu-
dents with the most essential features of Java API, excep-
tions and file I/O6.
During the MOOC, the participants work on over 150 pro-

gramming exercises, which are further split into over 350
tasks. The students that are applying for the study rights
must correctly solve 80% or more of the weekly tasks in or-
der to be invited to the interview. The material is handed
out online in a book-like format, with a few screencasts, and
its sole purpose is to help the students work on the exercises;
the main working method for the students is programming.

The learning-by-doing orientation comes from using the
Extreme Apprenticeship (XA) [17] method in the course im-
plementation. XA is based on cognitive apprenticeship [3,
2] and approaches programming as a craft that needs to be

4As is typical for MOOCs, there are no restrictions for par-
ticipation. Our MOOC is in Finnish language, so the natural
audience is mostly in Finland.
5In case a participant does not want to apply for a study
right but would like to have a certificate of accomplishment,
we have facilitated the schools in Finland to provide exami-
nations. High schools use the certificate for granting school
credits.
6The course material and exercises are available at
http://mooc.fi and licensed under the Creative Commons
BY-NC-SA -license.

178

honed continuously. Two core values in XA are “practice as
long as necessary” and “continuous feedback”. In our earlier
XA-based courses [11], the feedback has been provided by
human advisors (teachers). In the MOOC, the participants
program in an industry-standard programming environment
that contains a plugin, which provides help for the students
(for additional details, see [18]).

3.2 Interview and Programming Task
Once the students have worked through the required num-

ber of programming tasks, they are invited to an interview.
The interview is a two-part process: first, the students work
on a programming task in a live setting, and after that are
interviewed by two members of the faculty. The program-
ming task is done in a lab, where a supervisor can help
participants with e.g. operating system or programming
environment-related issues, and correct potential misunder-
standings regarding the task. The students are free to use
any available material which can be found on the internet,
e.g. the course material. However, asking for help in solving
the programming task is not allowed.

The participants had a total of 2 hours for the task, which
was as follows for the interview held during spring 2012.

Programming task: a text analyzer

Create an application that can be used to analyze text file
contents. The application should contain at least the follow-
ing features:

• calculating the number of words in a file

• finding and printing the most common word(s) in a file

• finding and printing the longest word in a file

If you wish, you can also create additional features.
The program should be able to analyze several files dur-

ing a single execution, and it should also be able to handle
large files. You can test your application for example with
Kalevala, which is available at
http://www.gutenberg.org/cache/epub/7000/pg7000.txt

You can decide what sort of a user interface the applica-
tion provides, however, we suggest that you build a text-
based user interface. Below is an example of how the appli-
cation could work:

Enter filename, empty input exits the program

> kalevala.txt

commands: longest, words, most-common, help

command > words

67443

command > longest

longest word is: kautokengän-kannoillansa

command > most-common

most common word is: on

>

finished processing kalevala.txt

Enter filename, empty input exits the program

> test.txt

commands: longest, words, most-common, help

command > help

commands: longest, words, most-common, help

command > words

7

command >

finished processing test.txt

Enter filename, empty input exits the program

>

Thank you!

After the programming task, the students are interviewed
for up to 30 minutes by two faculty members. The faculty
members discuss the students’ program design choices and
possible issues with e.g. performance with the student. Dur-
ing the interview, the faculty also attempts to form an un-
derstanding of the student’s background, and reasons for ap-
plying to the department of computer science. Things that
are of interest are e.g. existing programming background,
the student’s vision regarding her life after five years from
now, and existing educational background.

3.3 Selection of Students
During spring 2012, most of the students that did over

80% of the exercises in the MOOC in programming and ap-
plied for study rights also fared well in the actual interview.
Most of the participants were able to complete the program-
ming task fully, and only a handful of the participants had
issues with e.g. program design or did not have a work-
ing program at all. Out of the 52 students that applied for
a study position during spring 2012, 49 study rights were
granted. Out of the 49, 38 students started their studies
during fall 2012, and the remaining 11 had varying reasons
not to start their studies: they are still in high school, they
postponed the start due to the mandatory military service,
or they took another, preferred study position.

The number of applicants via the traditional path has
been in hundreds for years. Therefore, we are not expecting
an uncontrollable need to scale up the interview process.
Currently, the interviews involved with the MOOC entrance
have been conducted by two faculty members without extra
resources.

4. DATA
Our data contains study records from students that have

started their studies at the Department of Computer Sci-
ence at the University of Helsinki in August 2012. As some
of the students postpone their start due to the military ser-
vice, focus on other studies than Computer Science, or have
transferred courses from earlier studies (e.g. open univer-
sity), we include only students that have either attempted
or completed the introductory programming course during
the academic year 2012-2013.

The study records cover the period from August 1, 2012
to May 24, 2013. We examine two separate groups. The first
group (MOOC, n=38) contains students that have been ad-
mitted via the programming MOOC that was organized dur-
ing spring 2012. The second group (NORM, n=68) contains
students that were admitted via the traditional path, namely
the entrance exam, matriculation exam, or a combination of
both. The MOOC group has the introductory programming

179

CS/IT Courses

MOOC (n=38) NORM (n=68)
Credits

overall 1257 1629
mean 33.08 23.96
std 11.32 15.3
median 32.5 24

Courses passed
overall 346 452
mean 9.11 6.65
std 2.95 4.02
median 9 7

Courses failed
overall 66 157
mean 1.74 2.31
std 1.83 2.37
median 1 2

Grade stats
mean 4.04 3.79
std 1.15 1.2
median 4 4

Table 1: Student performance in CS/IT-related
courses.

and advanced programming courses (a total of 9 ECTS7)
included in the data, as the courses have been added to stu-
dents’ records when they were granted study rights, i.e. 1st
of August 2012. We offered the MOOC for all students that
were admitted as well. The second group (NORM) does
not include students, who took the MOOC during the sum-
mer (n=15), as their effective study time would be 3 months
longer than the other students in NORM group, causing ad-
ditional deviation in the data.

For each study subject (CS/IT, Math, all), we report the
number of credits, number of courses passed, number of
courses failed, and grades for each category. The grades
range from 1 (pass) to 5 (excellent), and the grade averages
exclude failed courses. Our university does not force courses
to be graded on a bell curve. On the contrary, student grades
are based on the true performance of the student using an
explicit criteria.

When looking at the data, one should keep in mind that
the study path for first-year students is designed for students
taking the programming courses during the first semester.
This means that the students that have been admitted via
MOOC have received no benefits from a tailored study path.

4.1 CS/IT Courses
Table 1 contains the students’ performance in CS/IT cour-

ses. When considering the number of credits that students
have gathered during the study period, the average is al-
most identical when we include the knowledge that MOOC
students have taken the introductory programming courses
earlier. The standard deviation in the number of credits,
which is higher for the NORM group, indicates that there is
more variance within the NORM group. In essence, it indi-
cates that there are students that end up failing their first

7European Credit Transfer and Accumulation System. An
academic year corresponds to 60 ECTS, and one ECTS
credit point equals 25-30 hours of student work.

Math Courses

MOOC (n=38) NORM (n=68)
Credits

overall 273 350
mean 7.18 5.15
std 7.49 7.63
median 5 0

Courses passed
overall 46 62
mean 1.12 0.91
std 1.19 1.25
median 1 0

Courses failed
overall 30 50
mean 0.79 0.74
std 0.74 0.66
median 1 1

Grade stats
mean 3.39 3.37
std 1.2 1.45
median 4 4

Table 2: Student performance in mathematics
courses.

programming courses and do not proceed at all, as well as
students, who fare well in their studies.

On average, the students admitted via a MOOC pass more
CS/IT courses than the NORM group, and end up failing
less courses. On average, MOOC students have one fail per
five passed courses, while the NORM group has one fail per
three passed courses. The standard deviation in both passed
and failed courses is also smaller for the MOOC group; on
average, the MOOC students fare better than the NORM
students. This is also seen in the grade statistics; although
there is not much difference, and the median grade is 4 on a
scale from 1 (pass) to 5 (best) for both groups, the average
grade is slightly higher for the MOOC group.

4.2 Mathematics Courses
In Table 2, we see the students’ performance in mathe-

matics courses. Although mathematics is not a mandatory
minor subject, completing at least 10 ECTS of mathematics
is mandatory. Typically, students enroll in a course called
Introduction to University Mathematics, which covers the
essential mathematics required for the course on Data Struc-
tures (CS2), where e.g. algorithm run-time analysis is one
of the focus areas.

On average, both student groups have completed at least 5
ECTS of mathematics during their first year of studies. The
MOOC students have taken over 7 ECTS worth of mathe-
matics, while NORM students have 5.15 ECTS. Note, how-
ever, that the standard deviation is high for both groups,
which means that it is very likely that there are students in
both groups that have either not passed any mathematics
courses, or have passed more than one mathematics course.

When looking at the number of passed courses, the median
for the MOOC students is 1, and the median for NORM stu-
dents is 0. This means that one half or more of the NORM
students have not succeeded in passing any mathematics
courses. This is problematic, as although mathematics is

180

All Courses

MOOC (n=38) NORM (n=68)
Credits

overall 1675 2296
mean 44.08 33.76
std 17.58 21.96
median 43 32.5

Courses passed
overall 434 599
mean 11.42 8.81
std 4.24 5.27
median 11 9

Courses failed
overall 101 214
mean 2.66 3.15
std 2.16 2.73
median 2 3

Grade stats
mean 3.94 3.73
std 1.13 1.18
median 4 4

Table 3: Student performance in all courses.

not a formal requirement for CS2, it is highly beneficial for
students to understand the contents of the Introduction to
Mathematics course as they take on Data Structures.

The grade averages for both groups are almost alike; the
only difference being the slightly higher standard deviation
for the NORM group.

4.3 All Courses
Table 3 contains information on all the courses that the

students have taken during their first year of studies. It con-
tains both the CS/IT courses and the mathematics courses,
and in addition other courses that the students may have
taken. Students are able to choose almost any course from
any discipline, so minor studies vary a lot among the stu-
dents. Among the students that have started their studies
in 2012, we have students taking courses related to e.g. pol-
itics, economics, literature, psychology, languages and law.

Overall, the students in the MOOC group fare slightly
better on average than the NORM group, but the NORM
group has more variation. On average, the MOOC students
have gathered 44.08 ECTS during their first year (35.08 if
programming courses are not included), while the NORM
students have gathered 33.76 ECTS. There is a small, but
noticeable difference, and the median is 43 for MOOC (34 if
programming courses are not included), and 32.5 for NORM8.

When looking at the number of courses passed, and the
number of courses failed, the MOOC students fare better on
average, while the NORM students have a larger variation.
The MOOC students have one fail per four passed courses,
while the NORM students have one fail for slightly less than

8It should be noted that the student should complete 60
ECTS per academic year in order to graduate according to
the model curriculum. In practise, a slow start and ad-
vancement of CS/IT studies (as well as large dropout rate)
is a common problem in Finland. Even the most compe-
tent students tend to start working in the IT industry while
studying, thus delaying their graduation.

three courses. Again, some students perform well, while
others perform poorly. The grade statistics are almost alike,
on average the grade of MOOC students is 3.91, while the
grade average for NORM students is 3.71.

In addition, when considering the amount of students that
have received less than 10 ECTS during their first two se-
mesters, i.e. have done only the programming course or less,
only one out of the 38 MOOC students did not complete
anything outside the programming courses. When consider-
ing the students in the NORM group, a total of 12 students
(17.6%) have gathered less than 10 ECTS. We must note
that we consider only the students that started their studies
and participated in the introductory programming course;
in reality, the number is higher.

5. DISCUSSION AND FUTURE WORK
Our initial analysis of students that have been admitted

via the MOOC indicates that they are failing less courses and
gaining slightly more credits than the students admitted via
the traditional path. However, lots of variance in the student
groups exist, and both of the groups have so-called high
performers and low performers. As we compared the MOOC
students to students that have attempted or succeeded in
the introductory programming courses during the academic
year 2012-2013, our initial analysis excluded the admitted
students that did not study at all (e.g. entered military
service or started to study another subject at the university)
or chose to start their studies early by participating in a
voluntary MOOC during summer 2012.

At the University of Helsinki, Department of Computer
Science, we receive some 500-600 study applications per year.
A majority of the applicants seek a study right via the en-
trance exam, while some apply directly using their matric-
ulation exam score. Typically less than 200 students are
admitted, and of these, on average, less than 130 students
accept the study right. Thus, CS/IT is not the number one
choice for the study for many of the applicants. Moreover,
some 20-30 students do not start any CS/IT courses, even if
they accept the study right. When we compare these tradi-
tional figures to our first MOOC intake, in which over 93%
of the applicants were accepted and started their studies ac-
cordingly, the MOOC intake is far superior in matching the
students to an appropriate and desired area of study.

Having the students successfully perform introductory pro-
gramming courses already before they start their studies
gives the students a head start over their fellow students.
It also acts as a preliminary verification on the students’
motivation to study CS/IT. In addition, the students are
not getting stuck to the “filter” of learning to program that
is a cause for challenges for many in their early studies.

As the awareness of our MOOC as an entrance exam is
increasing, we are currently in the process of increasing the
number of students admitted via the MOOC. In spring 2013,
a total of 66 students were admitted. In addition to improv-
ing the intake, we are also working on the students’ first year
experiences so that the MOOC students have more relevant
courses to work on. Even though our MOOC has proven
to be beneficial for us, we are not aiming to stack up on
online education: we want all of our students to participate
in the academic community and therefore emphasize the so-
cial support during the degree studies, helping them in the
transition from a high school to the university [19].

181

We see a strong indication that one of the important
success factors in first-year CS/IT studies is foundational
programming skills. These skills can be practised already
before the formal start of the degree studies. Universities
with a similar admission system to ours that are facing chal-
lenges with student intake and performance (e.g. students
dropping out during first semester, students not opting for
CS/IT-studies) may benefit from a long-term programming
exam, which is administered already during the high-school
studies (cf. e.g. [4, 9]).

Acknowledgements

This research is partially funded by the Technological Indus-
tries of Finland Centennial Foundation. We gratefully ac-
knowledge the anonymous reviewers for their valuable feed-
back.

6. REFERENCES
[1] M. E. Caspersen, K. D. Larsen, and J. Bennedsen.

Mental models and programming aptitude. In ACM
SIGCSE Bulletin, volume 39, pages 206–210. ACM,
2007.

[2] A. Collins, J. Brown, and A. Holum. Cognitive
apprenticeship: Making thinking visible. American
Educator, 15(3):6–46, 1991.

[3] A. Collins, J. Brown, and S. Newman. Cognitive
apprenticeship: Teaching the crafts of reading, writing,
and mathematics. In Knowing learning and instruction
Essays in honor of Robert Glaser, volume Knowing, l
of Psychology of Education and Instruction Series,
pages 453–494. Lawrence Erlbaum Associates, 1989.

[4] T. Crick and S. Sentance. Computing at school:
stimulating computing education in the UK. In
Proceedings of the 11th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’11, pages 122–123, New York, NY, USA,
2011. ACM.

[5] J. Daniel. Making sense of MOOCs: Musings in a
maze of myth, paradox and possibility. 2012.
http://www.academicpartnerships.com/docs/default-
document-library/moocs.pdf.

[6] K. Devlin. The future of textbook publishing is us,
2012. http://devlinsangle.blogspot.fi/2012/08/the-
future-of-textbook-publishing-is-us.html.

[7] S. Downes. What is a connectivist MOOC. 2012.
http://www.connectivistmoocs.org/what-is-a-
connectivist-mooc/.

[8] G. E. Evans and M. G. Simkin. What best predicts
computer proficiency? Commun. ACM,
32(11):1322–1327, Nov. 1989.

[9] B. Franke, J. Century, M. Lach, C. Wilson,
M. Guzdial, G. Chapman, and O. Astrachan.
Expanding access to k-12 computer science education:
research on the landscape of computer science
professional development. In Proceeding of the 44th
ACM technical symposium on Computer science
education, SIGCSE ’13, pages 541–542, New York,
NY, USA, 2013. ACM.

[10] P. Kinnunen, R. McCartney, L. Murphy, and
L. Thomas. Through the eyes of instructors: a
phenomenographic investigation of student success. In

Proceedings of the third international workshop on
Computing education research, ICER ’07, pages 61–72,
New York, NY, USA, 2007. ACM.

[11] J. Kurhila and A. Vihavainen. Management,
structures and tools to scale up personal advising in
large programming courses. In Proceedings of the 2011
conference on Information technology education,
SIGITE ’11, pages 3–8. ACM, 2011.

[12] A. McAuley, B. Stewart, G. Siemens, and D. Cormier.
The MOOC model for digital practice. 2010.
http://davecormier.com/edblog/wp-
content/uploads/MOOC Final.pdf.

[13] MOOCs@Edinburgh Group. MOOCs @ Edinburgh
2013: Report nr. 1, 2013.
http://hdl.handle.net/1842/6683.

[14] G. Siemens. What is the theory that underpins our
MOOCs? 2012.
http://www.elearnspace.org/blog/2012/06/03/what-
is-the-theory-that-underpins-our-moocs/.

[15] Simon, S. Fincher, A. Robins, B. Baker, I. Box,
Q. Cutts, M. de Raadt, P. Haden, J. Hamer,
M. Hamilton, R. Lister, M. Petre, K. Sutton,
D. Tolhurst, and J. Tutty. Predictors of success in a
first programming course. In Proceedings of the 8th
Australasian Conference on Computing Education -
Volume 52, ACE ’06, pages 189–196, Darlinghurst,
Australia, Australia, 2006. Australian Computer
Society, Inc.

[16] A. Vihavainen, M. Luukkainen, and J. Kurhila.
Multi-faceted support for MOOC in programming. In
Proceedings of the 13th annual conference on
Information technology education, SIGITE ’12, pages
171–176. ACM, 2012.

[17] A. Vihavainen, M. Paksula, and M. Luukkainen.
Extreme apprenticeship method in teaching
programming for beginners. In Proceedings of the 42nd
ACM technical symposium on Computer science
education, SIGCSE ’11, pages 93–98. ACM, 2011.

[18] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using Test
My Code. In Proceedings of the 18th ACM conference
on Innovation and technology in computer science
education, ITiCSE ’13, pages 117–122, New York, NY,
USA, 2013. ACM.

[19] P. Wilcox, S. Winn, and M. Fyvie-Gauld. ’It was
nothing to do with the university, it was just the
people’: the role of social support in the first-year
experience of higher education. Studies in higher
education, 30(6):707–722, 2005.

[20] C. Wilson, L. A. Sudol, C. Stephenson, and
M. Stehlik. Running on empty: The failure to teach
k-12 computer science in the digital age. Association
for Computing Machinery. 2010.

182

Publication III.1

III.1

Arto Vihavainen, Juha Helminen, and Petri Ihantola

How Novices Tackle Their First Lines of Code in an IDE: Analysis
of Programming Session Traces

In Proceedings of the 14th Koli Calling International Conference on Com-
puting Education Research (Koli Calling ’14)

Copyright c©ACM New York, NY, USA 2014
http://dx.doi.org/10.1145/2674683.2674692

Reprinted with permission.

How Novices Tackle Their First Lines of Code in an IDE:

Analysis of Programming Session Traces

Arto Vihavainen
Department of Computer

Science
University of Helsinki

Finland
avihavai@cs.helsinki.fi

Juha Helminen
Department of Computer
Science and Engineering

Aalto University
Finland

juha.helminen@aalto.fi

Petri Ihantola
Department of Pervasive

Computing
Tampere University of

Technology
Finland

petri.ihantola@tut.fi

ABSTRACT

While computing educators have put plenty of effort into
researching and developing programming environments that
make it easier for students to create their first programs,
these tools often have only little resemblance with the tools
used in the industry. We report on a study, where students
with no previous programming experience started to pro-
gram directly using an industry strength programming en-
vironment. The programming environment was augmented
with logging capability that recorded every keystroke and
event within the system, which provided a view on how the
novices tackle their first lines of code. Our results show that
while at first, the students struggle with syntax – as is typi-
cal with learning a new language – no evidence can be found
that suggests that learning to use the programming environ-
ment is hard. In a two-week period, the students learned
to use the basic features of the programming environment
such as specific shortcuts. Although we observed students
using copy-paste-programming relatively often, most of the
pasted code is from their own previous work. Finally, when
considering the compilation errors and error distributions,
we hypothesize that the errors are a product of three fac-
tors; the exercises, the environment, and the data logging
granularity.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education

Keywords

introductory programming; source code snapshot analysis;
programming session trace analysis; programming behavior;
data mining; learning analytics; novice programmers; pro-
gramming environments; novices and programming environ-
ments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Koli Calling ’14, November 20 - 23 2014, Koli, Finland
Copyright 2014 ACM 978-1-4503-3065-7/14/11 ...$15.00.
http://dx.doi.org/10.1145/2674683.2674692.

1. INTRODUCTION
One of the factors that defines whether students choose

to pursue a career in a field is their success in the intro-
ductory courses [4]. If students fail the very first introduc-
tory courses, many lack the belief that they could succeed
in that area in the future. This effect is visible also in
computing, and thus, as programming courses are among
the first courses that students attend in computing, it is
not surprising that introductory programming courses have
received plenty of attention from computing education re-
searchers [20].

These days, programming instructors often include a num-
ber of activities in their courses, including opportunities to
read code, study worked examples [17, 18], and to use pro-
gram visualization tools [25]. However, as one of the core
learning goals of an introductory programming course is to
learn the art of writing programs, the instruction eventually
will include more and more activities in which the students
write programs themselves [1]. Here, novice-friendly pro-
gramming environments such as Alice, BlueJ or Scratch [5,
16, 23], or depending on the course, online programming
environments that are embedded into the learning material
management come into play (see e.g. [19, 22]).

Based on recent studies that report that, overall, there has
been little improvement in the pass rates of university-level
introductory programming courses [31, 28], we are faced
with the question that are we taking the correct turn when
embedding our courses with systems that make the first steps
easier? Could it be that we are blinded by the recent push
towards making programming accessible to everyone, and as
a consequence, forgetting that industry-strength program-
ming tools are constantly improved, and used by millions
around the world? Are these programming environments
truly so hard for novices to use that easier ones need to be
built?

While a growing body of research exists on the strug-
gles that students face when writing code within educa-
tional environments (see e.g. [2, 3, 10]), little research ex-
ists on the issues that students face when learning to pro-
gram within standard, off-the-shelf programming environ-
ments. This is somewhat surprising, as one of the implicit
reasons for the creation of these educational environments
is that the standard off-the-shelf programming environments
are complex and hard to use. This suggestion implicitly dis-
misses the features that many modern programming envi-
ronments boast with, such as the continuous compilation of

109

source code that creates up-to-date error information (see
Figure 1), source code auto completion, various debugging
features, and the overall support for numerous programming
languages.

While these features are all generally available in free and
open-source editors such as Eclipse 1 and NetBeans 2, ed-
ucational programming environments typically lack them.
Undoubtedly, these kinds of features may have a significant
impact on how novice programmers work and learn.

Figure 1: NetBeans IDE automatically identifies
syntax errors, highlights them, and provides sug-
gestions on how to fix them (suggestions visible on
mouse click).

In this study, we seek to understand how novice program-
mers tackle their first lines of code when programming is
started directly using an IDE. We investigate what are the
things that novice programmers struggle with and study how
their behavior changes over a short period of time. The
participants in the study have stated that they have no
previous programming experience, and have been exposed
to programming directly within the NetBeans environment,
without being first exposed to e.g. educational program-
ming environments. The data that our analysis is based on
is fine-grained, where every key-press within the program-
ming environment has been recorded. This means that no
assumptions on the programming behavior between subse-
quent snapshots need to be taken.

2. RELATED WORK
While there are no studies similar to ours in the scope and

data granularity, a notable amount of research that analyzes
how students’ proceed in their first programming courses
exist. Many of these studies, unfortunately, are unclear on
the details regarding students’ programming experience, and
the term novice is often defined loosely or not at all. In most
cases, all students that attend an introductory programming
course are considered to be novice students, while in reality,
many may have previous programming experience, and e.g.
attend the course due to degree requirements or in the hope
of easy credits.

During the last decade, tools that make it possible to
gather data from students’ programming environments have
slowly become mainstream, and the analysis of snapshots is
at the point where tools designed for snapshot analysis are
starting to pop up (see e.g. [9]). However, many of these are
oriented towards coarser data, and little work on fine-grained
data analysis exists. Here, we review relevant studies where
snapshot data of coarser granularity has been utilized for
multiple purposes.

Perhaps the closest study to ours is the one by Heinonen
et al. [9]. While the main focus of their work is on demon-
strating a tool for source code analysis, they also analyzed
snapshots from students that had no existing programming

1https://www.eclipse.org/
2https://netbeans.org/

experience and had either passed or failed an introductory
programming course. However, their analysis focused on
style-related coding errors and reasoning issues, they had
a small dataset, and the data was coarse grained, contain-
ing only students’ saves, code executions, and compilations.
Another work that analyses students’ behavior within a pro-
gramming environment is the work by Dyke [7], where the
analysis focused on students’ use of IDE features. He found
that the use of features such as code generation had a high
correlation with course success, but, did not discuss the stu-
dents’ backgrounds. Thus, it is possible that the results
could be partially explained by past experience.

One notable research direction in snapshot analysis is data-
driven approaches for identifying at-risk students. In these
approaches, the programming environment is instrumented
to gather snapshots based on specific triggers such as time
interval or actions that the student takes within the envi-
ronment, e.g. saving source code or running the program.
Jadud was perhaps the first one to propose an approach,
where students’ subsequent compilation events were ana-
lyzed, and the persistence of different compilation errors was
quantified to produce an error quotient [14] that correlated
with success. Jadud’s work was later extended by Watson et
al. [30], who took the relative performance differences of the
student population into account, leading to an improvement
in the predictive power.

Others have analyzed the time usage of students’ within
a programming course and the use of programming envi-
ronment features. For example, Edwards et al. investi-
gated the study behavior of novice programmers, and found
that students who received both high and low marks from
programming assignments typically received the high marks
from work that they started and ended well before deadline,
while the low marks came typically from assignments that
the same students started relatively close to the deadline [8].
Similar results were later identified by Vihavainen, who iden-
tified students’ eagerness (or earliness) to start working on
the programming exercises as one of the factors that distin-
guished students into high-performing, low-performing, and
failing students [27].

The errors themselves have also been analyzed. While
Jadud outlined the most typical errors that students’ see
when programming in BlueJ [13], Denny et al. outlined
that some errors are harder to fix than others, and that the
errors may be related to the programming environment [6].

Another research direction is modeling students’ progress
for e.g. the use of a tutoring system or for feedback genera-
tion. Here, Piech et al. [21] modeled students’ programming
patterns within an assignment where students programmed
using Karel the Robot system. They found that the us-
age patterns were more predictive of midterm scores than
the scores from the assignment. While students’ progress
within programming courses are generally considered harder
to model than the progress within an individual assignment
or a micro-world, some notable attempts have been exer-
cised by Hosseini et al., who explored programming con-
cept reduction and increment patterns within a program-
ming course [11], and experiments by Yudelson et al., who
explored the use of knowledge models used to track students’
understanding of course concepts in a Java MOOC [32].

Data gathered from snapshot systems has also been used
to detect emotions and intentions. For example, Vee et
al. [26] did a preliminary study where they sought to detect

110

intentions of students from snapshot data, while Rodrigo
and Baker sought to identify frustrated students using both
logged data and notes from external observers [24]. For fur-
ther information on platforms doing fine grained logging and
related research in this field, see e.g. Helminen et al. [10].

3. METHODOLOGY
To provide gain insight on how novices write their first

lines of code, this research answers the following questions:

• How do novice programmers write their first lines of
code?

• What are the most typical syntax errors that novice
students encounter? Are they any different to those
reported in literature related to educational program-
ming environments?

We define novice as a student who has explicitly stated that
he or she has no previous programming experience, and use
NetBeans as the programming environment. Data from the
students’ progress is gathered by a NetBeans plugin called
Test My Code [29], which we have altered to gather finer
grained data. The novice programmers and assignments un-
der study are from an introductory programming course in
Java that was offered by the University of Helsinki during
Spring 2014. The course was open and free for anyone willing
to participate (i.e. no need to be enrolled at an educational
institution). To focus on the struggles of novices, we uti-
lize only two first weeks of the course, and limit our study
to those students that indicated in a voluntary survey that
they have no past programming experience (n=233, average
age=23.8, σ=5).

The course starts as many other programming courses,
i.e. by programming a “Hello World”-application. Over the
two weeks, the students work on 42 exercises, some of which
are split into smaller tasks, and practice the use of input,
output, conditional statements, loops and methods. All ex-
ercises are worked in the NetBeans IDE with Test My Code
that authenticates students and records data from each key-
press. That is, for each keypress (or button click) within the
IDE, information on student, source code change, time, and
the exercise that the student is working on is stored. The
source code changes are recorded as diffs between keystrokes
that are augmented with additional descriptors related to
whether code has been inserted, removed, or pasted (past-
ing is identified by non-empty strings with length more than
one with the system clipboard). Undos and redos are con-
sidered as inserts and removes, depending on the change.

To answer the research question “How do novice program-
mers write their first lines of code?”, two researchers per-
formed an in-depth qualitative analysis on two programming
exercises where students perform printing, do comparison
and use loops.

The research question “What are the most frequent syntax
errors that novice students encounter? Are they any dif-
ferent to those reported in literature related to educational
programming environments?” is answered by performing a
quantitative analysis on the events gathered. We analyze the
events on multiple granularities, and contrast our results to
those previously reported in the literature.

4. RESULTS
In the next section, we present our findings from the qual-

itative analysis of how print statements are constructed and
a quantitative look into how copy and pasting is used by the
students. Then, the results of the quantitative analysis of
compilation statistics and errors will be presented.

4.1 Writing First Lines of Code

Qualitative Overview of How Students Write Print State-
ments
To get an overview of how students write their very first
lines of code – print statements – we manually examined
the key-level logs from two early assignments. We per-
formed content analysis on the very first assignment on the
course and another from the second week. Both exercises re-
quired students to print something. We focused on how the
print statements (i.e. System.out.print(”something”); or
System.out.print(”something”);) are typed. After view-
ing the traces one-by-one and recording the approaches, the
following categories of approaches for typing the print state-
ment emerged:

linear In the linear approach, students type the print com-
mand System.out.println character by character from
left to right. In most cases, this is followed by the IDE
automatically adding parentheses and a semicolon at
the end of the method name. Typos and other errors
may occur as later discussed.

autocomplete Most IDEs support autocompletion. In ad-
dition to adding parentheses at the end of method
calls, NetBeans suggests completions for classes and
objects. For example, typing System. will open a
popup with alternative completions as illustrated in
Figure 2. Typing more characters will limit the com-
pletions in the popup accordingly.

sout As the print statement is commonly used but rather
long in Java, NetBeans offers a shorthand sout that,
when typed and followed by pressing tab, is automat-
ically replaced with System.out.println(””);. In ad-
dition, the cursor jumps inside the quotes so that the
user can immediately go on to type the contents of the
string. The course material hints the students to try
the command after they have worked on a number of
programming exercises.

copy-paste The last observed category of typing the print
statement is to copy and paste code from somewhere
else and then edit the argument only.

Figure 2: NetBeans IDE suggests alternative com-
pletions upon entering the dot operator.

Table 1 summarizes how frequently the different approaches
were observed in the two assignments selected. The ap-
proaches overlap and it is quite common that different ap-

111

proaches are used even during a single session. In the statis-
tics, the linear category contains only the cases where this
approach has been used without any autocompletion. We
observe that in the very beginning students are using copy
and paste a lot whereas already on the second week sout

shortcut is the most common approach. At the same time,
problems related to typing the print statement have almost
disappeared. During the first week, problems included first
trying to use the sout shorthand and failing – maybe they,
for example, forgot the key used to invoke autocompletion.
This was followed by erasing the sout and starting to type
the print statement linearly. Many who did this had some
problems also with their second approach. For example,
1) incorrectly mixing capital and small letter (e.g. sys-

tem instead of System and Out instead of out), 2) using
other characters than the dot to access class members (e.g.
System-out-println), 3) various problems related to defin-
ing string literals, for example not using quotes at all (i.e.
System.out.println(Hello);) or using parentheses instead
of quotes (i.e. System.out.println((Hello));), and for-
getting .out from the System.out.println and 4) normal
typos without obvious misunderstanding behind.

Copy-paste programming
In analyzing how learners formed print statements, we ob-
served quite a few using a copy-paste approach in the second
assignment during the first week but by the second week the
learners had almost unanimously moved on to making use
of the sout shorthand. In order to study the general popu-
larity of a copy-paste approach, we performed an additional
quantitative analysis of how frequently this occurs during
the first two weeks of the course. This includes in total 42
assignments.

The fine-grained key-level trace allows us to identify the
moments when several characters appear in the code at once
in a single event. There are essentially two cases when this
happens. Either the learner has made use of some special
IDE code generation feature such as autocompletion or the
learner pastes code from the clipboard. Currently, the ac-
tual pasting functionality in the IDE is not instrumented.
Instead, we classify the cases where added character se-
quences are longer than a single character and match the
current contents of the user’s clipboard as pastes. Thus, for
example, we are not including, nor would we currently be
able to, any occurrences of pasting a single character.

In terms of our identification method, overall, 210 learners
copied and pasted something into their code in the assign-
ments of the first two weeks. In total, learners pasted text
20351 times in the 42 assignments examined. We further
analyzed the pasted text and tried to infer its origin. One
likely source for copied code is the learner’s own previous
work on the course in a similar assignment. In addition
to checking whether the code could have been copied from
the learner’s current code, assuming that the learners more
or less do the exercises in order, we can look back and try
to match copied code to anything the learner wrote earlier.
This way we get an approximation of the amount of copying
the learner is likely doing from his or her own work or from
that given in the code templates of previous assignments.
In total 13384 paste events, that is, around 66% of them,
could be placed in this category leaving out about a third
of paste events whose text probably originated elsewhere in
the learning material or on the web.

week n all 5 sec 10 sec snapshot submit

1 233 44.7% 61.9% 65.5% 90.6% 99.4%
2 179 36.4% 60.5% 65.3% 94.5% 99.6%

Table 2: Percentage of the states in each granularity
that compile successfully for the first two weeks.

There is notable variance in the amount of copy and past-
ing being performed both between different exercises and be-
tween learners. In assignment 13, the total number of paste
events was as high as 5034 while in a few assignments there
were less than 60 paste events across all learners. Here, the
behavior is explained by the assignment type – the assign-
ment included creating repetitive actions for a robot, and
students had not yet been taught loops.

The number of pastes done by each learner in the 42 as-
signments ranged from less than 10 to over 300.

4.2 Compilation Statistics and Errors

Compilation Statistics
Occurrence of compilation errors and the error message types
are used to identify at-risk students [15, 30]. When students
work in programming environments such as BlueJ, it is typ-
ical that only some 50% of the snapshots that are taken
when students’ save, compile or run the application com-
pile. Here, we look at the overall compilation statistics on
multiple granularities over the two weeks. The granularities
are defined as follows:

• all - every key-stroke and event in the data set is com-
piled: this contains e.g. states where students’ are in
the middle of typing something

• 5 seconds - if students pause for 5 seconds, the data is
stored: this indicates e.g. a short pause in typing or a
thinking break

• 10 seconds - if students pause for 10 seconds, the data
is stored: this indicates a bit longer pause in typing or
a thinking break

• snapshot - states where the student has saved, run,
debugged or tested the application

• submit - states where the student has used the submis-
sion feature of the Test My Code-plugin (i.e. sending
the solution to an assessment server)

Table 2 shows the average (mean) percentage of states
that compile. Over 90% of submissions and snapshots com-
pile during both weeks, and over 60% of the states that are
stored when a student takes a pause from programming com-
pile. Furthermore, over 35% of the key-stroke states compile
during both weeks. When comparing these numbers to the
numbers reported with e.g. BlueJ, there is a considerable
difference.

Figure 3 shows the distribution of compilation errors for
the different granularity types over the two week period.
Both snapshots and submissions compile in majority of the
cases, while the key-strokes compile less frequently.

112

N linear auto-complete sout copy-paste

Assignment 2 (week 1) 121/36 27/18 33/15 72/9 22/4
Assignment 27 (week 2) 122/1 6/- 2/1 112/- 4/-

Table 1: Different approaches to write a System.out.println() statement / how many students using that
approach had to edit the line by deleting something in two exercises from the first and second week of the
course. N is the number of students who have typed print statements in the solutions.

Figure 3: Compilation success percentages over all
exercises with four different granularities. The top-
most line indicates the compilation successes for
submission, the next row snapshots, then keylevel-
events with 10 second window, then 5 second win-
dow, and finally all keystrokes.

Compilation Errors
Compilation errors and how students tackle them are the
cornerstone of many algorithms that identify at-risk stu-
dents. Here, we consider the compilation errors that stu-
dents face within the NetBeans environment, and compare
those to those reported in the literature. We consider the
articles from Jadud [13] and Denny et al. [6] as the compar-
ison points. In Jadud’s work “the five most common errors
account for 58% of all errors generated by students while
programming: missing semicolons (18%), unknown symbol
: variable (12%), bracket expected (12%), illegal start of
expression (9%), and unknown symbol : class (7%)” [13],
and in the work of Denny et al., the five most common er-
rors account for 72.3% of all errors; cannot resolve identifier
(24.0%), type mismatch (18.4%), Missing ’;’ (13.0%), token
should be deleted (10.3%), and method not returning correct
type (6.6%).

In our context, when considering the compilation errors
that exist in the snapshots after the student has taken a five
second pause, the five most common errors account in week
one account for 77.4% of all compilation errors in week 1 and
80.3% of the errors in week 2, as shown in Table 3. On the
other hand, if we consider snapshots that are taken when
students save, run or test their code (see Table 4), during
the week one, the top 5 errors account for 62.1% of all errors,
while the top five errors account for 65.8% during the week
two.

As Denny et al. note, comparing the error outputs is
challenging as the error messages vary across tools. For ex-
ample, the standard Java error message codes, e.g. “com-
piler.err.expected3”, do not always distinguish specifics, and
in the previous case, one cannot determine whether the miss-
ing, or unknown, symbol is a variable or a class from the
message code. In our data, when considering both the snap-

error week 1 week 2

<identifier >, ’;’ or ’)’ expected 30.0% 29.0%
illegal start of expression 15.3% 19.3%
not a statement 12.1% 14.0%
premature end of file 14.1% 9.5%
cannot find symbol 5.9% 8.5%

Table 3: Top 5 compilation errors for weeks one and
two when student has taken a five second pause from
programming.

error week 1 week 2

<identifier >, ’;’ or ’)’ expected 26.9% 23.3%
premature end of file 10.5% 9.0%
cannot find symbol 8.2% 13.9%
illegal start of expression 8.7% 8.9%
class, interface, or enum expected 7.8% 10.7%
not a statement 7.4% 5.7%

Table 4: Top 5 compilation errors for weeks one
and two when student based on snapshots that are
recorded on student save, run and compile.

shots and the data gathered after a 5 second pause, less than
15% of the errors are related to not being able to find a sym-
bol; on the other hand, these numbers are slightly less than
20% in Jadud’s data, when variable and symbol errors are
aggregated. Similarly in our context, the errors indicating
a missing identifier or a semicolon are aggregated based on
the code, which makes the comparison difficult.

5. DISCUSSION
We have investigated the programming sessions of com-

plete novices (as reported by themselves). In the first as-
signments, they compose their first programs starting with
a simple class template with a single method and adding
only print statements of the form System.out.println();.
At this point, the statement is more or less a sequence of
characters that has no understandable structure to them.
They simply try to copy it from the learning material char-
acter by character but end up, for example, mixing capital
letters, forgetting parts of it, and changing the order be-
cause to them there may not seem to be any obvious logic.
Not only this, but surrounding the space where they are
to fill in the print statements there is more code that they
simply cannot comprehend at this point. In our analysis of
how learners form some of their first print statements we
did find them struggling. Special teaching languages or lan-
guages such as Python that have an arguably cleaner syntax
than Java could definitely have their benefits.

One of the more peculiar mistakes learners made, was sub-
tituting the l in the print statement with an I. In a way, this
makes sense – printing In something is more intuitive than

113

printing an ln – a line – unless explained in the learning
material. The letters also resemble each other quite a lot
in some fonts. Truly, even such less apparent issues in the
usability of programming material and environments may
have adverse effects in learning.

In regard to our further analysis of the print statement, it
is also interesting to note, that while it seems that already
on the second week the learners were not struggling with
the statement, neither were they actually writing it any-
more. Instead, almost all of them used the sout shorthand
provided by NetBeans. Whether they could type a print-
command out of memory without slips after two weeks of
practice remains an open question.

Looking at our findings about copy and pasting, we see
that students paste relatively often when constructing their
programs during the first weeks. Our preliminary results
indicate that on average one tenth of students’ codebase is
generated by pastes. On the positive side, most of these
pastes are likely to be copied from each student’s previous
work.

As for compilation errors, the observed frequency distribu-
tion of different error types did not quite match earlier stud-
ies. There are several potential causes for this. Compared
with the other similar work, the NetBeans environment com-
piles code continuously and also provides constant and im-
mediate feedback when such a compilation fails. Learners
are therefore more likely to instantly fix an error that was
only just introduced in the code instead of noticing this
later when they invoke a compile themselves. Second, any
code generation features, such as, code completion which
was used commonly, end up reducing the number of some
types of errors. For example, filling in method calls via the
completion suggestion menu will automatically add match-
ing parentheses and a semicolon. Similarly, typing a lone
opening parenthesis will automatically add a closing paren-
thesis after it. Furthermore, another feature that may have
an impact is how NetBeans highlight the occurences of a
variable when the caret is on one. This may allow learners
to spot some typos but these often probably already come
apparent during a compilation.

When analysing the compilation success percentages over
the exercises (Fig. 3), we identified peaks. These peaks can
e.g. indicate the difficulty of certain assignments as well as
the structure of the handout. For example, the large peak
at right hand side of the Figure 3 is caused by an exercise
where students are introduced to writing their own methods;
students receive a template of a method where they need
to implement the printing of a passed variable – the stu-
dents are already familiar with printing – and then call that
method. Information on the difficulty of an exercise can be
useful for example for constructing adaptive feedback [12].

Overall, based on the error reports in the works of Jadud
and Denny et al, as well as based on our results, we can
hypothesize that the compilation errors are a product of the
used exercises, programming environment and the event log-
ging granularity and thus, further studies in different con-
texts are needed.

5.1 Limitations of Study
As is natural for studies like this, the inherent limitation

of our study is that the data comes from a single course.
We have sought to remedy this a bit by including students
from an open course instead of choosing students from a typ-

ically homogeneous computer science classroom. While this
creates another selection bias, we believe that the popula-
tion is less homogeneous than it would be if the population
would have been drawn from the students at the Univer-
sity of Helsinki. Naturally, it would have been beneficial to
be able to perform the study on multiple contexts, but no
open data of students’ programming process with the same
granularity exists.

Another possible limitation is that it is possible that some
of the students did not answer the survey detailing their
background truthfully. However, as the survey was volun-
tary, and there were no rewards or other incentives that
would have directed the students to participate in the sur-
vey, we can assume that most of the students were truth-
ful. And, unfortunately, there is no easy way to determine
whether the students were truthful or not.

As we analyzed the students’ behavior within the Net-
Beans IDE, a possible limitation is that the student popu-
lation was pre-selected. While we addressed this partially
before, it is possible that the need to install a programming
environment may create a bias in the population. While
we agree that this is a limitation, we also provided single-
click install packages that were tested in all major operating
systems.

When considering the analysis of the approaches how stu-
dents write their first lines of code, there are two limitations.
First, in our case, there were two coders, and thus it is pos-
sible that intercoder reliability issues exist. However, the
encoders sat next to each other during the encoding pro-
cess, and voiced their thoughts and observations out loud
throughout the encoding session. Another limitation is pos-
sibly the scope that we used for the analysis. As we studied
only very simple cases, it is possible that students’ strug-
gles were missed. However, before the start of the encod-
ing process, the encoders performed a rough analysis of the
students’ progress, and the exercises to be analyzed were
deliberately chosen to (1) avoid taking too much space, (2)
provide a view on students’ growth, and (3) to be an exam-
ple, where students first take multiple paths, but converge
to specific approaches.

6. CONCLUSIONS AND FUTURE WORK
In this work, we analyzed how programmers with no pre-

vious programming experience write their first programs
within an industry-standard programming environment. The
analysis was done by qualitatively inspecting how students
approach writing simple statements, and quantitatively in-
specting the source code compilation statistics and the most
typical errors that they face. Our results show no indication
that students could not learn to program directly within a
standard programming environment. On the contrary, stu-
dents made active use of the features provided by the fea-
tures such as programming environment -specific shortcuts
and automatic completion of source code. An analysis of
source code errors suggests that students’ struggles are not
as evident as they would be in environments such as BlueJ,
where students need to run their applications to get feedback
that indicates whether their code is in a compiling state or
not. This likely means that methods such as the Jadud’s EQ
would not be as efficient on snapshot data, as most of the
source code snapshots compile, and thus, the error pairings
required by Jadud would be lost.

When considering our results on the compilation errors,

114

and comparing them to existing work, it can be hypothe-
sized that compilation errors are more of a feature of the
used exercises, environments and data logging granularity.
That is, the learning objectives of exercises transform stu-
dents’ actions, and thus, modify also some of the errors that
are seen in the programming process. If the used environ-
ment provides feedback only on e.g. submission or save, it
is likely that students start to use those features more, and
thus, data points that otherwise would not be visible will get
gathered. Naturally, also the logging granularity affects this;
when logging every key-press, the data will naturally include
more errors that are related to incomplete commands. Thus,
more context-independent data-analysis studies are needed.

From the practical point of view, our results can be read in
a way that starting with an off-the shelf IDE does not seem
detrimental to students. Moreover, if a institution first uses
an educational programming environment, and later moves
the students away from such an environment, one may want
to try starting with the off-the shelf IDE directly. We do
note that students benefit from material and support, as
they do in any course context. In our future work, we will (1)
analyze the hypothesis that compilation errors are a product
of the exercises, environment, and data granularity, (2) repli-
cate this study on a larger dataset, and (3) perform a study
where the behaviors of novice programmers are compared
to those students that have explicitly stated that they have
previous programming experience. Furthermore, (4) we will
analyze how the copy-paste behavior is visible in these pop-
ulations and will perform a more thorough analysis of the
content that students paste.

7. REFERENCES

[1] J. Biggs and C. Tang. Teaching for Quality Learning
at University. McGraw-Hill, 3rd edition, 2007.

[2] P. Blikstein. Using learning analytics to assess
students’ behavior in open-ended programming tasks.
In Proceedings of the 1st International Conference on
Learning Analytics and Knowledge, LAK ’11, pages
110–116, New York, NY, USA, 2011. ACM.

[3] N. C. Brown and A. Altadmri. Investigating novice
programming mistakes: Educator beliefs vs. student
data. In Proceedings of the Tenth Annual Conference
on International Computing Education Research,
ICER ’14, pages 43–50, New York, NY, USA, 2014.
ACM.

[4] A. Christopher Strenta, R. Elliott, R. Adair,
M. Matier, and J. Scott. Choosing and leaving science
in highly selective institutions. Research in Higher
Education, 35(5):513–547, 1994.

[5] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-d tool
for introductory programming concepts. J. Comput.
Sci. Coll., 15(5):107–116, Apr. 2000.

[6] P. Denny, A. Luxton-Reilly, and E. Tempero. All
syntax errors are not equal. In Proceedings of the 17th
ACM Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’12, pages 75–80, New York, NY, USA, 2012. ACM.

[7] G. Dyke. Which aspects of novice programmers’ usage
of an ide predict learning outcomes. In Proceedings of
the 42Nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, pages 505–510, New
York, NY, USA, 2011. ACM.

[8] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones,
A. Allevato, D. Kim, and B. Tretola. Comparing
effective and ineffective behaviors of student
programmers. In Proceedings of the Fifth International
Workshop on Computing Education Research
Workshop, ICER ’09, pages 3–14, New York, NY,
USA, 2009. ACM.

[9] K. Heinonen, K. Hirvikoski, M. Luukkainen, and
A. Vihavainen. Using codebrowser to seek differences
between novice programmers. In Proceedings of the
45th ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 229–234, New York,
NY, USA, 2014. ACM.

[10] J. Helminen, P. Ihantola, and V. Karavirta. Recording
and analyzing in-browser programming sessions. In
Proceedings of the 13th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’13, pages 13–22, New York, NY, USA, 2013.
ACM.

[11] R. Hosseini, A. Vihavainen, and P. Brusilovsky.
Exploring problem solving paths in a Java
programming course. In Proceedings of the 25th
Workshop of the Psychology of Programming Interest
Group, 2014.

[12] P. Ihantola, J. Sorva, and A. Vihavainen.
Automatically detectable indicators of programming
assignment difficulty. In Proceedings of the 15th
Annual Conference on Information Technology
Education, SIGITE ’14, 2014.

[13] M. C. Jadud. A first look at novice compilation
behaviour using bluej. Computer Science Education,
15(1):25–40, 2005.

[14] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73–84. ACM, 2006.

[15] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, ICER ’06, pages 73–84, 2006.

[16] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Computer
Science Education, 13(4):249–268, 2003.

[17] M. C. Linn and M. J. Clancy. The case for case
studies of programming problems. Communications of
the ACM, 35(3):121–132, March 1992.

[18] R. Lister. Concrete and other neo-piagetian forms of
reasoning in the novice programmer. In J. Hamer and
M. de Raadt, editors, Proceedings of the 13th
Australasian Conference on Computing Education
(ACE ’11), volume 114 of CRPIT, pages 9–18, Perth,
Australia, 2011. Australian Computer Society.

[19] B. N. Miller and D. L. Ranum. Beyond pdf and epub:
toward an interactive textbook. In Proceedings of the
17th ACM annual conference on Innovation and
technology in computer science education, pages
150–155. ACM, 2012.

[20] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. In Working Group Reports on ITiCSE
on Innovation and Technology in Computer Science

115

Education, ITiCSE-WGR ’07, pages 204–223, New
York, NY, USA, 2007. ACM.

[21] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program.
In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, SIGCSE ’12, pages
153–160, New York, NY, USA, 2012. ACM.

[22] D. Pritchard and T. Vasiga. Cs circles: an in-browser
python course for beginners. In Proceeding of the 44th
ACM technical symposium on Computer science
education, pages 591–596. ACM, 2013.

[23] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Commun. ACM,
52(11):60–67, Nov. 2009.

[24] M. M. T. Rodrigo and R. S. Baker. Coarse-grained
detection of student frustration in an introductory
programming course. In Proceedings of the Fifth
International Workshop on Computing Education
Research Workshop, ICER ’09, pages 75–80, New
York, NY, USA, 2009. ACM.

[25] J. Sorva, V. Karavirta, and L. Malmi. A review of
generic program visualization systems for introductory
programming education. TOCE, 13(4):15:1–15:64,
Nov. 2013.

[26] M. Vee, B. Meyer, and K. L. Mannock. Understanding
novice errors and error paths in object-oriented
programming through log analysis. In Proceedings of
workshop on educational data mining at the 8th
international conference on intelligent tutoring
systems (ITS 2006), pages 13–20, 2006.

[27] A. Vihavainen. Predicting students’ performance in an

introductory programming course using data from
students’ own programming process. In Proceedings of
the 13th International Conference on Advanced
Learning Technologies, ICALT ’13, pages 498–499,
2013.

[28] A. Vihavainen, J. Airaksinen, and C. Watson. A
systematic review of approaches for teaching
introductory programming and their influence on
success. In Proceedings of the Tenth Annual
Conference on International Computing Education
Research, ICER ’14, pages 19–26, New York, NY,
USA, 2014. ACM.

[29] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using test my
code. In Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’13, pages 117–122, 2013.

[30] C. Watson, F. Li, and J. Godwin. Predicting
performance in an introductory programming course
by logging and analyzing student programming
behavior. In Proceedings of the 13th International
Conference on Advanced Learning Technologies,
ICALT ’13, pages 319–323, 2013.

[31] C. Watson and F. W. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014
Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’14, pages
39–44, New York, NY, USA, 2014. ACM.

[32] M. Yudelson, R. Hosseini, A. Vihavainen, and

P. Brusilovsky. Investigating automated student
modeling in a Java MOOC. In Proceedings of The
Seventh International Conference on Educational Data
Mining 2014, 2014.

116

Publication III.2

III.2

Petri Ihantola, Juha Sorva, and Arto Vihavainen

Automatically Detectable Indicators of Programming Assignment
Difficulty

In Proceedings of the 15th Conference on Information Technology Education
(SIGITE ’14).

Copyright c©ACM New York, NY, USA 2014
http://dx.doi.org/10.1145/2656450.2656476

Reprinted with permission.

Automatically Detectable Indicators of Programming
Assignment Difficulty

Petri Ihantola
Aalto University

Department of Computer
Science and Engineering

Helsinki, Finland
petri.ihantola@aalto.fi

Juha Sorva
Aalto University

Department of Computer
Science and Engineering

Helsinki, Finland
juha.sorva@aalto.fi

Arto Vihavainen
University of Helsinki

Department of Computer
Science

Helsinki, Finland
avihavai@cs.helsinki.fi

ABSTRACT

The difficulty of learning tasks is a major factor in learn-
ing, as is the feedback given to students. Even automatic
feedback should ideally be influenced by student-dependent
factors such as task difficulty. We report on a preliminary
exploration of such indicators of programming assignment
difficulty that can be automatically detected for each stu-
dent from source code snapshots of the student’s evolving
code. Using a combination of different metrics emerged as
a promising approach. In the future, our results may help
provide students with personalized automatic feedback.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; K.3.2 [Computers and Ed-
ucation]: Computer and Information Science Education—
Computer science education

Keywords

automated assessment; programming assignments; assign-
ment difficulty; personalized feedback

1. INTRODUCTION
In typical CS and IT curricula, introductory programming

courses are among the first that students take. The rest of
the curricula build on the skills learned in those courses,
and indeed success in introductory courses affects whether
students’ continue with their studies or not [7]. It is not
surprising that ways to improve introductory-level program-
ming education has been under study for decades [21, 29].

Some decades ago, programming was a skill needed by
a select few. It was often learned and taught in an ad
hoc fashion, as educators often sought to replicate the ways
in which they had themselves happened to learn to pro-
gram, and there was no pressure to educate large numbers
of graduates. From the 1980s onwards, programming has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGITE’14, October 15–18, 2014, Atlanta, Georgia, USA.
Copyright 2014 ACM 978-1-4503-2686-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656450.2656476.

become increasingly mainstream, to the point that some
countries have included programming education in primary
school (e.g. [9]). At the same time, the practices and
tools used to teach programming have evolved; these in-
clude novice-friendly programming environments [16] and
microworlds [10], languages for beginners [20, 24], and pro-
gram visualization tools [26], among others. Nevertheless,
this evolution is arguably lagging behind the demand for
more programmers and better programming pedagogy.

Pedagogical approaches to programming have been pro-
posed in which students in read code and study many worked
examples [17, 18]; software tools have also been designed to
support activities such as code-reading and multiple-choice
questions that help develop knowledge of important con-
cepts. Such activities can be very useful in a complementary
role, but if the goal is to learn to write programs, the peda-
gogy should be aligned with that goal [4] and must eventu-
ally include activities in which the students practice writing
programs. In a university course or similar formal learn-
ing context, this means that the pedagogy needs to include
programming assignments.

As with any form of practice, two key aspects of a pro-
gramming assignments are feedback and student motivation.
These aspects are connected, as good feedback can not only
help the learner with the topic of the assignment but also
increase the learner’s motivation. Poor feedback, on the
other hand, can make a learner less inclined to persist with
a programming task or an entire course.

Feedback can be partially or fully automatic [28, 14]. Au-
tomatic assessment systems and intelligent tutoring systems
bring benefits such as easy accessibility and low cost per
student, which makes them particularly attractive in large
classes with hundreds or thousands of students — and even
more so in the context of modern massive online courses.
The downside of many automatic solutions is that they fall
short of a human tutor in terms of quality of feedback. A
part of this problem is that the feedback provided by auto-
matic systems is usually not personalized to take the learner
and the learner’s present knowledge into account. In order
to provide better automatic feedback, we need to be able to
judge how the individual learner (or group) relates to the
assignment at hand. For instance, do they find it difficult?
Trivial? Helpful? Ideally, a reasonably reliable estimate of
such factors could be elicited automatically.

33

2. RESEARCH QUESTION
This article presents a study which is a preliminary ex-

ploration of factors that may influence the difficulty of pro-
gramming assignments and metrics for automatically assess-
ing those factors. More specifically, we explore the research
question: How do a learner’s programming background and
automatically analyzable programming behavior relate to the
perceived difficulty of different programming assignments?

The work is motivated by the current state of automated
assessment systems for programming assignments: We be-
lieve that an appropriate next step in the automated assess-
ment of programming assignments is the ability to provide
feedback that is adjusted to fit particular students’ needs
and struggles. One aspect of this development is that feed-
back should be adjusted to match students’ perceptions of
assignment difficulty. Ideally, such feedback could be pro-
vided without constantly prompting students to assess the
difficulty of the various assignments they work on.

The remainder of this article is organized as follows. First,
we review the related literature in Section 3 below. Sections
4 and 5 outline our research methodology and present our
empirical results and related discussion. Section 6 discusses
some limitations of our work and possibilities for expanding
on this exploratory study; Section 7 concludes the article.

3. RELATED WORK
Related work is explored through four themes. We start

with theories of learning as we discuss the relationship be-
tween task difficulty, practice and motivation, which leads to
the second theme of feedback. This in turn brings us to the
third theme: software for automatic assessment. Finally, we
consider those empirical studies within computing education
research which resemble ours in that they have measured
students’ difficulties with programming assignments.

3.1 Task difficulty and practice
Expertise is not innate. It commonly grows through de-

liberate practice, that is, effortful activity whose purpose is
to optimize improvement [11]. The importance of deliber-
ate practice is reflected in programming courses around the
world, which are designed around assignments that afford
students with the opportunity to practice their program-
ming skills on increasingly complex tasks.

Practice can be more or less effective. Ideally, the diffi-
culty of an assignment matches the learner’s existing knowl-
edge and skills so that the learner is challenged to make use
of their full cognitive capacity but is not overwhelmed by
cognitive load [22]. Although the ideal is difficult to meet,
not least because learners’ prior knowledge varies, teachers
may consider their students’ expected learning trajectories
and sequence assignments accordingly. Models of instruc-
tional design have been proposed to support these endeavors
(e.g., the 4C/ID model [27]). The design and sequencing of
assignments may be viewed as a form of scaffolding that aids
the learner to make progress within their zone of proximal
development [31] as they practice on tasks that they could
not do without the help of the scaffolding.

Task difficulty impacts students’ motivation in several ways.
For instance, as per expectancy–value theories of motiva-
tion [2], assignments that are too easy are likely to have
low perceived utility, while hard ones have a higher cost
of completion, which reduces motivation unless they have

been carefully designed to sustain interest. Excessive diffi-
culty also contributes towards poor self-efficacy [3], which
hampers further learning.

Another form of scaffolding that impacts motivation is the
feedback that learners receive.

3.2 Feedback and motivation
Hattie and Timperley [12] argue that three main roles of

feedback are to help a learner understand 1) the goals of
learning, 2) the learner’s own progress towards those goals,
and 3) the activities that are needed to make better progress.
For present purposes, the second role—the progress made by
the learner—is the most salient.

A teacher or educational environment can help a student
reflect on their progress by providing feedback that relates
the student’s performance to a particular goal or subgoal.
Constructive feedback can improve self-efficacy. Construc-
tive does not always imply positive, however, and feedback
on progress should take into account the student’s back-
ground and prior performance as well as the difficulty of
the task. A beginner completing a difficult task should be
applauded, but as Borich and Tombari argue on the basis
of the literature, teachers who “show surprise at [students’]
success, give excessive unsolicited help, or lavishly praise
success on easy tasks are telling students that they lack abil-
ity”[5]. Such feedback can be detrimental to self-efficacy and
motivation. Inappropriate feedback may also quickly cause
students to learn to distrust the feedback-giving teacher or
environment. The matter is, of course, complicated by the
fact that an activity is not equally challenging to all learners.

3.3 Automatic feedback
An on-campus lab with an instructor and a small number

of students is a setting that is well-suited to good, individu-
alized feedback [8]. When such labs are not an option, or as
a supplementary measure to them, feedback may be worked
into course materials and programming assignments, which
can be delivered online.

There is a robust field of research that seeks to improve the
automatic assessment of students’ solutions to programming
problems [14]. Typically, automatic feedback is provided
after students’ take an action such as submitting a solution
for assessment; the feedback often consists of information on
the correctness of the solution and perhaps some additional
information about observed deficiencies. The feedback may
also praise the student for getting a good score or exhort
them to make an improved attempt.

Two weaknesses of the typical approach discussed above
are: 1) The feedback is “passive”, as it is only presented
when the student requests it, e.g., by submitting a solution,
instead of being proactively offered, say, when the student
is experiencing difficulty. 2) Feedback messages are based
on the features of the submitted solution only, and are not
influenced by other relevant factors such as the student’s
background or the difficulty of the task for the particular
student. For instance, an experienced student may receive
excessive accolades for a trivial assignment, which then un-
dermines any praise received for more challenging ones.

3.4 Programming assignment difficulty
In this subsection, we briefly review some work similar to

ours, that is, projects whose purpose has been to evaluate
the difficulty of programming tasks.

34

Alvarez and Scott studied the relationship between the
student-estimated difficulty of programming assignments and
a number of metrics [1]. They used a survey that asked
students to estimate difficulty twice, first after initially fa-
miliarizing themselves with an assignment and again after
finishing it. The highest correlations to estimated difficulty
were found using code metrics such as lines of code and the
amount of control flow statements within the code.

Several threads of research exist that have utilized data
recorded from the students’ programming process. Although
these studies generally have not focused on assignment dif-
ficulty, some of them have explored related phenomena. For
instance, Jadud [15] proposed a formula for quantifying com-
pilation errors, which has been used to identify students’
course and assignment outcomes. In another study, Ro-
drigo and Baker [25] sought to identify students that are
frustrated using both log data as well as observations from
external observers. It is plausible that compilation errors
and frustration do correlate positively with difficulty.

Another approach could be to estimate the cognitive load
of students: cognitive load depends on both the intrinsic
difficulty of a learning task and the prior knowledge that
students bring to it. One way to estimate cognitive load
is to use a suitable questionnaire. This approach, which is
being explored in a programming context by Morrison et
al. [19], has the benefit of using validated instruments and
a solid theoretical basis, but since it requires a survey with
multiple items, it is not suitable for our purposes. Another
method also based on cognitive load is featured in a recent
pilot study [6], in which the concept of ”thrashing”was oper-
ationalized by measuring mouse clicks in an IDE; thrashing
was taken to be an indication of (excessive) cognitive load.
The results of the study demonstrated that different pro-
gramming languages lead to different patterns of thrashing,
which may be indicative of differences in difficulty.

In the present study, we seek to explore new metrics for
automatically identifying which programming assignments
different students find difficult. Our intention is to take
one step closer to providing better, individualized, motivat-
ing automatic feedback that takes into account not only the
student’s program but also task difficulty as experienced by
the particular student.

4. DATA AND METHODS
The data used in this study comes from an open online

programming course offered by the University of Helsinki
during Spring 2014. It is a six-week Java course in which
students are taught procedural programming for the first
three weeks and object-oriented programming for the second
three-week period. The course is taught using an assignment-
intensive teaching style, where majority of the work is done
within a programming environment. Details of the course
have been previously published in [30].

After each assignment, students could provide numeric
feedback on the difficulty of the assignment. The difficulty
was given on a scale from 1 to 5, where one stands for ”easy”
and five for ”hard”. In addition, the programming environ-
ment used in the course stored key-level snapshot data, that
is, each key-press by a student while working on a program-
ming assignment was recorded. None of the questions were
mandatory, and students could turn off the key-level snap-
shot data gathering at will. At the beginning of the course,

the participants were asked to provide details on their pro-
gramming experience.

The data set used in this study contains information on
417 students. This is after we included only students who
had provided details on their programming background, pro-
vided feedback on assignment difficulty on at least three oc-
casions, and kept the key-level snapshot recording enabled.
Overall, the included students submitted 31255 solutions to
assignments and provided details on the difficulty of an as-
signment 11161 times. That is, in about 36% of the submis-
sions, the participant also provided feedback on the assign-
ment difficulty.

The snapshot data was processed to include a time stamp
as well as information on compilation state, i.e., whether the
source code in each snapshot compiles. This data was aggre-
gated to provide information on the process that each stu-
dent took to solve an assignment. More specifically, for each
assignment that a student works on, we aggregated details
on (1) the time spent on the assignment, (2) the number of
keystrokes made, (3) the percentage of keystrokes and time
in a non-compiling state, (4) the number of lines of code,
and (5) the number of control-flow elements in the program
(e.g. if, else, while, for, return). By ”time spent on the as-
signment” we mean the overall time spent modified with by
truncating any pause of over five minutes between keystrokes
to only five minutes. The number of keystrokes and the
percentage of time/keystrokes in a non-compiling state are
also potential indicators of struggling to make progress; if
a student spends more time in a state where the code does
not compile, or takes more steps than others while solv-
ing the problem, the assignment may seem more difficult
overall. Line and control-flow element counts measure code
complexity, and have previously been observed to be decent
indicators of perceived difficulty [1].

We used quantitative analysis to identify factors that ex-
plain programming assignment difficulty. Correlations be-
tween the students’ perceived difficulty and factors were
computed using the R statistics package [23].

5. RESULTS AND DISCUSSION
This section describes our results in three parts. First, we

discuss the effect of programming experience on perceived
assignment difficulty. Then, we consider the relationships
between perceived difficulty and individual factors: time,
number of keystrokes, compilation state, lines of code, and
the number of control-flow elements. Finally, we look at
combining the various factors.

5.1 Programming Experience
In order to evaluate the effect of prior programming ex-

perience, the students were split in two groups on the basis
of on their background. Of the participants, 230 reported
no previous programming experience, while 187 described at
least some experience with programming. Figure 1 displays
the average perceived difficulty of each assignment for the
groups, as well as a combined metric for all participants. As
a Shapiro-Francia test revealed that the populations do not
follow a normal distribution, a Wilcoxon signed-rank test
was used as the paired difference test to measure whether
the population means differ.

For the population with at least some existing program-
ming experience, the median difficulty of the assignments is
1.735, while for the population with no previous program-

35

Figure 1: The means of students’ estimates of the
difficulty of the assignments. The curves have been
smoothed for ease of viewing.

ming experience, the median difficulty of the assignments
is 2.375. The populations are statistically different (p <
0.01), and thus there is, as one would expect, a difference
in how the two populations perceive the difficulty of the as-
signments. However, as can be observed from Figure 1, the
between-group difference in mean perceived difficulty dimin-
ishes towards the end of the six-week course. This trend sug-
gests that the course taught skills that the more experienced
students already had to some extent, and that the beginners
partially caught up with the more experienced students.

5.2 Individual factors
Initially, an analysis was carried out to determine the cor-

relations between difficulty and various other factors, each of
which was considered separately. These factors were: time,
number of keystrokes, proportions of keystrokes and time in
a non-compiling states, lines of code, and count of control-
flow elements. Table 1 displays these correlations for all
participants as well as beginners and experienced students
separately. For each factor, the table shows four values: one
for all assignments, one for mathematically oriented assign-
ments, one for open-ended assignments, and one for assign-
ments with visual elements such as a given GUI that helps
evaluate one’s progress.

While a majority of the observed correlations are statisti-
cally significant, the correlation values are mostly medium-
sized (0.3 < r < 0.5). In only two of the cases, the individual
factors show a high correlation with difficulty (r > 0.5); both
factors being time. The pattern of correlations appears to
be largely similar for students with and without prior pro-
gramming experience.

The correlations that we found between perceived diffi-
culty and the number of lines of code as well as the number
of control-flow elements were lower than the corresponding
results reported earlier by Alvarez and Scott [1]. In their
study, lines of code and control-flow elements had the highest
correlations with perceived difficulty, whereas in our data,
time on task and the number of keystrokes had somewhat
higher correlations.

As Table 1 further shows, in most cases we found only
low, largely insignificant correlations between perceived dif-

Table 1: Correlation coefficients between perceived
assignment difficulty and various metrics, grouped
by assignment type (math-oriented vs. open-ended
vs. visually supported). Correlations marked with
an asterisk are statistically significant (p < 0.01).

Factor All Math Open Vis

All participants
Time .49* .48* .30* .48*
Number of keystrokes .44* .42* .27* .39*
% states not compiling .16* .10 .03 .33*
% time not compiling .03* .09 .11 .20*
Lines of code .36* .27* .24* .26*
Control-flow elements .35* .26* .22* .38*
Programming experience
Time .54* .45* .36* .45*
Number of keystrokes .50* .47* .35* .37*
% states not compiling .15* .10 .04 .27*
% time not compiling .01 .11 .02 .13
Lines of code .44* .34* .33* .34*
Control-flow elements .43* .30* .19 .36*
No programming experience
Time .46* .48* .25* .53*
Number of keystrokes .40* .38* .22* .45*
% states not compiling .16* .10 .03 .36*
% time not compiling .03 .08 .22 .20*
Lines of code .33* .25* .18* .23*
Control-flow elements .31* .25* .25* .45*

ficulty and the factors related to compilation status. The
assignments with visual programming support constitute an
exception to this trend, as a low-to-medium positive corre-
lation was observed in these assignments.

5.3 Combined factors
In the previous section, we considered individual indica-

tors of assignment difficulty one at a time. To get an initial
understanding of how these factors interact in the data set
at our disposal, we applied a recursive partitioning to con-
struct a decision tree of assignment difficulty. The model is
based on the metrics presented in the previous section.

The model was built using the ctree implementation of
R1. This method guarantees that the size of the tree is ap-
propriate so that no pruning or cross-validation is necessary.
A general description of the method is provided by Hothorn
et al. [13].

The resulting decision tree is depicted in Figure 2. At
each end node (leaf), a range of difficulty values is shown.
This is the range of all the assessments of difficulty by stu-
dents whose development snapshots matched the decision
nodes leading to the end node. As can be seen from the
figure, the tree is dominated by the amount of time that the
student spent on the assignment. Although program size,
complexity, and the degree to which the student maintained
their program in a compilable state had an effect, students
generally reported time-consuming exercises to be difficult.

6. LIMITATIONS AND FUTURE WORK
Our data comes from a particular programming course

taught in a particular way in a Nordic country with a rather
homogeneous population and high quality of education. Our
results may be context-dependent. Indeed, as a part of the

1http://www.inside-r.org/packages/cran/party/docs/
ctree

36

time

≤ 1212.767 > 1212.767

time

≤ 297.436 > 297.436

time

≤ 154.24 > 154.24

loc

≤ 54 > 54

loc

≤ 32 > 32

n = 1093

1
2
3
4
5

time

≤ 63.924> 63.924

3 n = 9

1
2
3
4
5

n = 93

1
2
3
4
5

n = 16

1
2
3
4
5

compiles2

≤ 0.6242 > 0.624

strokes

≤ 2622 > 262

n = 530

1
2
3
4
5

n = 139

1
2
3
4
5

n = 508

1
2
3
4
5

time

≤ 627.101 > 627.101

compiles2

≤ 0.7367 > 0.736

n = 1284

1
2
3
4
5

4 n = 503

1
2
3
4
5

compiles2

≤ 0.6566 > 0.656

n = 837

1
2
3
4
5

n = 697

1
2
3
4
5

time

≤ 2501.885 > 2501.885

time

≤ 1709.2269 > 1709.226

compiles1

≤ 0.203> 0.203

n = 231

1
2
3
4
5

n = 470

1
2
3
4
5

n = 729

1
2
3
4
5

time

≤ 5236.183 > 5236.183

n = 1071

1
2
3
4
5

time

≤ 12642.794 > 12642.79

foc

≤ 18 > 18

1 n = 402

1
2
3
4
5

n = 163

1
2
3
4
5

n = 78

1
2
3
4
5

Figure 2: A decision tree of assignment difficulty constructed using recursive partitioning. Loc stands for
lines of code and foc for flow-of-control count. Compiles1 and compiles2 stand for the proportion of compiling
states and the proportion of time during which a program compiles, respectively.

present work, we re-examined the factors such as lines of
code and number of control-flow elements that had the high-
est correlations with difficulty as reported by Alvarez and
Scott [1], and while our work confirms that these metrics
correlate positively with perceived difficulty, we found lower
correlations for these factors than the other study. This
difference in results suggests that the phenomena we have
studied are at least in part, and perhaps quite significantly,
dependent on context. Although a decision tree such as
the one in Figure 2 may be useful in tailoring feedback in
a particular context, other contexts need to be addressed
separately. Future work may explore different programming
courses, introductory or otherwise, and determine the extent
to which our findings are transferable.

Our study draws on students’ subjective assessments of
difficulty. However, different students may have different in-
terpretations of what ”difficult” means. As pointed out in
Section 5.3, much of ”assignment difficulty”can be explained
by the time it takes from students to do the assignment; sim-
ilarly, Alvarez and Scott [1] reported that the size of the pro-
gram was an important factor. A challenge in research such
as ours, and one that we have not addressed in the present
work, is teasing apart difficulty and workload, or at least
determining the extent to which the distinction between the
two is important for providing good feedback. The decision
tree approach used above would easily accommodate addi-
tional variables, if necessary.

Another limitation is that although each assignment re-
ceived a difficulty rating from at least 60 different students,
providing the ratings was voluntary and we cannot rule out
the possibility of an inherent self-selection bias. It is pos-
sible that the students that provided ratings are different
from other students.

In this work, we split students in two groups on the basis
of their prior programming experience. Future work could
replace this simple model with a more fine-grained one so as
to explore the variation among the experienced students.

To enable a critical examination of our results and facil-
itate follow-up studies, we have published our data set at
http://bit.ly/1oZnEKG.

7. CONCLUSIONS
In this article, we have explored factors that relate to the

perceived difficulty of programming assignments. The fac-
tors, excluding past programming experience, can be auto-
matically detected from a stream of programming events—
or keystrokes—that are performed within a programming
environment. Our analysis suggests that the time spent
on an assignment and the amount of programming events
both have a medium to high correlation with perceived dif-
ficulty. Barely any correlation was found between perceived
difficulty and the number of states that fail to compile or
the length of time that the student’s program is in a non-
compiling state.

Although automatic feedback remains a far cry from what
a good human tutor can provide, many students do not have
convenient access to good human tutors, and any advance
in automatic feedback is welcome. Our results show that
metrics related to perceived difficulty can be automatically
extracted from data that describes students’ programming
process. Automatic feedback systems can be adjusted to
take task difficulty into account, which may improve the
quality of feedback.

We conclude this article with some observations about the
use of key-level data of student behavior. As a basis for as-
sessing difficulty, this data has the benefit that it can be col-
lected in situ and makes it possible to provide early, proac-
tive feedback that the student does not need to explicitly
request by submitting an assignment. An additional benefit,
whose implications for automatic feedback may be explored
in future work, is that such data provides details about stu-
dents’ programming process. Since, as Hattie and Timperley
put it, “feedback is effective when it consists of information
about progress, and/or about how to proceed” [12], key-level
data has the potential to further enhance feedback.

37

8. REFERENCES
[1] A. Alvarez and T. A. Scott. Using student surveys in

determining the difficulty of programming
assignments. J. Comput. Sci. Coll., 26(2):157–163,
Dec. 2010.

[2] E. M. Anderman and H. Dawson. Learning with
motivation. Routledge, 2011.

[3] A. Bandura. Self-efficacy: Toward a unifying theory of
behavioral change. Psych. Review, 84(2):191, 1977.

[4] J. Biggs and C. Tang. Teaching for Quality Learning
at University. McGraw-Hill, 3rd edition, 2007.

[5] G. D. Borich and M. L. Tombari. Educational
Psychology: A Contemporary Approach. Longman
Publishing/Addison Wesley, 2nd edition, 1997.

[6] S. Buist. Extending an IDE to support input device
logging of programmers during the activity of
user-interface programming: Analysing cognitive load.
Bachelor of Science dissertation, The University of
Bath, 2014.

[7] A. Christopher Strenta, R. Elliott, R. Adair,
M. Matier, and J. Scott. Choosing and leaving science
in highly selective institutions. Research in Higher
Education, 35(5):513–547, 1994.

[8] M. Clancy, N. Titterton, C. Ryan, J. Slotta, and
M. Linn. New roles for students, instructors, and
computers in a lab-based introductory programming
course. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’03, pages 132–136, New York, NY, USA, 2003. ACM.

[9] Computing At School. Computing at school web site.
http://www.computingatschool.org.uk/, n.d.

[10] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-D
tool for introductory programming concepts. J.
Comput. Sci. Coll., 15(5):107–116, Apr. 2000.

[11] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer.
The role of deliberate practice in the acquisition of
expert performance. Psych. Review, 100(3):363, 1993.

[12] J. Hattie and H. Timperley. The power of feedback.
Review of Educational Research, 77(1):81–112, 2007.

[13] T. Hothorn, K. Hornik, and A. Zeileis. Unbiased
recursive partitioning: A conditional inference
framework. Journal of Computational and Graphical
Statistics, 15(3):651–674, 2006.

[14] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic
assessment of programming assignments. In
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’10, pages 86–93. ACM, 2010.

[15] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second
International Workshop on Computing Education
Research, ICER ’06, pages 73–84. ACM, 2006.

[16] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Computer
Science Education, 13(4):249–268, 2003.

[17] M. C. Linn and M. J. Clancy. The case for case
studies of programming problems. Communications of
the ACM, 35(3):121–132, March 1992.

[18] R. Lister. Concrete and other neo-Piagetian forms of
reasoning in the novice programmer. In J. Hamer and
M. de Raadt, editors, Proceedings of the 13th

Australasian Conference on Computing Education
(ACE ’11), volume 114 of CRPIT, pages 9–18, Perth,
Australia, 2011. Australian Computer Society.

[19] B. B. Morrison, B. Dorn, and M. Guzdial. Measuring
cognitive load in introductory CS: Adaptation of an
instrument. In Proceedings of the Tenth Annual
Conference on International Computing Education
Research, ICER ’14, pages 131–138, New York, NY,
USA, 2014. ACM.

[20] S. Papert. Teaching Children Thinking (LOGO
Memo). Massachusetts Institute of Technology, A.I.
Laboratory, 1971.

[21] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. In ITiCSE Working Group Reports,
ITiCSE-WGR ’07, pages 204–223, New York, NY,
USA, 2007. ACM.

[22] J. L. Plass, R. Moreno, and R. Brünken, editors.
Cognitive Load Theory. Cambridge Univ. Press, 2010.

[23] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014.

[24] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Commun. ACM,
52(11):60–67, Nov. 2009.

[25] M. M. T. Rodrigo and R. S. Baker. Coarse-grained
detection of student frustration in an introductory
programming course. In Proceedings of the Fifth
International Workshop on Computing Education
Research, ICER ’09, pages 75–80, New York, NY,
USA, 2009. ACM.

[26] J. Sorva, V. Karavirta, and L. Malmi. A review of
generic program visualization systems for introductory
programming education. ACM Transactions on
Computing Education, 13(4):15:1–15:64, Nov. 2013.

[27] J. J. G. van Merriënboer and P. A. Kirschner. Ten
Steps to Complex Learning: A Systematic Approach to
Four-Component Instructional Design. Lawrence
Erlbaum, 2007.

[28] K. VanLehn. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist,
46(4):197–221, 2011.

[29] A. Vihavainen, J. Airaksinen, and C. Watson. A
systematic review of approaches for teaching
introductory programming and their influence on
success. In Proceedings of the Tenth Annual
Conference on International Computing Education
Research, ICER ’14, pages 19–26, New York, NY,
USA, 2014. ACM.

[30] A. Vihavainen, M. Luukkainen, and J. Kurhila.
Multi-faceted support for MOOC in programming. In
Proceedings of the 13th Annual Conference on
Information Technology Education, SIGITE ’12, pages
171–176, New York, NY, USA, 2012. ACM.

[31] L. S. Vygotsky. Mind in Society: The Development of
Higher Psychological Processes. Harvard University
Press, 1978.

38

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FI-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports are available on the e-thesis site of the University of Helsinki.

A-2011-1 A. Tripathi: Data Fusion and Matching by Maximizing Statistical Dependencies. 89+109 pp.
(Ph.D. Thesis)

A-2011-2 E. Junttila: Patterns in Permuted Binary Matrices. 155 pp. (Ph.D. Thesis)

A-2011-3 P. Hintsanen: Simulation and Graph Mining Tools for Improving Gene Mapping Effi-
ciency. 136 pp. (Ph.D. Thesis)

A-2011-4 M. Ikonen: Lean Thinking in Software Development: Impacts of Kanban on Projects.
104+90 pp. (Ph.D. Thesis)

A-2012-1 P. Parviainen: Algorithms for Exact Structure Discovery in Bayesian Networks. 132 pp.
(Ph.D. Thesis)

A-2012-2 J. Wessman: Mixture Model Clustering in the Analysis of Complex Diseases. 118 pp.
(Ph.D. Thesis)

A-2012-3 P. Pöyhönen: Access Selection Methods in Cooperative Multi-operator Environments
to Improve End-user and Operator Satisfaction. 211 pp. (Ph.D. Thesis)

A-2012-4 S. Ruohomaa: The Effect of Reputation on Trust Decisions in Inter-enterprise Collab-
orations. 214+44 pp. (Ph.D. Thesis)

A-2012-5 J. Sirén: Compressed Full-Text Indexes for Highly Repetitive Collections. 97+63 pp.
(Ph.D. Thesis)

A-2012-6 F. Zhou: Methods for Network Abstraction. 48+71 pp. (Ph.D. Thesis)

A-2012-7 N. Välimäki: Applications of Compressed Data Structures on Sequences and Structured
Data. 73+94 pp. (Ph.D. Thesis)

A-2012-8 S. Varjonen: Secure Connectivity With Persistent Identities. 139 pp. (Ph.D. Thesis)

A-2012-9 M. Heinonen: Computational Methods for Small Molecules. 110+68 pp. (Ph.D. Thesis)

A-2013-1 M. Timonen: Term Weighting in Short Documents for Document Categorization, Key-
word Extraction and Query Expansion. 53+62 pp. (Ph.D. Thesis)

A-2013-2 H. Wettig: Probabilistic, Information-Theoretic Models for Etymological Alignment.
130+62 pp. (Ph.D. Thesis)

A-2013-3 T. Ruokolainen: A Model-Driven Approach to Service Ecosystem Engineering. 232 pp.
(Ph.D. Thesis)

A-2013-4 A. Hyttinen: Discovering Causal Relations in the Presence of Latent Confounders.
107+138 pp. (Ph.D. Thesis)

A-2013-5 S. Eloranta: Dynamic Aspects of Knowledge Bases. 123 pp. (Ph.D. Thesis)

A-2013-6 M. Apiola: Creativity-Supporting Learning Environments: Two Case Studies on Teach-
ing Programming. 62+83 pp. (Ph.D. Thesis)

A-2013-7 T. Polishchuk: Enabling Multipath and Multicast Data Transmission in Legacy and
Future Interenet. 72+51 pp. (Ph.D. Thesis)

A-2013-8 P. Luosto: Normalized Maximum Likelihood Methods for Clustering and Density Es-
timation. 67+67 pp. (Ph.D. Thesis)

A-2013-9 L. Eronen: Computational Methods for Augmenting Association-based Gene Mapping.
84+93 pp. (Ph.D. Thesis)

A-2013-10 D. Entner: Causal Structure Learning and Effect Identification in Linear Non-Gaussian
Models and Beyond. 79+113 pp. (Ph.D. Thesis)

A-2013-11 E. Galbrun: Methods for Redescription Mining. 72+77 pp. (Ph.D. Thesis)

A-2013-12 M. Pervilä: Data Center Energy Retrofits. 52+46 pp. (Ph.D. Thesis)

A-2013-13 P. Pohjalainen: Self-Organizing Software Architectures. 114+71 pp. (Ph.D. Thesis)

A-2014-1 J. Korhonen: Graph and Hypergraph Decompositions for Exact Algorithms. 62+66 pp.
(Ph.D. Thesis)

A-2014-2 J. Paalasmaa: Monitoring Sleep with Force Sensor Measurement. 59+47 pp. (Ph.D.
Thesis)

A-2014-3 L. Langohr: Methods for Finding Interesting Nodes in Weighted Graphs. 70+54 pp.
(Ph.D. Thesis)

A-2014-4 S. Bhattacharya: Continuous Context Inference on Mobile Platforms. 94+67 pp.
(Ph.D. Thesis)

A-2014-5 E. Lagerspetz: Collaborative Mobile Energy Awareness. 60+46 pp. (Ph.D. Thesis)

A-2015-1 L. Wang: Content, Topology and Cooperation in In-network Caching. 190 pp. (Ph.D.
Thesis)

A-2015-2 T. Niinimäki: Approximation Strategies for Structure Learning in Bayesian Networks.
64+93 pp. (Ph.D. Thesis)

A-2015-3 D. Kempa: Efficient Construction of Fundamental Data Structures in Large-Scale Text
Indexing. 68+88 pp. (Ph.D. Thesis)

A-2015-4 K. Zhao: Understanding Urban Human Mobility for Network Applications. 62+46 pp.
(Ph.D. Thesis)

A-2015-5 A. Laaksonen: Algorithms for Melody Search and Transcription. 36+54 pp. (Ph.D.
Thesis)

A-2015-6 Y. Ding: Collaborative Traffic Offloading for Mobile Systems. 223 pp. (Ph.D. Thesis)

A-2015-7 F. Fagerholm: Software Developer Experience: Case Studies in Lean-Agile and Open
Source Environments. 118+68 pp. (Ph.D. Thesis)

A-2016-1 T. Ahonen: Cover Song Identification using Compression-based Distance Measures.
122+25 pp. (Ph.D. Thesis)

A-2016-2 O. Gross: World Associations as a Language Model for Generative and Creative Tasks.
60+10+54 pp. (Ph.D. Thesis)

A-2016-3 J. Määttä: Model Selection Methods for Linear Regression and Phylogenetic Recon-
struction. 44+73 pp. (Ph.D. Thesis)

A-2016-4 J. Toivanen: Methods and Models in Linguistic and Musical Computational Creativity.
56+8+79 pp. (Ph.D. Thesis)

A-2016-5 K. Athukorala: Information Search as Adaptive Interaction. 122 pp. (Ph.D. Thesis)

A-2016-6 J.-K. Kangas: Combinatorial Algorithms with Applications in Learning Graphical
Models. 66+90 pp. (Ph.D. Thesis)

A-2017-1 Y. Zou: On Model Selection for Bayesian Networks and Sparse Logistic Regression.
58+61 pp. (Ph.D. Thesis)

A-2017-2 Y.-T. Hsieh: Exploring Hand-Based Haptic Interfaces for Mobile Interaction Design.
79+120 pp. (Ph.D. Thesis)

A-2017-3 D. Valenzuela: Algorithms and Data Structures for Sequence Analysis in the Pan-
Genomic Era. 74+78 pp. (Ph.D. Thesis)

