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Abstract  

 

The predicted increase in the number of urban flood events can result in substantial monetary losses 

to society. These costs may be alleviated by preserving ecosystem services, such as urban runoff 

management. We studied the monetary value of this ecosystem service by applying the replacement 

cost method in six catchments with varying land-use intensities in two cities in Finland. The 

economic analysis was based on metric data of urban runoff generation, provided by automatic 

monitoring stations in the catchments. A hydrological model was applied to estimate evaporation 

from impervious surfaces, and to simulate runoff in the catchments. Our results suggest that leaving 

green space unconstructed results in significant monetary savings. The cost of managing runoff 

correlated with land-use intensity. The ecosystem service value (ESV) was generally higher in 

catchments with high land-use intensity, low proportion of green space, and high costs of runoff 

management. Depending on the degree of imperviousness, the ESV ranged from 90 000 – 270 000 

€ ha
-1

. Further, our results suggest that estimates of runoff generation and evaporation are key 

hydrological factors for assessing ESV. Our study demonstrates how the combination of field data 

and hydrological and monetary analyses can support regional planning in cold climates. 

 

 

mailto:sveta.silvennoinen@helsinki.fi
mailto:maija.taka@helsinki.fi
mailto:vesa.yli-pelkonen@helsinki.fi
mailto:harri.koivusalo@aalto.fi
file:///C:/Users/VesaYP/Documents/Katumetro%202016/Svetan%20duuni/Ecosystem%20Services%20submission/markku.ollikainen@helsinki.fi
mailto:heikki.setala@helsinki.fi


 2 

1. Introduction 

 

Intensive land use is associated with drastic changes in vegetation cover and soil sealing, causing 

severe anomalies in the hydrological cycle (Schueler 1994; Douglas 2011; Illgen 2011). Urban 

catchments - with highly disturbed soils - are characterized by high proportions of impervious 

surfaces resulting in increased surface runoff, decreased infiltration and evapotranspiration (ET), 

and the presence of dense and efficient drainage systems (Booth & Jackson 1997; Burton & Pitt 

2002; Burian & Pomeroy 2010). These changes in the hydrological cycle are manifested in 

increased frequencies and severities of urban flood events (Booth 1991; Burton & Pitt 2002; Kotola 

2003; Ogden et al. 2011), which are, specifically at high latitudes, predicted to become more 

frequent due to an increase in precipitation associated with climate change (Lehner et al. 2006; 

IPCC 2007; Aaltonen et al. 2008; Perrels et al. 2008, 2010). Furthermore, untreated urban runoff – 

i.e. stormwater – is an important pathway for pollutants in urbanized catchments (Bäckström et al. 

2002) and is an important source of the impairment of surface and ground water resources (Pitt et al. 

1999; Burton & Pitt 2002; Allan 2004; Goonetilleke et al. 2005). There is growing concern that the 

increased volume and reduced quality of stormwater will result in increased monetary losses to 

society (Aaltonen et al. 2008; Bélanger 2008; Perrels et al. 2008, 2010). To reduce urban runoff, 

urban green space and the ecosystem services (ES) it provides has been suggested as a feasible 

alternative to conventional stormwater management (e.g. Burian & Pomeroy 2010; Liu et al. 2014).  

 

The ecosystem services (ES) framework has become increasingly common in urban land-use and 

green-area planning, as urban ecosystems provide multiple ES, that are of great importance to the 

well-being of urban inhabitants. Furthermore, urban ES often provide justification for preserving 

the urban green infrastructure at substantial quantity and quality in urban planning and development. 

Urban runoff management (sometimes also called "flood protection", depending on the context), as 

studied in this paper, is categorised in regulation and maintenance services in the ES framework and 

is maintained by vegetation and soil associated with permeable surfaces (CICES, 2017). The simple 

use of ES framework is not, however, always unproblematic – for instance, due to a lack of 

empirical studies showing the actual magnitude of benefits (including monetary) to urban 

inhabitants or society. This is also the case with urban runoff management, as studies estimating the 

monetary value of urban soils in terms of storing rainwater, and thus mitigating urban runoff 

generation, are virtually non-existent. 
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Urban green infrastructure, such as trees, lawns and green roofs, are known to mitigate runoff 

problems through water harvesting and enhancing infiltration and evapotranspiration (Bélanger 

2008; Burian & Pomeroy 2010; Liu et al. 2014). For example, Elmqvist et al. (2015) reported 

annual evapotranspiration of 1000 m
3
 ha

-1
 in urban parks in Sacramento Ca, USA, and Peper et al. 

(2007) estimated that city street trees in New York, USA have an annual interception of 3.4 million 

m
3
. However, despite the various benefits by urban green space, its continuous replacement with 

housing and other impervious surfaces makes the provision of ES vulnerable, and creates a trade-off 

situation between ecosystem services and city consolidation policies (Eigenbrod et al. 2011; 

Elmqvist et al. 2015). 

 

From an economic point of view, diminishing urban green areas and thus the deterioration of urban 

runoff management and other ES have traditionally resulted not only in a significant loss of citizens’ 

welfare, but also in direct monetary losses due to increased investments on expensive technical 

solutions replacing the services carried out by urban green space (Bélanger 2008; van Zoest & 

Hopman 2014; Elmqvist et al. 2015). However, for instance in the USA and Western Europe, the 

conversion of urban green areas to built-up i.e. – grey areas – is becoming less common, as the 

multiple benefits of green areas to urban inhabitants are being realised. 

 

Nevertheless, the incorporation of ecological processes into urban planning, for example through 

increasing the proportion of permeable surfaces in urban areas, has proven to be challenging, since 

investment decisions in many countries are traditionally based on financial analyses that do not 

account for the benefits of ES (van Zoest & Hopman 2014). However, a growing number of studies 

report substantial monetary benefits associated with ES provided by urban green space, e.g. related 

to urban runoff management (see Elmqvist et al. 2015). The reported economic values, mostly 

derived from methods that indirectly estimate stormwater reduction capacity via, e.g. canopy 

interception models, range from 0.34 € m
-3

 (Vargas 2009) up to 200 € m
-3

 (American Forests 2002). 

 

The aims of this study were to (1) determine the economic value of the ecosystem service that urban 

green space can provide in terms of urban runoff management, in six urban catchments with 

different land-use intensities in the cities of Helsinki and Lahti, southern Finland; (2) assess how the 

estimated ecosystem service value (ESV) will change in the time span of 40 years, when climate 

change impacts the urban runoff volume and the costs of a conventional stormwater system; and (3) 

drawing on these analyses of ESV, examine whether it is economically beneficial to use urban 

vegetated areas for runoff management instead of relying only on conventional pipe-based drainage. 
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The monetary value of the ecosystem service is defined in this paper as the net savings in 

technological solutions (conventional pipe-based drainage) when urban runoff is managed with the 

same service provided by green space. 

 

This study was conducted at high latitudes, which introduce unique setting for ecosystem services. 

The four distinct seasons – with a prolonged cold season and soil frost – together with compact 

urban settlements, require carefully designed runoff management solutions. However, planning of 

such solutions is hindered by a lack of urban runoff data across seasons. The study sites, belonging 

to a Long-Term Socio-Ecological Research (LTSER) network (Setälä et al. 2010), have been 

intensively studied in terms of urban hydrology (Taka 2012; Krebs et al. 2013, 2014; Valtanen et al. 

2013, 2014). Based on our previous research on urban runoff (Krebs et al. 2013, 2014; Valtanen et 

al. 2013), we hypothesized that: i) preserving urban green areas results in substantial monetary 

savings for society via the ecosystem service of urban runoff management; and ii) ESV is higher at 

high land-use intensity, where costs of managing runoff are predicted to be higher. Importantly, 

unlike previous studies, the value calculations here are based on a combination of rarely-available 

urban empirical hydrological data and model results. By using microscale urban runoff data as an 

input into the ESV evaluation, we aimed to identify the prospects of using urban green space to 

manage seasonal urban runoff volumes. As our approach is based on these data, it can be utilized in 

similar urban regions with no accurate time series data of runoff available. Thus, the current study 

aims at providing a cost-effective and quantitative model to serve land-use planning and 

management, and related decision-making. 

2. Material and methods 

2.1. Study catchments  

 

The study was conducted in the cities of Helsinki (60°10’N, 24°56’E; population of 635 000), and 

Lahti (60°59’N, 25°39’E; population of 120 000) in southern Finland. The six study catchments are 

classified into three land-use intensity categories (hereafter High, Intermediate and Low), thus 

representing different degrees of sealed surfaces and population densities (Fig. 1). They form part 

of the international LTSER network. These catchments were chosen to represent urban land cover 

with varying intensity, and they all have separate sewer systems, which discharge runoff to the 

receiving surface water systems without any treatment. Finally, they are closely located within the 

city and relatively similar in size. 

 



 5 

 

 

Figure 1. Location of the study catchments with diverging land-use intensity (high to low) in Lahti 

(L), where L1 = High catchment, L2 = Intermediate catchment, L3 = Low catchment and in 

Helsinki (H), where H1 = High catchment, H2 = Intermediate catchment, H3 = Low catchment. The 

land-cover classification is based on CORINE classification (FEI 2015). Note that the catchments 

are presented at the same scale. 

 

The main characteristics of the six urban catchments are presented in Table 1. High catchments (L1, 

H1) represent urban core areas with a high impervious fraction, intensive land-use, high traffic 

volume, with fragmented green spaces that mainly located in public park areas and residential yards. 

The Intermediate catchments (L2, H2) represent urban/suburban areas, while the Low catchments 

(L3, H3) are situated in suburban/residential areas characterized by single-family houses. In the 

Intermediate and Low catchments, the percentage of pervious areas is clearly higher than in the 

High catchments, and typical green spaces are urban forests, parks, residential yards and gardens. 

The catchments in Helsinki and Lahti differ in bio-geographical characteristics and local 

topography, and population densities of the High and Intermediate catchments of Lahti are 

considerably higher compared with Helsinki (Table 1). When looking only at the impervious 
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fractions of the catchments,  the classification is relational, i.e., the urban density classes 1-3 reflect 

the relative TIA differences within each study area.  

 

Table 1. Main characteristics of the studied catchments (adopted from Setälä et al. 2010; Taka 

2012; Valtanen et al. 2013; Krebs et al. 2014; Lundberg, 2011). TIA = Total Impervious Area. 

Drainage density is the total pipeline density in relation to catchment area.  

 
Land-use intensity High Intermediate Low 

City  Lahti Helsinki Lahti Helsinki Lahti Helsinki 

 
Catchment size (ha) 6.1 24.1 6.5 38.4 12.6 14.5 

Population density (inhab. km
-2

) 10 800 4 200 7 100 5 500 1 400 2 400 

TIA (%) 89 68 62 36 19 35 

Length of pipe system (km) 2.6  4.4  3.2 4.5 1.6 1.5 

Drainage density (km km
-2

) 42.8 18.4 49.7 11.8 13.1 10.2 

Share of managed green spaces  0.34 0.35 0.24 0.3 0.1 0.1 

 

2.2. Data collection  

 

Runoff measurements were conducted in Lahti from December 2008 to August 2010, and in 

Helsinki from December 2010 to November 2014. Runoff was monitored at a measurement station 

located at the catchment discharge outlet, equipped with a runoff probe (ultrasonic flow sensor 

Nivus PCM4) placed into a stormwater pipe. Flow rate (l s
-1

) and precipitation (mm) were measured 

continuously at 1-min intervals throughout the study periods (intervals were increased to 2 or 3 min 

during the freezing winter periods) and recordings at each station were stored using data loggers 

(Campbell CRX10) (see Valtanen et al. 2013). Additional precipitation data, including snowfall, 

were obtained from the Finnish Meteorological Institute (FMI), which operated a station recording 

precipitation at 10-min intervals, 2-6 km from the studied catchments (see Valtanen et al. 2013). In 

Helsinki, precipitation was measured at the FMI’s Kumpula weather station, located 1-4 km from 

the studied catchments (see Taka 2012). All spatial data for the catchments were calculated using 

MapInfo. In Lahti (L1-L3), estimated drainage density consists of the main collector stormwater 

pipes and pipes located on private estates, including pipe connections from roof drains to the 

network. Open ditches were excluded. In Helsinki (H1-H3), the data represent only main collector 

pipes.  
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Economic data consists of estimates on construction costs of pipelines, their annual operation and 

maintenance (O&M) costs, and construction costs of impervious surfaces. For green space, the data 

contains estimates of the investment (48 €/m
2
) and managing (0.5 €/m

2
) costs of the green 

infrastructure. The data were collected through numerous personal interviews, e-mail 

correspondences, and unit cost reports. Data were provided by local water and environmental 

service and technical maintenance companies, and city officials of Lahti and Helsinki (see Tables 2 

and 5 and References for details). Due to the overall lack of precise calculations and statistical data 

that is typical of this data type, only values considered as best estimates were usually available. 

Although using best-estimate values acquired from experts, brings some limitations to the 

applicability of the values, and consequent calculations in other urban areas, we are confident that 

these best-estimate values represent the real cost-situation in the studied urban areas. Since it was 

not possible to calculate precise costs for different catchments, estimations of cost variation 

between three different types of areas (High, Intermediate and Low land-use intensity) were made, 

with the exception of O&M costs, which were only available at the city-scale. Due to the high 

variation in land costs between the catchments, land costs were not included in the calculations. The 

high variation in land costs is not usually linked to ecosystem services, but to complexity of land-

price formation in urban areas. This depends on factors such as housing prices, urban business 

opportunities, location and the quality of the surrounding urban environment (e.g. the share of green 

space). Construction costs of the pipeline system for urban runoff management cover material and 

related work. The most important variable affecting the price of stormwater pipes is pipe diameter, 

which is determined by site characteristics, location and land-use intensity. The data gathered 

provide costs for small and large pipe diameters, which are 300 – 400 mm (small) and ca. 1000 mm 

(large) in Lahti; and ≤ 500 mm (small) and ≥ 600 mm (large) in Helsinki. Construction cost was 

approximated based on average pipe diameter in the catchment. The use of pipe cost for diameters 

of 300 – 400 mm in L1 was deemed acceptable, as the cost in city centre is not constant, and can 

achieve up to 1000 € m
-1

 depending on the characteristics of the site (Hiltunen 2011). All related 

costs are presented in Table 2.  

 

Maintenance of the existing stormwater pipes in Helsinki costs ca. 2 million €/a, or 1 €/m/a, 

assuming that there are ca. 2000 km of stormwater pipelines in Helsinki (Heinonen 2012). In 

addition, Helsinki accomplishes other maintenance work related to the entire system, totalling 130 

000 € in 2012 (Heikkilä 2013). For simplicity, this sum was proportioned to the total length of pipes, 

resulting in operational costs of 0.065 €/m/a. The estimation of O&M costs for the city of Lahti was 

about 1 €/m/a (Heikkonen 2013). Costs concerning the removal of sand comprise about 11 €/inlet/a 
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in Helsinki according to cleaning statistics of 2012 (Heikkilä 2013), and ca. 33 €/inlet/a in Lahti 

(Uski 2013). The number of inlets is calculated in compliance with design instructions, which is ca. 

one inlet per 650 m
2
 of impervious surface (AFLRA 2012). 

 

Table 2. Construction and operation and management (O&M) costs of a conventional stormwater 

system. The data were collected through personal interviews (Hiltunen 2011; Lehtonen 2011; 

Heinonen 2012; Hyvärinen 2012; Heikkilä 2013; Heikkonen 2013; Uski 2013). L1 and H1 refer to 

High catchments, L2 and H2 to Intermediate catchments, L3 and H3 to Low catchments in Lahti 

and Helsinki, respectively. 

 

Land-use intensity        High Intermediate Low 

City L1 H1 L2 H2 L3 H3 

 

Average pipe diameter  

(mm) 

110-400  300-500  110-600 300-800 225-500 300-400 

Approximated construction cost (€ 

m
-1

) 
600  800  300 800 200 400 

Total annual O&M cost  

(1000 €) 
5.3 7.5 5.2 7.2 2.8 2.4 

Construction cost  

(1000 € ha
-1

 of impervious 

surface) 

 

289 216 241 262 138 117 

 

2.3. Analysis of ecological data 

 

The analysis of the eco-hydrological data was conducted based on measured and modelled runoff 

values for both annual and seasonal (warm) periods. Annual characteristics were calculated using 

long-term runoff-precipitation ratios (precipitation-weighted means). For the warm period (June-

November), runoff coefficients in Lahti were defined as ʻdirect precipitation-induced runoff event 

divided by total precipitation during the eventʼ, and in Helsinki as ʻrunoff-precipitation ratiosʼ. As 

runoff-precipitation ratios may have been biased due to sudden gaps in data, event-scale runoff 

coefficients (i.e. runoff (mm) / precipitation (mm)) were used instead. This dimensionless variable 

indicates the conversion rate of rainfall into runoff. Runoff coefficients for impervious areas 

(runoff-precipitation ratio for impervious areas only) were derived for all catchments using the 

hydrological model detailed below. Applied mean annual precipitation was 633 mm (warm period 

403 mm) in Lahti and 642 mm (warm period 396 mm) in Helsinki (Kersalo & Pirinen 2009).  
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The Drainmod-type hydrological model was utilized for evapotranspiration estimations (Koivusalo 

& Kokkonen 2003). The model simulates precipitation-runoff processes, including evaporation 

(evapotranspiration), and can be parameterised for different surface types. The modelling approach 

was based on the vertical one-dimensional representation of a soil column and its water content. 

The water balance of soil was defined in terms of air volume in the soil, as in pervious areas 

infiltration can enter the soil domain whenever there is empty air pore space in the soil, and both 

evapotranspiration and drainage from soil can increase the air volume in soil column. In contrast, in 

impervious areas the infiltration capacity at the soil surface can be adjusted to reduce or block 

infiltration. If water is not infiltrated, it will generate surface runoff, which is delayed before it is 

discharged out of the system using a linear store. Drainage (using the Hooghoudt equation) is 

activated whenever the simulated water table level of the soil column is above a prescribed drainage 

depth (Skaggs 1980).  

 

The model was supplied with the degree-day snowmelt model (Koskela et al. 2012) to support 

annual daily simulations during cold seasons. The input data consisted of daily air temperature, 

precipitation and potential evapotranspiration (PET), calculated according to the reference crop 

evaporation equation (Shuttleworth 1993). Weather data were obtained from the aforementioned 

FMI weather stations in Helsinki (Kumpula) and Lahti (Laune). Missing values were replaced with 

data from a nearby station, or with zeros (in the case of missing precipitation records). The model 

was set to simulate a period of 5 years from 2007 to 2011 in all catchments. In order to minimize 

the impact of initial values (air volume of the soil) on model results, a warm-up period of one year 

(2007) was executed before running the simulations for the study period. The model was calibrated 

against the observed warm period and annual runoff coefficients of the Lahti catchments, where the 

quality of the runoff data was earlier assessed by Valtanen et al. (2014). Snow model parameters 

were the same for pervious and impervious surfaces. Surface runoff retention was assumed to be 

minimal, with the retention parameter of the linear store being 0.95. Urban areas were assumed to 

be covered by impervious surfaces, i.e. without any vegetation. Imperviousness was defined as EIA 

(effective impervious area, i.e. impervious area directly connected to pipelines) instead of TIA 

(total impervious area), and determined by application of the linear regression equation of Sillanpää 

(2013). After calibration, the model was used to simulate runoff for the catchments. The 

hydrological model produced an estimate of evaporation from water on impervious surfaces, where 

evapotranspiration from the soil was assumed to be negligible. 

2.4. Analysis of the economic data 
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For ESV evaluation relating to runoff management services in urban areas, the replacement cost 

method was considered the most appropriate valuation method. It represents the indirect valuation 

approach, where the cost of a close substitute is used as a measure of value of the replaced non-

priced environmental good or service (Bockstael et al. 2000; Hanley & Barbier 2009). The analysis 

was conducted by isolating specific processes produced by the ecosystem (urban runoff 

management service provided by urban green space), and by assessing the cost of the best available 

technologically-produced substitute (man-made stormwater conveyance system) for the ecosystem 

service.  

 

Consider first the current state of pipelines and weather. The amount of rain falling on impervious 

surfaces (Pi) was used to estimate the cost (Cc) of controlling runoff per volume of stormwater (€ m
-

3
), applying the same approach as PPA (2008) in equation (1), where the investment cost,        is 

divided by the precipitation to produce a unit cost. The runoff managed by urban green space (m
3
) 

is denoted by I in equation (2), where A is the catchment area (ha),   is the runoff coefficient or 

total runoff-precipitation ratio, Ei is the share of evaporation from precipitation in impervious 

surfaces (%), and P is annual precipitation (m
3
/ha). 

 

Drawing on equations (1) and (2), the monetary value of the ecosystem service (ESV, € ha
-1

) is 

determined in equation (3) as the cost-saving (net of infrastructure costs,   , of green space), due to 

the volume of runoff managed by urban green space (Ap is the pervious surface area (ha)). In 

addition, evaporation from impervious surfaces was excluded. Hence, ESV measures the cost-

saving based on construction and annual costs of pipelines and net of those of the green space. It 

includes neither the price of land nor other benefits of green space (such as recreation or climate 

services). By using the revealed preference argument for the existing green space, the benefits are 

regarded higher than land prices, so that it is possible to apply equation (3) in this context. 

                   
(1)  

 

                        (2) 

  

                       
(3) 
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ESV in equation (3) was calculated based on both modelled and measured runoff values. To avoid 

overestimation of the ESV, the measured data-based ESV was replaced with modelled ratios for L1 

for the entire year, and for H1 for both examined periods, presenting the combined ESV. To 

improve comparability with other studies, we approximated the annual avoided costs. Despite the 

technical life-span of a conventional stormwater system being 50 – 100 years, the system requires 

inspection as early as 20 – 40 years after construction due to land-use and climate-induced changes 

(AFLRA 2012), which can lead to upgrading or replacement of parts of the system. Equation (4) 

gives the total construction costs (Ctotal) as a sum of the investment and the present value of 

projected annual O&M costs of a 40-year time span. The present value is the current equivalent 

value of the costs paid over the whole time span (Boardman et al. 2006). 

 

                               

  

   

       (4) 

 

In equation (4), Ctotal  is the total cost of controlling runoff, Com is the annual O&M cost, i is the 

discount rate (3%), and t is an index over the time span of 40 years. The annual control cost (€ m
-3

) 

of urban runoff and annual avoided costs (€ ha
-1

) can be obtained from the total cost of controlling 

runoff by dividing it by the assumed total life span of 40 years. 

 

Following Nurmi et al. (2013), we assumed that O&M costs will: i) stay the same for the first 10 

years; ii) double during the next ten years due to doubling demands for repair, and increase by an 

additional 10% due to resizing needs; and iii) triple during the last 20 years due to the growing 

demand for repair, and increase by an additional 20% due to resizing needs. 

 

3. Results   

3.1. The volume of runoff managed by urban green space 

 

Both measured and modelled runoff coefficients varied widely across land-use intensity categories 

and seasons. In Helsinki, annual runoff ratios were higher than warm period ratios in all catchments 

in both modelled and measured results (Table 3). Surprisingly, the measured runoff ratio in H1 was 

low for both the warm period and for the whole year. In contrast, the model resulted, in each case, 

in higher values compared to the measured values, with the biggest difference for H1. While the 

model estimates a positive trend between total impervious area (TIA) and runoff ratios, it was not 
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present in the measured ratios. 

 

Table 3. Seasonal runoff coefficients (i.e. total runoff-precipitation ratio) for the studied urban 

catchments in Lahti (L1-L3) and Helsinki (H1-H3). Data are based on runoff measurements by 

Taka (2012) and Valtanen et al. (2013), and the model results of this study. 

 

Catchment Warm period Whole year 

 Measured Modelled Measured Modelled 

L1 0.74 0.69 0.54 0.75 

L2 0.44 0.46 0.50 0.55 

L3 0.10 0.10 0.33 0.22 

H1 0.15 0.54 0.18 0.61 

H2 0.24 0.28 0.25 0.38 

H3 0.13 0.27 0.18 0.38 

 

In Lahti, both modelled and measured data show positive co-variation between TIA and runoff. At 

both L2 and L3, runoff coefficients during the warm period were lower than the measured runoff 

ratios for the entire year. This was in agreement with the model. In contrast, the measured warm 

period runoff coefficient in L1 was higher compared to the runoff ratio for the entire year (Table 3).  

  

The modelled proportions of evaporation from impervious areas, irrespective of catchment type, 

were estimated to be similar in both cities (13%, 524 m
3
/ha/a in Lahti; and 14%, 554 m

3
/ha/a in 

Helsinki) during the warm period. During the entire year, 12% (760 m
3
/ha/a) of precipitation falling 

on impervious surfaces evaporated in Lahti, and 13% (835 m
3
/ha/a) in Helsinki. Taking into 

account these proportions, the amount of runoff managed by urban green space was calculated 

(Table 4). Our results show that the lower the TIA, the higher the proportion of precipitation 

infiltrated into pervious surfaces, with the exception of H2 in Helsinki, if applying measured runoff 

values. 

 

Table 4. Runoff volume (m
3
) and the proportion of precipitation (%) managed by urban green 

space. Results of the warm period are reported first, followed by the annual results (e.g., warm 

period / annual). L1 and H1 refer to High catchments, L2 and H2 to Intermediate catchments, L3 

and H3 to Low catchments in Lahti and Helsinki, respectively. 

 
Land-use intensity         High    Intermediate         Low 
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City L1 H1 L2 H2 L3 H3 

 
Runoff volume 

measured (1000 m
3
) 

 
3.5 / 13.6 

 
72.2 / 113.4 

 
12.6 / 17.9 

 
107.8 / 173.1 

 
44.4 / 51.6 

 
47.2 / 72.2 

Runoff volume 

modelled (1000 m
3
) 

4.8 / 5.5 34.9 / 46.8 12.0 / 15.5 101.7 / 141.1 44.4 / 60.4 39.2 / 53.6 

% of precipitation,  

measured 

14 / 35 75 / 73 48 / 44 71 / 70 88 / 65 82 / 77 

% of precipitation,  

modelled  
 

19 / 14 36 / 30 46 / 38 67 / 57 88 / 76 68 / 57 

 

3.2. The cost of urban runoff management 

 

The cost of controlling urban runoff (€ m
-3

) correlated positively with land-use intensity, resulting 

in higher costs in catchments of higher land-use intensity (see Table 5 and see equation 1). The only 

exception was H2 (Helsinki), where the cost of controlling runoff was higher compared to H1. 

 

Table 5. The cost (€ m
-3

)
 
of controlling runoff in the three land-use intensity types in Lahti and 

Helsinki (Data from Hiltunen 2011; Lehtonen 2011; Heinonen 2012; Heikkilä 2013; Heikkonen 

2013; Uski 2013; Takainen 2017; Rapal Oy 2012). Results of the warm period are reported first, 

followed by the annual results (e.g., warm period / annual). L1 and H1 refer to High catchments, L2 

and H2 to Intermediate catchments, L3 and H3 to Low catchments in Lahti and Helsinki, 

respectively. 

 
Land-use intensity          High    Intermediate          Low 

City L1 H1 L2 H2 L3 H3 

 
Cost of controlling 

runoff by 

infrastructure  

 
71.7 / 45.6 

 
54.7 / 33.7 

 
59.7 / 38.0 

 
66.1 / 40.8 

 
34.2 / 21.8 

 
29.6 / 18.2 

Cost of controlling 

runoff by green 

space 

20.5 / 13.0 21.4 / 13.2 14.4 / 9.2 18.4 / 11.3 6.0 / 3.8 6.1 / 3.8 

Annual cost of 

controlling runoff 

by infrastructure  

2.1 / 1.3 1.5 / 0.9 1.9 / 1.2 1.8 / 1.1 1.2 / 0.8 0.9 / 0.6 

 

3.3. Ecosystem service value (ESV) 

 

The estimates of ESV based on measured runoff values and equation (3) were somewhat high, 

ranging from 0.1 M€ to 0.3 M€ in Helsinki and from 0.1 to 0.7 M€ in Lahti (Table 6). ESV 
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correlated positively with land-use intensity in each case. ESV based on modelled runoff resulted in 

the same relationships, with the exception of H2 (Helsinki), which had higher ESV compared to H1. 

With the exception of L1 (measured runoff), ESV was always higher during the warm period 

compared to the entire year, thus emphasizing the higher evapotranspiration potential during the 

warm season. We therefore argue that the use of both measured and modelled runoff data would 

result in the best approximation of ESV (Table 7). 

 

Table 6. ESV (1000 € pervious-ha
-1

) calculated using measured and modelled runoff values in the 

three land-use intensity types in Lahti and Helsinki. Results of the warm period are reported first, 

followed by the annual results (e.g., warm period / annual). L1 and H1 refer to High catchments, L2 

and H2 to Intermediate catchments, L3 and H3 to Low catchments in Lahti and Helsinki, 

respectively. 

 
Land-use intensity         High   Intermediate         Low 

City L1 H1 L2 H2 L3 H3 

 
ESV, measured runoff 

 
271 / 663 

 
310 / 301 

 
230 / 209 

 
210 / 208 

 
123 / 91 

 
117 / 111 

ESV, modelled runoff 364 / 269 150 / 124 221 / 180 198 / 169 123 / 106   97 / 82 
 

 

Table 7. ESV (1000 € pervious-ha
-1

) and annual savings calculated, using measured runoff values, 

replaced with modelled ratios for L1 for the entire year and for H1 for both examined periods 

(combined ESV) in the three land-use intensity types in Lahti and Helsinki. Results of the warm 

period are reported first, followed by the annual results (e.g., warm period / annual). L1 and H1 

refer to High catchments, L2 and H2 to Intermediate catchments, L3 and H3 to Low catchments in 

Lahti and Helsinki, respectively. 

 
Land-use intensity           High    Intermediate          Low 

City L1 H1 L2 H2 L3 H3 

 
ESV, combined 

 
271 / 269 

 
150 / 124 

 
230 / 209 

 
210 / 208 

 
123 / 91 

 
117 / 111 

40 a. total ESV 313 / 311 155 / 128 299 / 272 221 / 219 184 / 136 142 / 134 

Annual savings 7.8 / 7.8 3.9 / 3.2 7.5 / 6.8 5.5 / 5.5  4.6 / 3.4 3.6 / 3.4 

 

Accounting for the increased O&M costs relating to conventional stormwater systems led to an 

increased ESV of urban green space with time. In 40 years, ESV will grow by 3, 6, and 21% (for 

H1, H2, and H3, respectively) and by 16, 30, and 50% (for L1, L2, and L3, respectively). Annual 
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savings related to urban green space, when calculated on a per hectare basis and assuming a total 

span of 40 years for the current substitute, show the same trend as ESV (Table 7). 

4. Discussion 

4.1. Ecosystem Service Value (ESV)    

 

Our study aims to explore whether preserving green space in cities leads to savings for the society, 

and whether it can provide an alternative to traditional urban runoff management. The analysis is 

based on rarely-available time-series data of urban runoff, enriched with a hydrological model, to 

make an extension of traditional model results to ESV evaluation. Overall, our findings support the 

hypotheses that: i) urban green space reduces runoff, thus providing a valuable ecosystem service of 

urban runoff management with substantial economic benefits for the society; and ii) ESV is higher 

at high land-use intensity with an increasing proportion of impervious area, and conventional grey 

infrastructure thus becomes more expensive. Our findings are in accordance with the proposition of 

Schueler (1997) that the cost for urban runoff management is a direct function of the amount of 

impervious cover. Construction costs of stormwater management systems range from 117 000 to 

216 000 € ha
-1

 in Helsinki and from 138 000 to 289 000 € ha
-1

 in Lahti – considerably higher than 

the 4000 – 100 000 € ha
-1

 reported by Schueler (1997). It is important to note, however, that these 

values were not adjusted for inflation for comparison to Schueler's (1997) values, which may partly 

cause the observed differences in cost, in addition to contextual differences (e.g. climate, geography, 

location). Likewise, the cost of controlling runoff by infrastructure is clearly dependent on land-use 

intensity; in both cities, cost during the warm period increases from ca. 30 (whole year 20) € m
-3

 in 

the Low catchments to ca. 60 (whole year 40) € m
-3

 in the High catchments, with the exception of 

H2. 

 

Our findings from boreal/hemi-boreal cities complement previous studies and demonstrate how 

undeveloped urban green areas result in significant monetary savings. Similarly to costs of 

controlling runoff, ESV correlates with land-use intensity. Regardless of the study period, higher 

land-use intensity relates to higher ESV. ESV ranged from ca. 270 000 € ha
-1

 to 120 000 (whole 

year 90 000) € ha
-1

 in Lahti, and from ca. 150 000 (whole year 120 000) € ha
-1

 to ca. 120 000 

(whole year 110 000) € ha
-1

 in Helsinki, with H2 again being the exception (ca. 200 000 € ha
-1

). 

Likewise, the amount of runoff managed by urban green space correlated negatively with TIA. 
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ESV varies greatly depending on the valuation method used, the calculation of runoff reduction, the 

type of cost data (annual costs of stormwater quality management vs. single infrastructure 

investment), and the accuracy of ESV estimation (Table 8). Furthermore, other valuation studies 

have predominantly been conducted under warmer climate conditions, which makes comparisons 

challenging.  

 

Table 8. A comparison of ESV from different studies across the globe. Values (€) were 

approximated using historical exchange rates (Xe 2016), applying the first day of publication year, 

except in Zhang et al. (2012) where values from 2009 were used and Jim & Chen (2009) where 

values from 2004 were used. 

 

City or state Reported 

ecosystem  

service 

Urban runoff 

reduction 

(m
3
) 

ESV  

€/m
3
, €/ ha  

(if available) 

 

Valuation method applied Reference 

Beijing, China Rainwater-

runoff 

reduction 

154 million m3 0.9 €/m3 

2 300 €/ha  

 

Runoff coefficients based on soil 

infiltration rates, unit prices of 

stormwater reservoir, avoided cost of 

runoff purification (costs of reclaimed 

water)  

Zhang et al. 

2012 

Campus forest, 

Tucson, Arizona, 

USA 

Stormwater 

benefits  

10 900 m3 0.98 €/m3 The i-Tree software (canopy interception 

model); annual savings in municipal 

infrastructure and maintenance expenses  

UACATBA 

2012 

Campus forest, 

San Diego, USA 

Stormwater 

runoff 

reduction 

530 000 m3  0.34 €/m3 The i-Tree STRATUM hydrology model 

and stormwater treatment costs 

Vargas 2009 

Forest in 

Albuquerque, 

NM, USA 

Avoided 

stormwater 

runoff 

1.5 million m3 1.7 €/m3  

73 €/ha 

 

The i-Tree software (canopy interception 

model) 

Davey 

Resource 

Group 2014 

New York 

municipal forest, 

USA 

Stormwater 

runoff 

reduction 

3.4 million m3 8 €/m3  

6 000 €/ha 

 

Numerical simulation model (annual 

rainfall interception by trees, throughfall 

and stem flow) and stormwater 

management control costs  

Peper et al. 

2007 

Modesto 

municipal forest, 

California, USA 

Stormwater 

runoff 

reduction 

292 000 m3 1.8 €/ m3 A numerical interception model (rainfall 

intercepted by trees, throughfall and stem 

flow), expenditures on stormwater quality 

and flood control program  

McPherson et 

al. 1999 

Washington DC 

Metropolitan 

Area, USA 

Stormwater 

runoff 

reduction 

27 million m3 200 €/m3 

70 400 €/ha 

The CITYGreen software with modelled 

runoff, avoided cost for storage of 

stormwater in retention ponds (30-year 

construction cycle) 

American 

Forests 2002 

Forest in 

Montgomery, 

Ala., USA 

Stormwater 

runoff 

reduction 

6.4  million m3 56 € per m3,  

26 500 €/ha 

CITYgreen software with modelled 

runoff and local 20-year construction 

cycle costs 

American 

Forests 2004 

Forest in 

Albuquerque, 

NM, USA 

Stormwater 

runoff 

reduction 

570 000 m3 155 € per m3, 

32 500 €/ha 

CITYgreen software with modelled 

runoff and local construction costs 

American 

Forests 2009 

The greenbelt in 

Hangzhou city, 

China 

Water 

regulation 

4.38 million m3 10 €/m3 The CITYGreen software with empirical 

model 

Zhang et al. 

2006, rep. by 

Jim & Chen 

2009 

Philadelphia 

(PA), USA 

Stormwater 

retention 

value 

14 million m3 (1) 0.3 €/m3;  

1 200 €/ha;  

(2) 24 €/m3 

100 850 €/ha  

Runoff calculated by the model, annual 

budget for water treatment (1) and one-

time capital costs associated with 

constructing the system to handle single 

PPA 2008 
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 large storms (2) 

Upper Cahaba 

Watershed in 

Trussville, 

Alabama, USA 

Stormwater 

quantity 

not reported 
 

16 €/m3  

(low-density 

areas) 

54 €/m3 (high-

density areas)  

WinSLAMM model (hydrology 

simulation based on comparison of no 

runoff control with various 

implementations of stormwater controls), 

one-time capital costs associated with 

constructing stormwater controls 

McKinney 

2009 

 

Many previous studies have used annual urban runoff management costs (e.g. PPA 2008; Vargas 

2009), or a combination of treatment and construction costs (e.g. McPherson et al. 1999; Zhang et 

al. 2012) as a basis for ecosystem service benefit calculations. Nevertheless, our study reveals 

surprisingly similar values for annual benefits, despite the very different approach: the estimated 

annual cost of controlling runoff is ca. 1.1 € m
-3 

for High catchments, and ca. 0.7 € m
-3

 for Low 

catchments, which leads to approx. 3 000 – 8 000 € ha
-1

 annual savings in High catchments and 3 

500 € ha
-1

 in Low catchments, if the total life cycle of a substitute is assumed to be 40 years. 

However, we expect that the ESV revealed here is more compatible with studies where construction 

costs are applied. For instance, studies reported by American Forests (2002, 2004, 2009) applied the 

CITYgreen model, resulting in a cost of controlling runoff compatible to, or exceeding those of the 

current study, while the ESV expressed as € ha
-1

 is still much lower. The ESV proposed by PPA 

(2008) – when one-time construction costs are considered – and McKinney (2009) is closest to the 

ESV calculated in our research.  

 

In general, our findings highlight how leaving pervious areas unconstructed results in greater 

savings in more intensive land-use areas. This is further supported by the decreasing cost-

effectiveness of conventional stormwater systems in catchments of higher land-use intensity. As the 

ESV in our research reflects the avoided infrastructure costs, these savings will grow with time, due 

to the increasing avoided annual O&M costs of conventional stormwater systems (Table 7). 

 

Preserving urban green areas can result in even greater monetary benefits than described above. 

Whereas our research concentrated only on urban runoff volume, benefits from improved water 

quality comprise the largest share of overall benefits (Braden & Ando 2011). Furthermore, green 

spaces comprise both direct use and indirect use values. Direct use values include benefits related to 

the protection of habitats and preserving site biodiversity (Angold et al. 2006; McKinney 2008; 

Klaus 2013), enhanced recreational opportunities and aesthetic values (Casado-Arzuaga et al. 2014). 

Indirect use values include energy savings and reducing temperature extremes (Rosenfeld et al. 

1998; Akbari 2002; Gill et al. 2007), carbon sequestration (McPherson 1998; Akbari 2002; Nowak 

& Crane 2002), contribution to groundwater recharge (Zhang et al. 2015), increased property value 
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(Payton et al. 2008) and health benefits (Maas et al. 2006; Gidlöf-Gunnarsson & Öhrström 2007). 

In addition, various other costs, although not taken into consideration in our study, accrue when an 

area gets sealed. These costs can be significant: for example maintenance and repaving costs of 

streets in 2011 were in average ca. 44 000 € ha-1 in Helsinki and 14 000 € ha-1 in Lahti (Rapal Oy 

2012). One-time recognition of these costs further increases the ecosystem value of urban green 

space by 5 – 40%, assuming the entire green space becomes paved.  

 

Overall, urban green spaces effectively perform the functions of conventional stormwater and 

runoff management approaches, as the EPA (2014) among many others have noted. Construction 

and management costs of such urban green spaces depend on the type and location of the green 

area. Despite continuing anthropogenic disturbances to urban green space, the preservation of urban 

green space appears to result in higher monetary benefits at higher land-use intensity. Although this 

may challenge the common trend aimed at densifying city infrastructure, preserving pervious areas 

in the city may serve as a proactive policy when developing sustainable cities. The economic 

significance of urban green space provides a rationale for the preservation of ecosystem services, 

especially taking into account their high potential in climate change adaptation (van Zoest & 

Hopman 2014), as well as the increasing need for the resizing and renovation of older conventional 

stormwater systems in the near future (Aaltonen et al. 2008; Nurmi et al. 2013).  

4.2. Factors affecting the reliability of our ESV calculations    

 

ESV was calculated as a direct function of the cost of controlling runoff, which, in turn, depends on 

catchment drainage density, structure of the drainage system, pipe diameter and TIA (see eq. 1, 2, 

3). In our study, ESV was influenced by site-specific characteristics of the infrastructure, such as 

pipe diameter (L1, H2), and higher than expected drainage density (in L2). Similarly, the 

configuration of the entire stormwater pipe system and disposition of the collector pipe may affect 

pipe size and cost. As these factors may impact the correlation between TIA (%) and drainage 

density (km km
-2

) (see Table 1), it is likely that ESV is also sensitive to these factors.  

 

Seasonal variation in precipitation patterns controlled runoff values, thus affecting the subsequent 

ESV (Tables 4, 5, 6, 7). All studied catchments received more than 50% of their annual 

precipitation during the warm period. In L1, more than 60% of measured annual runoff occurred 

during the warm period (Valtanen et al. 2013), which may explain the higher runoff coefficient 

(0.74) during the warm period compared to the annual runoff ratio (0.54). In the Helsinki 

catchments, the importance of spring runoff (Taka 2012) was manifested by higher annual runoff 
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compared to runoff during the warm period. However, evapotranspiration was higher during the 

warm period, enabling all catchments to manage a higher proportion of the total precipitation (Table 

4). This corroborates findings by Sillanpää (2013), who reported higher evapotranspiration losses 

during the warm period compared to the cold period. Reduced infiltration due to frozen soils and 

suppressed evapotranspiration demand during the cold period posed a slight but straightforward 

negative effect on ESV for the whole year in all catchments. As such, the unexpectedly low runoff 

measured during the entire year in L1 could be due to factors such as snow removal, leading to an 

overestimation of ESV for the year. This suggests that when catchments at the city core are 

concerned, the modelling approach may give more reliable predictions of ESV in cold climates. 

 

Similarly, the surprisingly low runoff ratios measured in H1 indicate the vast capacity of pervious 

surfaces in managing urban runoff, especially during the warm period. However, the modelled 

results imply that urban cores with low proportions of pervious surfaces and with highly dispersed 

and efficiently managed green spaces are unlikely to have high runoff infiltration or evaporation 

capacities. Furthermore, the probe measuring runoff flow in H1 was occasionally covered with 

suspended material, which influenced the flow results. Moreover, it cannot be ruled out that a 

proportion of runoff escaped from this catchment outside the studied discharge point. The amount 

of remaining water managed by green space might also be overestimated due to snow ploughing. In 

cold regions, the local hydrology is commonly affected by the collection and transportation of snow 

out of the catchment. Since the influence of snow removal is challenging to estimate, it was 

excluded from the analysis.  

 

Evapotranspiration is significant when considering water and heat balances of urban areas 

(Grimmond & Oke 1999). However, evaporation from impervious surfaces is frequently ignored in 

ESV calculations; the proportion of rainwater retained in surface depressions and evaporating 

afterwards can be notable and decrease runoff (Douglas 2011). Here, our model-derived results 

imply that evaporation from impervious areas was up to 835 m
3
/ha/a, influencing the urban water 

balance and the ecosystem service value of urban green space. For example, including evaporation 

in our model calculations decreases ESV in L1 by ca. 40% and in H1 by ca. 20%.  

 

The studied warm period (June - November) differs slightly from the growing season (April-

October) in southern Finland, when radiation and evaporation are at their highest. This may explain 

the comparatively low values of evaporation, and the small difference in evaporation between the 

warm and annual periods. Evaporation values were based on Shuttleworth's (1993) reference crop 
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evaporation equation, which was scaled down during model calibration, and refers to the 

uncertainty of using the reference crop evaporation equation developed for latitudes further south 

than Finland (see Turunen et al. 2015). The model simplified the actual processes occurring at the 

catchments, and only considered pervious and impervious areas as lumped entities. However, 

despite these simplifications, we assume that the calibration against measured warm period runoff 

coefficients of the Lahti catchments provided sufficiently accurate estimates of evaporation.  

 

As with any research attempting to combine ecological and economic datasets, our analysis is prone 

to simplifications that may affect the interpretability of the final results. However, by applying the 

replacement-cost method, we attempted to meet conditions that would ensure reliable value 

estimations, as proposed by Shabman & Batie (1978). As such, our study presents a valid attempt to 

evaluate the relationship between the amount of retained runoff, green space in urban settings, and 

subsequent ESV. However, additional information is needed before more detailed estimates of the 

monetary benefits of urban green space can be given. Moreover, improved methods to estimate 

evaporation rates from various urban surfaces are needed, together with a cost-benefit analysis to 

facilitate the justification of the investment decisions allocated to urban runoff management 

(McPherson 1992; Pataki et al. 2011). Although in this paper we have addressed urban green space 

in general, it would be beneficial to refine the value estimations to consider urban runoff 

management solutions provided by different types of green spaces, such as semi-natural and 

multifunctional green areas (e.g. rain gardens or retention basins). For instance, in Finland, semi-

natural runoff management solutions would  perhaps be cheaper in new housing areas, when some 

remaining nature within the area can be saved and used for runoff management. However, such 

solutions are often difficult to implement in older constructed areas, where retrofitting would be 

needed. Ultimately, we emphasize the importance of multidisciplinary studies in fully 

understanding the interdependencies of various sociological, ecological and economic factors that 

determine the real value of the ecosystem service of urban runoff management, as suggested by 

Troy et al. (2015). 

 

5. Conclusions 

 

The numerical approach to monetary value of urban green space provides a simple method by 

which the many services and disservices of these spaces can be evaluated. Our study used the 

replacement-cost ecosystem service valuation method to facilitate decision-making by highlighting 
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appropriate and environmentally favourable urban planning strategies. Results clearly show that 

urban green space of different sizes provides monetarily-measurable ecosystem services related to 

urban runoff management. Furthermore, we indicated that the preservation of green space results in 

significantly higher savings in catchments of higher land-use intensity compared to areas of lower 

land-use intensity. The ecosystem service value proved to be higher during the warm period, 

reflecting the larger evapotranspiration demand during warmer periods. Conosequently, this study 

proposes that the effects of evaporation from impervious surfaces influence ecosystem services, and 

thereby merits more attention. Finally, the study provides a concrete example of how to combine 

field data with computational hydrologic and monetary analyses to support decision making in 

urban planning under cold climatic conditions.  
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