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Abstract

All pharmaceutical products, including vaccines, can increase the risk of some undesired medical occurences
(adverse events). Evaluating these risks post-licensure is essential for evaluating the safety of vaccines, since
rare adverse events might go undetected in pre-licensure studies. This thesis introduces and applies a method
for vaccine safety surveillance, suitable for monitoring the safety of vaccines in near real-time, utilizing
electronic health care records. Adverse events are operationalized by diagnosis codes related to health care
visits.

Vaccine safety surveillance studies suspected, biologically plausible causal relationships between a vaccine
and an adverse event. Information regarding such relationships are called safety signals. Safety surveillance
can be seen as an observational study for which different study designs could be used. The popularity of
vaccination, self-selection and changes in diagnosis coding practises, along with other possible sources of bias,
present challenges for commonly used cohort designs. Self-controlled study designs such as the self-controlled
case series (SCCS) eliminate time-invariant confounders and are therefore often more suitable for evaluating
vaccine risks. This thesis introduces both a simple and a more general version of SCCS and explicitly describes
the assumptions related to the method.

A vaccine safety surveillance method involves a decision rule for generating safety signals. Natural goals
of a safety surveillance method are to control the rates of false positive and false negative signals, as well
as to generate a signal as soon as possible when an association between the vaccine and the adverse event
exists. Statistical hypothesis testing can be used to derive the decision rules. This thesis describes the
maximized sequential probability ratio test (maxSPRT), a hypothesis testing method designed for vaccine
safety surveillance.

Binomial maxSPRT (BmaxSPRT) is a variant of maxSPRT based on a self-controlled study design such as
the SCCS. The BmaxSPRT method addresses hypotheses concerning the relative incidence of adverse events
during specified risk and control periods. The derivation of the decision rules for BmaxSPRT, including the
computation of critical values, is described in detail both mathematically and algorithmically in this work.

As a proof-of-concept BmaxSPRT is retrospectively applied to Finnish register data. The relationships
between the incidence of febrile seizures and three childhood vaccines, Measles-Mumps-Rubella (MMR),
Pneumococcal (PCV) and the Rota virus vaccination (Rota) are studied. BmaxSPRT generated an expected
safety signal related to MMR; the incidence rate of febrile seizures was higher during a period 0− 13 days
following MMR vaccination compared to a period 14− 41 days following vaccination (relative rate RR = 1.59
at the time of signal). Results for PCV are inconclusive and the experiment highlights the need for more in
depth analysis regarding PCV vaccinations and febrile seizures.

The sensitivity of BmaxSPRT to the specifications of the risk and control periods is also studied in this thesis.
The sensitivity analysis highlights the importance of careful consideration of the risk and control periods by
quantifying the loss of power due to poor choices.
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Tiivistelmä

Kaikilla lääkkeillä, rokotteet mukaanlukien, voi olla odottamattomia vaikutuksia. Rokotteiden epätoivottuja
vaikutuksia kutsutaan haittavaikutuksiksi. Harvinaisia haittavaikutuksia ei välttämättä havaita ennen lisen-
sointia tehdyissä tutkimuksissa ja siksi rokotteisiin liittyviä riskejä on syytä seurata myös lisensoinnin jälkeen.
Tämä Pro gradu -tutkielma esittelee rokotteiden turvallisuustarkkailuun suunnitellun tilastollisen menetelmän,
jonka avulla rokotteiden turvallisuutta voidaan tarkkailla lähes reaaliajassa hyödyntäen elektronisessa muo-
dossa tallennettuja terveysaineistoja. Elektroniseen terveysaineistoon pohjautuvassa turvallisuustarkkailussa
haittavaikutukset operationalisoidaan hoitokäynteihin liittyvien diagnoosikoodien perusteella.

Turvallisuustarkkailussa tutkitaan epäiltyjä, biologisesti mahdollisia kausaaliyhteyksiä rokotteen ja hait-
tavaikutuksen välillä. Näihin yhteyksiin liittyvää informaatiota kutsutaan turvallisuussignaaleiksi. Rokottei-
den turvallisuustarkkailu on havaintopohjainen tutkimus, johon voidaan soveltaa erilaisia epidemiologisia
tutkimusasetelmia. Rokotusten suosio, valinnaisuus ja muutokset diagnoosikoodien käytössä aiheutta-
vat haasteita yleisesti käytössä oleville kohorttitutkimuksille. Itsekontrolloidut tutkimusasetelmat, kuten
self-controlled case-series (SCCS), poistavat ajasta riippumattomat sekoittavat tekijät ja ovat siksi usein
sopivampia rokotteiden riskien tutkimiseen. Tämä työ esittelee sekä yksinkertaisen että yleisemmän version
SCCS-menetelmästä.

Turvallisuustarkkailumenetelmä sisältää päätössäännön turvallisuussignaalin tuottamisesta. Luonnollisina
tavoitteina on kontrolloida virheellisten päätösten määrää ja tuottaa signaali mahdollisimman nopeasti silloin,
kun rokotteen ja haittavaikutuksen välillä on yhteys. Nämä tavoitteet saavuttavat päätössäännöt voidaan
johtaa tilastollisen hypoteesitestauksen avulla. Työni esittelee rokotteiden turvallisuustarkkailuun suunnitellun
hypoteesintestausmenetelmän maximized probability ratio test (maxSPRT) sekä sen itsekontrolloituun
tutkimusasetelmaan perustuvan BmaxSPRT-variantin. BmaxSPRT-menetelmässä tutkitaan hypoteeseja
liittyen haittavaikutusten esiintyvyyteen määritellyissä riski- ja kontrolli-periodeissa. Työssäni kuvaan
eksplisiittisesti BmaxSPRT-menetelmään liittyvän koeasetelman ja päätössäännöt.

Toteuttamiskelpoisuuden osoitukseksi sovellan BmaxSPRT-menetelmää retrospektiivisesti suomalaiseen
rekisteriaineistoon. Sovelluksessa tutkin kolmen rokotteen; tuhkarokko-sikotauti-vihurirokko (MPR),
pneumokokki (PCV) ja rotavirus (Rota), yhteyttä kuumekouristuksiin. Sovelluksessa BmaxSPRT-menetelmä
tuotti odotetun signaalin MPR-rokotteeseen liittyen. Kuumekouristusten esiintyvyys on korkeampi 0− 13
päivää MRP-rokotteella rokottamisen jälkeen verrattuna 14 − 41 päivää rokottamisen jälkeen (relative
rate RR = 1.59). PCV-rokotteeseen liittyen tulokset eivät ole ratkaisevia ja sovellus korostaa tarkemman
tutkimuksen tarvetta PCV-rokotteen ja kuumekouristusten yhteydestä.

Työssäni analysoin myös BmaxSPRT-menetelmän sensitiivisyyttä riski- ja kontrolli-periodien valinnalle.
Analyysi korostaa periodien valinnan tärkeää roolia osoittamalla huonojen valintojen yhteyden menetelmän
voiman vähenemiseen.

Avainsanat: lääketurvallisuus, rokoteturvallisuus, turvallisuustarkkailu, sequential analysis, self-controlled
case series, maxSPRT, BmaxSPRT
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1 Introduction

1.1 Safety surveillance

Pharmaceutical products (drugs) can have unintended side effects. An untoward medical occurrence in
a patient administered a drug is called an adverse event. Rare adverse events related to drugs are often
impossible to detect in pre-licensure studies and therefore there is an incentive to monitor the safety of a
drug post-licensure [Kulldorff et al., 2011]. Monitoring the safety of drugs post-licensure is called safety
surveillance.

The information related to a possible causal relationship between a drug and an adverse event is called a
safety signal (signal). The interest in safety surveillance is in finding these signals. According to Nelson et al.
[2015, p. 179], post-licensure safety aims related to drugs can be classified into three stages:

1. Signal identification considers a large number of events and involves detecting signals related to
unexpected adverse events.

2. Signal refinement considers drug-event pairs suspected to have a causal relationship, based on
biological plausibility or a previsouly identified signal. Signal refinement addresses specified hypotheses
related to the pairs.

3. Signal confirmation involves a one-time, more in-depth study of a previously generated signal.

An assumption about the type of safety surveillance considered in this thesis is that a biologically plausible
exposure-event pair has been previously identified. The method to be introduced requires that the relationship
between the exposure and the adverse event can be characterized by defining a time interval of possibly
increased risk. This places the safety surveillance considered in this work to the refinement stage.

In this thesis the drug of interest is a vaccine product (vaccine). The goal is to introduce and utilize a vaccine
safety surveillance method to make decisions related to the generation of safety signals, utilizing electronic
medical records.

1.2 Vaccine safety surveillance

In vaccine safety surveillance, the researcher or an automated system monitors the safety of vaccines. If an
unexpectedly large number of adverse events are observed, a safety signal is generated. Further action can
then be taken, for example a confirmation analysis can be performed.

The observations might not always correspond to the true state of association between the vaccine and the
adverse event, leading to false positive or false negative signals. Natural goals of vaccine safety surveillance
are to control the expected rates of false positive and false negative signals. It is also desirable to generate a
signal as soon as possible, if an association between the vaccine and an adverse event exists.

Some statistical methods designed specifically for vaccine safety surveillance exist. This thesis will focus on
the maximized sequential probability ratio test (maxSPRT), which is a statistical hypothesis testing method
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designed for vaccine safety surveillance [Kulldorff et al., 2011]. Vaccine safety surveillance based on maxSPRT
has been utilized in many countries such as the USA, UK, Taiwan and New Zealand. The main focus has
been on studying the effects of influenza vaccines. [Leite et al., 2016]

Statistical hypothesis tests such as the maxSPRT aim to control the expected rate of errors when making
decisions under uncertainty. In statistical theory the false positive signals are called type I errors, and the
false negative signals are called type II errors. The expected true positive signal rate is called the power.

There are multiple variants of the maxSPRT method such as the Poisson maxSPRT (PmaxSPRT), binomial
maxSPRT (BmaxSPRT) and conditional PmaxSPRT, along with further versions designed for handling
grouped observations. According to Leite et al. [2016], the most popular variant of maxSPRT has been
PmaxSPRT followed by BmaxSPRT. In this work the focus will be on the BmaxSPRT variant, a self-controlled
safety surveillance method.

One situation when a safety surveillance method such as the BmaxSPRT could be applied, would be an
introduction of a new vaccine to a national vaccination program, such as the introduction of chicken pox
vaccination starting in Finland on September 1, 2017. If there are previously identified safety signals (any
reasons to suspect a possible causal relation between the vaccine and some rare adverse event), safety
surveillance could be initiated to refine these signals, utilizing accumulating data from electronic health
records.

1.3 Elements of safety surveillance

In this work I will generally view a safety surveillance method as consisting of three elements: (1) data
accumulation (2), study design and (3), decision rule for generating signals. Table 1.1 describes options for the
three elements. A unique combination of the elements can be thought to define a unique safety surveillance
method. The different variants of maxSPRT can therefore be viewed as unique safety surveillance methods
which vary in terms of the underlying study design and assumptions related to data accumulation. They all
use (sequential) hypothesis testing as the decision element.

Table 1.1: Elements of Vaccine safety surveillance and different
options related to them.

Element Options

Data accumulation Continuously over time, at discrete time points (grouped data)
Study design Case-only design, cohort design, case-control design
Decision rule Hypothesis testing
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For any reasonably rare adverse events, daily collected data can be considered as continuous observations. In
this work I will mainly consider situations where electronic health care data accumulate daily and therefore the
focus will be on continuous observations. I will a utilize a case-only design – and specifically the self-controlled
case series (SCCS) – as the design element and I will use maxSPRT sequential hypothesis testing as the
decision element of the vaccine safety surveillance method. These choices (continuous observations, a case-only
design and maxSPRT) lead to the continuous binomial variant of maxSPRT, BmaxSPRT.

1.4 The operationalization of exposure and outcome

The starting point of vaccine safety surveillance is the definition of one or several vaccine - adverse event
pairs. In this thesis the biological condition of interest (the adverse event) is operationalized by a group of
medical diagnoses related to hospital visits. The medical diagnoses are identified based on a diagnosis code
recorded in an electronic medical record database (register). Vaccinations are operationalized similarily from
medical records, identified using the vaccine’s name or identification code.

Utilizing register data for vaccine safety research is both economical and powerful, because the data collection
is practically free and the registers allow for near population level studies. However, it is important to note
that registers are secondary data sources – the data are originally collected for other reasons than the research
question at hand – and therefore the selection, quality and methods of the data collection are not controlled
by the researcher [Sørensen et al., 1996]. A visit to a hospital resulting in a certain diagnosis code might not
directly relate to the biological condition of interest.

In Finland, medical diagnoses data are available from electronic health record databases such as The
National Hospital Discharge Register (HILMO) and The Register of Primary Health Care Visits (AvoHILMO).
Vaccination data are available from the National Vaccination Register (NVR). AvoHILMO, HILMO and
NVR all contain time-stamped patient-level information and the data from the registers can be linked using
a personal identification code, unique to all individuals in Finland. Diagnoses and vaccinations can thus be
linked on an individual level and the relative timing of vaccinations to medical diagnoses can be asserted.

There are two diagnosis classifications used in Finland: the International Classification of Diseases and
Related Health Problems, 10th edition (ICD-10) and to lesser extent the International Classification of
Primary Care, 2nd edition (ICPC-2). The ICD-10 is much broader than the ICPC-2, but the ICPC-2 can be
used alongside the ICD-10 due to cross-tabulation provided by the World Health Organisation [THL, 2011].

Data from AvoHILMO and NVR are available as daily collections and at the time of writing this thesis (2017),
data from HILMO are available three times a year. Near real-time vaccine safety surveillance considered in
this thesis is a possibility in Finland, utilizing data from AvoHILMO and NVR.
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1.5 Outline

This thesis introduces the vaccine safety surveillance method BmaxSPRT in detail by breaking it down to
its elements. The study design and decision rules for signal generation are the main focus of this work and
are given thorough treatment. BmaxSPRT is also applied to data from HILMO and the sensitivity of the
method is studied by simulation. The outline of the thesis is as follows.

• Chapter 2 discusses the design elements in vaccine safety surveillance, focusing on case-only study
designs.

• Chapter 3 discusses the decision elements in vaccine safety surveillance, focusing on sequential
hypothesis testing. Data accumulation and the case of grouped observations are discussed in section 3.4.

• Chapter 4 offers a proof of concept application of the BmaxSPRT method, utilizing three different
vaccine exposures and a single outcome of interest. A simulation experiment studies the effect of design
choices to the power of BmaxSPRT.

The thesis ends with conclusions.

2 Study designs for vaccine safety analyses

In vaccine safety surveillance the researcher (or a defined automated system) observes, but does not intervene,
with the events that occur. Therefore safety surveillance falls under observational studies. The researcher
observes accumulating data related to vaccinations and medical diagnoses and attempts to answer the question:
has the rate of adverse events for a vaccinated individual increased due to the exposure.

A natural follow-up question is: increased as compared to what? To answer this question, the researcher
needs a study design which defines the groups of individuals to be compared. Ideally, the defined groups
would only differ with respect to their exposure status, so that observed changes in the rates of events could
be directly assigned to the exposure. In practise this is difficult to achieve.

Electronic health care databases such as the hospital discharge register (HILMO) can be utilized as sources of
data for medical diagnoses to operationalize the biological condition of interest (adverse event). However, the
visit to a hospital resulting in a certain diagnosis code might not directly relate to the adverse event. This
can introduce biases when comparing observations from different time periods, due to for example changes
in diagnosis coding practises, which are then observed as changes in event rates. The chosen study design
should be as robust to these changes as possible.

If the study design is poor and the chosen groups are not comparable, the studied sample can be biased: the
observed effect of the exposure may be caused by some other differences between the groups. This means that
the rate of false positive or false negative signals generated by the safety surveillance method may be inflated.

In their systematic review of vaccine safety surveillance applications, Leite et al. [2016] found that from 11
recently generated signals, only 3 were confirmed as true signals. The false positive signals were assigned to
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1. Confounding factors that have not been considered.
2. Misclassification of the outcome.
3. Changes in the true incidence or coding practises.
4. Inappropriate comparison groups.
5. Uncertainty in background rates.
6. Type I errors. [Leite et al., 2016, p. 234].

All the above reasons except the 2nd one are affected by the study design.

In vaccine safety surveillance, the study design should make it unlikely to introduce biases while enabling
the generation of a true signal as reliably as possible. In the following sections, I will first compare possible
observational study designs for safety surveillance: Cohort designs, case-control designs and case-only designs.
The rest of the chapter will then focus on the two most popular case-only study designs in pharmagovigilance
(drug safety): the self-controlled case series (SCCS) and the case-crossover design (CCO).

2.1 Observational epidemiological study designs

Ultimately all epidemiological study designs share the same goal: to compare some group of individuals
(cases or exposed) to another group of individuals (controls or unexposed). In vaccine safety surveillance, the
question of interest is whether and how the exposure to the vaccine causes an increased risk of an adverse
event. The main observations of interest relate to medical diagnoses which occur after exposure. I will
consider the following three observational study designs for safety surveillance:

1. Cohort design: Time is viewed from the point of view of exposure. Groups of exposed and non-exposed
individuals are followed forward in time. The incidences of events are compared between the groups.

2. Case-control design: Time is viewed from the point of view of the event. Individuals with events
(i.e. cases) are matched to one or more individuals without events (i.e. controls). The proportions of
those that have been exposed are compared between the cases and controls.

3. Case-only designs: Only individuals with events are sampled and are self-matched, using so called
risk and control periods to define the events as either cases or controls. Event incidences or exposure
rates are compared between the periods.

The designs have different strengths and weaknesses, some of which are listed in Table 2.1.
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Table 2.1: Strengths and weaknesses of different epidemiological
study designs.

Design Strengths Weaknesses

Cohort design
• Can provide an estimate of

the baseline incidence
• Utilizes all available data

resulting in better statistical
efficiency

• If the exposure rate is high,
the unexposed group from
the same time period will be
small

• Confounders can affect the
distribution of exposure,
possibly resulting in bias

Case-control design
• If matched by age and time ,

controls for time-varying
confounders such as age and
seasonality

• Needs little data specially
with rare events

• The unexposed group can be
small

• Identifying suitable matches
might be difficult

• Confounders can affect the
distribution of exposure,
possibly resulting in bias

Case-only design
• Self-controlled: eliminates

selection biases and
confounding related to
control subjects and
time-invariant
characteristics.

• Does not need a baseline
incidence estimate

• Needs only data on cases

• The choice of the risk and
control periods plays a
crucial role

• Time-dependent confounders
such as age and seasonality
must be explicitly included
in the model

2.1.1 Cohort and case-control designs

The cohort design utilizes all available data and is therefore often a preferred choice if data from the whole
population are available. However, the nature of the exposure-event pairs considered here poses problems to
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cohort designs. One problem is that exposure to vaccination is optional, possibly resulting in a selection bias.
A second problem relates to using medical diagnoses as proxies for the underlying biological condition of
interest. I will provide two examples to clarify.

One way to utilize a cohort or a case-control design would be to compare the rates of events between the
vaccinated and unvaccinated populations of selected birth cohorts. This would provide a comparison which
utilizes all available data from a single time period. The problem with this approach is that vaccination is
both optional and usually very popular. Therefore, the group of unvaccinated individuals is often small and
possibly biased due to selection. The latter may mean that the observed differences in the rates of events are
due to the same reasons that cause individuals to become or not become vaccinated.

A second example of a cohort design would be a comparison of cohorts born before and after the introduction
of a new vaccine to a vaccination program. The pre-vaccination era could be used to estimate the baseline
incidence of adverse events and the incidence during the post era could then be compared to the baseline.
This approach utilizes a great amount of data and provides a seemingly unbiased comparison, assuming
that exposure to vaccination is the only significant difference between the cohorts. The problem with this
approach is that diagnosis coding practises can change over time due to changes in recommendations or
practises. The observed differences in event rates based on electronic health care databases can therefore be
simply due to these changes.

2.1.2 Case-only designs

Case-only designs utilize data only from cases (individuals with the events of interest). In case-only designs,
each individual with an event acts as his/her own control and hence these designs are also called self-controlled
designs. The self-controlling property can be achieved by splitting the observation period of individuals into
periods of “risk” and “control” and then labeling events as either “case” or “control”, depending on during
which period they occur in.

Self-controlled designs have a very desirable property: comparisons are made within the individuals such
that all time-invariant confounders are eliminated [Nordmann et al., 2012]. Since self-controlled designs
utilize data only from cases, the smaller sample size could decrease statistical power compared to other
designs. However, simulation studies by both McClure et al. [2008] and Glanz et al. [2006] have found that
self-controlled designs retain relatively high power compared to the cohort and case-control designs despite
utilizing less data.

In their systematic review of case-only designs, Nordmann et al. [2012] found that the two most popular
case-only designs utilized in pharmacovigilance are the case-crossover design (CCO) and the self-controlled case
series design (SCCS). They also remark [p. 2] that “With the development of health information technology
. . . these designs seem particularly appropriate to analyze pharmacovigilance data”.
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2.1.3 CCO and SCCS

The case-crossover design (CCO) and the self-controlled case series design (SCCS) are two of the most popular
case-only designs. Both designs implicitly or explicitly define risk and control periods during which rates of
adverse events are of interest. A risk period is a time interval following exposure during which the incidence
rate of the adverse event can be thought of being potentially related to the exposure. A control period
consists of one or more time intervals during which the incidence rate is assumed to be according to the
normal background (baseline) rate of the same individuals.

• The case-crossover design (CCO) is a case-only study design derived from a case-control design logic.
Time is viewed from the point of view of the event. The random variables analysed are retrospectively
ascertained exposures.

• The self-controlled case series design (SCCS) is a case-only study design derived from a cohort
design logic. Time is viewed from the point of view of the exposure. The ages at vaccination are
regarded as fixed, and the random variable of interest is age at event, conditionally on its occurrence
within a pre-determined observation period. [Farrington, 2004, pp. 2066-2067].

In CCO and SCCS, events occuring during a risk period can be labeled as “cases” and events during the
control period as “controls.” Both designs aim at comparing the incidence rates of adverse events between
the different periods, “within individuals”. The study subjects contribute at-risk time for both cases and
controls because person-time from any one subject accrues from both his/her case and control periods.

From a statistical inference point of view, incidence rates can be compared with their ratio, called the rate
ratio, denoted by RR. The rate ratio between two constant incidence rates λ1 and λ0 is

RR = λ1

λ0
. (1)

The rate ratio is the parameter of interest in both the CCO and SCCS. The SCCS approaches the problem
by directly considering the rates of events during different periods of risk (e.g. a risk and a control period).
CCO approaches the problem “backwards” by considering the rates of exposure instead.

CCO and SCCS are both suitable for studying rare adverse events. According to Farrington [2004], both
CCO and SCCS can and have been used for vaccine safety analysis. According to Maclure et al. [2012], they
are better than cohort designs for investigating transient effects of vaccines. What now follows is a detailed
description of the SCCS method followed by a description of CCO.

2.2 The self-controlled case series design: SCCS

In the self-controlled case series design (SCCS) developed by Farrington [1995], the goal is to compare the
relative rates of adverse events during disjoint risk and control time periods, specified in relation to the time
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A simple Self Controlled Case Series design

x

age of individual

t_1 t_0

exposure
event
risk period
control period

Figure 2.1: A simple example of a SCCS design where the period immediately following exposure is defined
as the risk period with length t1 and a time period following the risk period is defined as the control period
with length t0. In this example, the event occurs during the risk period

of vaccination. The effect of the vaccination is estimated via the rate ratio RR = λ1/λ0, where in a simple
case

• λ1: the rate of the event during a period when the exposure to vaccination is assumed to have an effect
(risk period)

• λ0: the rate of the event during a period when the vaccination is assumed not to have an effect (control
period).

If there is a significant change in the incidence during the risk period, the rate ratio will differ from 1, with
values greater than 1 indicating a positive association between the exposure and the event. Values less than 1
indicate a negative association and are usually of no interest in safety surveillance.

The general idea of SCCS is to describe the event incidence as a function of the (constant) individual baseline
incidence, effects due to vaccine exposure and other possible time-dependent factors such as age. Statistical
inference in SCCS is based on a conditional likelihood which removes the individual incidence as a nuisance
parameter. Inference concerning relative incidences (rate ratios) can therefore be done “within individuals”
so that the individual baseline incidences have no impact on the inference.

The risk period(s) are defined based on previous knowledge regarding the relationship between the vaccine
and the adverse event. In a simple case a single risk period could be a period of two weeks immediately
following vaccination. A control period can also be explicitly defined, or alternatively all other time during
the observation period can be considered as the control period. See Figure 2.1 for an illustration of the
former.

2.2.1 Observation period

In SCCS, the observation period for individual i is the time period during which an event could be sampled
[Whitaker et al., 2006]. The observation periods could for example be based on a calendar time period and
an age interval. This definition can lead to observation periods of different lengths, as the start or end of the
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calendar time period might shorten the observation period of some individuals.

In this work I will use birth years of individuals to specify eligibility to the study. The observation period
for the eligible individuals is based on an age interval during which events can be sampled. If not explicitly
mentioned, the reader can assume that all individuals considered are eligible.

The smallest measurable unit for time is a day, since data in electronic health care data bases such as
AvoHILMO are collected daily. Therefore, for each individual, I will index the observation period by age in
days denoted by d. A single day has a time unit of 1.

2.2.2 Statistical framework

The following sections provide a mathematical description of SCCS, largely inspired by the description of the
general SCCS given in the case series tutorial by Whitaker et al. [2006, pp. 9-10] with influences from the
description of SCCS by Bernardo et al. [2011, pp. 10-12]. I will first give a general framework for the SCCS
method by introducing the concepts of a Poisson process and incidence rate function and then describe the
conditional likelihood for the parameters of that function.

2.2.2.1 Poisson process

An underlying assumption in the SCCS method is that adverse events occur as a Poisson process. A Poisson
process describes the probabilities for the numbers of events during a set of time intervals. An important
assumption related to the Poisson process is that the random variables corresponding to these numbers of
events are independent between all disjoint time intervals. This implies that an occurrence of an adverse
event should not influence the probabilities of future adverse events. This assumption is likely to be violated
in practise, but if the event is rare (relative to the length of the observation period), then this violation is
unlikely to have practical consequences.

Definition (Poisson process). A counting process [Ross, 1996] {Y (t), t ≥ 0} is a Poisson process with rate λ
if

1. Y (0) = 0

2. Y (t) has independent increments

3. The probabilities for the number of events during an interval of length t are given by the Poisson distribution
with E[Y (t)] = λt:

Y (t) ∼ Poisson(λt)⇔ P (Y (t) = yt) = (λt)yt · e−λt

yt!

2.2.2.2 Incidence rate function

An assumption is made that during the observation period, adverse events for individuals i = 1, 2, ..., N arrive
as a non-homogenous piecewise-constant Poisson process. The expected number of events (the incidence rate)
for each individual is constant within each day, but can vary between days.
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The incidence rate during day d for individual i is given by the incidence rate function λid, which depends on
a constant individual effect φi and a time-dependent effect θ. The latter captures exposures to vaccination
and can also capture factors such as age and seasonality. The effect of θd is assumed to be multiplicative, so
that the incidence rate for individual i during day d is given by

λid = exp(φi + θd). (2)

Due to the properties of the Poisson process the cumulative incidence over a number of days during the
observation period is a sum of the daily incidences. If the incidence stays constant for a period of consequent,
say, tq days, the incidence during that period is given by the number of days times the daily incidence.
Assuming that the observation period consists of such disjoint periods, the incidence rates are then given by

λiq = tq · exp(φi + θq), (3)

where θq is constant for all d days in period q. For example, in a simple case as in Figure 2.1 where
q ∈ {risk period, control period}, the incidence rate for any one individual takes on two different values.

2.2.2.3 Likelihood

Assume now that events of i = 1, 2, ..., N individuals are identified, with n = (n1, ..., nN ), ni ≥ 1 events for
a total of n events. Assume that events during the observation period arrive as a Poisson process with an
incidence rate as defined in (3). Denote the number of events for individual i during period q as yiq. The
probabilities for the numbers of events during the disjoint intervals q are given by the Poisson distribution:
Yiq ∼ Poisson(λiq). The individual contribution to the likelihood function, based on the obsevations, is
therefore

Li(θ) = P (yi | φi,θ) =
∏
q

P (yiq | φi, θq) ∝ exp{−
∑
q

λiq}
∏
q

(λiq)yiq , (4)

where λiq = tq · exp(φi + θq) as in (3). The likelihood contains the individual baseline incidence φi which is a
nuisance parameter, since the real interest is in the effect of the vaccination and/or age, captured by θ.

The total number of events for the individual, ni =
∑
q yiq, turns out to be a sufficient statistic for φi,

meaning that conditioning on ni removes the dependency on φi. It is therefore convenient to operate with
the conditional likelihood instead. Since the random variable corresponding to the total number of events
is a sum of Poisson random variables, it is also Poisson distributed: ni ∼ Poisson(

∑
q λiq). The individual

contribution to the conditional likelihood is
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Li(θ | ni) = P (yi | ni, φi,θ) = P (yi | φi,θ)
P (ni | φi,θ) ∝

∏
q λ

yiq

iq(∑
q λiq

)∑
q′ yiq′

=
∏
q

(
λiq∑
q′ λiq′

)yiq

. (5)

Now, plugging in the incidence rate defined by (3), the conditional likelihood is

Li(θ | ni) ∝
∏
q

(
tq · eφi · eθq∑
q′ tq′ · eφi · eθq′

)yiq

=
∏
q

(
tq · eθq∑
q′ tq′ · eθq′

)yiq

, (6)

which is a multinomial likelihood where the individual baseline incidences have been canceled out. This means
that using the conditional likelihood, the inference concerning the parameter θ cannot be influenced by the
individual parameters φi. In that sense the SCCS design is self-controlled. However, it should be noted that
all factors which depend on the period q, such as age, remain. The effect of age can be separately included in
the model in the general version of SCCS where the observation period is split into periods by age group.

Next I will present the simple and the general SCCS which are both based on the assumptions of a piecewise-
constant Poisson process and a conditional likelihood. The simple SCCS is particularily useful for the safety
surveillance method BmaxSPRT, to be introduced later. The general SCCS is relevant for future research in
developing safety surveillance methods.

2.2.3 Simple SCCS

Consider an SCCS with a simple incidence rate function where there are two periods of interest: a risk period
and a reference control period. Denote these periods by the indicator k ∈ {0, 1} where 1 indicates the risk
period and 0 indicates the control period.

The risk and control periods are disjoint and of lengths t1 and t0 respectively, and are defined in relation to
the time of exposure to vaccination. For example, a time period immediately following vaccination can be
defined as a risk period and a time period following the risk period can be defined as a control period, as
illustrated in Figure 2.1. The incidence rate function (3) takes the form

λik = tk · exp(φi + ψk), k = 0, 1. (7)

Assume that during the control period ψ0 = 0 so that the incidence rate is simply t0 ·eφi . The incidence during
the risk period is given by t1 · eφieψ1 . The parameter of interest is ψ1 which quantifies the multiplicative
effect that exposure has on the incidence, as now RR = λi1/λi0 = eψ1 is the rate ratio of the incidence rates
during the risk and control periods.

Now assume that events of i = 1, 2, ..., N individuals are identified. Denote the number of events for individual
i during the risk period as yi1 and during the control period as yi0. Each individual has ni = yi1 + yi0 events
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during the periods of interest and the total number of events during the periods is n =
∑
i ni. According to

equation (6), the individual contribution to the conditional likelihood for the parameter ψ1 is

Li(ψ1 | ni) ∝
∏
k=0,1

(
tk · eψk∑
k′ tk′ · eψk′

)yik

=
(

eψ1

eψ1 + t0/t1

)yi1 (
t0/t1

eψ1 + t0/t1

)ni−yi1

, (8)

which is a binomial likelihood in which the only unknown parameter is the common rate ratio RR = eψ1 . If
one labels the events that occured during the risk period as “cases”, and the events that occured during the
control period as “controls”, the probability of an event labeled as a case depends only on RR and the ratio
of the lengths of the two periods z = t0/t1. The probabilities of a “case” (“success”) and “control” (“failure”)
are given by

P (”case”) = p = RR

RR+ z
, P (”control”) = 1− p = z

RR+ z
. (9)

Assuming that individuals are independent, the total conditional likelihood can be seen as independent
binomial trials with a homogenous probability of success, p = RR/(RR+z). Given that observations included
y1 =

∑
i yi1 “cases”, the total conditional likelihood for the parameter RR is

L(RR | n) = P (y1 | RR,n) ∝
(

RR

RR+ z

)y1 ( z

RR+ z

)n−y1

. (10)

2.2.4 General SCCS

I will now present a more general version of SCCS, including an age effect parameter and multiple risk periods
with varying risks. Varying risks can be motivated by for example the desire to include the effects of different
doses of a vaccine. The inclusion of an age effect is motivated by the fact that many biological conditions are
age-dependent.

Assume again that adverse events during the observation period arrive according to a piecewise-constant
Poisson process with an incidence rate function similar to (3). The observation period for each individual is
split into disjoint intervals by age groups indexed by j and disjoint risk periods indexed by k. The number of
days that individual i spends in risk/control interval k while belonging to age group j is denoted by tijk.
The incidence rate function for i can then be written as

λijk = tijk · exp(φi + γj + ψk), (11)

where for the reference age group γ0 = 0 and for the reference risk period (control period) ψ0 = 0. Now denote
the number of events observed during interval (jk) by yijk. The individual contribution to the conditional
likehood (5) is
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Li(ψ,γ | ni) ∝
∏
jk

(
tijk · eγj · eψk∑

j′k′ tij′k′ · eγj′ · eψk′

)yijk

. (12)

Assuming that individuals are independent, the total conditional likelihood is

L(ψ,γ | n) ∝
∏
i

∏
jk

(
tijk · eγj · eψk∑

j′k′ tij′k′ · eγj′ · eψk′

)yijk

, (13)

which, again, is the multinomial likelihood where all the individual baseline incidences have been cancelled
out.

2.3 The case-crossover design: CCO

The most popular case-only design utilized in pharmacovigilance is the case-crossover design (CCO). CCO is
a modification of a case-control design, originally developed by Maclure [1991] to study the effect of transient
exposures to acute events. Its use in drug safety studies has increased during 2000-2010 [Nordmann et al.,
2012]. CCO has also been used for vaccine safety analysis [Farrington, 2004, p. 2066].

2.3.1 Description

Following Maclure et al. [2012, pp. 50-51], one way to describe the CCO design is as follows: Assume that
rare events are observed for individuals i = 1, .., N . Each event occurs during some event day and a control
day is defined as the day d time units (e.g. days) before the event day. For example, the control day could be
two weeks (14 days) before the event day. For each sampled individual i, exposure status is retrospectively
examined. Exposures during a time interval of length t immediately preceding the event day are considered as
related to the event. Exposures occuring during a time interval of the same length (t) immediately preceding
the control day are considered as not related to the event.

The periods where the exposure status is of interest are sometimes called risk and control periods in CCO
literature. I will call these periods the related period and the non-related period, respectively. The idea of
the CCO design is to compare the rates of exposure between the related and the non-related periods. This
description of CCO is illustrated in Figure 2.2.

2.3.2 Prospective and retrospective arguments

The description of CCO given above follows the so-called retrospective conditional argument of case-control
studies. In the retrospective probability model, the exposures are conditioned by the case or control status
and the odds ratio of exposure between different event status (“case” or “control”) is the parameter of interest.
However, the estimation of disease-exposure relationship in case-control studies may also be approached using
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A simple Case−crossover design

x

age of individual

event day
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Figure 2.2: A graphical illustration of the CCO design. Exposures occuring immediately before the event
day are considered as related to the event and exposures occuring immediately before the control day are
considered as not related to the event.

a prospective conditional argument. In the prospective probability model, the event status is conditioned on
the exposure and the odds ratio of the event status between levels of exposure is estimated [Clayton and
Hills, 1993, ch. 16].

From a prospective point of view, a time interval following exposure is called the effect period in CCO
literature, during which the rate of events for the exposed individuals is possibly increased. The effect period
corresponds to the related period and is of identical length. The effect period in CCO is comparable to the
risk period in SCCS. I will therefore use the term risk period to refer to the effect period. Similarily, a control
period of identical length to the non-related period can be defined.

For example, the risk period could be a period of two weeks following vaccination, in which case the related
period is the period two weeks prior to the event day. A control period could be defined as the period of two
weeks following the risk period, in which case the control day would be the day two weeks prior to the event
day and the non-related period would be the period two weeks prior to the control day. See again Figure 2.2
for an illustration.

The question of interest in both CCO and SCSS is the same, i.e., to infer whether the rate of events is
affected by exposure. Although the CCO method is based on the idea of exposures as the random variable,
the parameter of interest can be defined as any of the prospective relative risk parameters: the odds ratio,
relative risk or the incidence rate ratio [Nordmann et al., 2012, p.8].

2.3.3 CCO in the literature

The literature concerning the CCO approach may be confusing as the reader may have to interpret from
the context whether the author has chosen to treat the design from a prospective or retrospective point of
view and sometimes both views are used simultaneously. For example, Nordmann et al. [2012, p. 2] describe
the method using phrasing “With this design, the probability of exposure in the risk period is compared to
the probability of exposure in control period(s)”. They however then go on to state that “same probability of
event occurrence during case and control periods” is a major assumption of the method.
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When discussing CCO, Farrington [2004] instead writes that “the underlying probability of vaccination
should be the same in all intervals”, which is in line with treating exposure as the random variable of
interest. Farrington [2004, p. 2066] then adds that this assumption “is unlikely to hold for paediatric vaccines
administered according to stricter schedules”.

To estimate the relative risk in the CCO setting, Maclure [1991] suggests using the Mantel-Haenzel estimator
to approximate the rate ratio parameter. Further discussion of maximum likelihood estimation in the CCO
setting is provided by Marshall and Jackson [1993].

2.4 Study design conclusions

Cohort designs are problematic for vaccine safety studies due to many possible sources of bias. Case-only
designs are attractive because they implicitly control for time-invariant confounders.

Of the two most popular case only designs, SCCS compares somewhat favourably to CCO for vaccine safety
analyses. Farrington [2004, p. 2066] has pointed out that in the case of paediatric vaccines there is a conceptual
problem with the CCO design, where vaccination times are treated as random variables. It is more natural
to view event times as the random variables of interest, since vaccinations often occur according to a strict
schedule.

SCCS assumes that the vaccination time is fixed and the time of the adverse event is a random variable
of interest. SCCS allows for direct inference concerning the population parameter of interest, which is the
relative rate of adverse event incidences between specified risk and control time periods. The simple SCCS
introduced in 2.2.3 offers a statistical model where the rate ratio RR is the only unknown parameter and
fixed individual covariates have no effect on the inference. The likelihood function is binomial.

The following chapter continues discussion of safety surveillance from the point of view of the decision element.
The simple SCCS is adopted as the design element.

3 Decision rules for vaccine safety surveillance

In vaccine safety surveillance, the main observations of interest are medical diagnoses used as proxies for the
biological condition of interest (adverse event). Gradually accumulating diagnoses form the sample to be
analyzed and decisions related to safety signal generation are made based on the sample. The goal is to stop
observing and take some further action if an unexpectedly high number of adverse events have been observed.
Dynamically determing what exactly is “unexpectedly high” is a problem that this chapter aims to solve.

One of the key elements of a safety surveillance method is a decision rule for generating safety signals. The
available sample never perfectly represents the total study population of interest, which can be thought to
include also unborn individuals, possibly experiencing adverse events in the future. Furthermore, there is
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random variation in the occurrence of adverse events in the population. The decision making process in safety
surveillance involves uncertainty and inevitably some amount of error is expected.

A desirable quality of a safety surveillance method is to control the expected rate of false positive and false
negative signals. When a true association between a vaccination and an adverse event exists, another desirable
quality is to generate the signal as soon as possible. In other words, a natural goal is to minimize the number
of adverse events needed to generate the signal, given some fixed rates of false positive and false negative
signals.

This chapter discusses sequential hypothesis testing, which is a statistical method that can be utilized for
vaccine safety surveillance. Sequential hypothesis testing provides the means to both control the expected
rates of false positive and false negative safety signals, as well as to minimize the expected time to signal
generation.

3.1 Hypothesis tests in vaccine safety surveillance

Statistical hypothesis testing is a method of statistical inference for decision making under uncertainty.
Uncertainty usually arises from the fact that available observations do not cover the whole population of
interest, but rather are a sample from that population. In a regular hypothesis testing scenario, there is a
single fixed sample and a single hypothesis test is performed to reach a conclusion. The setting in safety
surveillance is different, since observations arrive sequentially.

In the following sections, I will discuss the use of hypothesis testing for deriving decision rules for safety
signal generation. I will first describe hypothesis testing in general and then discuss testing with sequential
observations.

3.1.1 Statistical hypotheses

Statistical inference is based on on a family of probability models P (Y |θ) for the observations Y , indexed by
the parameters θ. A statistical hypothesis is a proposition which assigns restrictions for the parameter of the
statistical model. Usually there are two hypotheses: the null hypothesis H0 and the alternative hypothesis
H1. These are expressed by

H0 : θ ∈ Θ0 H1 : θ ∈ Θ1,

where Θ0 and Θ1 are disjoint and usually Θ0 ∪Θ1 = Θ, so that the two hypothesis together cover the whole
parameter space (all possible values of the parameter). For short I will denote θ ∈ Θ0 as θ0 and similarily for
θ1.

A hypothesis is called simple if it addresses only a single point in the parameter space. It is common that the
null hypothesis is simple, i.e. H0 : θ = θ0. In many applications such as in vaccine safety, the most interesting
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alternative hypothesis is of the form H1 : θ > θ0. This type of hypothesis – which addresses more than a
single point in the parameter space – is called a composite hypothesis.

When the objective is to find evidence of an association between an exposure and an event (for example
that the rate ratio for exposed and not exposed is positive), the null proposition (hypothesis) is a state of
no association. The alternative hypothesis is composite: some positive association. Using the rate ratio
parameter RR, this can be stated as two competing hypotheses as follows:

H0 : RR = 1 H1 : RR > 1 (14)

3.1.2 Hypothesis testing

In statistical hypothesis testing, two statistical models P (Y | θ0) and P (Y | θ1), defined by the competing
hypotheses H0 and H1, are compared. Usually the comparison is done by defining a test statistic T = T (y)
for which high values are critical to the null hypothesis and the probability distribution of T is known under
H0. If the observed value for T is very unlikely when H0 were true, then one chooses to reject H0.

The test statistic can be, for example, the likelihood ratio:

LR = L(θ1; y)
L(θ0; y) = P (y | θ1)

P (y | θ0) . (15)

Any value of the likelihood ratio greater than 1 means that the observations are more likely under the
alternative hypothesis (P (y | θ1) > P (y | θ0)).

3.1.3 Errors and power

When a decision is made between two competing hypothesis, two types of errors can be made:

• Type I error: H1 is chosen (H0 rejected) when the H0 is true.
• Type II error: H0 is chosen (H0 accepted) when the H1 is true.

The probabilities of type I and II errors are usually denoted by α and β, respectively. Terminology related to
hypothesis testing is displayed in Table 3.1.

The complement of β is called the power of the hypothesis test: the probability of choosing H1 (rejecting
H0) when H1 is true. If the hypotheses are as in (14) and the parameter of interest is RR, the power of a
hypothesis test is usually a function of RR, meaning that higher values of RR make it more likely for the
test to reject the null hypothesis. This also means that the actual type II error rate is a decreasing function
of RR.

In the context of vaccine safety surveillance the above means that one would be more likely to conclude that
there is a difference in the rate of events between two groups, the bigger that difference is. This is of course
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a positive observation and a desirable quality. But it is also important because it leads to the following:
knowing the type II error rate or the power of a test before collecting observations is impossible without
knowledge of the actual RR.

Table 3.1: Terminology related to statistical hypothesis testing

Term Description

H0 The null hypothesis (H0 : θ ∈ Θ0)
H1 The alternative hypothesis (H1 : θ ∈ Θ1)
Composite hypothesis A hypothesis which adresses more than a single point in the parameter space.

For example H1 : θ > 1
α P (reject H0 | H0). The type I error rate (false positive rate)
β P (accept H0 | H1). The type II error rate (false negative rate)
Power 1− β

3.2 Sequential analysis

From a statistical inference point of view, a situtation where observations accumulate gradually is different
from a more common situation with a fixed number of observations. With a fixed bumber of observations,
one can perform a single statistical hypothesis test and make a single decision. With accumulating data,
multiple such tests can be done. Sequential analysis focuses on situations where there is a need to perform an
analysis whenever new observations arrive. Sequential hypothesis tests can be used to derive decision rules
for each new observation.

A naive approach to sequential analysis would be to perform a standard hypothesis test on the accumulating
data set each time new observations become available. Hypothesis testing is based on the general idea that if
observations are unlikely under a statistical model defined by H0, then some assumptions of that model can
be questioned. However, if an experiment is repeated multiple times, then even very unlikely outcomes of the
experiment are more likely to be observed during at least one of the trials. Repeated analysis of accumulating
data creates a problem, since repetition introduces multiple chances to reject the H0. The naive approach
needs adjustment: in a situation of accumulating data, methods designed specifically for sequential analysis
are needed.

Sequential analysis, developed by Wald [1945] during the second world war, adresses the problem of hypothesis
testing in a situation where observations arrive sequentially. Wald defined a sequential test of a statistical
hypothesis as a test procedure which gives a rule of making one of three possible decisions at a single trial of
the experiment:

1. Accept the null hypothesis.
2. Reject the null hypothesis.
3. Continue the experiment by making an additional observation.
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Wald [1945] developed the sequential probability ratio test (SPRT), which is the optimal sequential hypothesis
test between two simple hypotheses [Wald and Wolfowitz, 1948].

SPRT has since been extended to adress composite hypotheses with so called sequential generalized probability
ratio tests. Kulldorff et al. [2011] introduced a version of such a test, called the maxSPRT, designed for
vaccine safety surveillance. I will now briefly introduce SPRT and then describe in detail the maxSPRT and
its self-controlled binomial variant BmaxSPRT.

3.2.1 Sequential probability ratio test: SPRT

Wald’s [1945] sequential probability ratio test (SPRT) is a sequential hypothesis test designed for testing two
simple hypotheses. SPRT is based on the likelihood ratio:

LRn = L(θ1; yn)
L(θ0; yn) = P (yn | θ1)

P (yn | θ0) , (16)

where yn are the current observations for n = 1, 2, ... The SPRT procedure is described in Algorithm 3.2.1.
Even though there is no defined upper limit to the number of observations, Wald [1945, p. 128] proved that
the SPRT experiment will eventually terminate with probability 1. Wald and Wolfowitz [1948] also showed
that SPRT is the optimal sequential test for testing a simple null hypothesis against a simple alternative, in
the sense that it has the lowest expected sample size among tests of equal power.

Algorithm 3.2.1: SPRT

Input: Desired Type I and Type II error rates α and β, test statistic function LRn as in (16)
1. Compute critical upper and lower boundaries A = (1− β)/α and B = (1− α)/β.
2. After observation n = 1, 2, ... do
- if LRn ≥ A stop, reject H0

- if LRn ≤ B stop, reject H1

- otherwise draw an additional observation.

3.2.2 Critical values of SPRT

The SPRT test has two critical regions: Q0 = {LRn | LRn ≥ A,B < LRn−1 < A} for rejecting H0 and
Q1 = {LRn | LRn ≤ B,B < LRn−1 < A} for rejecting H1 (accepting H0), defined by the two critical
values A and B. These regions define the stopping criteria for the test for all observations n = 1, 2, .... The
probability α of rejecting the null hypothesis when it is true (type I error) is given by P (Q0 | H0) and the
probability β of rejecting the alternative hypothesis when it is true (type II error) is given by P (Q1 | H1).
The SPRT procedure and the critical regions are illustrated in Figure 3.1.
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SPRT illustration

sample size n

LR
(n

)

upper limit (A)
test statistic
lower limit (B)

Figure 3.1: A graphical illustration of the critical boundaries of the sequential probability ratio test (SPRT)
where the test statistic is the likelihood ratio (LR). If the numerator of LR is the likelihood according to
the alternative hypothesis, then high values of LR mean that the alternative model fits the data better and
are thus critical to the null hypothesis. The upper limit A (dashed red line) then defines the critical region
for the null hypothesis. Similarily, the lower limit B (dashed green line) defines the critical region for the
alternative hypothesis.

The critical values A and B should be chosen to match desired (low) error rates (probabilities). In order to
determine the values A and B, Wald considered the entire sample space consisting of all possible realisations
in the sequential test. He showed that A and B can be approximated by functions of the desired α and β
regardless of the statistical model by setting A = (1− β)/α and B = (1− α)/β. He also remarked that this
procedure will guarantee that the actual type I and II errors will not exceed α and β and will only differ
from them slightly [Wald, 1945, 127-133].

3.2.3 SPRT and a composite alternative hypothesis

SPRT was designed for testing two simple hypotheses. Wald did, however, propose a solution to deal with
composite alternative hypotheses. In this section I will introduce this solution and then illustrate a weakness
related to it.

Wald [1945, p. 158] remarked that in common statistical models the power of the SPRT test is an increasing
function of the parameter of interest θ. He therefore suggested dealing with a composite alternative hypothesis
by simply defining a value θ1 such that the difference θ1− θ0 would be of significant interest in the application
and then setting a point alternative hypothesis H1 : θ = θ1. Then one could simply utilize SPRT as described
in algorithm 3.2.1 and test a simple null hypothesis against a simple alternative.

When the parameter of interest is the rate ratio, one example of the strategy above would be to view rate
ratios 1 ≤ RR < 1.2 as of no interest and therefore, for example, set H1 : RR = 1.2. Kulldorff et al. [2011]
remarked that an unfortunate relation between the choice of RR1 and the actual (i.e. true) RRa can either
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1. delay the rejection of H0 when the actual rate of events is higher than the rate suggested by H1 (delayed
signal generation)

2. increase the type II error when the actual rate of events is closer to the rate suggested by H0 than the
rate suggested by H1 (decreased power).

In other words, scenario (1) can happen when RR0 < RR1 << RRa and scenario (2) when RR0 < RRa <<

RR1.

The intuition leading to (1) is that if RRa is far from both RR0 and RR1, then both models, defined by H0

and H1, are inappropriate and therefore P (y | RR1) and P (y | RR0) will on average be close to each other.
For example, if one specifies RR0 = 1 and RR1 = 1.2 when in reality RRa = 6, then both H0 and H1 specify
inappropriate models. In such a case the high number of adverse events expected to be observed would be
given low probability by both models, as illustrated in the left panel of Figure 3.2.

In the example described above the two likelihoods would remain close to each other and the likelihood ratio
would remain close to one. It might take a large number of samples to reach a point where LR ≥ A and H0

is rejected. This is clearly undesirable especially with serious adverse events, where it is desirable that an
unexpectedly high number of adverse events would lead to a quick decision to reject H0.

To see the intuition behind scenario (2), assume again that we are interested to find if RR > 1. Following
Wald’s suggestion one might for example choose RR0 = 1 and RR1 = 2, when RRa = 1.4. In this case the
model specified by H0 is closer to the real value of RR and it is thus expected that P (y | RR0) > P (y | RR1),
making it more likely that LR ≤ B (H1 rejected). Thus the type II error is increased. See the right panel of
Figure 3.2 for an illustration.

3.2.4 Maximized sequential probability ratio test: maxSPRT

A solution suggested by Kulldorff et al. [2011] to remove the weakness of SPRT as described above is to
modify the test in two ways:

1. Maximize the likelihood ratio in the space of the alternative hypotheses Θ1.
2. Instead of setting a lower bound B to reject H1, define a maximum number of observations N and

reject H1 if n ≥ N .

The modified sequential test is called the maximized sequential probability ratio test (maxSPRT). The
maxSPRT is a general sequential hypothesis testing method, which can be used on any statistical model.

Kulldorff et al. [2011] introduced two versions of the maxSPRT method: one based on Poisson likelihood and
the other on binomial likelihood. The binomial model arises when the study design is a simple self-controlled
design such as the simple SCCS introduced in section 2.2.3.

When the parameter of interest is the rate ratio RR, the maxSPRT test statistic is
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P(Y | RR_0) P(Y | RR_1)

E[Y | RR_a]

Both models are 'bad'

P(Y | RR_1) ≈ P(Y | RR_0)

Poor H1 can delay signal generation

E[Y | RR_a]

The H0 model is 'better'

P(Y | RR_1) < P(Y | RR_0)

Poor H1 can increase Type II error rate

Figure 3.2: A graphical illustration of a weakness of Wald’s SPRT. The blue line describes the expected
observations given the actual relative incidence (RR_a) and the green and red lines describe the probability
models under the null and alternative hypotheses, respectively. Left: A choice of point alternative hypothesis
(RR_1) close to the rate specified by the null hypothesis (RR_0) and far from RR_a can delay the rejection
of H0, because the expected observations are given low likelihood under both hypotheses. Right: A choice of
RR_1 that is ‘too agressive’ compared to RR_a can increase the type II error rate, because the expected
observations are given higher likelihood under the null hypothesis.
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LRn = max
RR1

L(RR1; yn)
L(RR0; yn) = max

RR1

P (yn | RR1)
P (yn | RR0) . (17)

The maxSPRT procedure is described in Algorithm 3.2.4. The procedure uses a test statistic such as (17)
and requires that the desired type I error rate and the maximum number of observations are chosen before
the experiment is carried out.

Algorithm 3.2.4: MaxSPRT

Input: Desired type I error rate α′, upper boundary for the sample size N , test statistic function LRn
as in (17)
1. Compute the critical value c of the test.
2. After observation n = 1, .., N − 1 do
- if LRn ≥ c stop, reject H0

- otherwise continue
3. After observation N do
- if LRN ≥ c stop, reject H0

- otherwise reject H1

3.2.5 Critical values of maxSPRT

The values of the test statistic (17) are easy to compute. What then remains is the definition of the critical
region of the test: which values of the test statistic should lead to the decision of rejecting the null hypothesis.
Since higher values of the test statistic are always more critical to the H0, it is sufficient to determine a single
critical value, which defines the boundary of the critical region.

The first step of the maxSPRT procedure – as described in Algorithm 3.2.4 – is to compute the critical value
c corresponding to the desired type I error α′. Values of (17) higher than c then lead to rejection of H0. The
critical region of maxSPRT thus is

Qc = {LRn | LRn ≥ c, LRn−1 < c}, for all n = 1, 2, ..., N. (18)

The actual type I error of the test is given by P (Qc | H0). If this probability can be computed, then c can
be found iteratively. The computation of P (Qc | H0) depends on the statistical model for the observations
(i.e. the likelihood function). Kulldorff et al. [2011, pp. 65-67, p. 72] describe how to determine c for the
Binomial and Poisson likelihoods. In what follows I will present the binomial case in detail, where a Markov
chain probability model can be utilized to determine c.
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3.3 Binomial maxSPRT: BmaxSPRT

Let us now adopt the maxSPRT method in the setting of the simple SCCS. Assume that for the sequence of
observations (yn, n), n = 0, 1, ...N , where yn denotes the number of “cases” out of n events, the probability
distribution for yn is given by the binomial distribution as described in section 2.2.3. The probability of
“success” (i.e. adverse event classified as a “case”), depends on the unknown rate ratio parameter RR and the
known ratio between the lengths of the control and risk periods, z.

Let the two hypotheses be as in (14). Using equation (17), the maxSPRT test statistic is given by

LRn = max
RR>1

P (yn | RR)
P (yn | RR = 1) = max

RR>1

( RR
z+RR )yn( z

z+RR )n−yn

( 1
z+1 )yn( z

z+1 )n−yn
. (19)

Kulldorff et al. [2011] call a sequential test based on the test statistics (19) the binomial maxSPRT
(BmaxSPRT). A simple SCCS design combined with the maxSPRT method is one way to arrive at the
BmaxSPRT, which shows that the BmaxSPRT method is self-controlled.

Computation of (19) requires maximization. It is easy to see that maximization in terms of RR depends
only on the numerator, which is a likelihood function. Maximizing a likelihood function is a common task in
statistics and the value that maximizes the likelihood in terms of the parameter RR is called the maximum
likelihood estimate (MLE) for RR, denoted by R̂R.

For computational reasons, it is usually convenient to operate with the log likelihood ratio instead. Since the
logarithm is a strictly increasing function, maximizing the log likelihood ratio is equivalent to maximizing the
likelihood ratio. The (log) likelihood ratio is maximized by finding the MLE for RR, which is easily seen to be
(yn ·z)/(n−yn). Since we are not interested in situations where RR < 1, one should use R̂R = max{1, z·yn

n−yn
}.

Then the test statistic becomes

LLRn = log(LRn) = log

 ( R̂R
z+R̂R )yn · ( z

z+R̂R )n−yn

( 1
z+1 )yn · ( z

z+1 )n−yn

 . (20)

A simplified form of (20) is given by Kulldorff et al. [2011, p. 71]. The BmaxSPRT experiment proceeds as
described in Algorithm 3.2.4, utilizing the test statistic (20).

3.3.1 BmaxSPRT as a Markov chain

In the discrete binomial case, the critical value c of the maxSPRT procedure can be found iteratively by
utilizing a Markov chain probability model to compute the type I error probability P (Qc | H0). In what
follows I will formulate BmaxSPRT as a Markov chain by defining the state space and transition probabilities
of the experiment.
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3.3.1.1 State space

In the BmaxSPRT sequential test, the possible states of the experiment comprise all possible combinations of
“trials” (n) and “successes” (yn) during the experiment, bounded by the maximum number of observations N .
Therefore the state space S is defined as follows:

S = (n, yn), where n = 0, 1, ..., N and yn = 0, 1, .., n. (21)

The experiment always starts at state (0, 0). Clearly, there is a finite number of states. In fact, there are
M =

∑N
n=0(n+ 1) = (N + 1)(N + 2)/2 possible states.

3.3.1.2 Transitions and critical region

In the BmaxSPRT experiment, adverse events are sequentially classified as a “case” (“success”, Y = 1) or a
“control” (“failure”, Y = 0), depending on the outcome of a Bernoulli random variable Y (see Section 2.2.3).
Possible transitions in the state space S are therefore as follows:

”success” : (n, yn)→ (n+ 1, yn + 1)

”failure” : (n, yn)→ (n+ 1, yn).
(22)

If the experiment is stopped at some state s ∈ S, then that state is called absorbing: it is impossible to leave
the state. Otherwise, a state is called transient. The states for which n = N are absorbing because the
maximum number of observations has been reached. Also, the states for which the value of the test statistic
(20) reaches the critical value c, are absorbing.

Let LLR(s) denote the value of the test statistic (20) for state s ∈ S. The critical region of the test can then
be defined as follows:

Q = {s ∈ S | LLR(s) ≥ c}. (23)

It should be noted that by this definition Q may contain states which are impossible to reach (because
of previous absorbing states). For example, Q could contain the (absorbing) states (n = 4, yn = 4) and
(n = 5, yn = 5). Now (5, 5) can not be reached since the only possible transition to (5, 5) is from (4, 4) and
(4, 4) is absorbing. However, this does not cause theoretical or practical problems.

3.3.1.3 Transition probabilities

The BmaxSPRT experiment starts at the state (0, 0) with probability 1. Therefore, a vector of probabilities
for the initial state is given by
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Figure 3.3: Visualization of a BmaxSPRT type Markov Chain. The chain starts from the node (0,0) and a
trial with the result "success" or "failure" is performed at each node, with p being the probability for "success".
In this example the state (3,3) with 3 successes out of 3 trials is an absorbing state.

v
1×M

= (1, 0, ..., 0). (24)

A Bernoulli random variable Y determines the transitions. The transition probabilities for the transient
states, i.e., for those for which LLR(n, yn) < c, n ≤ N , are given by:

P{(n+ 1, yn+1) | (n, yn)} = P (Y = 1) = p

P{(n+ 1, yn) | (n, yn)} = P (Y = 0) = 1− p
(25)

where p is as in (9). Under the null hypothesis (RR = 1) p = 1/(1 + z). The probabilities of other transitions
from the transient states are zero. The transition probabilities for the absorbing states, i.e., for which
LLR(n, yn) ≥ c or n = N , are:

P{(n, yn) | (n, yn)} = 1, (26)

meaning that if such a state is reached, it is never left. These transition probabilities show that the BmaxSPRT
experiment has the Markov property: the transition probabilities only depend on whether the previous state
was absorbing or not.
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

(0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) .. (N, 0) .. (N,N)
(0, 0) 0 1− p p 0 0 0 0 0 .. 0 .. 0
(1, 0) 0 0 0 1− p p 0 0 0 .. 0 .. 0
(1, 1) 0 0 0 0 1− p p 0 0 .. 0 .. 0
(2, 0) 0 0 0 0 0 0 1− p p .. 0 .. 0
(2, 1) 0 0 0 0 0 0 0 1− p .. 0 .. 0
(2, 2) 0 0 0 0 0 1 0 0 .. 0 .. 0
(3, 0) 0 0 0 0 0 0 0 0 .. 0 .. 0
(3, 1) 0 0 0 0 0 0 0 0 .. 0 .. 0
. . . . . . . . . .. . .. .
. . . . . . . . . .. . .. .
(N, 0) 0 0 0 0 0 0 0 0 .. 1 .. 0
. . . . . . . . . .. . .. .
. . . . . . . . . .. . .. .
(N,N) 0 0 0 0 0 0 0 0 .. 0 .. 1


Figure 3.4: An example of a transition matrix describing the transition probabilities between the states
in the BmaxSPRT experiment. The rows and columns of the matrix correspond to the possible states and
Pij gives the probability of the transition si → sj . For example under the null hypothesis the probability of
the transition (0, 0)→ (1, 0) ("failure") is given by 1− p = z/(1 + z) and the probability of the transition
(0, 0)→ (1, 1) ("success") is given by p = 1/(1 + z). In this example the state (2, 2) is an absorbing state and
a transition can happen only onto itself. The states where the maximum number of observations is reached
are all absorbing states.

The transition probabilities are gathered in the transition matrix P, which defines the probability distribution
over all the transitions from state to state in the state space S. Each row and column of P corresponds to
one of the states s ∈ S and Pij gives the probability of the transition from si to sj . The size of P depends
on N and the values of P depend on the values of p and c, of which c defines the absorbing states.

The probabilities of being in each of the states after N transitions in the state space are given by

p
1×M

= vP(N). (27)

3.3.2 Type I error

The critical value c of the BmaxSPRT experiment defines the states in the critical region Q which then
defines the type I error α. To compute the value of α for a given c, the overall probability of reaching the
critical region can be computed by summing over the probabilities of being in each of the states s ∈ Q after
N transitions in the state space S. Using the result introduced in (27), the type I error probability for any
BmaxSPRT critical region Q is given by

α(BmaxSPRT ) = P (Q | H0) =
∑
s∈Q

vP(N)
0 , (28)

where P0 is the transition matrix, where p = 1/(1 + z) is according to H0.
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3.3.3 Critical values

Any critical value candidate c′ defines the states in the critical region Q, corresponding to some type I error
α. For a desired type I error α′, the goal is to find a c such that P (Q | H0) ≈ α′, meaning that the overall
probability of rejecting the null hypothesis when it is true is (at least approximately) α′. Utilizing equation
(28), it is possible to try out possible values c′ until the c is found which best matches the desired α′. One
way to execute this procedure is given in algorithm 3.3.3.

It should be noted that for a desired α′, the algorithm finds the value c which corresponds to a type I error α
for which the inequality α ≤ α′ holds. It is unlikely that α = α′ exactly. This is due to the discrete nature of
the binomial distribution.

Algorithm 3.3.3: BmaxSPRT critical

Input: States S, initial probabilities v, transition matrix P0, test statistic function LLRn as in (20)
1. Compute all possible test statistic values L = {LLR(s) | s ∈ S} and sort L from lowest to highest.
2. Choose c′ = min{L} to be the critical value. The absorbing states are Q′ = {s ∈ S | LLR(s) ≥ c′}.
3. Compute P (Q′ | H0) = π

- if π ≤ α′, stop, choose c′ to be the critical value c for the type I error rate π = α

- otherwise remove c′ from L and go to 2.

3.3.4 Power

The power of the BmaxSPRT experiment depends on the true value of the rate ratio. When the true rate
ratio is RRa, the probability of an event classified as a “case” is given by pa = RRa/(RRa + z). The true
transition matrix of the experiment Pa is then defined by these probabilities.

From this observation it is easy to see that the power of the BmaxSPRT experiment can be computed for
any chosen fixed value of RR, say RR1 = 1.5. One simply needs to define the transition matrix P1, where
the probabilities are given by p1 = RR1/(RR1 + z). This value only corresponds to the actual power of the
experiment in the case where RR1 = RRa, which is of course unlikely. However, this procedure can provide a
conservative estimate for the power of the experiment for a reasonable (small) choice of fixed RR1.

Denoting the critical region corresponding to a desired α′ as Q0, the power of the BmaxSPRT experiment is
given by the overall probability of reaching the critical region:

Power(BmaxSPRT ) = P (Q0|H1) =
∑
s∈Q0

vP(N)
1 , (29)

where v are the initial probabilities of the states given in equation (24) and P1 is the transition matrix, where
p = RR1/(RR1 + z) for some fixed choice of RR1.
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3.4 Grouped observations

The sequential hypothesis testing methods discussed so far (SPRT, maxSPRT, BmaxSPRT) assume that the
value of the test statistic is evaluated whenever a new observation (a medical diagnosis) arrives. This applies
to situations where data are available in near real time and observations arrive individually. This type of
analysis is called continuous sequential analysis. Continuous sequential analysis is applicaple in situtations
where the adverse events of interest are reasonably rare and medical diagnoses are collected reasonably often
(for example daily).

Due to administrative reasons, sometimes medical diagnoses become available for analysis in groups. For
example, the National Health and Welfare Institute (Finland) receives data from the HILMO register three
times a year (2016). Unless the adverse events of interest are extremely rare, it can be expected that more
than a single observation becomes available at the same time. The methods applicable in these situations are
called group sequential methods [Silva and Kulldorff, 2015].

According to Silva and Kulldorff [2015] group sequential and continuous sequential analyses can be formally
defined as follows. These definitions are given here only to aid discussion and in an effort to distinguish
between group sequential and continuous sequential analyses.

Let Xt be a non-negative integer valued stochastic process describing the number of adverse events that occur
during a [0, t] time window.
Definition (Group sequential analysis). For a set of constants A1, ..., AK and a sequence of {ti}Ki=1 of times,
a group sequential analysis design is any procedure that rejects the null hypothesis if Xti ≥ Ai for some
i ∈ {1, ...,K}
Definition (Continuous sequential analysis). For a function B(t), a continuous sequential analysis design is
any procedure that rejects the null hypothesis if Xt ≥ B(t) for some 0 < t ≤ L.

In the coming sections I will discuss why the grouped nature of the data should affect a sequential hypothesis
test and its critical values. I will then discuss possible solutions.

3.4.1 Adjusting for grouped observations

Silva and Kulldorff [2015] discuss the differences between group sequential and continuous sequential analyses.
I will present a short overview of that discussion. I will show that the following statements are true.

1. Continuous sequential analysis should not be used if data become available in groups.
2. Any post-market safety surveillance system should attempt to obtain data as frequently as possible.

To see the intuition for statement 1, assume a special case of group sequential analysis with only a single
group of observations. The two choices are then to either perform a retrospective continuous sequential
analysis or do a single hypothesis test (using the single group of data). Assume that the same test statistic is
used in both cases. For the continuous sequential analysis, the critical value of the test statistic must adjust
for multiple chances to reject the H0. This means that it must be more difficult to reject the H0 when H1 is
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true. Continuous sequential analysis would therefore always have lower power than group sequential analysis
if a group of data are already available.

The reason for statement 2 is that a continuous sequential method is always superior to a group sequential
method if observations can be made separately. To see the intuition for this, assume a group sequential
design that rejects H0 when the total number of events (after a group of observations) is at least yc. Now
assume a continuous sequential design that checks the observations separately and rejects H0 as soon as there
are yc events. The error rates of the two designs are identical because the number of events is non-decreasing
(both designs reject H0 iff at some point there are yc events). However, the continuous method is superior
because it can reject the H0 sooner (with a smaller sample size). Therefore for every group sequential design
there is a superior continuous sequential design.

A conclusion can be made that not adjusting for the availability of the data can result in either loss of power
or an increase in the expected sample size. Analyses should always be performed as soon as possible, using
all the available data.

3.4.2 Group sequential methods

The same statistical model and test statistic that would be utilized in a continuous sequential analysis can
be applied in group sequential analysis. However, when analyses are done for groups of data, there are less
opportunities to reject the H0 and, therefore, for a given critical value the type I error of a group sequential
analysis is smaller. The critical values should then be chosen differently. Unfortunately, if the number of
observations per group is unkown, the computation of the critical values becomes difficult. Two assumptions
could be made to simplify this computation, but the validity of the assumptions is questionable.

The problem of determining the critical values of a group sequential test would simplify if the number
of observations per group were assumed to be fixed (fixed group sizes). Silva and Kulldorff [2017] have
implemented this solution for computing critical values of a group sequential BmaxSPRT test in their
Sequential R package, available in the Comprehensive R Archive Network (CRAN). This assumption makes
the problem very similar to the situation discussed in section 3.3.1. The intution for the similarity is that
continuous BmaxSPRT can be seen as a special case of a group sequential hypothesis test with group sizes
fixed at 1.

It is quite obvious that if adverse events are assumed to arrive as a random process in time but are collected
during infrequent time intervals, the number of observations per group is by assumption a random variable.
Therefore the solution of fixed group sizes does not seem satisfactory if the grouped nature of the data were
due to administrative reasons.

The problem would also simplify if the maximum number of groups was fixed. However, assuming that the
group sizes are unkown, fixing the number of groups will not fix the number of observations at the end of
surveillance. Remember that the goal of safety surveillance is to keep collecting and analyzing data until
there is sufficient information regarding a possible association between the exposure and the event. Naturally,
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the amount of information depends on the amount of observations. Therefore, it would clearly be better to
fix the number of observations than the number of groups.

A possible solution which needs neither simplifying assumption is to use an error spending approach, as
described by Jennison and Turnbull [1999] in their book focusing on group sequential methods in clinical
trials. Next, I will introduce the concept of error spending functions and maximum information trials, which
could be useful approaches for future research regarding vaccine safety surveillance with grouped observations.

3.4.3 Error spending

One solution to group sequential analysis for random group sizes is to use an error spending approach (also
known as alpha spending) [Jennison and Turnbull, 1999, ch. 7]. The idea of error spending is that for K
groups, the type I error α is partioned into probabilities π1, ..., πK which sum to α. For the test statistics Zk,
critical values ck are calculated so that

P (|Z1| < c1, ..., |Zk−1| < ck−1, |Zk| ≥ ck) = πk (30)

Intuitively this means that for each group k, only a proportion of the desired error probability α is spent. A
practical problem remaining is: how should each πk be chosen? To solve this problem, Jennison and Turnbull
[1999, pp. 148-150] introduce families of error spending functions and compare their properties.

An error spending function is a non-decreasing function which partitions the desired type I error rate α and
for which f(0) = 0 and f(t) = α for t ≥ 1. In the paradigm of maximum information trials (discussed next),
the value f(t) indicates the cumulative type I error to be spent when a fraction t of the maximum anticipated
information Imax has been obtained. Jennison and Turnbull [1999, p. 148] suggest a family of error spending
functions defined by

f(t) = min{α · tp, α} (31)

where the choices of p ∈ {1, 3} yield similar results to more classical approaches suggested by Pocock [1977]
and O’Brien and Fleming [1979], which belong to the Wang & Tsiatis family of error spending functions.

3.4.4 Maximum information trials

Utilizing the concept of error spending, Jennison and Turnbull [1999, pp. 146-148] discuss decision rules in
the case of two-sided alternative hypotheses, where the stopping rule for accepting H0 is defined by a target
maximum information level, denoted by Imax. The information level for group k is defined as

Ik = {var(θ̂(k))−1}, k = 1, 2, .. (32)
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where θ̂ is the estimator for the parameter of interest θ. A maximum information trial uses an error spending
function f(t) as described earlier. The type I errors allocated to each analyses are

π1 = f(I1/Imax)

πk = f(Ik/Imax)− f(Ik−1/Imax).
(33)

A decision rule for a maximum information trial is described in Algorithm 3.4.4 [Jennison and Turnbull, 1999,
p. 54].

Algorithm 3.4.4: A maximum information trial

Input: target information Imax, sequence of groups k, test statistic function Z.
1. Define K as the smallest value k for which the information reaches the target information:
K = min{k | Ik ≥ Imax}

2. After group k = 1, ...,K − 1
- if |Zk| ≥ ck stop, reject H0

- otherwise continue to group k + 1

3. After group K
- if |Zk| ≥ ck stop, reject H0

- otherwise stop, accept H0

The target information Imax is a similar idea to the maximum sample size in maxSPRT in that it too defines
a boundary related to the sample size after which the experiment ends and H0 is accepted. In their example
utilizing the maximum information trial approach, Jennison and Turnbull [1999, pp. 150-153] assume that
the test statistic has a normal distribution and the alternative hypothesis is two-sided. In maxSPRT type
surveillance, the alternative hypothesis is one-sided and the test statistic is not assumed to be normal.

Maximum information trials provide a promising approach for grouped observations in vaccine safety
surveillance, but further research is needed to adopt the method in the maxSPRT setting.

4 Childhood vaccinations and febrile seizures: application of

BmaxSPRT

BmaxSPRT vaccine safety surveillance can be used to refine previously identified safety signals related to
vaccine-adverse event pairs. This proof-of-concept application studies the relationships between the incidence
of febrile seizures and three childhood vaccines, Measles-Mumps-Rubella (MMR), Pneumococcal (PCV) and
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the Rota virus vaccination (Rota). BmaxSPRT is retrospectively applied to data from the Finnish HILMO
register.

Fevers can cause a child to experience spasms or jerky movements called seizures. Seizures caused by a fever
are called febrile seizures. Febrile seizures usually last for less than one or two minutes and they do not cause
any permanent harm or have any lasting effects. MMR, PCV and Rota are all included in the vaccination
programme in Finland and are free for all children. The three vaccines are interesting because:

• For MMR there exists a known relationship to increased risk of febrile seizures
• For PCV there exists a suspected relationship to increased risk of febrile seizures
• For Rota there exist a suspected relationship to decreased risk of febrile seizures

It is established that there is an increased risk of acute febrile seizures during the 5− 12 days following the
first dose vaccination with MMR in children aged from 6 months to 2 years. This relationship has been
previously shown by both international studies and using Finnish register data.

A study by the Centers for Disease Control and Prevention (CDC) has also indicated that PCV vaccination
together with a flu vaccination could be associated with an increased risk of febrile seizures during the 24
hours following exposure [CDC]. A PCV vaccination alone might also cause a small increased risk of seizures.
There is no evidence of Rota vaccination having similar effects and Sheridan et al. [2016] have found that a
Rota vaccination can prevent febrile seizures.

The main interests of this application are to apply the BmaxSPRT method on real data, study if and when
the method generates a signal for the MMR and febrile seizure pair, and also to see what the results are for
the two other vaccines.

4.1 Data

In a real application of BmaxSPRT surveillance, data would be collected and analyzed until a decision to
reject or accept the null hypothesis can be made. In this proof-of-concept application, the goal is to utilize a
limited amount of already existing data.

Finnish children under 2 years of age, born during 2010− 2014 were considered eligible for this study. For
MMR, the 2014 birth cohort was not considered, as due to the higher expected first dose vaccination age,
no sufficient data for the 2014 cohort were yet available at the time of the study. Vaccination data of all
the three vaccines (Rota, PCV, MMR) were collected from the National Vaccination Register maintained by
THL. Health care data regarding the febrile seizures were collected from the HILMO register.

4.1.1 Vaccinations

One challenge with analyzing the effects of vaccines in an observational study is that multiple vaccinations
can be given during the same day. For example, the second dose of Rota is recommended to be taken at the
same age as the first dose of PCV. The recommended schedule for each of the three vaccines of interest is
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given in Table 4.1. In an effort to make the vaccines (i.e. exposures) more identifiable, only the first doses of
each of the vaccines were considered in this study.

Sometimes information about the same vaccination is collected multiple times so that there are duplicate
records in the vaccination register. Duplicate records identified with the same personal identification code,
same vaccine identifier and the same date as another record were excluded from analyses.

The three vaccines were analyzed separately by defining respective vaccination groups. A child belongs to a
specific vaccination group if he/she was vaccinated with the respective vaccine during the observation period.
A child can belong to multiple vaccination groups.

4.1.2 Hospitalizations

Febrile seizures were operationalized utilizing medical diagnoses related to hospitalizations. Febrile seizures
were identified with the following ICD-10 diagnosis codes:

• A858: Other specified viral encephalitis, A86: Unspecified viral encephalitis, A87: Viral meningitis, A88:
Other viral infections of central nervous system, not elsewhere classified

• G038: Meningitis due to other specified causes, G039: Meningitis, unspecified, G04: Encephalitis,
myelitis and encephalomyelitis, G05: Encephalitis, myelitis and encephalomyelitis in diseases classified
elsewhere

• R291: Meningismus, R55: Syncope and collapse, R560: Febrile convulsions, R568: Other and unspecified
convulsions

Hospitalization associated with any one of these diagnosis codes was classified as a febrile seizure event. The
date of the seizure was taken to be the date of hospitalization. Any seizure within 7 days from the previous
one for the same child was considered to represent the same event and were thus excluded from the analysis.

4.2 Method

The method used in this study is the binomial variant of maxSPRT, BmaxSPRT. In order to deploy the
BmaxSPRT, one needs to specify

1. The observation period.
2. The risk and control periods.
3. The desired type I error rate.
4. The maximum number of observations.

The chosen maximum number of observations affects the power of BmaxSPRT. Instead of directly specifying
the number of observations, a desired power given a specified rate ratio could be chosen and the maximum
number of events correspoding to that power could then be computed. In this study the maximum number of
observations was directly chosen.
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The choices 1− 4 were used to compute the critical value of BmaxSPRT. In what follows I will briefly describe
the BmaxSPRT method and the parameters for this study. For details on the method please refer to the
earlier chapters.

4.2.1 Observation period

For each individual born during the chosen years, the observation period in BmaxSPRT is an age interval
during which an event can be sampled. To define the age intervals of interest, the realised age distribution of
the first dose was analyzed for each of the three vaccines (vaccination groups). The observation period for
each vaccination group was then defined so that the chosen age interval covers most first dose vaccinations
(>95%). The observation periods as ages in days for each of the vaccination groups are displayed in Table 4.1.

Table 4.1: The recommended vaccination schedule and observation
ages by vaccination group.

Exposure Schedule Observation.ages

MMR 12 months 250-650 days
Rota 2, 3 and 5 months 30-140 days
PCV 3, 5, and 12 months 60-200 days

The analysis is performed with the assumption that new data may become available each day, starting from
2010-01-01. It should be noted that in reality the first observation is expected to arrive much later, since a
person born during 2010 will first have to be vaccinated, then hospitalized and then pass through the risk
and control periods in order to contribute to the study.

4.2.2 Risk and control periods

From an epidemiological design standpoint, the study design in BmaxSPRT is a self-controlled, case-only
design, such as the simple SCCS design introduced in section 2.2.3. In the simple SCCS, the observation
period for each child is divided into risk and control periods following exposure. A febrile seizure during the
risk period is classified as a case and a febrile seizure during the control period is classified as a control.

In this application, the risk period was chosen to be 0− 13 days following vaccination and the control period
14 − 41 days following vaccination, for each of the vaccines. This risk period simultaneously covers the
suspected period of increased risk for both PCV (24 hours following exposure) and MMR (5 − 12 days
following exposure). The chosen risk and control periods are displayed in Table 4.3.

It should be noted that the chosen risk period is likely to be too long especially for PCV. This could affect
the power of BmaxSPRT for the PCV group. In a real safety surveillance application, specific knowledge of
the actual period of increased risk might not be available, which is why a choice of a conservative common
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risk period was used in this proof-of-concept application. See section 4.4 for a simulation study of how the
choice of the risk period affects the power of BmaxSPRT.

4.2.3 Maximum number of observations

BmaxSPRT surveillance lasts until a determined maximum number of adverse events is observed or a safety
signal is generated. There is no predetermined calendar time (or last included birth cohort) for the end of
surveillance. In this retrospective proof-of-concept application however, it was desirable to reach a conclusion
utilizing the available data. Measures were taken to make this more likely, by utilizing information on the
incidence of febrile seizures available in the data. This information would not be available nor would it be
needed in a real application of BmaxSPRT.

For each of the age intervals of interest, the incidence of febrile seizures during the observation period, but
excluding the risk period, was estimated to aid determining the maximum number of observations. I will call
these the baseline incidences. The baseline incidences for each vaccination group are displayed in Table 4.2.
For the oldest age group the baseline incidence of febrile seizures is higher than for the two younger groups.

The size of the vaccinated population was estimated using available birth data and vaccination coverage
estimates. The expected number of seizures during surveillance, during which each vaccinated individual
contributes a total of 42 person days to the study, was then computed. These expected numbers of events
were then used as the maximum number of observations.

Table 4.2: The included birth cohorts, size of the study population
and estimated vaccination coverage for each of the observed age
groups, along with the baseline event incidence estimates given by
1000 person years. The incidence estimates were used to calculate
the expected number of events during surveillance, during which
vaccinated individuals contribute 42 person days to the study.

Age Cohorts Population Coverage Baseline.incidence Expected.Events

MMR 250-650 days 2010-2013 238 568 95% 14.6 380
Rota 30-140 days 2010-2014 295 800 93% 8.1 259
PCV 60-200 days 2010-2014 295 800 94% 7.9 252

It should be noted that alternative strategies could have been used. For this retrospective study, it would
have also been possible to simply count the total number of events during the risk and control periods in the
available data for each vaccination group, instead of estimating the expected number of events. One could
then choose the smallest of those as the mutual maximum number of observations. It is likely that other
feasible approaches exist as well.
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4.2.4 Hypotheses and decision rule

For each vaccination group, the hypotheses are

• H0 : RR = 1
• H1 : RR > 1,

where RR = λ1/λ0 is the rate ratio of the incidence of febrile seizures during the risk period (λ1) and control
period (λ0).

Inference is based on a conditional likelihood (10), which can be thought of as independent binomial trials,
where the probability of an adverse event being classified as a “case” is a function of the rate ratio parameter
RR. Higher values of RR correspond to a higher probability that an event occured during the risk period
instead of the control period. The test statistic is the maximized log-likelihood ratio as in (20).

The study proceeds as described in algorithm 3.2.4. For each day of surveillance, the value of the test statistic
is computed and compared to the critical value to make a decision. If at any day during surveillance the
value of the test statistic reaches the critical value, surveillance is stopped for the vaccination group and H0

is rejected. If there are no new observations, the value of the test statistic will remain the same and the
decision made during the previous day will not change. If the maximum number of observations is reached
without rejecting H0, surveillance ends and H0 is accepted.

The desired type I error probability was chosen to be α′ = 0.05. Critical values were computed with the
Sequential R package by Silva and Kulldorff [2017], which implements a similar algorithm as described in
section 3.3.3. The actual type I error probabilities matching the critical values were approximately the desired
probabilities (< 0.0001 difference for all three groups). The power was calculated for RR set at 1.5.

The parameters defining the stopping conditions for each vaccination group are displayed in Table 4.3, along
with power estimates. It can be seen that the power is reasonable for each group. However, the actual power
depends on the actual relative incidence rate and the actual risk period.

Table 4.3: Parameters of the BmaxSPRT surveillance. z is the ratio
of the lengths of the control and risk periods, p is the expected
proportion of cases under the null hypothesis (p = 1 / (z + 1)), N
is the maximum number of observations. alpha is the type I error.
The power was computed for a rate ratio of 1.5.

risk ctrl z p N c alpha power

MMR 0-13 14-41 2 1/3 380 3.78 0.05 0.92
ROTA 0-13 14-41 2 1/3 259 3.69 0.05 0.80
PCV 0-13 14-41 2 1/3 252 3.68 0.05 0.79
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4.3 Results

All analyses were carried out using the R program for statistical computing [R Core Team, 2017]. Functions
from the Sequential R package were used for parts of the computations [Silva and Kulldorff, 2017], such as
computing the critical values and power. In addition to the main results of BmaxSPRT surveillance for the
three vaccines, the method was studied in the case where surveillance continued even after a decision was
reached (MMR and PCV vaccines).

4.3.1 Surveillance results

The BmaxSPRT method generated a signal on day 693 of surveillance for PCV and on day 1041 for MMR.
In both cases, the null hypothesis was rejected. No signal was generated for Rota and the maximum number
of observations was reached without rejecting H0. The values of the test statistic and the rate ratio estimates
for each day of surveillance are illustrated in Figure 4.1.

According to the choices of the risk and control periods, the probability that an event is classified as a “case”
is 1/3 under the H0. For MMR there were 66 cases out of 149 events (≈ 44%) and for PCV there were 29
cases out of 56 events (≈ 52%). For Rota, the proportion of cases (≈ 34%) closely matched the expected
proportion. The rate ratio estimes at the time of signal generation were 1.59 for MMR and 2.15 for PCV. For
Rota, the rate ratio estimate at the end of surveillance was 1.01. These results are displayed in Table 4.4.

Table 4.4: Summary of the results of the BmaxSPRT surveillance
for the three vaccination groups. A signal was generated for MMR
and PCV.

signal.day LLR cases controls n prop.cases RR

MMR 1041 3.85 66 83 149 44% 1.59
Rota - 0.00 87 172 259 34% 1.01
PCV 693 4.03 29 27 56 52% 2.15

4.3.2 More results and conclusions

In a real application of BmaxSPRT, the surveillance immediately ends once evidence of the association
between the vaccine and the adverse event has been found (a signal is generated) or if the maximum number
of observations is reached. In this proof-of-concept application, however, it is possible to satisfy one’s curiosity
and see what would happen if surveillance was instead continued for the two vaccines for which signal was
generated and early stopping occured (MMR, PCV).

The values of the test statistic and the rate ratio estimates for each day of the continued surveillance are
illustrated in Figure 4.2. Further surveillance shows that when using all the available data, the estimate of
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Figure 4.1: Results of BmaxSPRT surveillance for MMR, Rota and PCV. A signal was generated on day
1041 for MMR and on day 694 for PCV as the value of the test statistic (solid black) reached the critical value
(solid red). The maximum number of observations (259) was reached for Rota without generating a signal.
The running maximum likelihood estimate for the rate ratio is also displayed in the picture (dashed blue).
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the rate ratio for the PCV group goes down and the value of the test statistic stays below the critical value.
The evidence of an association to febrile seizures for the PCV group therefore seems inconclusive. For MMR
the evidence of an association becomes stronger with more observations.

It should be noted at this point that there are two reasons for why in this proof-of-concept application the
results of the sequential hypothesis test should not be considered as conclusive results, especially for the
PCV group. First, since a group of data is already available, the continuous maxSPRT is not the optimal
hypothesis test. A regular hypothesis test would have greater power, as discussed in section 3.4. Second,
the chosen risk period (0-13 days from vaccination) is possibly too long for PCV, where according to the
literature the suspected increased risk of a febrile seizure is within a 24 hour period following vaccination.

4.4 Sensitivity analysis of BmaxSPRT

It is clear that the results of BmaxSPRT surveillance depend on the succesful choice of the risk period.
Intuitively, if the actual time period of increased risk is shorter or longer than the chosen risk period, that
should have a decreasing effect on the power of the test. An interesting question is therefore to quantify this
effect for different choices of risk and control periods.

I used simulation to study how the power of BmaxSPRT is affected by poor choices of the risk and control
periods. The analysis was carried out by repeatedly simulating adverse events data and applying the
BmaxSPRT method to the simulated data with different choices for the risk and control periods used in the
analysis. Below I will describe the assumptions of the simulation and then present the results of the analysis.

4.4.1 The studied risk and control periods

Six risk and control periods which differed from the actual risk and baseline time periods of the simulation
were chosen, along with a seventh pair of reference choices which matched the actual risk and baseline periods
perfectly. Figure 4.3 illustrates the chosen case and control periods. All the chosen periods have a common
ratio between the lengths of the risk and control periods, as shown in Table 4.5.

Table 4.5: The chosen risk and control periods of the simulation
experiment. The reference group matches the actual risk period
used in the simulation of adverse event data. The relative length
(z) of all the risk and control periods is identical.

risk control risk.length control.length z

reference 0-13 14-41 14 28 2
short risk 1 0-11 12-35 12 24 2
short risk 2 0-8 9-26 9 18 2
short risk 3 0-5 6-17 6 12 2
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risk control risk.length control.length z

long risk 1 0-16 17-50 17 34 2
long risk 2 0-21 22-65 22 44 2
long risk 3 0-30 31-92 31 62 2

4.4.2 Assumptions of the simulation

The following assumptions were made when simulating the adverse events data:

• The baseline rate of an event is 10 events per thousand person years
• The incidence rates are equal (homogenous) for all individuals
• The actual risk period is always 0-13 days after exposure
• For each exposed individual, the rate of events is multiplied by 1.5 during the risk period (RRa = 1.5)
• The number of exposed individuals is 200 000 x 6 during a 6 year period (6 birth cohorts)
• The type I error of the sequential test is 0.05
• When the risk and control periods are chosen correctly, the power of the sequential test is 0.9

Adverse events were simulated for the 6 birth cohorts 10 000 times. For each of these iterations, multiple
maxSPRT surveillances (with differing risk and control periods) were carried through. The date of signal
generation was saved (if there was a signal).

4.4.3 Results of the simulation

Table 4.6 shows the power for each risk and control period pair in the simulation. The power is the proportion
of simulation iterations where the null hypothesis was rejected. When the risk and control periods were
chosen perfectly as was done with the reference group, the power in the simulation was 0.9. As expected,
the power is lower the more the choice for the risk and control periods differ from the reference periods.
For example, if the chosen risk period is approximately 2.5 times the size of the actual risk period (0− 30
compared to 0− 13), the power decreases from 0.9 to 0.35.

If the chosen risk period is shorter than the actual risk period and the control period simultaneously overlaps
with the actual risk period, the situation is even worse. If the actual risk period is 2.5 the size of the chosen
risk period and the control period overlaps, the power decreases from 0.9 to 0.16.
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Figure 4.2: Results for continued surveillance for the PCV and MMR groups, both of which a safety signal
was generated for. Continued surveillance shows that the evidence of an association to febrile seizures for
MMR becomes stronger when utilizing the complete data set: the value of the test statistic (solid black)
grows higher, i.e. further away from the critical value (solid red). The estimate for the rate ratio (dashed
blue) remains above 1. Results for PCV are inconclusive, as the evidence of an association weakens with
more observations.
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Figure 4.3: The six risk and control periods studied in the experiment. In the top row the risk period is too
short and the control period overlaps with the risk period. In the bottom row the risk period is too long and
overlaps with the control period.
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Table 4.6: Results of the simulation. The desired power in the
experiment was 0.9 and the actual period of risk was 0-13 days
after exposure. The power is lower the more the choices for the risk
period differs from the reference period.

risk control power

reference 0-13 14-41 0.90
short risk 1 0-11 12-35 0.82
short risk 2 0-8 9-26 0.58
short risk 3 0-5 6-17 0.16
long risk 1 0-16 17-50 0.78
long risk 2 0-21 22-65 0.57
long risk 3 0-30 31-92 0.35

5 Conclusions

All pharmaceutical products, including vaccines, can increase the risk of some undesired medical occurrences
(adverse events). Evaluating these risks post-licensure is essential for evaluating the safety of the vaccine,
since rare adverse events might go undetected in pre-licensure studies.

This thesis has presented vaccine safety surveillance as an observational study where the goal is to evaluate
the safety of a vaccine (or vaccines) in real-time. The goal of a safety surveillance method is to generate a
safety signal as soon as possible, when an association between the vaccine and the adverse events exists.

Electronic health care data bases (registers) can be utilized as sources of data for safety surveillance. Registers
such as AvoHILMO in Finland provide daily data and thus enable near real-time surveillance. Adverse events
can be operationalized by one or several medical diagnoses, identified by appropriate ICD codes.

An important consideration in vaccine safety studies is that sources of bias such as self-selection and changes
in diagnosis coding practises present challenges to which some observational study designs such as the cohort
design, are vulnerable. Self-controlled case-only designs such as SCCS and CCO eliminate all time invariant
confounders and can therefore be considered more suitable for drug safety analysis.

This thesis has presented the BmaxSPRT method in detail. I have shown how BmaxSPRT relates to a
simple SCCS design and is a self-controlled method. I have also described other key theoretical aspects of the
method and demonstrated it in practise.
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5.1 Contribution to existing literature

This thesis has considered vaccine safety surveillance from the general perspectives of drug safety and
epidemiological studies. The type of safety surveillance considered is placed in the refinement stage of drug
safety studies, where the interest is in refining a previously identified, biologically plausible causal relationship
between a vaccine and an adverse event. The refinement stage is preceeded by an identification stage and
possibly followed by a confirmation stage.

This thesis has focused on the BmaxSPRT safety surveillance method introduced by Kulldorff et al. [2011]. A
key contribution of this work is in expanding the theoretical treatment of the method. The self-controlled
aspect of BmaxSPRT and the connection to the self-controlled case series (SCCS) is made explicit by deriving
the BmaxSPRT from SCCS and maxSPRT. Additionally I have, both mathematically and algorithmically,
presented the computation of the critical values of BmaxSPRT, which are essential elements of the decision
rule of BmaxSPRT, also presented in detail in this work.

I have studied the relationship of three childhood vaccinations to febrile seizures by applying the BmaxSPRT
method to Finnish register data. I have also analyzed the sensitivity of BmaxSPRT to the choice of risk
and control periods by simulation, showing how the power of BmaxSPRT is affected by the choices. The
sensitivity analysis highlights the importance of careful selection of the risk and control periods as the loss of
power due to poor choices can be considerable.

5.2 Discussion of application results

As a proof-of-concept, I applied the BmaxSPRT method retrospectively to Finnish register data to show how
the method performs with real data. Three vaccines, MMR, PCV and Rota, each with a different type of
known or suspected relationship to febrile seizures, were the exposures of interest. The effects of each of the
vaccines were studied during a risk period of 0− 13 days following vaccination. The results of the experiment
were as expected for MMR and Rota, as a safety signal was generated for the former and not generated for
the latter. A safety signal was also generated for PCV.

The result of the experiment for PCV raises further questions. Utilizing all the available data, the point estimate
for the rate ratio between the chosen risk and control periods stayed consistently, but not considerably, above
1, indicating some increased risk during the risk period. Given that the chosen risk period was significantly
longer than the risk period suspected by CDC for PCV (24 hours following exposure), there are at least two
plausible interpretations for this outcome: (i) The results of the study are valid. The actual risk period for
PCV is longer than the period suspected by CDC, and the risk of febrile seizures increases only slightly. (ii)
The risk period that was used in the study is too long compared to the actual risk period. The risk of febrile
seizures increases substantially, but during a short time period.
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5.3 Further research

The results related to the relationship between PCV and febrile seizures are inconclusive. A confirmation
analysis studying this relationship in more detail should be performed.

The thesis provides starting points for further reseach in developing the BmaxSPRT method. The general
version of SCCS can provide a framework for a more general version of a self-controlled maxSPRT, a
multinomial maxSPRT if you will. Maximum information trials provide a promising approach for dealing
with grouped observations.

This thesis has argued that the BmaxSPRT method belongs to the refinement stage of drug safety studies
and requires that a biologically plausible vaccine-adverse event pair has been previously identified. Electronic
medical records could however also be used to identify safety signals. According to Nelson et al. [2015], signal
identification has primarily been conducted using spontaneous report databases, which are not considered in
this work. Dumouchel [1999] introduces Bayesien data mining methods for detecting adverse drug reactions
from such databases.

47



References

Childhood vaccines and febrile seizures. URL https://www.cdc.gov/vaccinesafety/concerns/febrile-seizures.
html. Accessed: 2017-05-19.

JM Bernardo, MJ Bayarri, JO Berger, AP Dawid, D Heckerman, AFM Smith, and M West. Bayesian
methods in pharmacovigilance. Oxford University Press, 23:29, 2011.

David Clayton and Michael Hills. Statistical methods in epidemiology. Oxford University Press, 1993.

William Dumouchel. Bayesian data mining in large frequency tables, with an application to the fda spontaneous
reporting system. The American Statistician, 53(3):177–190, 1999. doi: 10.1080/00031305.1999.10474456.
URL http://www.tandfonline.com/doi/abs/10.1080/00031305.1999.10474456.

CP Farrington. Relative incidence estimation from case series for vaccine safety evaluation. Biometrics, pages
228–235, 1995.

CP Farrington. Control without separate controls: evaluation of vaccine safety using case-only methods.
Vaccine, 22(15):2064–2070, 2004.

Jason M Glanz, David L McClure, Stanley Xu, Simon J Hambidge, Martin Lee, Margarette S Kolczak, Ken
Kleinman, John P Mullooly, and Eric K France. Four different study designs to evaluate vaccine safety
were equally validated with contrasting limitations. Journal of clinical epidemiology, 59(8):808–818, 2006.

Christopher Jennison and Bruce W Turnbull. Group sequential methods with applications to clinical trials.
CRC Press, 1999.

Martin Kulldorff, Robert L Davis, Margarette Kolczak, Edwin Lewis, Tracy Lieu, and Richard Platt. A
maximized sequential probability ratio test for drug and vaccine safety surveillance. Sequential analysis, 30
(1):58–78, 2011.

Andreia Leite, Nick J Andrews, and Sara L Thomas. Near real-time vaccine safety surveillance using electronic
health records - a systematic review of the application of statistical methods. Pharmacoepidemiology and
drug safety, 25(3):225–237, 2016.

Malcolm Maclure. The case-crossover design: a method for studying transient effects on the risk of acute
events. American journal of epidemiology, 133(2):144–153, 1991.

Malcolm Maclure, Bruce Fireman, Jennifer C. Nelson, Wei Hua, Azadeh Shoaibi, Antonio Paredes, and
David Madigan. When should case-only designs be used for safety monitoring of medical products?
Pharmacoepidemiology and Drug Safety, 21:50–61, 2012. ISSN 1099-1557. doi: 10.1002/pds.2330. URL
http://dx.doi.org/10.1002/pds.2330.

Roger J Marshall and Rodney T Jackson. Analysis of case-crossover designs. Statistics in medicine, 12(24):
2333–2341, 1993.

48

https://www.cdc.gov/vaccinesafety/concerns/febrile-seizures.html
https://www.cdc.gov/vaccinesafety/concerns/febrile-seizures.html
http://www.tandfonline.com/doi/abs/10.1080/00031305.1999.10474456
http://dx.doi.org/10.1002/pds.2330


David L McClure, Jason M Glanz, Stanley Xu, Simon J Hambidge, John P Mullooly, and James Baggs.
Comparison of epidemiologic methods for active surveillance of vaccine safety. Vaccine, 26(26):3341–3345,
2008.

Jennifer C Nelson, Andrea J Cook, Onchee Yu, Shanshan Zhao, Lisa A Jackson, and Bruce M Psaty. Methods
for observational post-licensure medical product safety surveillance. Statistical methods in medical research,
24(2):177–193, 2015.

Sandra Nordmann, Lucie Biard, Philippe Ravaud, Marina Esposito-Farèse, and Florence Tubach. Case-only
designs in pharmacoepidemiology: a systematic review. PLoS One, 7(11):e49444, 2012.

Peter C. O’Brien and Thomas R. Fleming. A multipe testing procedure for clinical trials. Biometrics, pages
549–556, 1979.

Stuart J. Pocock. Group sequential methods in the design and analysis of clinical trials. Biometrica, Vol 64,
No. 2, pages 191–199, 1977.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2017. URL https://www.R-project.org/.

Sheldon M. Ross. Stochastic processes 2nd ed. New York: Wiley, 1996.

Sarah L. Sheridan, Robert S. Ware, Keith Grimwood, and Stephen B. Lambert. Febrile seizures in the era of
rotavirus vaccine. Journal of the Pediatric Infectious Diseases Society, 5(2):206, 2016. doi: 10.1093/jpids/
piu097. URL +http://dx.doi.org/10.1093/jpids/piu097.

Ivair R Silva and Martin Kulldorff. Continuous versus group sequential analysis for post-market drug and
vaccine safety surveillance. Biometrics, 71(3):851–858, 2015.

Ivair Ramos Silva and Martin Kulldorff. Sequential: Exact Sequential Analysis for Poisson and Binomial
Data, 2017. URL https://CRAN.R-project.org/package=Sequential. R package version 2.3.1.

Henrik Toft Sørensen, Svend Sabroe, and Jørn Olsen. A framework for evaluation of secondary data sources
for epidemiological research. International journal of epidemiology, 25(2):435–442, 1996.

THL. Tautiluokitus icd-10. Luokitukset, termistöt ja tilasto-ohjeet / Terveyden ja hyvinvoinnin laitos (THL),
pages 3–4, 2011.

A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2):117–186,
1945.

A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test. The Annals of
Mathematical Statistics, 19(3):326–339, 1948. ISSN 00034851. URL http://www.jstor.org/stable/2235638.

Heather J Whitaker, C Paddy Farrington, Bart Spiessens, and Patrick Musonda. Tutorial in biostatistics:
the self-controlled case series method. Statistics in medicine, 25(10):1768–1797, 2006.

49

https://www.R-project.org/
+ http://dx.doi.org/10.1093/jpids/piu097
https://CRAN.R-project.org/package=Sequential
http://www.jstor.org/stable/2235638

	Introduction
	Safety surveillance
	Vaccine safety surveillance
	Elements of safety surveillance
	The operationalization of exposure and outcome
	Outline

	Study designs for vaccine safety analyses
	Observational epidemiological study designs
	Cohort and case-control designs
	Case-only designs
	CCO and SCCS

	The self-controlled case series design: SCCS
	Observation period
	Statistical framework
	Simple SCCS 
	General SCCS

	The case-crossover design: CCO
	Description
	Prospective and retrospective arguments
	CCO in the literature

	Study design conclusions

	Decision rules for vaccine safety surveillance
	Hypothesis tests in vaccine safety surveillance
	Statistical hypotheses
	Hypothesis testing
	Errors and power

	Sequential analysis
	Sequential probability ratio test: SPRT 
	Critical values of SPRT
	SPRT and a composite alternative hypothesis
	Maximized sequential probability ratio test: maxSPRT 
	Critical values of maxSPRT

	Binomial maxSPRT: BmaxSPRT
	BmaxSPRT as a Markov chain 
	Type I error
	Critical values 
	Power

	Grouped observations 
	Adjusting for grouped observations
	Group sequential methods
	Error spending
	Maximum information trials 


	Childhood vaccinations and febrile seizures: application of BmaxSPRT
	Data
	Vaccinations
	Hospitalizations

	Method
	Observation period
	Risk and control periods
	Maximum number of observations
	Hypotheses and decision rule

	Results
	Surveillance results
	More results and conclusions

	Sensitivity analysis of BmaxSPRT 
	The studied risk and control periods
	Assumptions of the simulation
	Results of the simulation


	Conclusions
	Contribution to existing literature
	Discussion of application results
	Further research


