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Abstract We show that a trader, who starts with no initial wealth and is not allowed to
borrowmoney or short sell assets, is theoretically able to attain positive wealth by continuous
trading, provided that she has perfect foresight of future asset prices, given by a continuous
semimartingale. Such an arbitrage strategy can be constructed as a process of finite variation
that satisfies a seemingly innocuous self-financing condition, formulated using a pathwise
Riemann–Stieltjes integral. Our result exemplifies the potential intricacies of formulating
economically meaningful self-financing conditions in continuous time, when one leaves the
conventional arbitrage-free framework.

Keywords Short selling · Self-financing condition · Arbitrage · Riemann–Stieltjes integral ·
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1 Introduction

Common sense suggest that arbitrage strategies—in the sense of mathematical finance,
involving no initial wealth—should require short selling or an access to credit—an obvi-
ous budget constraint. Indeed, in the real world, and in discrete-time models as well, we
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can distinguish the first position in the risky asset prescribed by the strategy. If this position
were not short, it would have to be funded by borrowed money. However, in the realm of
continuous trading, there might not be any “first position”, as the composition of the portfolio
can vary rather freely as a function of time, so it is not a priori clear if arbitrage strategies
without short selling or borrowing are impossible.

Self-financing conditions are an important aspect of dynamic trading strategies. They
should be seen as a means to enforce coherent accounting: All profits from trading must be
credited to, and all trading costs debited from the money market account. In continuous time,
self-financing conditions are formulated using stochastic integrals; see, e.g., Björk [2, Sects.
6.1 and 6.2]. In particular, for adapted strategies, Itô integrals can be used when the price
process is a semimartingale. However, the choice of the integral is a rather delicate matter,
as not all stochastic integrals lend themselves to economically meaningful self-financing
conditions. (For example, the paper by Björk and Hult [3] documents some interpretability
issues that arise from the use of Skorohod integrals and Wick products in self-financing
conditions.) In any case, any sound self-financing condition should at the very least rule
out arbitrage strategies without short selling or borrowing. After all, such trading strategies,
which are able to generate wealth literally ex nihilo, should definitely not be self-financing.

Besides Itô integration, pathwise Riemann–Stieltjes integrals (see, e.g., Riga [10], Salopek
[11], or Sottinen and Valkeila [12]) have often been seen as a “safe” way to formulate
reasonable self-financing conditions. The reasons are manifold: Like Itô integrals, Riemann–
Stieltjes integrals can, of course, be obtained transparently as limits of Riemann sums that
reflect the natural self-financing condition for simple trading strategies. Also, a pathwise
Riemann–Stieltjes integral coincides with the corresponding Itô integral whenever the latter
exists. Recall that a Riemann–Stieltjes integral is guaranteed to exist for example when the
integrator is continuous and the integrand is of finite variation. While it typically rules out
the Markovian trading strategies that arise in dynamic hedging and utility maximisation, say,
the finite variation assumption is economically justified as it amounts to keeping the trading
volume of the strategy finite (which is an essential requirement under transaction costs); see,
e.g., Longstaff [7].

However, it transpires that self-financing conditions based on pathwise Riemann–Stieltjes
integrals alone do not necessarily prohibit pathological trading strategies (even of finite vari-
ation).We show in this note that, quite surprisingly, a Riemann–Stieltjes-based self-financing
condition may in fact admit arbitrage strategies that require neither borrowing nor short sell-
ing if the trader has perfect foresight of the future prices of the risky asset.1 Our existence
result for such strategies (Theorem 2.2, below) is valid provided that the price process is a
continuous semimartingale with an equivalent local martingale measure and non-degenerate
quadratic variation.While the requirement of perfect foresight is admittedly unusual, a sound
self-financing condition should nevertheless prevent even a perfectly informed trader from
executing such an egregious arbitrage strategy. More importantly, from a mathematical per-
spective, this result illustrates how stochastic integrals, even when defined pathwise, may
not always behave as financial intuition would suggest. We additionally show that these arbi-
trage strategies would in fact not be possible if also the price process were of finite variation
(Proposition 2.4, below). This indicates that the phenomenon documented in this note is
intricately linked with the fine properties and “roughness” of the price process.

1 In many cases, it is actually sufficient to have perfect foresight only on an arbitrarily short time interval, as
is pointed out in Remark 2.3.
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2 Model and main results

Let us consider a continuous-time market model with a risky asset and a risk-free money
market account, where trading is possible up to a finite time horizon T ∈ (0,∞). The price of
the risky asset follows a continuous, positive-valued semimartingale S = (St )t∈[0,T ], defined
on a complete probability space (�,F, P). For simplicity, the interest rate of the money
market account is zero. Additionally, we denote by (FS

t )t∈[0,T ] the natural filtration of the
price process S, augmented the usual way to make it complete and right-continuous, and
by 〈S〉 the quadratic variation process of S. Throughout the paper, we use the interpretation
inf ∅ = ∞.

Consider a trader, whose trading strategy is described by two càglàd (continuous from
left with limits from right) processes ψ = (ψt )t∈[0,T ] and φ = (φt )t∈[0,T ] that keep track of
her money market account balance and holdings in the risky asset, respectively. The mark-
to-market value of her portfolio at time t ∈ [0, T ] can then be expressed as

Vt = ψt + φt St . (2.1)

As per the discussion above,we are interested in a scenariowhere the trader attempts to follow
an arbitrage strategy, so she starts with no initial wealth, which translates to the constraint
V0 = 0.

The trader is additionally subject to a self-financing condition. Let us assume provisionally
that ψ and φ are adapted to the filtration (FS

t )t∈[0,T ]. Then the self-financing condition is
formulated the usual way [2, Sects. 6.1 and 6.2] by requiring that

Vt = V0 +
∫ t

0
φudSu =

∫ t

0
φudSu for any t ∈ [0, T ] , (2.2)

where the integral with respect to S is understood as an Itô integral. Under the self-financing
condition (2.2), the process ψ becomes redundant as, by plugging (2.2) into (2.1), we can
solve for ψt , to wit,

ψt =
∫ t

0
φudSu − φt St , t ∈ [0, T ] . (2.3)

Now the key question is: Are there non-trivial processes φ, with φt � 0 for all t ∈ [0, T ],
such that ψt � 0 for all t ∈ [0, T ]? Using (2.3), we can reformulate this as a question of
existence of non-negative processes φ that satisfy the stochastic inequality

∫ t

0
φudSu � φt St for all t ∈ [0, T ] . (2.4)

In the adapted case, we can answer the question in a straightforward manner if we assume
that S is arbitrage-free. Indeed, if there exists a probability measure Q on (�,F) such that
Q ∼ P (where “∼” denotes mutual absolute continuity of measures, as usual) and that S is a
local Q-martingale, then a suitable version of the fundamental theorem of asset pricing (e.g.,
[4, Corollary 1.2]) implies that there are no non-negative (adapted) processes φ that would
satisfy (2.4) and P(Vt > 0) > 0 for some t ∈ (0, T ].

However, as discussed above, we shall not insist on adaptedness, so we consider processes
φ that are not necessarily adapted to the filtration (FS

t )t∈[0,T ]. Then the stochastic integral
with respect to S that appears in (2.2), (2.3) and (2.4) may not exist as an Itô integral. But
if we assume that φ is of finite variation, then the integral does exist as a Riemann–Stieltjes
integral, see [13, Theorems 1.2.3 and 1.2.13], defined path-by-path for any t ∈ [0, T ] by
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∫ t

0
φudSu := lim

n→∞

kn∑
i=1

φτ ni

(
St∧τ ni

− St∧τ ni−1

)
P-a.s., (2.5)

where x ∧ y := min{x, y} for all x, y ∈ R and (τ ni )
kn
i=0,n�1 is a family of random times such

that

0 = τ n0 � τ n1 � · · · � τ nkn = T, for any n � 1,

and limn→∞ sup1�i�kn (τ
n
i − τ ni−1) = 0. The Definition (2.5) is independent of the choice

of (τ ni )
kn
i=0,n�1. Further, it ensures that the self-financing condition based on such integrals

reduces to the usual self-financing condition when φ is simple, that is, piecewise constant.

Remark 2.1 While trading strategies in mathematical finance literature are conventionally
assumed to be adapted to the natural filtration of the price process, non-adapted strategies
do appear in literature on insider trading; see, e.g., [1,9]. More recently, it has also been
suggested that (imprecise) prior information of future price changes at very short time scales
may be available to high-frequency traders and market makers [5].

Our main result shows that, in this alternative framework, there are in fact non-trivial,
non-negative processes φ that satisfy the inequality (2.4). The proof of this result is carried
out in Sect. 3, below.

Theorem 2.2 Suppose that the positive continuous semimartingale S = (St )t∈[0,T ] satisfies
P(〈S〉T > 0) > 0. Assume further that there exist a probability measure Q ∼ P such that
S is a local Q-martingale. Then there exists a non-negative process φ = (φt )t∈[0,T ], with
càglàd sample paths of finite variation, such that φ0 = 0, and

∫ t

0
φudSu � φt St for all t ∈ [0, T ] P-a.s., (2.6a)

P

( ∫ t

0
φudSu > φt St for all t ∈ (ρ, T ]

)
> 0 , (2.6b)

where ρ := inf{t ∈ (0, T ] : 〈S〉t > 0} ∧ T .

Remark 2.3 (i) While not explicitly stated above, the process φ of Theorem 2.2 is indeed
not (and could not be) adapted to (FS

t )t∈[0,T ]. The specification of φt for any t ∈ (0, T ]
requires full knowledge of the path of S until time T . However, the process φ is adapted
to the filtration

F̃S
t := FS

T , t ∈ [0, T ] ,
corresponding to perfect foresight on S, which also ensures that φ does not depend on
any (external) randomness beyond S.

(ii) It is also worth stressing that the time horizon T ∈ (0,∞) can be chosen freely, as
long as P(〈S〉T > 0) > 0 is satisfied. In particular, if S has strictly increasing quadratic
variation, then we can choose T to be arbitrarily small—that is, prior knowledge of the
fluctuations of S is required only on a very short time interval.

(iii) In mathematical finance literature, it is common to restrict trading strategies to be
admissible; see, e.g., [4, Definition 2.7]. While there are actually several slightly dif-
fering definitions of admissibility, they have the commonality that the value process of
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Fig. 1 Numerical illustration of Theorem 2.2. In this example T = 1 and S is a Brownian motion started at
one, so that ρ = 0. (Theoretically, the requirement that S is positive can then be met, e.g., by reflecting or
absorbing the process at some level between zero and one.) The realisation of the process φ has been generated
following the construction (3.12) given in the proof of Theorem 2.2, below. Recall thatψt = ∫ t

0 φudSu −φt St
and Vt = ψt + φt St = ∫ t

0 φudSu

an admissible strategy is bounded from below (in some sense). The purpose of admis-
sibility conditions is to preclude some outright pathological trading strategies, such
as doubling strategies [4, p. 467]. It is worth stressing that the process φ of Theorem
2.2 would not violate the typical admissibility conditions as the corresponding value
process Vt = ∫ t

0 φudSu , t ∈ [0, T ], is non-negative due to the property (2.6a).

Curiously, the assumption about positive quadratic variation in Theorem 2.2—that is,
S exhibits “enough” fluctuation—is rather crucial: Using a result [8, Theorem 3.1] on the
positivity of Riemann–Stieltjes integrals, we can show that arbitrage without borrowing or
short selling is in fact eliminated in this setting if also the price process S is of finite variation:

Proposition 2.4 Suppose that the positive continuous semimartingale S = (St )t∈[0,T ] satis-
fies, P-a.s., 〈S〉T = 0. If φ = (φt )t∈[0,T ] is a non-negative process with càglàd sample paths
of finite variation such that

P(φt > 0 for some t ∈ [0, T ]) > 0 , (2.7)

then

P

( ∫ t

0
φudSu < φt St for some t ∈ [0, T ]

)
> 0 . (2.8)
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Proof The integration by parts formula for Riemann–Stieltjes integrals [13, Theorem 1.2.3]
yields

∫ t

0
φudSu = φt St − φ0S0 −

∫ t

0
Sudφu, t ∈ [0, T ] .

Note that since S is a continuous semimartingale, the assumption 〈S〉T = 0 implies that the
sample paths of S are of finite variation. Now if φt > 0 for some t ∈ [0, T ], then it follows2
from [8, Theorem 3.1] that∫ t

0
Sudφu > 0 for some t ∈ [0, T ] .

The probability (2.8) is thus greater than or equal to the probability (2.7), and the assertion
follows. 	

Remark 2.5 In some way, Theorem 2.2 and Proposition 2.4 defy the usual mathematical
finance intuition that “smooth” price processes are easier to arbitrage than “rough” ones.
Here the “roughness” of S is the very property that makes it possible to construct the process
φ in Theorem 2.2.

In Theorem 2.2, we assume that the price process S is arbitrage-free whilst the strategy
φ may not be adapted. This is, of course, only one of the possible departures from the
standard arbitrage-free setting. Alternatively, one could also consider a scenario where the
process S is a very general continuous process that may admit arbitrage and φ is an adapted
strategy of finite variation and ask, how the stronger form of arbitrage without short selling
and borrowing can be excluded. This looks less straightforward and may require some new
techniques and estimates for Riemann–Stieltjes integrals, so we leave the question open:

Open Question 2.6 When S is a general positive, continuous process (not necessarily a
semimartingale), under which conditions on S is arbitrage without borrowing or short selling
excluded in the context of strategies of finite variation? We remark that, to this end, the
process S should satisfy some kind of a non-degeneracy condition, as integrands similar to
φ of Theorem 2.2 can be constructed for deterministic continuous paths that exhibit enough
variation; see [8, Theorem 2.1].

3 Proof of Theorem 2.2

Before proving Theorem 2.2 rigorously, we describe intuitively how the process φ is con-
structed. The idea is to structure φ from a sequence of non-overlapping static positions in the
risky asset, so that they have an “accumulation point” at ρ, see Fig. 1, bottom-right panel,
for an illustration. The sizes of these static positions are chosen so that they are gradually
increasing (from zero) and the positions are timed, using the quadratic variation of S and
perfect foresight, so that the price of the asset is known to increase during each holding
period.

While the construction of φ this way is simple in principle, it is non-trivial to select the
sizes of the static positions so that:

2 The term non-vanishing in the statement of [8, Theorem 3.1] is potentially misleading. The appropriate
interpretation is that the integrand g should not be identically zero. It is also worth mentioning that the
assumption g(a) = 0 therein can be trivially weakened to g(a) � 0; see [8, p. 401].
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• each position can be fully funded using the profits from the preceding positions (without
needing to borrow money),

• the cumulative trading volume remains finite, which is equivalent to φ being of finite
variation.

In fact most of the theoretical arguments in the proof of Theorem 2.2 revolve around verifying
that these two requirements are indeed met.

We introduce now some additional notation that are needed in the sequel. For all x, y ∈ R,
we denote x∨ y := max{x, y} and x+ := x∨0. If X and Y are identically distributed random

variables, we write X
d= Y . Suppose that A ∈ F. Then we say that a property P (provided

that it is “F-measurable”) holds P-a.s. on A, if P({P} ∩ A) = P(A). We use the convention
that N := {1, 2, . . .}.

As a preparation, we prove now two technical lemmata, which will be instrumental in the
proof of Theorem 2.2.

Lemma 3.1 Let (yn)∞n=1 be a sequence of non-negative numbers such that limn→∞ yn = 0.
Suppose that for some α ∈ (0, 1),

∞∑
n=1

e
−α

n∑
k=1

yk
< ∞ . (3.1)

If we set β := 2α
1+α

and define a sequence (xn)∞n=1 of non-negative numbers by

xn :=
n∏

k=1

1

1 + βyk
, n ∈ N , (3.2)

then
∑∞

n=1 xn < ∞ and

xn <

∞∑
k = n+1

xk yk < ∞ for any n ∈ N . (3.3)

Proof Consider a sequence (yn)∞n=1 and α ∈ (0, 1) that satisfy the assumptions given above.
Define then β := 2α

1+α
and a sequence (xn)∞n=1 through (3.2). Clearly, then 0 < α < β < 1

and 0 < xn � 1 for all n ∈ N.
By the Definition (3.2),

xn−1 = (1 + βyn)xn = xn + βxn yn for n � 2 .

Thus for all n, N ∈ N with n < N , we have

β

N∑
k=n+1

xk yk = xn − xN . (3.4)

If
∑∞

k=1 xk < ∞, then necessarily xk → 0 as k → ∞. Therefore, we may take N → ∞ in
(3.4) and conclude that for every n ∈ N,

xn < β−1xn =
∞∑

k = n+1

xk yk < ∞ ,

and, thus, (3.3) holds then. To complete the proof, it remains to show that
∑∞

k=1 xk < ∞.
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To prove that the assumptions on (yn)∞n=1 imply the summability of the sequence (xn)∞n=1,
we rely on the inequality log(1 + x) � x/(1 + x), which holds for all x � 0. (This inequal-
ity can be proven using the integral representation log(1 + x) = ∫ x

0 (1 + y)−1dy and the
monotonicity of the integrand therein.) Hence, for all k � n � 1 we have

− log(1 + βyk) � −γnβyk = − 2γn
1 + α

αyk ,

where γn := 1/(1 + β supm�n ym). Since limk→∞ yk = 0, here γn ↗ 1 as n → ∞.
In particular, there exists n0 ∈ N such that γn0 � (1 + α)/2 and for all k � n0
we then have − log(1 + βyk) � −αyk . Using the above estimates to the representation
xn = ∏n

k=1 e
− log(1+βyk ) thus shows that for all n > n0,

0 < xn � xn0 exp

⎛
⎝−α

n∑
k=n0+1

yk

⎞
⎠ = xn0 exp

(
α

n0∑
k=1

yk

)
exp

(
−α

n∑
k=1

yk

)
.

So (3.1) ensures that, indeed,
∑∞

n=1 xn < ∞. 	


Lemma 3.2 Let B = (Bt )t∈[0,1] be a standard Brownian motion and let σ > 0. If we define
for some γ ∈ (0, 1),

ξn := (
σ Bn−γ − σ B(n+1)−γ

)+
, n ∈ N ,

then for any α > 0,

E

⎛
⎝ ∞∑

n=1

e
−α

n∑
k=1

ξk

⎞
⎠ < ∞ .

Proof By the self-similarity of Brownian motion, we have ξn
d= un B

+
1 for any n ∈ N, where

un := σ
√
n−γ − (n + 1)−γ .

Applying the mean value theorem to the function x �→ x−γ , we deduce that

γ
1
2 σ(n + 1)−p � un � γ

1
2 σn−p , (3.5)

with p := γ+1
2 ∈ ( 1

2 , 1
)
.

Let us now fix α > 0. By Tonelli’s theorem and the mutual independence of the random
variables ξ1, ξ2, . . ., we obtain

E

⎛
⎝ ∞∑

n=1

e
−α

n∑
k=1

ξk

⎞
⎠ =

∞∑
n=1

E

⎛
⎝e

−α
n∑

k=1
ξk

⎞
⎠ =

∞∑
n=1

n∏
k=1

ϕ(−αun) , (3.6)

where ϕ(u) := E
(
euB

+
1
)
, u ∈ R. Since the P(B+

1 � 0) = 1, E(B+
1 ) < ∞ and P(B+

1 > 0) =
1
2 > 0, we have

c1 := inf
v∈(0,ασ )

E
(
B+
1 e

−vB+
1
)

E
(
e−vB+

1
) ∈ (0,∞) .
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By Jensen’s inequality, for u ∈ (0, ασ ),

1

ϕ(−u)
=

E

(
euB

+
1 e−uB+

1

)

E

(
e−uB+

1

) � exp

⎛
⎝u

E

(
B+
1 e

−uB+
1

)

E

(
e−uB+

1

)
⎞
⎠ � exp(uc1) ,

which implies that

n∏
k=1

ϕ(−αuk) � exp

(
−c1

n∑
k=1

uk

)
, (3.7)

for any n ∈ N.
Using the lower bound in (3.5) we can estimate, for any n ∈ N,

n∑
k=1

uk � γ
1
2 σ

n∑
k=1

(k + 1)−p � γ
1
2 σ

∫ n+2

2
x−pdx � c2n

1−p , (3.8)

where c2 = c2(γ, σ, p) > 0 is a constant. Now note that for any exponent θ > 0, there exists
a constant c3 = c3(θ) > 0 such that ex � c3xθ , x � 0. Thus, applying (3.8) to (3.7), we find
that for any n ∈ N,

n∏
k=1

ϕ(−αuk) � e−c1c2n1−p �
1

(c1c2)θc3

1

nθ(1−p)
,

and, in view of (3.6), it remains to choose θ > 1
1−p . 	


The proof of Theorem 2.2 is based on the observation that the properties (2.6a) and (2.6b)
the process φ is expected to satisfy are robust to time changes and equivalent changes of the
probability measure. Under the assumptions of Theorem 2.2, we can represent the process S
as a time-changed Brownianmotion under an equivalent local martingale measure. Therefore
we can verify (2.6a) and (2.6b) relying on the properties of Brownian motion via Lemmata
3.1 and 3.2.

Proof of Theorem 2.2 The properties of the process φ to be constructed are clearly invariant
under rescaling of the process S by a positive constant. By rescaling S, the probability of the
event {supt∈[0,T ] St � 1} can be made to be arbitrarily close to one. In particular, we may
assume, without loss of generality, that

P

(
sup

t∈[0,T ]
St � 1

)
> 1 − P(〈S〉T > 0) ,

where, by assumption, P(〈S〉T > 0) is positive and remains so even after the process S
has been rescaled. This implies that P(supt∈[0,T ] St � 1, 〈S〉T > 0) > 0, so we can find
a constant c > 0 such that the event Ac := {supt∈[0,T ] St � 1} ∩ {〈S〉T > c} satisfies
P(Ac) > 0.

Let now γ ∈ (0, 1), and introduce the stopping times

ρn := inf{t ∈ [0, T ] : 〈S〉t � cn−γ } ∧ T, n ∈ N .

Since the process S is continuous, also its quadratic variation process 〈S〉 is P-a.s. continuous
[6, Theorem 17.5]. Thus we have P-a.s. on Ac,

0 � ρ < · · · < ρn < · · · < ρ2 < ρ1 < T
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and ρn ↘ ρ as n → ∞. Note additionally that

〈S〉ρn = cn−γ
P-a.s. on Ac for any n ∈ N . (3.9)

We also introduce the random variables

Zn := (Sρn − Sρn+1)
+, n ∈ N ,

which will be instrumental in what follows.
Let now Q ∼ P be such that S is a local Q-martingale. Then, clearly, Q(Ac) > 0. By

the Dambis–Dubins–Schwarz theorem [6, Theorem 18.4], there exists a standard Brownian
motion B = (Bt )t�0 defined on an extension

(
�̄, F̄, Q̄

)
of (�,F, Q), such that the scaled

Brownian motion B ′
t := √

cBt , t � 0, satisfies

St = S0 + B ′
c−1〈S〉t for all t ∈ [0, T ] Q̄-a.s..

Then, in view of (3.9), it follows that the sequence

ξn :=
(
B ′
n−γ − B ′

(n+1)−γ

)+ = (√
cBn−γ − √

cB(n+1)−γ

)+
, n ∈ N ,

satisfies

Zn = ξn Q̄-a.s. on Ac for any n ∈ N . (3.10)

Applying Lemma 3.2 to the random variables ξ1, ξ2, . . . with σ = √
c and then using the

equality (3.10), we deduce that, for any α ∈ (0, 1),

∞∑
n=1

e
−α

n∑
k=1

Zk
< ∞ (3.11)

Q̄-a.s. on Ac. Since the random variables Z1, Z2, . . . are defined on the original space (�,F),
the condition (3.11) also holds Q-a.s. on Ac, and thus P-a.s. on Ac as well (due to the relation
Q ∼ P).

We define now the process φ by

φt :=
∞∑
n=1

Hn1{Zn>0}∩Ac1(ρn+1,ρn ](t), t ∈ [0, T ] , (3.12)

where

Hn :=
n∏

k=1

1

1 + 2
3 Zk

, n ∈ N .

(Note that in (3.12), at most one of the summands is non-zero for fixed t , which dispels any
concerns about convergence of the random sum.) Since (3.11) holds P-a.s. on Ac, Lemma
3.1 with α = 1

2 ensures that
∑∞

n=1 Hn < ∞ P-a.s. on Ac, which in turn implies that the
process φ is P-a.s. càglàd and of finite variation with φ0 = 0. Thus, by [13, Theorems 1.2.3
and 1.2.13], the stochastic integral

∫ t
0 φudSu exists as a pathwise Riemann–Stieltjes integral

for any t ∈ [0, T ] and is given by
∫ t

0
φudSu =

∞∑
n=1

Hn1{Zn>0}∩Ac

(
St∧ρn − St∧ρn+1

)
.
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Let n ∈ N and t ∈ (0, T ]. Then we have P-a.s. on Ac ∩ {ρn+1 < t � ρn},
∫ t

0
φudSu =

∞∑
k=n+1

Hk1{Zk>0}
(
Sρk − Sρk+1

) + Hn1{Zn>0}
(
St − Sρn+1

)

=
∞∑

k=n+1

Hk Zk − Hn1{Zn>0}Sρn+1 + φt St .

Invoking again the fact that (3.11) holds P-a.s. on Ac, Lemma 3.1 with α = 1
2 implies that

∞∑
k=n+1

Hk Zk > Hn � Hn1{Zn>0}Sρn+1 P-a.s. on Ac ,

where second inequality follows since Ac ⊂ {supt∈[0,T ] St � 1}. Note additionally that

∫ t

0
φudSu =

∞∑
k=1

Hk Zk �
∞∑
k=2

Hk Zk > H1 � 0 = φt St P-a.s. on Ac ∩ {ρ1 < t} .

Therefore, ∫ t

0
φudSu > φSt P-a.s. on Ac ∩ {ρ < t} ,

and since the process
( ∫ t

0 φudSu
)
t∈[0,T ] is continuous and (φt St )t∈[0,T ] is càglàd, we find

that

P

( ∫ t

0
φudSu > φt St for all t ∈ (ρ, T ]

)
� P(Ac) > 0 ,

so we have established (2.6b). It remains to observe that∫ t

0
φudSu = 0 = φt St ,

P-a.s. on � \ Ac and when t � ρ, so also (2.6a) follows. 	
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