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Abstract

We establish a theoretical framework for solving the equations of motion for an arbitrarily shaped, inhomogeneous dust

particle in the presence of radiation pressure. The repeated scattering problem involved is solved using a state-of-the-art

volume integral equation-based T -matrix method. A Fortran implementation of the framework is used to solve the

explicit time evolution of a homogeneous irregular sample geometry. The results are shown to be consistent with rigid

body dynamics, between integrators, and comparable with predictions from an alignment efficiency potential map. Also,

we demonstrate the explicit effect of single particle dynamics to observed polarization using the obtained orientational

results.

1. Introduction

Electromagnetic scattering and the orientational state

of the scatterer are coupled in a fundamental manner. As-

tronomically this is perhaps most importantly observed

in the circular polarization of radiation scattered by dust,

or dust polarization, which depends on nonrandom ori-

entation of the dust. The connection of orientation and

scattering is fundamental, still almost always the dynam-

ical state of the scatterer is often ”approximated away”

from the problem. Yet, we are often interested in the full

dynamical problem,

The effects of radiation pressure have been observed

since the finding of cometary dust tails. Since then the

dynamical effects of radiation were mainly of astronomi-

cal interest, as small weightless particles have the largest

reaction to these minute forces. However, the extrater-

restrial was made terrestrial when [1] showed that small

particles can be trapped in laser beams. Since then, the

newly multidisciplinary problem of radiation pressure has

seen an accelerated development.

The observed polarization of the interstellar medium

is due to scattering from asymmetrical, aligned dust par-

ticles. Alignment of interstellar dust particles has been

under meticulous study for the last few decades, and it

has been firmly established that the dominant alignment

method in many situations is by radiative torques [2].

Study of radiative alignment methods coupled with an ex-

ternal magnetic field have been used, for example, in [3]

to determine the galactic magnetic field from dust polar-

ization measurements of the Planck mission.

In many applications, an efficient method to repeat-

edly solve the involving scattering problem is required. A

long-lived problem has been to efficiently solve the under-

lying scattering problem for arbitrary shapes. Different

discrete dipole scattering approaches [4, 5] are accurate,

but repeated scattering problem solution is computation-

ally expensive. On the other hand, the T -matrix method

[6] is ideal for repeated solution of the scattering problem,

but stable and efficient determination of the T -matrix for

an arbitrary geometry has been a difficult problem. Pre-

viously, the discrete dipole approximation and approxima-

tive numerical methods have been applied to the problem

[7, 8].

Current integral equation methods of scattering allow

us to efficiently tackle the problem of scattering from arbi-

trary geometries. Using the electric current volume inte-

gral equation method [9], a numerically robust solution to

scattering from strongly inhomogeneous particles is pos-

sible. Further still, the volume integral equation method

can be applied to calculating the T -matrix of such particles

[10]. Radiation pressure in the form of radiative (optical in

optical tweezer terms) forces and torques can be calculated

efficiently using the T -matrix [11].

Recent developments of solving the scattering problem

for arbitrary geometries are ideal for astronomical appli-

cations. Shape statistics are possible to be studied for

different material properties, thus existing conclusions of

the polarization inverse problem can be robustly verified
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and expanded upon with these methods.

In this work, we present a framework to study the time

evolution of the rotation of an arbitrary particle, modeled

both as a tetrahedral mesh and a spherical aggregate. The

core program of the framework contains the definition and

mass parameter determination of the geometry, the solu-

tion of the scattering problem and the numerical integra-

tion of the equations of motion. The formulation is based

on current development of the volume integral equation

methods of scattering and optical tweezer modeling. This

allows the framework to be applied in the field of optical

tweezers with few additions to the software.

In contrast with previous studies, we now present a nu-

merically exact and fast realization of scattering dynamics.

To the best of the authors’ knowledge, this has not been

presented in astronomical literature before. The methods

used are powerful enough to solve the dynamics of arbi-

trary particles without any approximations or averaging to

reduce the amount of scattering calculations. This makes

the same framework usable in many different applications,

including those described above, with minimal additions.

2. Theoretical Framework

In this section we introduce the necessary background

for the development of a numerical solver of the rotational

dynamics for an interstellar dust particle interacting with

an electromagnetic field. Combining the following subsec-

tions, a framework for solving the equations of motion for

a dust particle is obtained.

2.1. Dynamics of a Rigid Body

An interstellar dust particle is assumed to be an inho-

mogeneous rigid body which obeys Newtonian mechanics.

Interstellar dust is composed of highly asymmetric parti-

cles, which in this work are modeled either as Gaussian

random spheres (GRS) [12] or as spherical aggregates. In

planetary science, similar geometries are successful models

of dust particles [13]. In the absence of a bank of interstel-

lar dust specimen, these geometries are also the backbone

of this work. The most important physical quantity of the

particle is its moment of inertia tensor, the matrix form of

which for a discretized body composed of mass points is

defined as

I =


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(1)

where the summations are done over all the mass points

mi with coordinates (xi, yi, zi), i = 1, . . . , N .

For an arbitrary tetrahedron, the method of standard

tetrahedra [14] can be applied to calculate the moment of

inertia tensor for each tetrahedral element. In the method,

a tetrahedron is associated with a standard tetrahedron

spanned by three isosceles right triangles with unit legs

on the Cartesian axes, and its moment of inertia tensor is

mapped back to the original tetrahedron. Standard for-

mulae can be applied for spherical aggregates composed

either of full spheres or concentric shells. Finally the par-

allel axis theorem can be used to find the total moment of

inertia tensor.

As a real symmetric matrix the corresponding iner-

tia matrix has an eigendecomposition I = QIpQ
ᵀ, where

Ip = diag(Ip,1, I2, I3) and Q is a rotation matrix. In the

body frame, the rotational equations of motion simplify to

Euler’s equations,

N = Iω̇ + ω × (Iω), (2)

where N is the total external torque, ω is the angular veloc-

ity vector and ˙( ) is shorthand for a time derivative. Solv-

ing Euler’s equations analytically is possible when proper

constraints are introduced. For example, the angular ve-

locity of torque-free rotation of an oblate spheroid is an-

alytically solvable. An oblate spheroid has principal mo-

ments of inertia I1 = I2 < I3. From this setup and an

initial angular velocity ω = (ω1, 0, ω3) it is simple to show

that the angular velocity in the principal coordinates will

have form

ω(t) = (ω1 cos Ωbt, ω1 sin Ωbt, ω3). (3)

Above, Ωb = (I3−I1ω3)
I3

is a constant precession frequency

of the angular velocity in the body frame.

For the orientation of the particle, unit quaternion ap-

proach simplifies calculations and dismisses gimbal lock

problems [15]. Now the rotational dynamics of the parti-

cle are described by the equations of motion

q̇ =
1

2
ωq

ω̇ = I−1 (N− ω × (Iω)) ,
(4)

where q is the orientation unit quaternion of the particle.

In the quaternion formalism, rotation matrices are re-

placed by unit quaternions. The rotated vectors are re-

placed by their pure quaternion counterpart, whose real

part is zero and the vector components give the three imag-

inary parts, ω = 0 + iωx + jωy + kωz. In many algorithms,
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Figure 1: A mesh discretization of sample GRS particle in the

laboratory frame {x}lab and a body frame {x′}body.

the time evolution of quaternions is clearer to implement

than with rotation matrices. In addition, the numerical

stability of the quaternion formalism is easily enforced by

renormalizing the quaternion length to unity, which corre-

sponds to enforcing the orthogonality of rotational matrix,

a much less trivial task. The calculation of rotations itself

is often, including in this work, done by switching back to

matrix representation.

For a general description of the particle dynamics, the

rotational and translational states with relation to the lab-

oratory frame origin must be known at all times. The

laboratory frame is most naturally fixed by any external

direction, e.g. the direction of incident plane wave defining

the +z-direction, and the initial positions. The rotational

and translational states are given by the orientation and

location of the principal body frame with respect to the

laboratory frame. In the principal frame, the body frame

axes align with the principal axes of the particle. This

standard situation is described in Fig. 1. In an interstel-

lar environment the rotational and translational dynamics

can be treated separately, as we argue in the following

subsections.

The rotation of a particle about its minor or major

principal axis is known to be stable. For alignment of ro-

tation to be possible, the particle naturally must be in a

stable rotational state. Thus, a particle in a stable ro-

tational state can be called internally aligned. Then the

alignment with respect to some external direction can be

accordingly called external alignment. In conclusion, a

stable axis must be parallel or antiparallel to the angular

Figure 2: Discretization of a black body spectrum. Similar imple-

mentation is used throughout the framework, where the wavelength

distribution always contains the wavelength λmax.

velocity and momentum with minimal precession.

2.2. Electromagnetic Background

The pressure effects of electromagnetic radiation were

originally conceptualized in Kepler’s observations of the

tails of comets and formulated mathematically by [16].

The Maxwell equations form the basis of the problem, and

are in the interstellar context most conveniently expressed

in the time-harmonic plane wave form, without external

sources, as

k ·E0 = 0,

k ·H0 = 0,

k×E0 = ωfµH0,

k×H0 = −ωfεE0,

(5)

where E0, H0 are the amplitudes of plane waves of the

form E = E0 exp (ik · x− iωf t), ωf is the frequency of

radiation, k the direction of propagation, and ε, µ the rel-

ative permittivity and permeability, respectively.

Realistic background radiation of the particles can be

modeled as a black body spectrum, when the greatest

contribution is of a single star. Such spectrum can be

discretized as a piecewise constant distribution of intensi-

ties, as illustrated in Figure 2. The intensities can in turn

be converted to corresponding electric field amplitudes at

each wavelength.

A Lorentz force density, the force per unit volume, is

f = ρE + J×B, (6)
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where ρ is the charge of the volume element and E, J andB

are the electric field, electric current and the magnetic field

intensity, respectively. By the Maxwell equations and vec-

tor calculus identities it can be expressed as

f = ∇ · T− ε0µ0
∂

∂t
S. (7)

The S-term, where S = E×H is the Poynting vector, is the

energy flux of the radiation fields, which has an average

value zero in this context. The first term contains the

Maxwell stress tensor with components

Tij = ε0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
. (8)

Subtleties of the above expressions ((6)-(8)) are discussed

thoroughly by [17]. By integrating the force density to ob-

tain the total force over a surface and using the divergence

theorem, we obtain the total average mechanical force on

the particle surface S,

F =

∮
S

T · n̂ dS. (9)

The corresponding average torque due to EM radiation is,

in a straightforward fashion,

N =

∮
S

r× (T · n̂) dS. (10)

When applicable, the surface integral formulation of the

force calculations are particularly useful in numerical cal-

culations. Solving the scattering problem results in the

knowledge of the total electromagnetic fields, and any method

to solve the total fields can in principle be used to calculate

the total radiative forces and torques.

2.3. The solution of the scattering problem

In the dynamical problem, we are interested in re-

peated solution of the scattering problem. When the par-

ticle can be approximated to be absolutely rigid, a single

T -matrix completely describes the scattering properties of

the particle.

The T -matrix for an arbitrary geometry is solved using

the electric current volume integral equation (JVIE) for-

mulation of scattering [9], which is an efficient approach

for even strongly inhomogeneous scatterers. The JVIE

formulation is then used to solve the T -matrix by link-

ing the discretization basis function coefficients of JVIE

by the method of moments with the vector spherical wave

function (VSWF) expansion coefficients of the T -matrix

method [10]. The above method can also be used to solve

the T -matrix of an aggregate composed of identical parti-

cles whose T -matrices are known.

Using the T -matrix formulation the integrals (9) and

(10) can be solved analytically [11]. The incident and scat-

tered fields have VSWF expansions

Einc =

∞∑
n=1

n∑
m=−n

anmMinc
nm + bnmNinc

nm,

Esca =

∞∑
n=1

n∑
m=−n

pnmMsca
nm + qnmNsca

nm,

(11)

where M
inc/sca
nm ,N

inc/sca
nm are the incident and scattered VSWFs

based on spherical Bessel functions and Hankel functions of

the first kind, with expansion coefficients anm, bnm, pnm,

and qnm. There is some freedom in choosing the explicit

form of the expansion, some standards can be found in e.g.

[18, 19].

The expansion coefficients can be arranged into inci-

dent and scattered field vectors according to rule

a = (a1−1, a10, a11, a2−2, . . . , anmax,nmax−1, anmax,nmax ,

b1−1, . . . , bnmax,nmax)T.

(12)

Then the vectors can be used in the T -matrix formulation

of scattering simply as

p = Ta, (13)

where T is the T -matrix of the scatterer. The truncation

order nmax is usually set as in [20] to nmax = kr0 +3 3
√
kr0,

where kr0 is the size parameter of the particle. Size pa-

rameter is often defined as the product of the incident

wavenumber and the volume equivalent radius, the radius

of a sphere with equivalent volume. Thus the T -matrix

size is solely determined by the relative size of the scat-

terer to incident wavelength, regardless of the complexity

of the particle.

The integrals (9) and (10) can be computed most easily

in the far-field limit. All momentum transfer is assumed

to have happened in the scattering event. Thus the differ-

ence of the momentum and angular momentum between

incident and scattered fields must be the transferred to the

particle. The computation, using also the orthonormality

and trigonometric properties of the spherical harmonics,
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results in sum formulae of the form [21]

Fz =
1

k
√

2ζ0

∑
nm

NF,nm(a∗nmibn,m − p∗nmiqn,m)+

MF,nm(p∗nmpn+1,m − q∗nmqn+1,m−
a∗nman+1,m + b∗nmbn+1,m)),

Nz = − 1

k2
√

2ζ0

∑
nm

NN,nm(a∗nmpnm + b∗nmqnm−

|pnm|2 − |qnm|2),

(14)

where k is the wavenumber of the incident field and ζ0

is the impedance of the vacuum. The normalization con-

stants NF,nm,MF,nm, and NN,nm depend on the explicit

form of VSWF expansions. The constants can be deter-

mined by comparing the choice of expansions with the

choices and the full formulae of [21]. Conveniently, the

formulae of z-components can be used to determine the

x- and y-components when rotated using rotation opera-

tions for VSWFs [22]. Similar formulae can be determined

directly for the x- and y-components [11], but these are

omitted for simplicity.

In plane wave illumination, the particle translation and

rotation can be separated, as stated above. This is due to

the fact that the particle illumination solely depends on

the orientation of the particle with respect to the incident

wave direction. This can be contrasted to the case of most

optical tweezers, where the particle is illuminated by a

shaped beam. Shaped beams require the use of VSWF

translation formulae and addition of shape coefficients to

the incident beam [23, 24].

The methods described are applicable in the situation,

where a particle is spinning with nonrelativistic angular

speeds. Purely relativistic effects, such as extreme Doppler

shifts, can then be ignored. On the other hand, it is

difficult to add external static fields directly to the ex-

isting scattering solution. These effects would make the

T -matrices dependent on ω, which provides considerable

challenges to applying the method.

Fortunately, the extremely-low-frequency effects are neg-

ligible compared to the effects of scattering. For frequen-

cies higher than zero, for example, the measurable effect

of static magnetic field on a spinning dielectric is known

as the Barnett effect [25]. Thus, effects that can be added

to the T -matrix solution as extra terms, are possible addi-

tions to the method in the future. Other effects, that have

no direct basis in electrodynamics, such gas bombardment,

are also straightforward additions to the method.

3. Numerical Methods

A Fortran software for solving the equations of motion

for an inhomogeneous particle, discretized by either tetra-

hedral meshing or by aggregation, has been developed by

the authors. The software analyzes the mesh geometry,

then calculates and diagonalizes the inertia matrix for the

particle. Radiative torques and forces are calculated by

an implementation of the JVIE T -matrix method, later

abbreviated as T -VIE. The method makes it possible to

calculate the forces and torques using formulae (14) in any

particle orientation, if the primary fields are rotated in the

calculations instead of the particle. This in turn makes a

straightforward integration of the equations of motion pos-

sible without any approximations of the particle geometry

other than what is limited by the mesh.

The problem setup is always in the laboratory frame,

in which the incident radiation is toward the +z-direction.

The equations of motion are solved in the principal axes

frame (principal frame), and the scattering problem must

be solved in some body frame. For simplicity, and as in

this case there are no other reference directions in the lab-

oratory frame, the body frame is chosen so that it equals

the laboratory frame at t = 0. Thus two rotation matrices,

the time-dependent orientation matrix R and the diago-

nalization matrix Q, are needed to navigate between the

frames.

The matrix R(t) gives the current orientation of the

scattering frame, where the mesh is in whatever orienta-

tion it was created, with respect to the laboratory frame.

The general definition of such coordinate transformation

matrix is

R =

cos(x′, x) cos(y′, x) cos(z′, x)

cos(x′, y) cos(y′, y) cos(z′, y)

cos(′x, z) cos(y′, z) cos(z′, z)

 , (15)

where (x′, x) represents the angle between the axis vector

x′ in {xsca} and the axis vector x in {xlab}. The matrix Q

is given by the eigendecomposition of the inertia matrix I,

so

Q = (a1, a2, a3) , (16)

where column vectors a1–a3 are the minor, intermediate

and major (principal) axes of the mesh. The framework is

summarized in Figure 3.

Three integrators, a fourth-order Runge-Kutta method

(RK) [26], a symplectic second-order Lie-Verlet integrator

(VLV) [27], and a predictor-corrector direct multiplication

method (PCDM) [28] are used to integrate the rotational
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Scattering
frame,
{x}sca

Principal
frame,
{x}p

RQT

QRT

Laboratory
frame, {x}lab

R

Q

RT

~k must be rotated for scattering solution

~k constant Dynamics solved

Figure 3: Diagram of the different coordinate transformations used

and the significance of each frame in the integrator.

Quantity
Coordinates

~k ~N R

{x}lab ~klab constant R(t) = QᵀRp(t)

{x}sca ~ksca = Rᵀ(t)~klab ~Nsca(t)

{x}p ~Np(t) = QRᵀ(t)~Nsca Rp(t)

(1)

(2)

(3)

(4)

t = t + ∆t

Figure 4: Physical representation of the algorithm used in rotational

integration. First, rotate the wave vector and solve torques using the

T -matrix formulae; second, rotate the torque vector to the principal

coordinates; third, update the equations of motion; and fourth, solve

the new rotation matrix in laboratory coordinates.

motion of the test geometries. The orientational update

steps, step (3) of Figure 4, are implemented as is from the

references. Integrators are subject to constant develop-

ment, but for an underconstrained system subject to non-

Hamiltonian interactions, only certain integration schemes

are applicable. Such subtleties are considered e.g. by [29].

In the framework, orientation update steps are done in

quaternion representation. For clarity, a matrix formula-

tion of the algorithm is presented in the text. For forces,

the integrators are demonstrated to reproduce expected

behavior, as a plane wave should push the particles mostly

along the direction of propagation. The translational mo-

tion is updated via the Runge-Kutta method. Physical

integration framework is presented in Figure 4.

To properly handle the stability of the rotational inte-

gration, adaptive time stepping must be used. A maximum

angle of rotation θmax is used to determine the time step

∆t from the linear approximation so that

ω0 + ∆ω ≤ θmax/∆t. (17)

As both the current angular velocity and the applying

torque will affect the angle rotated during the time step,

we approximate

∆ω/∆tprev = ∆ω(N(t), ω(t))/∆tprev = I−1 (N− ω × (Iω)) ,

(18)

where ∆tprev is the previous time step and other quantities

are the current values. If the old time step cannot satisfy

the condition (17), the largest possible time step is chosen

to replace ∆tprev.

4. Results

The particles considered in this work are solid and rel-

atively small in the size parameter. For larger particles in

size parameter, the single particle T -VIE method can be

applied patiently for about up to size parameter 20. For

even larger particles, aggregation described in [10] will be

more efficient. The dimensions of the resulting T -matrices

will naturally also depend on the size parameter, and thus

have an effect on overall integration time.

First, we compare the force and torque calculations

with respect to Mie solution and DDSCAT [30]. All DDSCAT

runs are made with minimal customization of parameters,

namely, the discrete geometries are specified by their shape

parameterization and the number of dipoles, and their

electric properties by the index of refraction. The numbers

of dipoles are chosen to produce self-convergent results in

DDSCAT. Proper mesh discretization levels are chosen so

that the maximum amount of tetrahedra in the smallest

wavelengths are approximately same between tests. The

comparative levels are named as crude, normal and fine in

the figures.

Different geometries are used, with different size pa-

rameters x = kaeff , and relative permittivity 2.842+i0.10521.

We focus on the dimensionless efficiency quantities, the

force efficiency along the direction of radiation, or radia-

tion pressure efficiency, Qpr = F/(πaeffP ), and the torque

efficiency QΓ = Nk/(πaeffP ), where aeff is the volume

equivalent radius, P the power of the incident field and

k the wave number of the incident field. To be able to

compare the torque efficiency results between T -VIE and

DDSCAT, the particle is rotated so that the incident wave

vector k and the major axis â3 are parallel. In the dis-

crete black body model of radiation, used in the full dy-

namical integrations, both efficiencies can be computed in

a straightforward fashion for each wavelength.

In the force comparisons (in Figures 5–7) it is evident,

that the error of the T -VIE solution is dependent on the

quality of the mesh as size parameter varies (Figure 8).

For realistic applications, for example when the incident
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Figure 5: Comparison of force efficiencies Qpr along the direction of

the incident radiation for a spherical particle in the Mie, DDSCAT, and

T -VIE schemes as a function of the size parameter x. Tetrahedral

mesh is scaled in this comparison, which results in the deviation in

larger size parameters as less tetrahedra will fit in a single wave-

length. The number of elements (tetrahedra or point dipoles) are

below the geometry.

radiation field is of a black body, the shorter wavelengths

become negligible quickly. This can be readily translated

into concrete refinement rules when generating the geome-

tries, so errors and computational efforts can be kept man-

ageable. Later, we study the differences of dynamics of

two GRS particles different in their level of discretization,

with one geometry being the tetrahedral subdivision of

the other. The difference between the efficiencies are illus-

trated in Figure 9.

Then, we study the performance of the VLV integrator

against the analytical solution (3) of the oblate spheroid.

The spheroid is a tetrahedral discretization with Ip =

(1.596, 1.596, 2.554)kg ·m2 with initial principal body frame

angular velocity ω = (0.5, 0, 1) rad
s . The problem is solved

for θmax = 0.1, 0.01, and 0.001 by calculating the first

10,000, 100,000, and 1,000,000 steps, respectively. The re-

sulting angular velocity for θmax = 0.1 is plotted with re-

spect to the analytical solution in Figure 10. The solutions

are indistinguishable in the resolution of the figure. Also,

the errors with respect to the analytical solution are plot-

ted. The time stepping conditions θmax = 0.01 and 0.001

result in the same error, when simulated time is consid-

ered.

We demonstrate scattering dynamical integration with

two uniform GRS particles, illustrated in Figure 1, dis-

Figure 6: Force efficiency comparison for different geometries along

the major principal axis. The normal tetrahedral meshes and DDA

geometries are illustrated, with their number of elements. Cruder

versions are composed of 1,624 (ellipsoid), 192 (cube), and 264 (mul-

ticube) tetrahedra.

Figure 7: Torque efficiency components of an irregular block shape.

In both images the effect of mesh quality is seen in larger size pa-

rameters as deviation.
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Figure 8: Relative difference of force efficiencies |Qpr,DDSCAT −
Qpr,T−VIE|/Qpr,DDSCAT between T-VIE and DDSCAT schemes as a func-

tion of size parameter for differently refined meshes.

Table 1: Initial orientation of the GRS particle principal axes

Minor, a1 Intermediate, a2 Major, a3

0.9174 0.3725 0.1396

-0.3448 0.5695 0.7461

0.1984 -0.7327 0.6509

cretized as a tetrahedral mesh with 6,049 and 48,392 el-

ements. The particle is parametrized by volume equiva-

lent radius aeff = 0.2 µm, constant density ρ = 3,000 kg
m3 ,

principal moments of inertia IP = (1.361, 1.884, 2.069) ·
10−30 kg ·m2, and relative permittivity 2.842 + i0.10521.

The initial directions of the principal axes are given in Ta-

ble 1. The incident plane wave has an n = 10-discretized

black body spectrum of Tbb = 5,800 K, with the total inten-

sity corresponding to E-field amplitude of 1 V
m . The wave-

lengths in the discrete spectrum are 0.500, 0.680, 0.860,

1.040, 1.220, 1.400, 1.580, 1.760, 1.940, and 2.120 µm. The

direction of propagation is along the z-axis in laboratory

coordinates.

The effect of the choice of integrator, the level of dis-

cretization and the time stepping condition on the dynam-

ics if shown in Figure 11, where the trajectories of the

principal axis vectors and the angular velocity are plotted.

The particle is initially at rest, and at the same initial

orientation between runs. The simulations are run for ei-

ther 100,000 or 1,000,000 steps for θmax = 0.01 and 0.001,

respectively. The results are consistent between integra-

tors and the time stepping conditions when considering

the finer discretization.

Finally, we study the statistical behavior of the VLV

and RK integrator schemes. Both the internal and exter-

nal alignment of several hundred simulations are quanti-

fied. Internal alignment is measured from the final 2.5%

steps of the run, after approximately 3,000 seconds of sim-

ulated time, as the average angle between the angular mo-

mentum and stable principal axes. The axis closer to in-

ternal alignment is also identified. This measure was cho-

sen to count all precessing states as being stable. Exter-

nal alignment cannot be completely quantified, as there

is only one external reference direction, the incident wave

vector k. Thus, the angle θ between the angular momen-

tum vector and k is the only possible measure of external

alignment.

Distributions of the rotational states are composed by

choosing random initial orientations with same seeds for

each different parameterizations, the discretization level,

integrator, and time stepping condition. The resulting dis-

tribution of rotational states as histograms are collected in

Figure 12. The major axis is seen to be the stably rotating

one in almost all runs. From the raw data, it could be seen

that not every run was the same, which is also reflected

in the histogram, where perfect convergence of each run

would result in exactly the same histograms.

To make sense of the dynamical results, an alignment

efficiency map is included with the histograms. Alignment

efficiency is defined here as the ratio of the torque efficiency

along the major axis, QΓ · â3. In the map, the quantity is

computed in all possible orientations of the particle. The

map is rotated such that the angle θ is equivalent with the

earlier definition, and presented as the common Hammer

projection of a sphere. The orientations, where most of the

torque transferred to the particle is along the direction of

the major axis, can be intuitively regarded as an stable

orientation, given that the particle is internally aligned.

From Figure 12, it is seen that almost all particles are

internally aligned at the end of the simulation. This is con-

sistent with the results of [31]. Comparing the values of θ

in the regions, where alignment efficiency has an absolute

value of at least 50%, reveals a correlation with the his-

tograms of external alignment. The most common align-

ment angle is in the range 120◦–160◦, where in the align-

ment efficiency map there are two close ”stability centers”.

Some external alignment is also observed around the range

3◦–80◦. The level of alignment during the simulation con-

8



Figure 9: Force and torque efficiency comparisons for the two discretizations of the GRS particle. The higher discretization level results in

similar correction to the efficiencies as in Figures 6 and 7.

Figure 10: Analytical test of the VLV integrator for the oblate spheroid. The errors for cases θmax = 0.01 and 0.001 are very precisely at the

same level, with the error for the case θmax = 0.01 visible only behind the oscillations.
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Figure 11: Integration comparison for the two different discretization levels of the GRS particle with two time stepping limits with 100 000

steps for higher limit and 1,000,000 steps for lower limit.

sistently raises, which is expected, and the convergence of

the most constrained initial setup is between 60 and 70%,

according to the raw data. The latter is not evident when

studying the histograms, but the most self-consistent his-

togram column is of the most constrained case.

In Figure 13, the well-known polarization effect is de-

monstrated by comparing the average Mueller matrix el-

ements S11 − S14. Averaging over random orientations

results in strictly linear polarization, whereas oriented par-

ticle will have more diverse polarization. The rotational

state, of which the Mueller matrix elements are calculated,

is taken as the most constrained VLV integration from

middle of the rightmost column in Figure 11. The scatter-

ing planes are defined by the incident wave vector and the

average angular velocity direction. Two scattering planes,

one containing the average angular velocity and other per-

pendicular to the first, are used as comparisons with the

randomly oriented case. In both cases, significant circular

polarizations are observed.

5. Conclusions

In this work, we have described a framework for study-

ing the translational and rotational dynamics due to scat-

tering for a single particle. We showed the framework to

produce a stable rotational state of an arbitrary test par-

ticle in almost all cases, where the initial orientation was

varied. Also, the alignment of the particle with stable ro-

tational state was observed and shown to correlate with

a measure of alignment potential, the alignment efficiency

map. A perfect convergence of results between integra-

tors was not observed in all cases. This implies, if trying

to confine the error of the integrators is not desirable, a

distribution of integration results should be the focus.

Further, we showed the polarization effect of oriented

particles using the framework. The core of the framework

can also be used in any application in which repeated solu-

tions to a single scattering process is needed, for example

to model optical tweezers.

The integrations considered relatively small angular ve-

locities. This is in a sense a scaling issue, as the integration

time step will ensure that completely same trajectories are

achieved at different time scales in the torque-free case.

The effect of optical torques will of course vary according

to the angular velocity. As the choice of the magnitude of

optical torques were determined arbitrarily, the dynamical

effects were chosen to be studied starting at rest. Adding

other torques than the optical torques to the system can

have a considerable effect on the dynamics, changed by

how the terms depend on the incident fields, the rotational

10



Figure 12: Probability distributions of alignment compared with the alignment efficiency map. Distributions contain both the internal and

external alignment results for both RK and VLV integrators in the two different time stepping and discretization schemes.

state of the particle, or some statistical quantities such as

collisions.

For future applications, different properties must be

added to the framework. Addition of shaped beam VSWF

coefficients will make the framework a cutting edge tool for

studying optical tweezers. Similarly, coupling the trans-

lational and rotational motion will make it possible to

study the dynamical separation of dust in dust clouds or

cometary comae.

Some interesting applications, such as study of rel-

ativistic effects, external static magnetic fields, or elec-

tromagnetic emission, will challenge the limits of the T -

matrix formalism itself. In some of these cases, a fallback

into the underlying volume integral equation methods may

be necessary.

The main benefit of the full dynamical integration is

that many effects can be included as extra force and torque

terms. For example, in the interstellar medium, particles

are subject to collisions and external magnetic fields. Also,

realistic particles go through dissipation of angular mo-

mentum. To summarize, if an effect can be considered an

extra force or torque term, it can be added to the inte-

gration scheme directly, whereas in potential energy ap-

proaches, for example, the same is not as intuitively clear

to achieve.
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