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1 Summary

Utilizing drug-target interaction and single-drug sensitivity data, we have developed a logic-based approach
called TIMMA (Target Inhibition interaction using Minimization and Maximization Averaging) for predicting
the effects of targeted-drug combinations for a given cancer cell line or patient-derived sample. The TIMMA
approach starts by identifying an optimal set of targets which are predictive of the single-drug sensitivities.
This target set is then considered as essential in driving the cancer survival. By combining the targets of
each individual drug, a drug combination is modelled as its corresponding binding profile on the selected
target set. The cellular response of such a binding profile can be estimated by a model-based averaging on
the sensitivities of drugs with similar binding profiles. The similarity between two drugs is defined according
to the set relationship between the binding profiles, rather than using a conventional distance-based metrics
such as Spearman correlation or Tanimoto distance. By comparing the predicted sensitivities for drug
combinations and the observed sensitivities of the single-drug components, the TIMMA approach further
calculates the scores for quantifying the synergistic effect, which can be experimentally tested using drug
combination screens. It also provides a network view of the target inhibition interactions, formulating a
data-driven hypothesis on the most promising multi-targeted therapies to effectively treat the cancer cells of
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a particular type. TIMMA can be an ideal computational tool for prioritizing, explaining and discovering
novel multi-targeted therapies in personalized cancer treatment (Tang et al., 2013).

2 Quick Start

timma is an R package that implements the TIMMA model prediction and its supporting functions. In this
section, you will learn how to get a quick start of using the timma package to make a first prediction.

1. Install the timma package from CRAN.

> install.packages(timma)

2. Load the timma package in the R environment.

> library(timma)

3. Prepare the input data. Two types of data are needed. One is the drug-target interaction data, usually
obtained from drug-target binding assays. The current TIMMA algorithm works with categorical drug-
target interactions, meaning that the raw data from quantitative binding activity assays (such as Ki,
Kd and IC50 readouts) may need to be preprocessed by binarization or multi-class classification. The
other input data is a drug sensitivity vector for a given cancer cell line or a patient-derived sample.
The drug sensitivities can be continuous, as they are usually measured as cell viability IC50 or the area
under the dose-response curve. The drug sensitivity data should be scaled into [0, 1], where a higher
value indicates a stronger effect. You can load an example data from Tyner et al. (2013) by typing:

> data(tyner_interaction_binary)

> # load a binary drug-target interaction data

> data(tyner_interaction_multiclass)

> # load a multi-class drug-target interaction data

> data(tyner_sensitivity)

> # load a drug sensitivity data

4. Run the main timma function with the given drug-target interaction data and a selected drug sensitivity
vector. The other input parameters are optional (See more details about the full list of parameters in
section 3.2). An example command is shown below:

> timma(x = tyner_interaction_binary, y = tyner_sensitivity[,1],

sp = 1, max_k = 8, verbosity = T)

> # x: the drug-target interaction data

> # y: the drug sensitivity data for the first sample

> # sp: the starting point for the search algorithm to

navigate the target set space. By default it starts with

the first target in the drug-target interaction data.

> # max_k: the maximal number of targets to be included in

the selected target set. The search algorithm will stop

once the max_k has been achieved.

> # verbosity: a parameter specifying whether the progress is displayed or not.

5. Three components are implemented in the timma function: (a) Model selection - selecting the essential
target set which consists of the most predictive targets for single-drug sensitivities using the Sequential
forward floating search (SFFS) algorithm; (b) Model construction - predicting the sensitivities for all the
possible target inhibition profiles in the essential target set; (c) Synergy scoring of drug combinations
and visualization of target inhibition network. During the model selection stage, the progress about
the selection of essential targets will be shown with its prediction error, defined as the mean absolute
error (MAE) in the leave-one-out (LOO) cross-validation (Figure 1).
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Figure 1: The information displayed when running the timma function with verbosity=T.

6. Save the results. Five output files including three tables and two figures will be generated. The
file selectedTargets.csv lists the selected cancer essential targets and the timma predictions for the
single-drugs in the LOO cross-validation, as compared to the actual sensitivities (Figure 2a). The file
predictedSensitivities.csv includes a predicted sensitivity matrix for all the inhibition profiles on the
selected target set (Figure 2b). The file predictedScoring.csv provides synergy scores for pairwise drug
combinations (Figure 2c). The file targetInhibitionNetwork.pdf shows the network image and the file
targetInhibitionNetwork.nnf generates the input for Cytoscape (www.cytoscape.org).

7. Read the help documents for more functional details and example codes using the help (?) command:

>?timma

3 Tyner study

We will walk through the main functions of the timma package using an example data, which is extracted
from a recent study on the kinase pathway dependence in leukemia using 65 small-molecule kinase inhibitors
as chemical probes, tested on 151 leukemia patient-derived samples ex-vivo (Tyner et al., 2013). The drug-
target interaction data and the drug sensitivity data have been provided in its Supplementary materials
(Supplementary Table 1 for drug-target interactions and Supplementary Table 3 for the drugs’ cell prolifer-
ation IC50s for the 151 patient-derived samples. We choose this study as an example case study particularly
because of its translational potential, as the effective drug or drug combinations for these patient-derived
samples could be readily utilized for clinical applications. Even though the focus in this tutorial is to show
the analysis work flow of timma, we recommend that any interested researchers evaluate the clinical signif-
icance of the prediction results in a drug combination screen ex-vivo, patient treatment in-vivo or even in
clinical trials.
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(a) selectedTargets.csv. Drug names are shown in column A and the selected targets are shown
in row 1, followed by the observed and the predicted sensitivities.

(b) predictedSensitivities.csv. The matrix shows all the possible inhibition profiles for the selected
targets and their corresponding sensitivities predicted by timma. For example, cell 5E shows the
sensitivity (0.067368) if none of the targets were inhibited, which can be considered as a residual
in the model predictions; cell 6E shows the predicted sensitivity (0.387732) for the case when
EGFR (L858) alone is inhibited; cell 7E shows the predicted sensitivity (0.63447) for the case if
both EGFR (L858) and DAPK1 are inhibited, and etc.

(c) predictedScoring.csv. Sensitivity is the predicted sensitivity for a drug combination. Syn-
ergy.add, Synergy.multi and Synergy.highest are the synergy scores calculated based on the three
different synergy models; Target1 and Target2 are the underlying combinatorial targets from
each drug which lead to the synergistic effects.

Figure 2: Snapshots of the three output tables.
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3.1 Data preparation

3.1.1 The drug target interaction data

The drug-target interaction data from Supplementary Table 1 in Tyner et al. (2013) contains 65 small-
molecule kinase inhibitors and 322 targets. Each drug-target interaction has been classified into one of the
six classes labelled as [0, 1, 2, 3, 4, 5]. Class 0 is the inactive group (i.e. no activity was found between the drug
and the target). Class 1 consists of the most potent drug-target interactions, defined as those bioactivity
values lower than 10-fold of the lowest Kd or IC50 value. Classes 2 to 5 are those intermediate interaction
groups, each of which represents a 10-fold increase of bioactivity values compared to the previous class. For
example, if a drug’s most potent target has Kd value of 1 nM, then those targets which have Kd lower than
10 nM will be labelled as class 1 targets, and those targets with Kd between 10 nM and 100 nM will be class
2 targets and etc. To enable the use of set compare functions in timma, the class labels must be converted
into ordinal categories, i.e. a higher class number should imply a stronger interaction. We relabel the class
of the most potent drug-target interactions as class 5 and change the labels for the other classes accordingly.
The corresponding target names and drug names are shown as column names and row names for the data
matrix. To load the curated multi-class drug-target data frame we use the command:

> data(tyner_interaction_multiclass)

> # load the multi-class drug-target interaction data from the

Tyner et al.(2013) study

The data can be further binarized by grouping all the non-zero classes into one group, which includes both
the strong and weak drug-target interactions. One can obtain such a binarized data with the command:

> tyner_interaction_binary <- 1*(tyner_interaction_multiclass>0)

> # binarize the multi-class data

A more conservative way of binarization would consider only those strongest interactions as 1s and all the
other remaining weak and inactive interactions as 0s:

> tyner_interaction_binary_strong <- 1*(tyner_interaction_multiclass>4)

> # binarize the multi-class data considering only the class 5 targets

as true positive

Note that there is no standard protocol for classifying active and inactive interactions from a typical drug-
target binding assay data. Many drug databases, such as DrugBank (Law et al., 2014) or TTD (Zhu et al.,
2012), reported only a few primary targets without giving the corresponding cut-off criteria. However, analy-
ses of many approved drugs showed that therapeutic efficacy is not necessarily associated with higher binding
affinity, and thus focusing on the few primary targets might not provide sufficient information on understand-
ing the drugs’ mode of actions (Gleeson et al., 2011). The ChEMBL database, on the other hand, provided
a comprehensive bioactivity profile for many targeted-drugs, revealing considerably promiscuous drug-target
interactions at the proteome-level (Bento et al., 2014). However, the pharmacological significance of those
weak or unintended interactions remain largely unknown, particularly due to the poor understanding of a
drug-target interaction and its relevance on the signalling pathways in a cellular environment. Therefore,
treating the drug-target interaction data without any classification might also easily introduce much noise
that masks the pharmacologically important signals. We take an intermediate stand between the two ex-
tremes, i.e. aiming for collecting a drug’s target profile as comprehensive as possible, and then classifying the
strong and weak interactions into different potency groups to reduce noises. In section 3.3 we will evaluate
the prediction performance using different classification schemes on the drug-target interaction data.

3.1.2 The drug sensitivity data

The second input is the drug sensitivities for a given patient-derived sample. The drug sensitivities in the
Tyner’s study were measured in a cell proliferation assay and quantified by IC50 values fitted from the dose-
response curves. In addition, for each drug a median IC50 across all the 151 samples was calculated. The
total drug sensitivity data thus contains 65 drugs and 152 IC50 columns. Note that a drug’s sensitivity is
inversely related to its IC50. To be utilized by the timma function, for each sample the IC50 values must be
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converted to sensitivities scaled in the [0, 1] interval, where a higher value indicates a stronger effect. For
example, a scaled sensitivity can be calculated as:

Sensitivity =
MaxIC50 − IC50

MaxIC50
−MinIC50

(1)

To load the normalized drug sensitivity data, one can use:

> data(tyner_sensitivity)

> # load the scaled drug sensitivity data

> median_sensitivity = tyner_sensitivity[,1]

> # the median drug sensitivity vector

3.2 Parameters for tuning the timma algorithm

Once the input data is prepared, we use the main timma function to run the analysis.

> data(tyner_interaction_binary)

> data(tyner_sensitivity)

> median_sensitivity = tyner_sensitivity[,1]

> timma(x = tyner_interaction_binary, y = median_sensitivity, sp = 1,

max_k = 8, filtering = FALSE , class = 2, averaging = "one.sided",

weighted = FALSE)

The details of the parameters are described in the following:

1. x : a drug-target interaction matrix. Row names are drug names and column names are target names.

2. y : a scaled drug sensitivity vector.

3. sp: the index of an initial target to be included in the essential target set in the model selection
algorithm. sp ∈ [1, n], where n is the total number of targets.

4. max k : the number of targets that can be included in the final essential target set. The number of
parameters to be estimated in the model construction will increase exponentially as max k increases.
In practice it is advised to keep max k < 10.

5. filtering : a logical parameter to specify whether a few targets should be filtered out before the analysis.
By default, the value is FALSE, meaning that all the targets will be evaluated in the model selection.
If the value is TRUE, those targets that are negatively correlated with the drug sensitivity data will
be removed. The choice of this parameter depends on how strongly we assume that a target must be
individually essential in a target combination.

6. class: the number of classes in the drug-target interaction data. For a binary data, class = 2.

7. averaging : a parameter to specify which one of the averaging algorithms will be applied in the model
construction. By default, averaging = “one.sided”, which is the original model construction algorithm
utilized in Tang et al. (2013). When averaging = “two.sided”, a modified averaging algorithm will be
used. These two algorithms differ at the case where only one side of the set relationships is available in
the training data. For example, for a queried target set if its supersets but not subsets are available,
then the one.sided algorithm will predict the sensitivity using the Minimization rule only. The two.sided
algorithm, however, will further average the predicted sensitivity with 0, which is the minimal sensitivity
that could be obtained as a subset theoretically. Similarly, for a queried target set for which only the
subsets are available in the training data, the one.sided algorithm will use the Maximization rule for
prediction, whereas the two.sided algorithm will average the one.sided prediction result with 1, which
is the maximal sensitivity for a superset can achieve.

8. weighted : a parameter to specify if the similarity between the queried target set and its subsets/supersets
is considered as a weight factor in the averaging. This is a parameter that is defined for multi-class
drug-target interaction data only. When weighted = TRUE, the sensitivities for those subsets/supersets
which have more overlaps with the queried set will be weighted more in the final prediction.
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3.3 Prediction accuracy

In this section, we will evaluate whether using multiclass drug-target interaction data will bring any significant
improvement in the model prediction accuracy compared to the binarized data. We will utilize the drug
sensitivities for the 151 leukemia patient samples and run the timma algorithm on both the multiclass
and the binarized drug-target interaction data, and compare the MAEs (mean absolute error) in the LOO
(leave-one-out) cross-validation. For obtaining the MAEs using the multiclass data:

> data(tyner_interaction_multiclass)

> data(tyner_sensitivity)

> error_multiclass <- matrix(0, nrow = 65, ncol = 151)

> # a matrix to store the prediction error

> for (i in 1:151){

print(i)

res <- sffsCategory(tyner_interaction_multiclass,

tyner_sensitivity[, i+1], sp = 1, max_k = 8, loo = TRUE, class = 6)

error_multiclass[, i] <- res$timma$error

# class: the number of classes in the drug-target interaction data

}

> multiclass_MAE <- colMeans(error_multiclass)

It takes about 2∼3 hours to finish the loop analysis for all the 151 samples. For obtaining the MAEs using
the binary data, we use the sffsBinary() function with the binarized data as the input:

> tyner_interaction_binary <- 1*(tyner_interaction_multiclass>0)

> data(tyner_sensitivity)

> error_binary <- matrix(0, nrow = 65, ncol = 151)

> # a matrix to store the prediction error

> for (i in 1:151){

print(i)

res <- sffsBinary(tyner_interaction_binary,

tyner_sensitivity[, i+1], sp = 1, max_k = 8, loo = TRUE)

error_binary[, i] <- res$timma$error

}

> binary_MAE <- colMeans(error_binary)

The MAEs are compared with the following commands:

> redx<-c()

> redy<-c()

> bluex<-c()

> bluey<-c()

> for (i in 1:151){

if(binary_MAE[i]>=multiclass_MAE[i]){

redx<-c(redx, binary_MAE[i])

redy<-c(redy,multiclass_MAE[i])

} else{

bluex<-c(bluex, binary_MAE[i])

bluey<-c(bluey, multiclass_MAE[i])

}

}

> png(file="MAE.png", units="in", width=6, height=6, res=300)

> plot(x=c(0,0.3), y=c(0,0.3), type="n", xlab="Binary MAE", ylab

="Multiclass (c=6) MAE")

> points(redx, redy,pch=19, col="red")

> points(bluex, bluey,pch=19, col="blue")
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> lines( par()$usr[1:2], par()$usr[3:4] )

> dev.off()

(a) (b)

Figure 3: Scatterplots showing the MAE (Mean absolute error) in the leave-one-out cross validation using
either binary or multiclass drug-target interaction data for the 151 patient samples. Blue: samples where
using binary data leads to lower MAE; red: samples where using multiclass data leads to lower MAE. (a)
Binarization versus the original 6-class classification. (b) Binarization versus the 3-class classification.

As shown in Figure 3a, we do not find a significant difference between data binarization and multiclass
classification in terms of the prediction accuracy. The average differences in MAE across the 151 samples is
0.0091, which is quite minimal compared to the actual MAEs. On the other hand, it shows that introducing
more potency classes may not always lead to a better prediction. The reasons are two-fold. First, adding
more classes increases model search space from 2n to pn, where p is the number of classes and n is the number
of targets. Estimating the increasing number of model parameters would need a larger amount of training
data. If the number of drugs or the number of targets does not increase significantly, treating the drug-
target interactions as multiple classes will create more sparseness in the training data and result in higher
uncertainty in the model predictions. Secondly, the Tyner et al. scheme to classify drug-target interactions
is quite optimistic, as all the weak interactions (i.e. those with Kd or IC50 close to 10 µM) are labelled
as one of the active classes. Such a classification might be sub-optimal for understanding the response of
patient-derived samples given that the majority of the drugs’ in vivo or ex vivo efficacy is expected to be
elicited via its targets with nanomolar potency.

To further explore the impact of classification on the prediction accuracy, we test a simpler scheme by
considering only 3 classes: class 0 being the inactive group; class 4 and 5 as the strong interaction group
while class 1, 2 and 3 together as the weak interaction group:

> tyner_interaction_multiclass_2 <- tyner_interaction_multiclass

> tyner_interaction_multiclass_2

[tyner_interaction_multiclass>0 & tyner_interaction_multiclass<4] = 1

> tyner_interaction_multiclass_2[tyner_interaction_multiclass>=4] = 2

> error_multiclass_2 <- matrix(0, nrow = 65, ncol = 151)

> for (i in 1:151){

print(i)

res <- sffsCategory(tyner_interaction_multiclass_2,

tyner_sensitivity[, i+1], sp = 1, max_k = 8, loo = TRUE, class = 3)

error_multiclass_2[, i] <- res$timma$error

# class: the number of classes in the drug-target interaction data
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# now we have only 3 classes

}

> multiclass_2_MAE <- colMeans(error_multiclass_2)

We found that such a simplified classification indeed improved the average MAE from 0.1792 to 0.1754,
with increased number of cases (from n = 61 to n = 74) where it outperformed the binarization (Figure
3b). However, as the overall difference between binarization and multi-classification remained minimal, we
conclude that as long as the drug-target interaction data is of high-quality (e.g. manually curated from
experimental results), the classification schemes seem to have little impact on the prediction accuracy of
timma.

3.4 Synergy scores

A synergistic drug combination should treat the cancer by blocking multiple survival pathways, with an effect
which cannot be achieved by any of the single-drugs alone. In TIMMA, a drug combination is modelled as
the combinatorial effect of its target inhibitions. We will first evaluate the synergistic effect for its underlying
target combinations and then derive a summarized score for the drug combination. The synergy score for a
target pair {i, j} is based on one of the three different reference models:

1. Multiplicative score, defined as Sm(i, j) = y(i, j)− y(i) ∗ y(j);

2. Additive score, defined as Sa(i, j) = y(i, j)− (y(i) + y(j));

3. Highest agent score, defined as Sl(i, j) = y(i, j)−max(y(i), y(j)),

where y(i, j) is the predicted sensitivities for the target combination and y(i), y(j) are the predicted sensi-
tivities for the single-target inhibitions. For a drug combination (d1, d2), we take an average synergy score
over all the underlying pairwise target combinations:

S(d1, d2) =
1

n

∑
i∈d1,j∈d2

S(i, j) (2)

The synergy scores should be interpreted as interval scales rather than ratio scales. For example, a
synergy score of 0 does not necessarily imply no interaction, and a score of 1 cannot be interpreted to be
twice as synergistic as a score of 0.5. This is similar to the case when comparing temperatures in the Celcius
scale. Rather, the synergy scores should be used for ranking the drug combinations so that the top ones can
be prioritized for experimental validation. Under different assumptions, the rankings of drug combinations
using the three reference models do not always match each other. If there is no preferred synergy model we
may select those combinations that are commonly enriched in all of the three rankings. On the other hand,
synergy should not be confused with sensitivity: synergy is an extra effect beyond the expectation under
the non-interaction model, while sensitivity is an end-point response of a drug combination by adding the
expectation and the synergy together:

sensitivity = expectation+ synergy (3)

A drug combination which shows a strong synergy might be much less effective than a drug combination
which shows zero synergy, as their reference sensitivity may differ significantly. It is advised to consider both
the synergy scores and the predicted sensitivity scores for the most promising drug combinations that show
clinically-relevant synergies.

3.5 Target inhibition network

In this section, we will describe how to visualize the target inhibition network for the selected target set.
The selected target set can be obtained by:

> data(tyner_interaction_binary)

> data(tyner_sensitivity)
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> median_sensitivity <- tyner_sensitivity[, 1]

> # get the median drug sensitivity data

> res <- sffsBinary(tyner_interaction_binary, median_sensitivity,

sp = 1, max_k = 6, loo = TRUE, verbosity = T)

> selected_targets <- res$k_sel

> # get the index of the selected targets

> tyner_interaction_binary<-data.frame(tyner_interaction_binary)

> profile <- tyner_interaction_binary[, selected_targets]

> # get the drug target profiles for the selected target set

To visualize the interactions between the target inhibitions, we consider the drug-target profiles for the
selected target set as the explanatory data, and the drug sensitivities as the response variable. For facilitating
the boolean network reconstruction the drug sensitivities are classified as either effective or ineffective, using
the threshold of 0.5. We take a Boolean expression approach to estimate the minimal configurations in the
drug-target profiles that lead to effective drug sensitivities. The resulting network is a two-terminal graph
with multiple components, each of which represents a minimal Boolean expressions determined using the
Quine-McCluskey algorithm, implemented in the QCA package in R (Dusa, 2010) (Figure 4).

> one_index <- which(median_sensitivity > 0.5)

> # get the index of the sensitive drugs

> zero_index <- which(median_sensitivity <= 0.5)

> # get index of the insensitive drugs

> median_sensitivity_binary <- median_sensitivity

> median_sensitivity_binary[one_index] <- 1

> median_sensitivity_binary[zero_index] <- 0

> # binarize the drug sensitivity data

> draw_data <- cbind(profile, median_sensitivity_binary)

> drawGraph(draw_data)

> # plot the target inhibition network

Figure 4: An example target inhibition network. The network can be interpreted as data-driven hypotheses
on the pharmacologically actionable target interactions which block the parallel cancer survival pathways.
For example, a drug combination that collectively inhibits TGFBR2 and RPS6KA4 is expected to block the
whole pathway. Alternatively, simultaneous inhibition of RPS6KA4, FES, DAPK1 and AURKA can be also
utilized as an effective combinatorial strategy.

The target inhibition network is a binary representation about the potent target combinations based on the
model predictions. From the network topology itself one can pinpoint those target combinations that pass a
sensitivity threshold, but their actual sensitivity values need to be compared in the predictedSensitivities.csv
file. For example, the combined inhibition of RPS6KA4 and DAPK1 has a predicted sensitivity of 0.57 while
the combined inhibition of RPS6KA4, FES, DAPK1 and AURKA results in a higher sensitivity of 0.90;
the single inhibition of AKT3, on the other hand, can reach a sensitivity of 0.72. In the target inhibition
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network, all of the three target sets are listed as potent combinations as their sensitivities are higher than
the default sensitivity threshold 0.5.

4 Miller study

The Tyner study provided large-scale drug-target interaction data which make the timma analysis quite
straightforward. However, for many drug combination studies one is being provided with few drug-target
interaction data. Many drugs, especially those experimental compounds, are often annotated with their
primary targets only. These primary targets are useful for explaining the intended therapeutical actions of
the compounds, but provide limited information on the polypharmacological effects of a drug combination. In
this section we will show a complete pipeline analysis following the work flow in Figure 1 in the manuscript,
starting from collecting the quantitative drug-target interaction data from public databases or literature,
analyzing the dose-response curves from drug screen, and then utilizing timma for making predictions about
the drug combinations. We will illustrate the whole process on the data provided by Miller et al. (2013),
where 14 drugs have been tested as a pairwise combination matrix in a Dedifferentiated liposarcoma (DDLS)-
derived cancer cell line.

Table 1: The drug information in the Miller study

Drug Abbreviation Primary Targets Company Company Product# ChEMBL ID

AG538 AG IGF1R EMD Millipore 658403 NA
AKT 1/2 Inh AK AKT1/2 EMD Millipore 124018 CHEMBL258844
FR180204 ER ERK1/2 EMD Millipore 328007 CHEMBL259551
Gefitinib GF EGFR Tocris 3000 CHEMBL939
HNHA HN HDAC Cayman 13295 CHEMBL2419279
PDGFR TKI III PD PDGFR EMD Millipore 521232 CHEMBL102346
PI3Ka Inh IV PI PI3K (PIK3CA/B/C/D) EMD Millipore 528111 NA
Rapamycin mTOR Selleckchem 1039 CHEMBL413
Rottlerin RT PKC/CaMKIII Tocris 1610 CHEMBL34241
Ryuvidine RY CDK4/6 Tocris 2609 NA
SL327 SL MEK1/2 EMD Millipore 444939 CHEMBL261237
SRC Inh I SR SRC EMD Millipore 567805 CHEMBL97771
Stattic ST STAT3 EMD Millipore 573099 CHEMBL1337170
SU11247 SU MET EMD Millipore 448101 CHEMBL2218936

4.1 The drug-target interaction data

The 14 drugs used in the Miller’s study are shown in Table 1. The listed primary targets are important
indicators about the drugs’ mode of actions, but for understanding their polypharmacological interactions
we still need to obtain the quantitative drug-target interaction profiles at the proteome level. We find that
9 of these 14 drugs are from the EMD Millipore company. Recently, EMD Millipore has profiled 158 drugs
using a broad activity screen (Gao et al., 2013)(PMID:23398362). We start by processing the drug-target
interaction data from Gao et al. (2013), referred hereafter as the Millipore data, which can be downloaded
from http://www.biochemj.org/bj/451/bj4510313add05.xls:

> # make sure that the Java version matches your R version!

> # install.packages("rJava")

> # install.packages("xlsx")

> # install.packages("plyr")

> library(xlsx)

> library(plyr)

> # load the Millipore kinome screen data

> # from Supplementary Table S5

> download.file("http://www.biochemj.org/bj/451/bj4510313add05.xls",

"bj4510313add05.xls", mode="wb")

> millipore_raw = xlsx::read.xlsx(file.path(getwd(),'bj4510313add05.xls'),1,header=F)

>
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> # a bit of cleaning

> millipore_raw = apply(millipore_raw,2,as.character)

> millipore_gene = millipore_raw[c(8:241),2]

> millipore_cat_id = millipore_raw[1,-c(1:6)]

> millipore_profile = as.data.frame(millipore_raw[c(8:241),c(7:166)])

> colnames(millipore_profile) = millipore_cat_id

> millipore_profile = apply(millipore_profile,2,as.numeric)

>

> # Gene symbol for row 140 should be PKA

> millipore_gene[140] = "PKA"

> # Gene symbol for row 187 should be C-RAF rather than RAF1

> millipore_gene[187] = "C-RAF"

> millipore_gene[220] = "TIE2" # change from TEK to TIE2

>

> # average the duplicates

> # 224 targets and 160 compounds

> tmp = as.data.frame(cbind(millipore_gene,millipore_profile))

> tmp[,-1] = apply(tmp[,-1], 2, as.numeric)

> tmp2 = ddply(tmp[,1:161],'millipore_gene',numcolwise(function(x) median(x)))

> millipore_profile_clean = tmp2[,-1]

> rownames(millipore_profile_clean) = tmp2[,1]

The curated Millipore drug-target data contain 160 compounds and 224 targets and each drug-target interac-
tion was assigned into one of four potency categories: inactive (0), weakly active (1), active (2) or very active
(3). Using the product IDs in Table 1 we manage to find 6 Miller compounds (AKT 1/2 Inh, FR180204,
PDGFR TKI III, SL327, SRC Inh I and SU11247) from the Millipore data:

> # load the miller drug list, i.e. Table 1 of the tutorial

> data(miller_drugs)

> # create an empty drug-target matrix, 14 drugs and 224 targets

> miller_targets = as.data.frame(matrix(data=NA,nrow=14,ncol=224))

> colnames(miller_targets) = millipore_profile_clean[,1]

> rownames(miller_targets) = miller_drugs$Drug

> # search in the Millipore data

> index = match(miller_drugs$"Company.Product#", colnames(millipore_profile_clean))

> # 6 drugs can be found

> miller_targets[which(!is.na(index)),] = millipore_profile_clean[index[which(!is.na(index))],]

For the drug AG538 (abbr. AG), we go to the PubMed reference PMID 12869569 and find the following
targets (with IC50s): IGF1R (61 nM), INSR (113 nM), EGFR (370 nM) and SRC (2000 nM). This target
profile is loaded into miller targets as below:

> # the target symbols and UniProt IDs

> AG.targets = c('IGF1R','INSR','EGFR','SRC')

> # AG.targets = c('P08069','P06213','P00533','P12931')

> index = match(AG.targets,colnames(miller_targets))

> # miller_targets['AG538',index] = log10(c(61,113,370,2000))

> miller_targets['AG538',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))

For the drug Gefitinib (abbr. GF), we go the Tyner drug-target interaction data and find the following
targets (n=16) within the 224-target list:

> index = grep("Gefitinib",rownames(tyner_interaction_binary))

> GF.targets = colnames(tyner_interaction_binary)[which(tyner_interaction_binary[index,]==1)]

> index = match(GF.targets,colnames(miller_targets))

> miller_targets['Gefitinib',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))
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For the drug HNHA (abbr. HN), we go to the PubMed reference PMID 17353008 and find its single
target as HDAC (100 nM). However, HDAC is not in the 224-target list, we will add it as the 225th target:

> # HN.targets = c('Q13547')

> HN.targets = 'HDAC'

> miller_targets = cbind(miller_targets,NA)

> colnames(miller_targets)[225] = 'HDAC'

> index = match(HN.targets,colnames(miller_targets))

> miller_targets['HNHA',index] = 1

For the drug PI3Ka Inh IV (abbr. PI), we find the target IC50s from the product page of EMD Millipore
as well as in the PubMed reference PMID 16837202, as PIK3CA (2 nM), PIK3CB (16 nM), PIK3C2B
(220nM) and PIK3CG (660 nM). Again these targets are not covered in the current target list and thereafter
added as new targets in miller targets:

> # PI.targets = c('P42336','P42338','O00750','P48736')

> PI.targets = c('PIK3CA','PIK3CB','PIK3C2B','PIK3CG')

> miller_targets = cbind(miller_targets,NA,NA,NA,NA)

> colnames(miller_targets)[226:229] = PI.targets

> index = match(PI.targets,colnames(miller_targets))

> miller_targets['PI3Ka Inh IV',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))

For the drug Rapamycin, we determine its target profile from the KiBA bioactivity data, which provides
a summary scoring of drug-target interactions by integrating replicated data from multiple studies and assay
conditions (Tang et al., 2014):

> data(kiba) # load the KiBA drug-target interaction data

> # Rapamycin.targets = c('P00533', 'P04626', 'P06239', 'P06241', 'P17252',

'P17948', 'P27361', 'P28482', 'P42345', 'Q16539')

> Rapamycin.targets = c('EGFR', 'ERBB2', 'LCK', 'FYN', 'PRKCA', 'FLT1', 'MAPK3',

'MAPK1', 'MTOR', 'MAPK14')

> index = match(Rapamycin.targets,colnames(miller_targets))

> miller_targets['Rapamycin',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))

For the drug Rottlerin (abbr. RT), the following targets can be also obtained from the KiBA data:

> # RT.targets = c('Q8IW41','Q05655','P49137')

> RT.targets = c('MAPKAPK5','PRKCD','MAPKAPK2')

> index = match(RT.targets,colnames(miller_targets))

> miller_targets['Rottlerin',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))

For the drug Ryuvidine (abbr. RY), we find the bioactivity values from the PubMed reference PMID
24902048: CDK4 (IC50=600 nM) and CDC7 (IC50<10,000 nM).

> # RY.targets = c('P11802','O00311')

> RY.targets = c('CDK4','CDC7')

> miller_targets = cbind(miller_targets,NA,NA)

> colnames(miller_targets)[230:231] = RY.targets

> index = match(RY.targets,colnames(miller_targets))

> miller_targets['Ryuvidine',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))

For the drug Stattic (abbr. ST), we find the target IC50s from the PubMed reference PMID 17114005
including STAT3 (5100 nM), STAT1 (<10,000 nM), STAT5 (<10,000 nM). These targets were not found
previously and thus will be added.

> # ST.targets = c('P40763','P42224','P42229')

> ST.targets = c('STAT3','STAT1','STAT5')

> miller_targets = cbind(miller_targets,NA,NA,NA)
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> colnames(miller_targets)[232:234] = ST.targets

> index = match(ST.targets,colnames(miller_targets))

> miller_targets['Stattic',index[which(!is.na(index))]] = rep(1,sum(!is.na(index)))

Finally, we finalize the drug-target matrix by the same binarization as done for the Tyner study, e.g. 0
stands for inactive target and 1 stands for active target. The final drug-target interaction matrix contains
14 drugs and 234 targets.

> # binarization

> miller_targets[which(is.na(miller_targets),arr.ind=T)] = 0

> miller_targets[which(miller_targets=="NA",arr.ind=T)] = 0

> miller_targets[which(miller_targets > 0, arr.ind=T)] = 1

The number of targets for each drug after the binarization is shown in Table 2. Note that for most of the
drugs the literature review process revealed many targets showing either strong or weak binding affinities.
Although most of them were not listed as the intended primary targets, they might still contribute to the
drugs’ mechanisms of actions. The data obtained from a global drug-target profiling (e.g. Gao et al. (2013)
and Tyner et al. (2013)), or from the integration of multiple studies (e.g. Tang et al. (2014)) is an essential
step to enable the prediction of drug combinations based on their polypharmacolgical interactions.

Table 2: The number of drug targets identified from the literature

Drug Abbreviation Number of targets PubMed reference
AG538 AG 4 12869569
AKT 1/2 Inh AK 64 23398362
FR180204 ER 58 23398362
Gefitinib GF 16 24065146
HNHA HN 1 17353008
PDGFR TKI III PD 126 23398362
PI3Ka Inh IV PI 4 16837202
Rapamycin 9 24521231
Rottlerin RT 3 24521231
Ryuvidine RY 2 24902048
SL327 SL 26 17114005
SRC Inh I SR 75 23398362
Stattic ST 3 23398362
SU11247 SU 79 23398362

4.2 The drug sensitivity data

The dose-response values of single and paired drug combinations on the tumor-derived cell line DDLS8817
can be downloaded from Table S2 of the Miller study. However, from Table S2 we can find only 13 drugs,
whereas Rapamycin sensitivities were missing. Each of the 13 drugs were tested on 7 doses, where the
responses were measured as the relative cell metabolic activities. We will first use the logistic curve-fitting
to derive the cell viability IC50s using the drc package in R (Ritz and Streibig, 2005).

> install.packages("drc")

> install.packages("plyr")

> library(drc)

> library(plyr)

> data(miller_drug_response)

> # calcuate the IC50s based on dose-response curves

> miller_ic50 = ddply(miller_drug_response,"Drug",

function(x) {tmp=drm(Effect ~ Dose.uM, data = x, fct = LL.4(fixed = c(NA,0,1,NA),

names = c("SLOPE","MIN","MAX","IC50")),na.action=na.omit); summary(tmp)$coefficients[2,]})
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The derived IC50s for the 13 drugs are listed in Table 3. The cancer cell is most sensitive to PI3Ka Inh IV
(PI), Stattic (ST) and Ryuvidine (RY), while being resistant to AG538(AG), FR180204(ER) and SRC Inh
I(SR).

Table 3: IC50 estimation using the four-parameter logistic regression in the drc package

Index Drug Estimate Std. Error t-value p-value
1 AG 46.44124133 NA NA NA
2 AK 7.572383482 0.493068449 15.35767194 2.12E-05
3 ER 50.37797632 10 5.037797632 0.003974337
4 GF 12.76729578 0.358251586 35.63779277 3.27E-07
5 HN 7.131568813 0.462386355 15.42339806 2.08E-05
6 PD 4.288026375 0.197069574 21.75894678 3.80E-06
7 PI 0.879652961 0.0561139 15.67620433 1.92E-05
8 RT 1.884818728 0.155908377 12.0892717 6.84E-05
9 RY 1.117143932 0.16069572 6.951920883 0.000946274
10 SL 9.173322269 NA NA NA
11 SR 18.60253895 228.8209795 0.081297349 0.938359423
12 ST 0.863373171 0.086393759 9.993466865 0.000171484
13 SU 10.1542157 1.540481569 6.591585322 0.001207286

The drug sensitivity values are inversely scaled from the IC50s according to (1):

> miller_sensitivity = (max(miller_ic50$Estimate)-miller_ic50$Estimate)/

(max(miller_ic50$Estimate)-min(miller_ic50$Estimate))

> miller_sensitivity = as.data.frame(miller_sensitivity)

> rownames(miller_sensitivity) = miller_ic50$Drug

4.3 Drug combination analysis

We run the timma analysis on the 13 drugs for which the target profiles and drug sensitivities are available
(Rapamycin was shown in the drug list but not included in the drug combination testing):
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Figure 5: The predicted synergy scores as compared to the combination index (CI) in the Miller study. The
negative correlation was expected since low CI indicates stronger synergistic effect.
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> data(miller_interaction_binary)

> data(miller_sensitivity)

> timma(x = miller_interaction_binary,

y = as.matrix(miller_sensitivity[,1]), sp = 1, max_k = 8,verbosity = T)

The predicted synergy scores can be found in the result file predictedScoring.csv :

> predicted =

read.table(file="predictedScoring.csv",header=T,sep=",") # read the predicted score data

Now we load the combination index data extracted from Figure 1 of Miller et al. (2013), and compare it
with the multiplicative synergy score predicted by timma:

> # install.packages("reshape2")

> library(reshape2)

> data(ci) # load the combination index data of Miller study

> ci.pair = melt(as.matrix(ci),id=rownames(ci))

> colnames(ci.pair) = c("drug1","drug2","ci")

> ci.pair = ci.pair[-which(is.na(ci)==T),]

> drug.comb.ci = apply(ci.pair,1,function(x)

paste(sort(c(as.character(x[1]),as.character(x[2]))),collapse=" "))

> ci.pair = cbind(ci.pair,drug.comb.ci)

> drug.comb.timma = apply(predicted[,c("Drug1","Drug2")],1,

function(x)paste(sort(c(as.character(x[1]),as.character(x[2]))),collapse=" "))

> cor.test(ci.pair$ci,predicted$Synergy.mult[match(drug.comb.ci,drug.comb.timma)],method="spearman")

> plot(ci.pair$ci,predicted$Synergy.multi[match(drug.comb.ci,

drug.comb.timma)],xlab="CI",ylab="TIMMA synergy (multiplicative)")
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Figure 6: The target inhibition network for the DDLS-derived cancer cell.

The spearman correlation between the predicted TIMMA multiplicative synergy scores and the combination
index scores is -0.39 with a p-value of 0.008 (Figure 5). Notably, TIMMA predicted that AG538 is synergistic
with Ryuvidine with a synergy score of 0.285. Further, their targets IGF1R and CDK4 in combination was
also predicted a sensitivity of 0.997, which is in line with the major finding of Miller et al. (2013). On the
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other hand, the derived target inhibition network showes alternative target combinations, such as inhibitions
of ABL1 and FLT3, or ABL1 and ACVR1B, that might be also synergistically blocking the cancer survival
pathway (Figure 6).

5 Other data preprocessing functions

In this section we briefly describe two data preprocessing functions for binarizing drug-target interactions
from quantitative binding affinity assays and for converting drug response IC50 values into drug sensitivity
scores separately.

For binarizing drug-target interactions, we implemented a function binarizeDrugTargets and provided an
example binding affinity data downloaded from a kinome-wide screening study (Davis et al., 2011). The
davis data include the dissociation constant (Kd) results for 72 drugs and 442 kinases from binding affinity
assays.

> data(davis)

> davis_binary <- binarizeDrugTargets(davis, method="drug-specific", threshold="100fold")

We provided two methods for binarization. The method drug-specific utilizes a threshold which is n-fold
greater than the minimal Kd value for each drug (n = 10, 50, 100). Alternatively, we may use a fixed threshold
(e.g. 1,000 nM) across all the drugs, such as

> davis_binary <- binarizeDrugTargets(davis, method="universal", threshold="1000nM")

For converting the drug response IC50 values into a sensitivity score in a [0, 1] scale, we implemented three
methods including minmax, logistic and hyperbolic. The minmax method scales the IC50 values according
to Eq (1) defined in section 3.1.2. The logistic method normalizes the IC50 values according to

y =
1

1 + e(−x)
(4)

,where x = 1/IC50. The hyperbolic method is

y = tanh(x) (5)

These methods were implemented in a function normalizeSensitivity with the syntax:

> y <- normalizeSensitivity(IC50, method = c("minmax","logistic","hyperbolic))

6 Conclusion

In this tutorial, we showed the work flow of the drug combination analysis using the timma R package.
The data from two real case studies, i.e. the Tyner study and the Miller study were shown as running
examples. The Tyner study provided manually-curated drug-target interactions as well as well-characterized
drug sensitivity data for 151 patient-derived samples, which make it an ideal case study for illustrating the
analytical pipeline of TIMMA. Further, this study is highly translational, as the samples were derived from
leukemia patients, so that the identified drug combinations could be readily tested in clinical settings. On
the other hand, the Miller study provided the sensitivities for both single small-molecule drugs and drug
combinations, which makes it an ideal case study to evaluate the validity of the predictions. However,
the Miller study listed only one or two putative targets for each drug, whereas the polypharmacological
connectivity patterns between the drugs at the proteome scale is largely missing. To maximize the prediction
power of TIMMA, our first effort is to define the drugs polypharmacological profiles considering both strong
and weak interactions, so that the effect of a drug combination can be modelled as the effects of their
(multiple) target combinations. We queried these drugs in ChEMBL, as well as did a thorough search in
literature for the bioactivity data from multiple studies. Finally, we have compiled a drug-target interaction
profile including 234 targets. For the single-drug sensitivities on the cell line, we calculated the IC50s based
on the dose-response data provided in Table S2 of Miller et al. (2013). The TIMMA analysis was then carried
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out the same way as done for the Tyner study. The predicted drug synergy scores were compared with the
Combination Index scores (CI). We found that the multiplicative synergy scores correlate the best with the
CI scores. For both of the two case studies, a rich set of data preprocessing functions for the drug-target
interactions and the drug sensitivities are covered. The R scripts provided in the supplementary material
include downloading the literature raw data, binarization/multi-classification and drug sensitivity analysis
using the drc R package and in addition to other data preprocessing functions. These case studies should
provide very helpful guidelines on the drug-target interaction data processing, the drug sensitivity scoring
and the drug combination predictions.
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