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Abstract

Motivation: Most data analysis tools for high-throughput screening (HTS) seek to uncover interesting

hits for further analysis. They typically assume a low hit rate per plate. Hit rates can be dramatically

higher in secondary screening, RNAi screening and in drug sensitivity testing using biologically active

drugs. In particular, drug sensitivity testing on primary cells is often based on dose–response experi-

ments, which pose a more stringent requirement for data quality and for intra- and inter-plate variation.

Here, we compared common plate normalization and noise-reduction methods, including the B-score

and the Loess a local polynomial fit method under high hit-rate scenarios of drug sensitivity testing. We

generated simulated 384-well plate HTS datasets, each with 71 plates having a range of 20 (5%) to 160

(42%) hits per plate, with controls placed either at the edge of the plates or in a scattered configuration.

Results: We identified 20% (77/384) as the critical hit-rate after which the normalizations started to

perform poorly. Results from real drug testing experiments supported this estimation. In particular,

the B-score resulted in incorrect normalization of high hit-rate plates, leading to poor data quality,

which could be attributed to its dependency on the median polish algorithm. We conclude that a

combination of a scattered layout of controls per plate and normalization using a polynomial least

squares fit method, such as Loess helps to reduce column, row and edge effects in HTS experi-

ments with high hit-rates and is optimal for generating accurate dose–response curves.

Contact: john.mpindi@helsinki.fi

Availability and implementation, Supplementary information: R code and Supplementary data

are available at Bioinformatics online.

1 Introduction

High-throughput drug testing is increasingly being applied on, e.g.

established cancer cell lines, drug-resistant cancer cell models, pri-

mary cancer cells, iPS and other stem cell models of disease

(Barretina et al., 2012, Crystal et al., 2014, Gao et al., 2014,

Pemovska et al., 2013, Shoemaker, 2006, Tyner et al., 2013). This

facilitates investigation of the functional effect of a spectrum of

drugs on representative cell models and may be developed as a tool

for cancer diagnostics and personalized medicine in the future

(Barretina et al., 2012, Garnett et al., 2012, Pemovska et al., 2013,

Shoemaker, 2006, Tyner et al., 2013, Yang et al., 2013). For ex-

ample, we have developed drug sensitivity and resistance testing

(Pemovska et al., 2013) for primary ex-vivo cancer cells from leuke-

mia patients using serial dilutions of a comprehensive drug panel,

previously containing 187, but now 461 preclinical and clinical can-

cer drugs (Pemovska et al., 2013). As opposed to high-throughput
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screening (HTS) with a discovery intent, the drug testing is done

with known bioactive agents, often leading to high hit rates per

plate. Also, there is a need to generate dose–response curves for the

quantitative assessment and validation of the results. Hence, the

quality requirements for primary data are more stringent than in

regular HTS experiments. Primary cells from patients will most

often not be available for replicate HTS experiments or validation

screens. Recent articles have raised concerns about the lack of repro-

ducibility of drug testing data even in established cell lines and have

suggested standardization of laboratory protocols, drug annotations

and drug-response scoring metrics (Hatzis et al., 2014, Yadav et al.,

2014). There is little data on the performance of normalization

methods for HTS experiments where hit rates are commonly high.

Like all HTS experiments, drug-testing studies rely on controls

to normalize data points within and between plates. We then gener-

ate percent inhibition metrics and produce dose–response curves

based on serial drug dilutions. The way these dilutions are done and

how controls are applied on a plate layout often varies. For ex-

ample, it is technically easier to make a plate with the highest con-

centration of each drug and then make serial dilutions across the

entire plate. This will result in plates with distinctly different overall

hit rates. Second, a plate layout can be designed to include positive

and negative controls in the first or last column or in random pos-

itions (scattered layout, Fig. 1). If controls are placed in the first or

last column, they are sensitive to edge effects, which often occur due

to evaporation. While scattered layout would be optimal, the layout

is often chosen based on what is technically most feasible.

High-throughput experiments manifest systematic row, column

and edge effects when a global signal distribution surface is analyzed

(Makarenkov et al., 2007). Thus, there is a need for normalization

and analysis methods that reduce false positives in the HTS experi-

ments (Dragiev et al., 2012, Kwan and Birmingham, 2010, Murie

et al., 2013, Rieber et al., 2009, Seiler et al., 2008). For instance, a

recent study (Murie et al., 2013) suggested the use of control plate

regression method, which depends on adjusting signal intensities on

the treatment plates by scaling the data based on bias estimates on a

control plate.

This approach requires an extra control plate, and it is impos-

sible to calculate quality control (QC) metrics per plate without hav-

ing both the positive and negative controls on each of the treatment

plates. Moreover, dispensing of reagents may introduce plate-spe-

cific variations stressing the importance of having controls on each

plate. Another approach would be to adapt methods developed for

normalizing microarray experiments such as generalized procrustes

analysis (Xiong et al., 2008) and modified Loess [loessM (Risso

et al., 2009)]. Generalized procrustes analysis requires replicate ex-

periments, whereas loessM requires an experimental design based

on biological replicates dye-swap. Because of the limited amount of

cells available, replicate HTS experiments cannot often be done with

primary cells and hence methods that depend on replicates can be

difficult to implement.

The B-score (Brideau et al., 2003, Liu et al., 2013, Malo et al.,

2006) is perhaps the most popular normalization method for HTS

experiments. Importantly, however, the B-score assumes a low hit

rate and is based on the iterative application of the Tukey median

polish algorithm. In addition to the B-score, a number of other noise

reducing methods based on polynomial least squares fit have been

published (Makarenkov et al., 2007) and implemented in open

source Bioconductor packages cellHTS (Boutros et al., 2006) and

RNAither (Rieber et al., 2009) and platforms such as HitPick (Liu

et al., 2013). For example, the locally weighted scatterplot smooth-

ing (Loess-fit) is based on fitting a distribution surface on the whole

plate data matrix. Despite the value of performing data normaliza-

tion on datasets affected by within-plate effects, normalization

methods often introduce bias when applied on any dataset (Dragiev

et al., 2011). Hence, it is necessary to assess whether data from an

HTS experiment are compatible with the original assumptions of

the normalization methods. Here, we will evaluate the reproducibil-

ity and quality of simulated and real data normalized with the

B-score and the Loess-fit approaches.

2 Methods

2.1 Datasets
To compare the reproducibility and quality of drug testing data after

normalization for row, column and edge effects within a single plate,

we utilized a simulated dataset and a real experimental dataset from

the FIMM-High Throughput Biomedicine facility. The experimental

data consisted of testing the effects of 306 FDA approved and investi-

gational drugs on the viability of two prostate cancer cell lines VCaP

and LAPC4. The screens were performed in replicate, and each drug

was screened twice across five concentrations (Fig. 2b). The drug-

testing pipeline is described in detail previously (Pemovska et al.,

2013, Yadav et al., 2014). The plate layout is given in Supplementary

Material (Supplementary File S2), including the position of controls.

The simulated dataset consisted of 142 plates with each plate de-

signed to contain 306 drugs and well controls mimicking the distribu-

tion pattern found in real HTS data. We mimicked the distribution of

real data to make the QC metrics to resemble those expected in real

data. We tested the normality of the positive and negative control dis-

tributions in real data using the Shapiro–Wilks (Shapiro and Wilk

1965) method from R stats package. The test showed that the real

data follows a normal distribution (W¼0.9916, P value¼0.4696

for negative controls and W¼0.9725, P value¼0.2197 for positive

controls). We also further confirmed the assumption of normality

using an external HTS dataset of two duplicate 384-well plates con-

taining dimethyl sulfoxide (DMSO) negative controls and no treat-

ment (W¼0.9978, P value¼0.9007 and W¼0.9961, P

value¼0.4602). The data were downloaded from CHEMBANK

(http://chembank.broadinstitute.org/assays/view-project.

htm?id¼1001118) by selecting CellTiterGlo(1135.0009).

We generated an increasing number of hits on each of the 71

plates up to a hit rate of 42% (160 drugs). In real drug sensitivity

testing experiment, the number of hits keeps increasing with increas-

ing drug concentration level. Therefore, in our simulation experi-

ment, we increased the number of hits iteratively by adding 2 hits

on each run starting from 5% (20) hits until a hit rate of 42%

(160 drugs). We started by producing data for 287 drugs con-

sidered as non-hits sampled from a distribution of negative controls

Nðl1; d1Þ and added 20 drugs considered as hits sampled from a

Fig. 1. Plate layouts commonly used in drug testing experiments. (a) Layout

based on placing controls in column 1 and 24. (b) Layout based on scattering

controls across the entire plate
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distribution of positive controls Nðl2; d2Þ. For the remaining

70 plates, we reduced the non-hits by 2 and increased the number of

hits by the same number on each run. These steps helped to generate

a drug testing dataset with an increasing number of hits per plate

based on two plate layouts.

2.2 Data preprocessing
Data from all simulated and real drug testing experiments were pre-

processed using R statistical software. Data outputs from the

Pherastar FS plate reader (Ortenberg, Germany) were converted to

matrices and visualized as heatmaps and well scatters. Pre- and post-

normalization QC assessment was performed using Z’-factor

(Zhang et al., 1999) and strictly standardized mean difference

(SSMD) (Zhang, 2007).

2.3 Quality control
We performed QC on both the pre- and post-normalization data.

Here, we implemented the commonly used QC methods including

SSMD and Z’-factor. The Z’-factor was chosen because the calcula-

tion is based on using controls which are essential for calculating

percent inhibition.

Z0 � factor ¼ 1� 3ðdh:c þ dl:cÞ=lh:c þ ll:c (1)

where h.c ¼ high control represents the signal detected from nega-

tive control wells (DMSO) leading to no effect on the cells (no de-

crease in viability), while l.c ¼ low control refers to signal intensities

from positive control wells (benzethonium chloride) leading to

the greatest cell killing effect (maximal decrease in viability). The

Z’-factor values can range from negative infinity to one, where

values>0.5 represent a very good experiment, >0 and <0.5 as

moderately good experiment and <0 as a poor experiment. We also

implemented the SSMD statistic as it offers a robust assessment of

the quality of the screen. SSMD has been shown to be more accurate

and less conservative indicator of quality than the Z’-factor

(Birmingham et al., 2009). In our work, we also preferred results

from SSMD since it gives a more robust indication about the quality

of data from control wells.

SSMD ¼lh:c�ll:c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð d 2

h:cþ d 2
l:c

q
Þ (2)

where h.c ¼ high control and l.c ¼ low control are used as described

above.

2.4 Percent inhibition
To be able to compare data analyzed on different plates across sev-

eral concentrations, we calculated the percent inhibition metric.

Percent inhibition values greatly depend on the quality of data

acquired from control wells. Controls are often placed at the edges

of the plate (first and last column) where they are impacted by edge

effects. Here, we compared this with a scattered one. Given data on

a plate p, we calculated the percent inhibition (Iijp) for the value at

row i and column j as follows:

Iijp ¼ ðlh:c�xij=lh:c�ll:cÞ � 100 (3)

where xij is the measured signal value at row i and column j on

the pth plate, lh.c is the mean of negative control sample value on

plate p and ll.c is the mean of the positive control sample values on

plate p.

2.5 Within-plate normalization and corrections
Systematic errors due to, e.g. row, column and edge effects occur in

drug testing experiments and can significantly affect the down-

stream analysis of drug testing data. Using standard QC methods

and whole plate visualization methods, it is possible to determine

whether within-plate noise corrections are needed, although often

this is performed automatically.

The percent inhibition calculation takes care of the cross-plate

systematic effects by normalizing all values to a percent score,

whereas within-plate effects cannot be corrected. A common ap-

proach for correcting row, column and edge effects is the B-score.

Fig. 2. Data quality visualization by heatmaps and scatter plots (a) Comparing quality of data per drug testing plate starting from the plate containing the lowest

concentration of drugs (D1-left) to that containing highest concentration drugs (D5-right). (b) The scatter plot shows that the positive (blue) and negative (red) con-

trols clearly separate in all the five plates, which indicates good screen quality
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B-score calculation is robust to outliers since it utilizes a non-

parametric approach based on Tukey’s median polish algorithm

(Kafadar, 2003). Given plate p, where xij is the measured signal

value at row i and column j, we calculate the B-score as follows:

B-scoreijp ¼ med:polish:fit:sample:residualðrijpÞ=MADp (4)

where rijp represents the two-way fitted median polish residuals cal-

culated iteratively to minimize row and column effects using the

medpolish function in the stats package of R software. MAD for

plate p refers to the median absolute deviation calculated from the

rijp values as follows:

MADp ¼ medianfjrijp �medianðrijpÞjg (5)

The B-score method assumes a low hit rate on the row and col-

umn, which does not hold for drug testing data in particular for

plates containing drugs applied at high concentration. To address

this concern, we tested an approach based on fitting a local distribu-

tion surface using least squares polynomial approximation

(Makarenkov et al., 2007). We performed local regression on a sin-

gle plate using the Loess-fit method by assessing the deviation of

each fitted value from the median. Extreme deviations of data from

locally adjacent wells would suggest the existence of systematic

within-plate errors causing peaks and valley shapes in the smooth

surface fit. A well correction is then performed by subtracting from

or adding to the original value. Given plate p, where xij is the meas-

ured signal value at row i and column j, we calculated the loess-fit

result x̂ij as follows.

x̂ij ¼ xij � ðloess:fit�medianðloess:fitijÞÞ (6)

where loess.fitij is the value from loess smoothed data at row i and

column j calculated using the loess function in stats package of R

software with a span of 1. The current implementation of loess as-

sumes (i) that the controls are scattered across the plate and (ii) that

drug hits on the plate are randomly distributed. The R code for per-

forming loess normalization is provided under Supplementary

Material (Supplementary File S3). Next, we performed the cross-

plate normalization using the percent inhibition formula above.

Then, we used the percent inhibition values to examine the reprodu-

cibility of the post-normalization data using the reproducibility con-

cordance correlation coefficient (rccc) (Lin, 1989) implemented in

the epiR package of R software.

3 Results and discussion

3.1 Visualization and QC of high hit-rate and

dose–response experimental data
To demonstrate the importance of raw data visualization and QC

steps, we analyzed our in-house drug testing dataset of two prostate

cancer cell lines screened in replicate. Each of the replicate screens

contained five 384-well plates seeded with cells and incubated with

306 drugs and controls. The controls for Cell Titer-Glo (CTG) via-

bility assay included 16 negative controls with DMSO only and 8

positive control wells with 100 lM benzethonium chloride. In add-

ition, 19 of the remaining wells were left blank and 35 wells con-

tained cells only. The drugs were plated in five different

concentrations in 10-fold dilutions covering a 10 000-fold concen-

tration range. First, we visualized the 384-well plate raw signal

intensities as a heatmap (Fig. 2a) to show the distribution of the

high (red) and low (blue) hits. The heatmap visualization helps to

detect systematic errors due to, e.g. cell seeding (stripping, checker-

board) or evaporation (edge-effects). The heatmaps were arranged

according to increasing dose of each drug (D1–D5) (Mangat et al.,

2014).

As expected, the number of hits increased with the increasing

drug dose. Second, plate-well scatters were used to illustrate the

overall quality and reproducibility of the HTS experiment based on

examining the performance of control wells across the five drug

dose levels (Fig. 2b) arranged in ascending order. As can be seen,

plates containing drugs applied at low dose (D1–D2) contain

fewer outliers or hits compared to plates with higher doses of drugs

(D3–D5). High or low signal values at the edge of a plate highlight

edge effects.

To automatically flag single plates with artifacts that need cor-

rection, we employed a quantitative approach based on calculation

of the Z’-factor and the SSMD scores (Z’ and SSMD, Table 1)

(Zhang, 2011; Zhang et al., 2007). All plates with an SSMD score

less than 6 were flagged for visual inspection and further correction.

Z’-factor and SSMD QC metrics were able to highlight plates likely

to contain row, column and edge effects. It is important to visualize

the data using plate heatmaps and plate-well scatters since the met-

rics tend to be skewed by the presence of outliers among the control

samples.

With visual data quality inspection, one can detect the presence

of outliers among controls placed on each plate. For our experi-

ments, we observed that when the QC metrics were good, there was

always a good correlation between the replicate experiments. The

X–Y correlation plot in Figure 3a illustrates the effect of within-

plate effects on the data reproducibility for two replicate VCaP cell

line screens leading to low rccc of 0.82 (confidence interval: 0.80,

0.83).

The discordant results were obtained for the VCaP cell line

screen replicate 2 with poor QC values (Table 1, Fig. 3a) compared

to a LAPC4 cell line screen with better quality raw data resulting in

Table 1. Pre- and post-normalization QC scores

Plate_ID Raw_

zprime

B-score_

zprime

Loess-

fit_

zprime

Raw_

ssmd

B-score_

ssmd

Loess-

fit_

ssmd

LAPC4_D1_rep1 0.63 0.67 0.64 10 12 11

LAPC4_D2_rep1 0.65 0.62 0.67 11 10 12

LAPC4_D3_rep1 0.64 0.66 0.73 11 12 15

LAPC4_D4_rep1 0.63 0.66 0.65 10 12 11

LAPC4_D5_rep1 0.59 0.48 0.51 9 8 8

LAPC4_D1_rep2 0.46 0.41 0.44 6 6 7

LAPC4_D2_rep2 0.57 0.58 0.61 8 9 10

LAPC4_D3_rep2 0.61 0.63 0.65 10 10 11

LAPC4_D4_rep2 0.54 0.69 0.61 8 13 10

LAPC4_D5_rep2 0.55 0.36 0.55 8 6 8

VCap_D1_rep1 0.75 0.78 0.73 15 19 15

VCap_D2_rep1 0.82 0.81 0.75 22 20 15

VCap_D3_rep1 0.8 0.8 0.82 20 20 22

VCap_D4_rep1 0.76 0.78 0.79 17 18 20

VCap_D5_rep1 0.73 0.4 0.61 14 6 10

VCap_D1_rep2 0.05 0.07 20.03 4 4 3

VCap_D2_rep2 0 20.01 20.07 3 3 3

VCap_D3_rep2 20.77 20.7 20.78 2 2 2

VCap_D4_rep2 20.61 21.13 20.82 2 2 2

VCap_D5_rep2 20.18 20.88 20.39 3 2 3

Column headings show the QC score used per data type. The quality of

each screen was assessed pre- (Raw) and post-normalization (after normaliza-

tion) by either B-score or Loess-fit. Low QC scores below the recommended

threshold are highlighted in bold.
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rccc score of 0.90 (confidence interval: 0.89, 0.90, Table 1, Fig. 3b).

These findings indicate that poor QC scores caused by within-plate

systematic errors introduced false-positive hits (outliers) in the

VCaP experiment. Drug plates with poor QC scores can lead to in-

accurate percent inhibition calculations needed for calculation of

dose–response metrics and curve fitting.

Since within-plate effects can lead to low reproducibility and

poor QC results, we tested whether normalization algorithms could

be used to improve the quality and reproducibility of the data. Since

the within-plate normalizations were not designed for high hit rate

scenarios, we wanted to specifically test whether they could result

into post-normalization QC scores that are lower than those ob-

tained from the raw data.

3.2 Simulation of QC metrics under increasing hit rate
We applied two simulations mimicking the commonly used plate

layouts under increasing hit rate scenarios to systematically identify

the ideal hit rate and plate layout combination that would enable

normalization methods correcting for within plate effects. Our simu-

lation study consisted of 142 plates, each plate comprising 384 wells

seeded with 306 drugs, 16 negative controls and 8 positive controls.

The controls were placed either on the edge or randomly scattered

across the entire plate comprising a total of 71 plates with each type

of control layout.

First, we generated data for each of the 142 plates by mimicking

an increasing hit rate often experienced in drug testing experiments.

Hits and non-hits were generated from two independent normal

distributions Nðl1; d1Þ and Nðl2; d2Þ mimicking realistic signal

intensities with non-hits being generated from a distribution close

to negative control wells signal (l1 ¼122 674.6, d1 ¼10 481.78),

while the hits were generated from a distribution close to the posi-

tive control wells signal (l2¼38 158.6, d2 ¼ 10 481.78). We

started with a hit rate of 20 wells out of 384 wells (5%) and

increased it iteratively by adding 2 hits on each new plate until the

cumulative hit rate was 160 wells (42%). We next examined the ef-

fect of normalizations on the quality of the data by inspecting Z’-

factor and SSMD QC metrics for each of the 142 plates. After gen-

erating post-normalization Z’-factor and SSMD QC scores

(Supplementary File S1), the critical point was determined to be

when the QC scores dropped below the recommended thresholds

(Z’-factor<0.5 and SSMD<6). The maximum tolerable hit rate to

carry out normalizations was 20% or 77/384 wells. Beyond this

level, normalizations started to affect the data quality severely as

illustrated in Figure 4 on plates with a scattered layout. The mean

Z’-factor score based on Loess-fit normalized data was 0.5 for a hit

rate window between 5% and 42% compared with the mean Z’-

factor score of 0.08 based on B-score normalized data generated

from plates with the scattered layout for controls. We then exam-

ined whether post-normalization QC scores were significantly dif-

ferent between the two plate layout formats.

The results in Figure 5 indicate post-normalization QC scores rep-

resented as a function of an increasing hit rate. Consistent with the ob-

servations in Figure 4, the B-score showed more significant decrease in

the quality of the data when compared with the Loess-fit data under

hit rates above 20%. B-score performed reliably only below a 20% hit

rate, which is a much more narrow range than for the loess-fit. Thus,

B-score normalization may lead to a high number of false positives for

experiments with a hit rate above 20%. The Loess-fit method gener-

ated data of higher reliability (Fig. 5a and b), close to or even higher

than the recommended thresholds of QC metrics.

Using the plate layout with controls at the edge resulted in the

lowest possible post-normalization QC scores for both B-score and

Loess normalized data. The layout with controls scattered led to

(a) (b)

Fig. 3. Reproducibility of un-normalized data from replicate experiments. The

scatterplot shows the correlation of raw data from two replicate drug testing

screens for the VCaP and LAPC4 cell lines. The global rccc score was calcu-

lated by putting together percent inhibition values for the five plates to make

one plot and rccc score. The VCaP (a) drug testing experiment showed lower

reproducibility due to the poor quality of replicate experiment 2 thus leading

to an rccc score of 0.82 (confidence interval: 0.80, 0.83) compared to LAPC4

(b) rccc score of 0.90 (confidence interval: 0.89, 0.90)

Fig. 4. Identifying the maximum tolerable hit rate needed to perform normal-

ization. QC estimates (a) Z’-factor and (b) SSMD as a function of the percent-

age (%) of hit-drugs (drugs showing high cell killing pattern similar to the

positive controls placed on the same plate). The maximum tolerable hit-rate

on any plate was identified as 20% indicated by the dotted grey line. The hori-

zontal dotted red line for Z’-factor and the solid line for SSMD indicate the rec-

ommended QC threshold for a good screen

Fig. 5. Simulated data results showing increasing hit rate versus post-normal-

ization QC scores. QC estimates based on B-score and Loess normalized data

(a) Z’-factor and (b) SSMD. The curves show the change in QC scores as the

hit rate increases. Each normalization method was tested on two plate layouts

outlined on the figure legend (Controls on edge and Controls scattered)

Impact of normalization methods on HTS data 3819

 (CI):
ure
).
-
Table 1.&ensp; Pre- and post-normalization quality control scoresColumn headings show the quality control score used per data type. The quality of each screen was assessed pre- (Raw) and post-normalization (after normalization) by either B-score or Loess-fit. Low quality control scores below the recommended threshold are highlighted in bold.
quality control
quality control
of 
(122674
10481
)
(38158
 10481
quality control
quality control
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv455/-/DC1
quality control
 < 
 < 
to
to
quality control
quality control
as
to
ure
5b
quality control


better QC scores for data based on both normalization methods

under low hit rate conditions. Therefore, the two simulation studies

revealed that, in a high throughput experiment with a hit rate less

than 20%, a combination of the Loess-fit normalization method and

the layout with controls scattered performed better than the B-score.

3.3 Application of B-score and Loess methods to real

drug testing experimental data
To confirm the conclusions based on our simulation study, we com-

pared normalizations with the B-score and Loess methods using real

drug testing data with the VCaP and LAPC4 screens (Table 1). Our

results confirmed generation of poor QC scores using B-score nor-

malization for the fourth and fifth plates containing drugs applied at

high concentrations. It was evident that normalization of the data

using the B-score method altered signal intensities for controls as the

number of hits increased on plates (Fig. 6a). Loess-fit normalization

was applied on the same data, resulting in a surface fit exposing

areas with uneven distribution of low and high values. The areas

showing systematic high or low values in adjacent wells could be

due to evaporation induced edge effects or uneven cell seeding.

Figure 6b illustrates the Loess-fit heatmaps showing some plates

with edge effects. In an ideal screen, the fitted surface will identify

no spots adjacent to each other with systematically high or low sig-

nal intensities (hills and valleys), thus leading to a zero surface flat

plane. When systematic within-plate errors do exist in some pos-

itions on the plate, the residuals for the fitted surface around such

wells will be high and need to be corrected. Compared with the

B-score method, the scatter plots based on Loess-fit approach re-

tained a good dynamic range between control samples placed on the

plates (Fig. 6c). There was no major alteration of control well sig-

nals for plates containing drugs applied at high concentration (Fig.

6a). Loess-fit approach offers an improved way of normalizing HTS

data under high hit rate scenarios compared with previous. Next,

we assessed the quality of data for replicate experiments after

preforming normalization using the Z’-factor and SSMD scores

(Table 1).

The QC metrics always flagged the fifth plate as being of poor

quality, which was not correct based on the QC scores observed

from using raw data for the same screens. Given the inconsistency

between pre and post-normalization QC results for the fifth plate,

we concluded that normalization of any screen with a high hit rate

leads to an increase in false-positive hits. We observed that the hit

rate is the most critical factor that causes normalizations to fail.

From the real screening data, we also observed that no normaliza-

tion method could correct for strong within-plate effects and thereby

improve QC scores as observed in the VCaP replicate 2 experiments.

Consequently, when a drug testing experiment has poor QC metrics

such as Z’-factor<0.5 and SSMD<6 coupled with a high hit rate

(>20%), it is worth repeating the experiment rather than perform-

ing any normalization on the data.

4 Conclusions

We have shown the importance of QC metrics and per-plate data

visualization in identifying systematic errors in HTS experiments

with a high hit rate. Our results show that a scattered layout is su-

perior over the layout based on placing controls in the first and last

columns. Careful assessment of the impact of normalization is

needed particularly when the original assumptions on low hit rates

Fig. 6. Post-normalization QC assessment. Data quality of normalized data is inspected using scatter plots (a) and (c). The surface-fit images (b) are generated

from the raw data so that we can detect areas with uneven concentration of hits (red) or no hits (blue) emanating from with-in plate effects. The plate scatters are

organized in ascending order of concentration (D1–D5) as shown on the x-axis labels. The positive (blue) and negative (red) controls represent maximum cell kill-

ing effect and no cell killing effect respectively. Consequently, the over scaled data in (a) by the B-score in the fifth plate D5 with a high hit rate, means reduced

quality of data whereas (c) represents good quality post-normalization data
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are violated. Furthermore, our results show that the Loess-fit

method performs better than the B-score method for most experi-

ment scenarios, especially when the hit rate is below 20%. We

observed that the quality of data from experiments with plates con-

taining a hit rate above 20% will be severely compromised by any

normalization method and could lead to a large number of false-

positive hits. Most normalization methods are designed with the as-

sumption that hits are few in number and are sparsely distributed

across the entire plate (Murie et al., 2013). However, in the case of

drug testing with multiple doses for each drug, plates are often made

from serial dilutions and thereby the plate with the highest concen-

tration of drugs will contain rows and columns with many hits.

Common normalization methods for correcting row and column ef-

fects will adjust these wells on the plate since they will be detected

as within plate artifacts. Our data point to B-score’s main defect

being the assumption of a low hit rate on every row and column for

all plates. To calculate the B-score, the resulting residuals within

each plate are divided by their median absolute deviation as a stand-

ardization step. The B-score calculation for a given position is there-

fore impacted by a high number of hits on the row and column as

the median polishing is performed. Also, B-score does not weigh

local effects identified by distribution of the hits that can be visual-

ized by surface fitting.

We postulate that the good performance of the Loess-fit is be-

cause it is based on fitting a local distribution surface rather than ad-

justing effects based on row and column signal intensities. The

strong advantage of the local smooth surface fitting procedure is

that it discovers areas on a plate where signal intensities are system-

atically higher or lower that may be concentrated in adjacent wells

on a plate. We have similar observations with the developers of

ChemBank repository (Seiler et al., 2008) on the challenges of using

the B-score on high hit rate screens.

In summary, tailored approaches are needed for high hit-rate

HTS experiments as well as for drug testing where dose–response

curves are acquired. HTS studies and automated HTS data analysis

software using any normalization or scaling scheme should include

an option to inspect the quality of the raw data before normalization

and report the detailed description of the data processing procedures

used in the analyses. By reporting the pre- and post-normalization

QC results for all HTS drug-testing experiments, the quality and re-

producibility of all HTS data would be improved.
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