

https://helda.helsinki.fi

Growth factor binding constructs, materials and methods

Alitalo, Kari Kustaa

US Patent and Trademark Office 2010-12-21

Alitalo , K K & Jeltsch , M M Dec. 21 2010 , Growth factor binding constructs, materials and methods , Patent No. US 7,855,178 B2 . < http://patft1.uspto.gov/netacgi/nph-Parser?patentnumber=7855178 >

http://hdl.handle.net/10138/225077

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

(12) United States Patent

Alitalo et al.

(10) **Patent No.:**

US 7,855,178 B2

(45) **Date of Patent:** Dec. 21, 2010

(54) GROWTH FACTOR BINDING CONSTRUCTS MATERIALS AND METHODS

- (75) Inventors: Kari Alitalo, Helsinki (FI); Markku
 - Michael Jeltsch, Helsinki (FI)
- Assignee: Vegenics Limited, Toorak (AU)
- (*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 12/180,990
- (22)Filed: Jul. 28, 2008

Prior Publication Data (65)

US 2009/0155268 A1 Jun. 18, 2009

Related U.S. Application Data

- (62) Division of application No. 11/075,047, filed on Mar. 7, 2005, now Pat. No. 7,422,741.
- (60) Provisional application No. 60/550,907, filed on Mar. 5, 2004.
- (51) Int. Cl.

A61K 38/18 (2006.01)A61K 39/395 (2006.01)(2006.01) C12P 21/04

- (52) **U.S. Cl.** **514/12**; 424/130.1; 435/69.7
- (58) Field of Classification Search None See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

3,691,016	Δ	9/1972	Patel et al.
3,773,919		11/1973	
3,969,287		7/1976	
4,195,128		3/1980	
4,229,537		10/1980	
4,247,642		1/1981	Hirohara et al.
4,330,440		5/1982	Ayers et al.
4,342,776		8/1982	Cragoe, Jr. et al.
4,526,988		7/1985	Hertel
4.808.614		2/1989	Hertel
4,861,719		8/1989	Miller
5,004,758		4/1991	Boehm et al.
5,139,941		8/1992	Muzyczka et al.
5,223,608		6/1993	Chou et al.
5,234,784		8/1993	Aslam et al.
5,252,479		10/1993	
5,328,688		7/1994	
5,474,935		12/1995	Chatterjee et al.
5,474,982	A	12/1995	Murray et al.
5,512,545	Α	4/1996	Brown et al.
5,585,362	Α	12/1996	Wilson et al.
5,620,985		4/1997	Jacquesy et al.
5,622,856	Α	4/1997	Natsoulis
5,658,776	Α	8/1997	Flotte et al.
5,661,033	Α	8/1997	Ho et al.
5,670,488	Α	9/1997	Gregory et al.
5,686,278	A	11/1997	Williams et al.
5,693,509		12/1997	Cotten et al.
5,707,618	A	1/1998	Armentano et al.
the state of the s			

5,770,414	A	6/1998	Gage et al.
5,773,289	A	6/1998	Samulski et al.
5,776,755	A	7/1998	Alitalo et al.
5,789,390	Α	8/1998	Descamps et al.
5,824,544	A	10/1998	Armentano et al.
5,830,725	A	11/1998	Nolan et al.
5,830,727	A	11/1998	Wang et al.
5,834,441	A	11/1998	Philip et al.
5,849,571	A	12/1998	Glorioso et al.
5,851,521	A	12/1998	Branellec et al.
5,856,152	A	1/1999	Wilson et al.
5,863,541	A	1/1999	Samulski et al.
5,879,934	A	3/1999	DeLuca
5,888,502	A	3/1999	Guber et al.
5,952,199	A	9/1999	Davis-Smyth et al.
6,011,003	A	1/2000	Charnock-Jones et al.
6,100,071	A	8/2000	Davis-Smyth et al.
6,107,046	A	8/2000	Alitalo et al.
6,348,333	B1	2/2002	Niwa et al.
6,375,929	В1	4/2002	Thomas, Jr. et al.
6,383,486	B1	5/2002	Davis-Smyth et al.
6,524,583	B1*	2/2003	Thorpe et al 424/145.1
6,630,124	B1	10/2003	Gozes et al.
6,699,843	B2	3/2004	Pietras et al.
6,764,820	B2	7/2004	Ferrell et al.
6,824,777	B1	11/2004	Alitalo et al.
7,034,105	B2	4/2006	Alitalo et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP418099 3/1991

(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 10/774,802, filed Feb. 9, 2004, Alitalo et al. U.S. Appl. No. 11/327,075, filed Jan. 6, 2006, Alitalo et al. Achen et al., "Monoclonal Antibodies to Vascular Endothelial Growth Factor-D Block its Interactions with both VEGF Receptor-2 and VEGF Receptor-3," Eur. J. Biochem., 267:2505-2515 (2000). Achen et al., "Vascular Endothelial Growth Factor D (VEGF-D) is a Ligang for the Tyrosine Kinases VEGF Receptor 2 (FLK1) and VEGF Receptor 3 (FLT4)," Proc. Natl. Acad. Sci. (USA), 95(2):548-553 (1998).

Banerji et al., "LYVE-1, A new homologue of the CD44 glycoprotein, is a lymph-specfic receptor for hyaluronan," J. Cell Biol., 144:789-801 (1999).

(Continued)

Primary Examiner—Marianne P Allen (74) Attorney, Agent, or Firm—Marshall, Gerstein & Borun LLP

ABSTRACT (57)

The present invention provides materials and methods for antagonizing the function of vascular endothelial growth factor receptors, platelet derived growth factor receptors and other receptors. Soluble binding constructs able to bind vascular endothelial growth factors, platelet derived growth factors, and other ligands are provided.

12 Claims, 3 Drawing Sheets

U.S. PATENT DOCUMENTS

7,070,959	В1	7/2006	Papadopoulos et al
7,422,741	B2	9/2008	Alitalo et al.
2002/0103345	A1	8/2002	Zhu
2002/0162126	A1	10/2002	Beach et al.
2002/0164667	A1	11/2002	Alitalo et al.
2002/0164687	A1	11/2002	Eriksson et al.
2002/0164710	A1	11/2002	Eriksson et al.
2003/0053989	A1	3/2003	Kovesdi
2003/0055006	A1	3/2003	Siemeister et al.
2003/0064053	A1	4/2003	Liu et al.
2003/0092604	A1	5/2003	Davis-Smyth et al.
2003/0108545	A1	6/2003	Rockwell et al.
2003/0113324	A1	6/2003	Alitalo et al.
2004/0014667	A1	1/2004	Daly et al.
2004/0208879	A1	10/2004	Alitalo et al.
2005/0282233	A1	12/2005	Eriksson et al.
2006/0177901	A1	8/2006	Alitalo et al.

FOREIGN PATENT DOCUMENTS

WO	WO-98/28621	7/1998
WO	WO-00/25085	5/2000
WO	WO-01/62942	8/2001
WO	WO-02/060950	8/2002
WO	WO-03/029814	4/2003

OTHER PUBLICATIONS

Baulcombe, "Gene Silencing: RNA Makes RNA Makes No Protein," Curr. Biol., 9:R599-R601 (1999).

Benz et al., "Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu," *Breast Cancer Res. Treat.*, 24:85-95 (1993).

Borg et al., "Biochemical Characterization of Two Isoforms of FLT4, a VEGF Receptor-related Tyrosine Kinase," *Oncogene*, 10(5):973-084 (1905)

Brüggemann et al., "Production fo Human Antibody Repertoires in Transgenic Mice," Curr. Opin. Biotechnol., 8:455-458 (1997).

Brüggemann et al., "Strategies for Expressing Human Antibody Repertoires in Transgenic Mice," *Immunol. Today*, 17(8):391-397 (1996). Carter et al., "Toward the Production of Bispecific Antibody Fragments for Clinical Applications," *J. Hematotherapy*, 4:463-470 (1995).

Davis-Smyth et al., "The Second Immunoglobulin-like Domain of the VEGF Tyrosine Kinase Receptor Flt-1 Determines Ligang Binding and May Initate a Signal Transduction Cascase," *EMBO J.*, 15(18):4919-4927 (1996).

de Azevedo et al., "Molecular Cloning and Expression of a Functional Snake Venom Vascular Endothelium Growth Factor (VEGF) from the *Bothrops insularis* Pit Viper," *J. Biol. Chem.*, 276:39836-39842 (2001).

De Vries et al., "The *Fins*-like Tyrosine Kinase, a Receptor for Vascular Endothelial Growth Factor," *Science*, 255:989-991 (1992).

Egeblad et al., "Cell Death Induced by TNF or Serum Starvation is Independent of ERbB Receptor Signaling in MCF-7 Breast Carcinoma Cells," *Int. J. Cancer*, 86:617-625 (2000).

Fairbrother et al., "Novel Peptides Selected to Bind Vascular Endothelial Growth Factor Target the Receptor-binding Site," *Biochemistry*, 37:17754-17764 (1998).

Ferrara, "Molecular and Biological Properties of Vascular Endothelial Growth Factor," *J. Mol. Med.*, 77:527-543 (1999).

Fire, "RNA-triggered Gene Silencing," *Trends Genet*, 15:358-363 (1999).

Folkman et al., "Long-term Culture of Capillary Endothelial Cells," *Proc. Natl. Acad. Sci.* (USA), 76:5217-5221 (1979).

Foote et al., "Antibody Framework Residues Affecting the Conformation of the Hypervariable Loops," *J. Mol. Biol.*, 224:487-499 (1992).

Fuh et al., "Requirements for Binding and Signaling of the Kinase Domain Receptor for Vascular Endothelial Growth Factor," *J. Biol. Chem.*, 273(18):11197-11204 (1998).

Gasmi et al., "Complete Structure of an Increasing Capillary Permeability Protein (ICPP) Purified from *Vipera lebetina* Venom," *J. Biol. Chem.*, 277(33):29992-29998 (2002).

Gasmi et al., "Purification and Characterization of a Growth Factorlike Which Increases Capillary Permeability from *Vipera lebetina* Venom," *Biochem. Biophys. Res. Commun.*, 268:69-72 (2002).

Green et al., "Antigen-specific Human Monoclonal Antibodies from Mice Engineered with Human Ig Heavy and Light Chain YACs," *Nature Genetics*, 7:13-21 (1994).

Grimmond et al., "Cloning and Characterization of a Novel Human Gene Related to Vascular Endothelial Growth Factor," *Genome Res.*, 6:124-131 (1996).

Hauser et al., "A Heparin-Binding Form of Placenta Growth Factor (PIGF-2) is Expressed in Human Umbilical Vein Endothelial Cells and in Placenta," *Growth Factors*, 9:259-268 (1993).

Hoogenboom, "Designing and Optimizing Library Selection Strategies for Generating High-affinity Antibodies," *Tibtech*, 15:62-70 (1997).

Hughes et al., "Alternative Splicing of the Human VEGFGR-3/FLT4 Gene as a Consequence of an Integrated Human Endogenous Retrovirus," *J. Mol. Evol.*, 52(2):77-79 (2001).

Hunter, "Genetics: A Touch of Elegance with RNAi," Curr. Biol., 9:R440-R442 (1999).

Jacobs et al., "Surface Modification for Improved Blood Compatibility," *Artif. Organs*, 12:500-501 (1988).

Jones et al., "Replacing the Complementarity-determining Regions in a Human Antibody with those from a Mouse," *Nature*, 321:522-525 (1986).

Joukov et al., "Proteolytic Processing Regulates Receptor Specificity and Activity of VEFG-C," EMBOJ., 16:3898-3911 (1997).

Kaplan et al., "Characterization of a Soluble Vascular Endothelial Growth Factor Receptor-Immunoglobulin Chimera," *Growth Factors*, 14:243-256 (1997).

Karpanen et al., "Vascular Endothelial Growth Factor C Promotes Tumor Lymphangiogensis and Intralymphatic Tumor Growth," *Cancer Res.*, 61:1786-1790 (2001).

Kendall et al., "Inhibition of Vascular Endothelial Cell Growth Factor Activity by an Endogenously Encoded Soluble Receptor," *PNAS USA*, 90:10705-10709 (1993).

Kettleborough et al., "Humanization of a Mouse Monoclonal Antibody by CDR-Grafting: The Importance of Framework Residues on Loop Conformation," *Protein Engin.*, 4:773-783 (1991).

Komori et al., "Vascular Endothelial Growth Factor VEGF-like Heparin-binding Protein from the Venom of *Vipera aspis aspis* (Aspic viper)," *Biochemistry*, 38:11796-803 (1999).

Kudo et al., "Involvement of Vascular Endothelial Growth Factor Receptor-3 in Maintenance of Integrity of Endothelial Cell Lining During Tumor Angiogensis," *Blood*, 96(2):546-553 (2000).

Laitinen et al., "Adenovirus-Mediated Gene Transfer to Lower Limb Artery of Patients with Chronic Critical Leg Ischemia," *Hum. Gene Ther.*, 9:1481-1486 (1998).

Li et al., "Isoform-specific Expression of VEGF-B in Normal Tissues and Tumors," *Growth Factor*, 19:49-59 (2001).

Li et al., "Novel VEGF Family Members: VEGF-B, VEGF-C and VEGF-D," J. Biochem. Cell. Biol., 33(4):421-426 (2001).

Lokker et al., "Functional Importance of Platelet-derived Growth Factor (PDGF) Receptor Extracellular Immunoglobulin-like Domains," J. Biol. Chem., 272:33037-3304 (1997).

Lu et al., "Acquired Antagonistic Activity of a Bispecific Diabody Directed Against Two Different Epitopes on Vascular Endothelial Growth Factor Receptor 2," *J. Immunological Methods*, 230:159-171 (1999).

Lu et al., "Complete Inhibition of Vascular Endothelial Growth Factor (VEGF) Activities with a Bifunctional Diabody Directed Against Both VEGF Kinase Receptors, fms-like Tyrosine Kinase Receptor and Kinase Insert Domain-containing Receptor," *Cancer Research*, 61:7002-7008 (2001).

Lu et al., "Identification of the Residues in the Extracellular Region of KDR Important for Interaction with Vascular Endothelial Growth Factor and Neutralizing Anti-KDR Antibodies," *J. Biol. Chem.*, 275(19):14321-14330 (2000).

Lu et al., "Tailoring in Vitro Selection for a Picomolar Affinity Human Antibody Directed Against Vascular Endothelial Growth Factor Receptor 2 for Enhanced Neutralizing Activity," *J. Biol. Chem.*, 278(44):43496-43507 (2003).

Maglione et al., "Two Alternative mRNAs Coding for the Angiogenic Factor, Placenta Growth Factor (PIGF), are Transcribed from a Single Gene of Chromosome 14," Oncogene, 8:925-931 (1993).

Makkinen et al., "Inhibition of Lymphangiogensis with Resulting Lymphedema in Transgenic Mice Expressing Soluble VEGF Receptor-3," *Nature Medicine*, 7(2):199-205 (2001).

Matthews et al., "A Receptor Tyrosine Kinase cDNA Isolated From a Population of Enriched Primitive Hematopoietic Cells and Exhibiting Close Genetic Linkage to *c-kit*," *Proc. Natl. Acad. Sci.* (USA), 88:9026-9030 (1991).

Muller et al., "The Crystal Structure of Vascular Endothelial Growth Factor (VEGF) Refined to 1.93 a Resolution: Multiple Copy Flexibility and Receptor Binding," *Structure*, 5:1325-1338 (1997).

Neufeld et al., "Vascular Endothelial Growth Factor (VEGF) and its Receptor," FASEB J., 13:9-22 (1999).

Olofsson et al., "Genomic Organization of the Mouse and Human Genes for Vascular Endothelial Growth Factor B (VEGF-B) and Characterization of a Second Splice Isoform," *J. Biol. Chem.*, 271:19310-19317 (1996).

Olofsson et al., "Vascular Endothelial Growth Factor B (VEGF-B) Binds to VEGF Receptor-1 and Regulates Plasminogen Activator Activity in Endothelial Cells," *Proc. Natl. Acad. Sci.* (USA), 95:11709-11714 (1998).

Ortega et al., "Signal Relays in the VEGF System," Fron. Biosci., 4:141-152 (1999).

Pajusola et al., "Signalling Properties of FLT4, a Proteolyically Processed Receptor Tyrosine Kinase Related to Two VEGF Receptors," *Oncogene*, 9:3545-3555 (1994).

Pajusola et al., "Two Human FLT4 Receptor Tyrosine Kinase Isoforms with Distinct Carboxy Terminal Tails are Produced by Alternative Processing of Primary Transcripts," *Oncogene*, 8(11):2931-2937 (1993).

Partanen et al., "Lack of Lymphatic Vascular Specificity of Vascular Endothelial Growth Factor Receptor 3 in 185 Vascular Tumors," *Cancer*, 86:2406-2412 (1999).

Pertovaara et al., "Vascular Endothelial Growth Factor is Induced in Response to Transforming Growth Factor-β in Fibroblastic and Epithelial Cells," *J. Biol. Chem.*, 269:6271-6274 (1994).

Petrova et al., "Signaling via Vascular Endothelial Growth Factor Receptors," Exp. Cell. Res., 253:117-130 (1999).

Pietras et al., "PDGF Receptors as Cancer Drug Targets," Cancer Cell, 3:439-443 (2003).

Plückthun et al., "New Protein Engineering Approaches to Multivalent and Bispecific Antibody Fragments," *Immunotechnology*, 3:83-105 (1997).

Renner et al., "Tumor Therapy by Immune Recruitment with Bispecific Antibodies," *Immunological Reviews*, 145:179-209 (1995).

Riechmann et al., "Reshaping Human Antibodies for Therapy," *Nature*, 332:323-327 (1988).

Rosen, "Inhibitors of the Vascular Endothelial Growth Factor Receptor," *Hematol. Oncol. Clin. N. Am.*, 16:1173-1187 (2002).

Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd Ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 9.47-9.51 (1989).

Segal et al., "Alternative Triggering Molecules and Single Chain Bispecific Antibodies," *J. Hematotherapy*, 4:377-382 (1995).

Segal et al., "Targeting of Anti-tumor Responses with Bispecific Antibodies," *Immunobiology*, 185:390-402 (1992).

Sharp "RNAi and Double-strand RNA," Genes Dev., 13:139-141 (1999).

Shinkai et al., "Mapping of the Sites Involved in Ligand Association and Dissociation at the Extracellular Domain of the Kinase Insert Domain-containing Receptor for Vascular Endothelial Growth Factor," J. Biol. Chem., 273(47):31283-31288 (1998).

Stacker et al., "A Mutant Form of Vascular Endothelial Growth Factor (VEGF) That Lacks VEGF Receptor-2 Activation Retains the Ability to Induce Vascular Permeability," *J. Biol. Chem.*, 274:34884-34892 (1999).

Stacker et al., "The Vascular Endothelial Growth Factor Family: Signalling for Vascular Development," *Growth Factors*, 17:1-11 (1990)

Starovasnik et al., "Solution Structure of the VEGF-binding Domain of Flt-1: Comparison of its Free and Bound States," *J. Mol. Biol.*, 293:531-544 (1999).

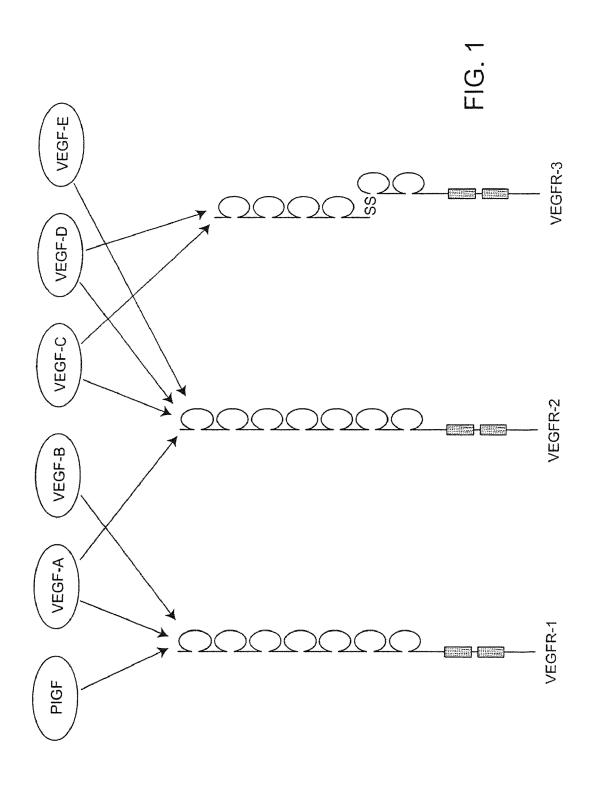
Tam, "Recent Advances in Multiple Antigen Peptides," *J. Immunol. Methods*, 196:17-32 (1996).

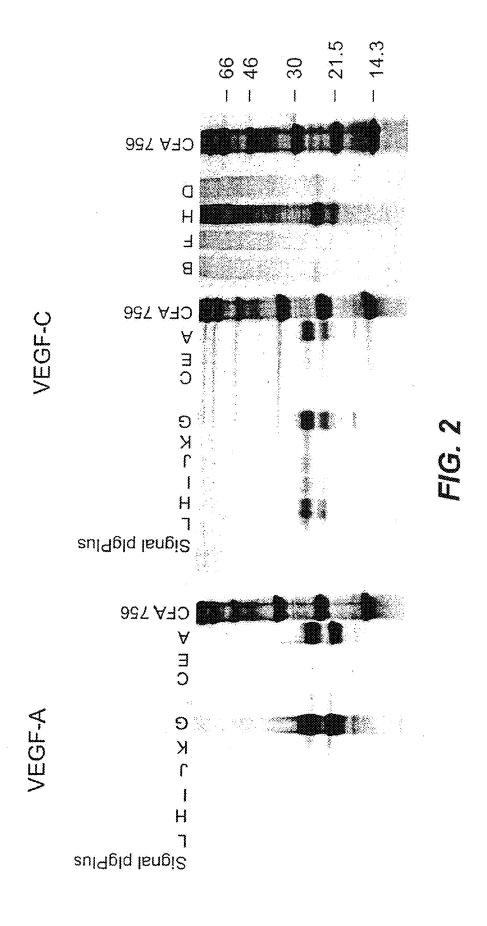
Tammela et al., "The Biology of Vascular Endothelial Growth Factors," *Cardiovascular Research*, 65(3):550-563 (2005).

Tempest et al., "Reshaping a Human Monoclonal Antibody to Inhibit Human Respiratory Syncytial Virus Infection in Vivo," *Bio/Technology*, 9:266-271 (1991).

Terman et al., "Identification of the KDR Tyrosine Kinase as a Receptor for Vascular Endothelial Cell Growth Factor," *Biochem. Biophys. Res. Comm.*, 187:1579-1586 (1992).

Vaucheret et al., "Transgene-induced Gene Silencing in Plants," *Plant J.*, 16:651-659 (1998).


Veikkola et al., "Regulation of Angiogensis via Vascular Endothelial Growth Factor Receptors," *Cancer Res.*, 60:203-212 (2000).


Wiesmann et al., "Crystal Structure at 1.7 a Resolution of VEGF in Complex with Domain 2 of the Flt-1 Receptor," *Cell*, 91:695-704 (1997).

Zachary, "Vascular Endothelial Growth Factor," Intl. J. Biochem. Cell. Bio., 30:1169-1174 (1998).

Jeltsch, VEGFR-3 Ligands and Lymphangiogenesis (2002).

* cited by examiner

VEGFR-3 CONSTRUCTS

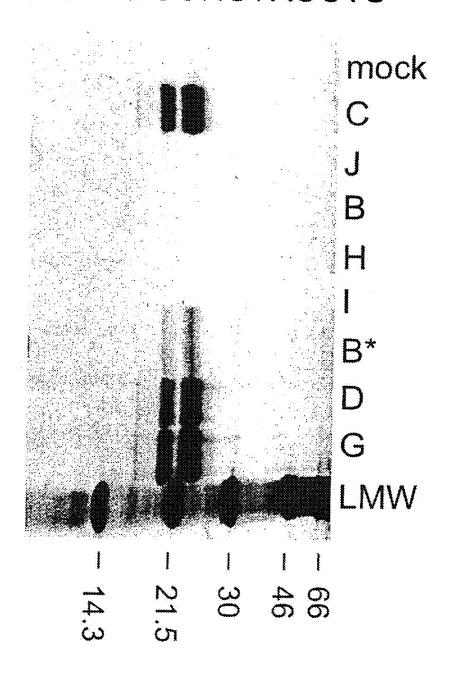


FIG. 3

GROWTH FACTOR BINDING CONSTRUCTS MATERIALS AND METHODS

This application is a divisional of U.S. patent application Ser. No. 11/075,047, filed Mar. 7, 2005, now U.S. Pat. No. 7,422,741, which the priority benefit of U.S. Provisional Application No. 60/550,907, filed Mar. 5, 2004, incorporated herein by reference in its entirety.

BACKGROUND

The vascular endothelial growth factor (VEGF) proteins and their receptors (VEGFRs) play important roles in both vasculogenesis, the development of the embryonic vasculature from early differentiating endothelial cells, angiogenesis, the process of forming new blood vessels from preexisting ones, and lymphangiogenesis, the process of forming new lymph vessels. The platelet derived growth factor (PDGF) proteins and their receptors (PDGFRs) are involved in regulation of cell proliferation, survival and migration of $\ ^{20}$ several cell types.

Dysfunction of the endothelial cell regulatory system is a key feature of cancer and various diseases associated with abnormal vasculogenesis, angiogenesis, and lymphangio-

Angiogenesis occurs in embryonic development and normal tissue growth, repair, and regeneration, and also in the female reproductive cycle, establishment and maintenance of pregnancy, and in repair of wounds and fractures. In addition $_{30}$ to angiogenesis which takes place in the healthy individual, angiogenic events are involved in a number of pathological processes, notably tumor growth and metastasis, and other conditions in which blood vessel proliferation, especially of the microvascular system, is increased, such as diabetic retinopathy, psoriasis and arthropathies. Inhibition of angiogenesis is useful in preventing or alleviating these pathological

Although therapies directed to blockade of VEGF/PDGF bition of angiogenesis and tumor growth, medicine needs new compounds and therapies for the treatment of such diseases.

SUMMARY OF THE INVENTION

The present invention relates to novel compositions and methods of use thereof for the inhibition of aberrant angiogenesis and lymphangiogenesis, and inhibition of other effects of members of the PDGF/VEGF family of growth 50 factors: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D, each of which is able to bind at least one growth factor receptor tyrosine kinase and stimulate phosphorylation of the same. The compositions of the invention include binding constructs 55 that bind one or more PDGF/VEGF molecules. The binding constructs include one or more binding units. In some embodiments, the binding unit comprises a polypeptide, e.g., a fragment of a growth factor receptor tyrosine kinase extracellular domain. The invention also provides nucleic acids 60 encoding such binding constructs. Binding units are not limited to receptor fragments, nor are they limited to polypeptides, but rather comprise any species that binds a growth factor. Administration of the compositions of the invention to patients inhibits growth factor stimulation of VEGF receptors and/or PDGF receptors (e.g., inhibits phosphorylation of the receptors) and thereby inhibits biological responses mediated

2

through the receptors including, but not limited to, PDGFRand/or VEGFR-mediated angiogenesis and lymphangiogen-

Each member of the growth factor genus described above binds with high affinity to, and stimulation phosphorylation of, at least one PDGF receptor or VEGF receptor (or receptor heterodimer) selected from VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-alpha, and PDGFR-beta. This statement refers to well known properties of the growth factors toward their 10 cognate receptors, and is not meant as a limiting feature per se of the binding constructs of the invention. (For example, VEGF-A has been shown to bind to VEGFR-1 and VEGFR-2 and induce tyrosine phosphorylation of both receptors and initiate downstream receptor signaling.) However, preferred binding units of the invention do more than simply bind their target growth factors: a preferred binding construct also inhibits the growth factor(s) to which it binds from stimulating phosphorylation of at least one (and preferably all) of the receptor tyrosine kinases to which the growth factor(s) bind. Stimulation of tyrosine phosphorylation is readily measured using in vitro cell-based assays and anti-phosphotyrosine antibodies. Because phosphorylation of the receptor tyrosine kinases is an initial step in a signaling cascade, it is a convenient indicator of whether the binding construct is capable of inhibiting growth factor-mediated signal transduction that leads to cell migration, cell growth, and other responses. A number of other cell based and in vivo assays can be used to confirm the growth factor neutralizing properties of binding constructs of the invention.

As described herein, binding constructs can be chemically modified (e.g., heterologous peptide fusions, glycosylation, pegylation, etc.) to impart desired characteristics, while maintaining their specific growth factor binding properties. An exemplary peptide fusion comprises a immunoglobulin constant domain fragment. Exemplary desired characteristics imparted by chemical modifications include increased serum half life, increased solubility in an aqueous medium, and the ability to target a specific cell population, e.g., cancer cells.

Binding constructs and units that are "specific" for a parsignaling through their receptors has shown promise for inhi- 40 ticular growth factor are binding constructs and units that specifically recognize a circulating, active form of the growth factor. Preferably, the binding constructs specifically bind other forms of the growth factors as well. By way of example, VEGF-A exists in multiple isoforms, some of which circulate 45 and others of which associate with heparin sulfate proteoglycans on cell surfaces. Binding constructs that are specific for VEGF-A bind to at least a circulating isoform, preferably all circulating isoforms, and more preferably, bind other major isoforms as well. By way of another example, VEGF-C is translated as a prepro-molecule with extensive amino-terminal and carboxy-terminal propeptides that are cleaved to yield a "fully processed" form of VEGF-C that binds and stimulates VEGFR-2 and VEGFR-3. Binding constructs specific for VEGF-C bind to at least the fully processed form of VEGF-C, and preferably also bind to partly processed forms and unprocessed forms.

> Additional description is used herein when a more specialized meaning is intended. For example, VEGF-B167 is heparin bound whereas VEGF-B186 is freely secreted. An binding construct of the invention that minimally binds the circulating isoform is said to be specific for VEGF-B, and such a binding construct preferably also binds the heparin bound form. A binding construct of the invention that is "specific for heparin-bound VEGF-B" or "specific for VEGF-B167" is a binding construct that differentially recognizes the heparin bound isoform, compared to the freely circulating isoform. A binding construct of the invention that is specific

for VEGF-B186" is a binding construct that differentially recognizes the circulating form, compared to the heparin bound form. Binding constructs specific for each isoform of a growth factor are contemplated as components of some embodiments of the binding constructs of the invention.

The designations "first" and "second" and "third" in respect to the binding units of the binding constructs is for ease and clarity in description only, and is not meant to signify a particular order, e.g., order in the amino acid sequence of a polypeptide binding construct.

A binding construct comprising two or more binding units may further comprise a linker connecting adjacent binding units. The linker may take on a number of different forms. Preferably, the linker comprises a peptide which allows adjacent binding units to be linked to form a single polypeptide. 15

The invention also includes compositions comprising a polypeptide, binding construct, or nucleic acid encoding the same, together with a pharmaceutically acceptable carrier. Such compositions may further comprise a pharmaceutically acceptable diluent, adjuvant, or carrier medium.

Nucleic acids (polynucleotides) of the invention include nucleic acids that constitute binding units, e.g., aptamers, and also nucleic acids that encode polypeptide binding units and constructs, which may be used for such applications as gene therapy and recombinant in vitro expression of polypeptide 25 binding constructs. In some embodiments, nucleic acids are purified or isolated. In some embodiments, polynucleotides further comprise a promoter sequence operatively connected to a nucleotide sequence encoding a polypeptide, wherein the promoter sequence promotes transcription of the sequence 30 that encodes the polypeptide in a host cell. Polynucleotides may also comprise a polyadenylation sequence.

Vectors comprising polynucleotides are also aspects of the invention. Such vectors may comprise an expression control sequence operatively connected to the sequence that encodes 35 the polypeptide, and the vector may be selected from the group consisting of a lentivirus vector, an adeno-associated viral vector, an adenoviral vector, a liposomal vector, and combinations thereof. In some embodiments, the vector comprises a replication-deficient adenovirus, said adenovirus 40 comprising the polynucleotide operatively connected to a promoter and flanked by adenoviral polynucleotide sequences. Host cells comprising the polynucleotides, vectors and other nucleic acids, and methods for using the same to express and isolate the binding constructs and units are also 45 aspects of the invention.

For binding units of a binding construct that comprises an aptamer, the aptamer may be generated by preparing a library of nucleic acids; contacting the library of nucleic acids with a growth factor, wherein nucleic acids having greater binding 50 affinity for the growth factor (relative to other library nucleic acids) are selected and amplified to yield a mixture of nucleic acids enriched for nucleic acids with relatively higher affinity and specificity for binding to the growth factor. The processes may be repeated, and the selected nucleic acids mutated and 55 rescreened, whereby a growth factor aptamer is be identified. Nucleic acids may be screened to select for molecules that bind to more than growth factor.

In one aspect of the invention, the binding construct comprises a purified polypeptide comprising an amino acid 60 sequence at least 95% identical to a vascular endothelial growth factor receptor 3(VEGFR-3) fragment, wherein the VEGFR-3 fragment comprises an amino acid sequence consisting of a portion of SEQ ID NO: 6, wherein the carboxy-terminal residue of the fragment is selected from the group 65 consisting of positions 211 to 247 of SEQ ID NO: 6. The fragment, and the polypeptide comprising the same, specifi-

4

cally bind to at least one growth factor selected from the group consisting of human vascular endothelial growth factor-C (VEGF-C), and human vascular endothelial growth factor-D (VEGF-D). In some embodiments the VEGFR-3 fragments has an amino terminal amino acid selected from the group consisting of positions 1 to 47 of SEQ ID NO: 6. In some embodiments, the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOS: 36 and 38. In some embodiments, the fragment has an amino acid sequence selected from the group consisting of positions 1-226 and 1-229 of SEQ ID NO: 6. In some embodiments, the polypeptide is part of a binding construct, and the polypeptide is operatively connected with a second polypeptide that binds at least one growth factor selected from the group consisting $of \, VEGF-A, \, VEGF-B, \, VEGF-C, \, VEGF-D, \, VEGF-E, \, PDGF, \,$ PDGF-A, PDGF-B, PDGF-C, and PDGF-D. In some embodiments, the second polypeptide is selected from the group consisting of a polypeptide comprising a vascular endothelial growth factor receptor extracellular domain fragment, a platelet derived growth factor receptor extracellular domain fragment, and a polypeptide comprising an antigen binding fragment of an antibody that immunoreacts with the at least one of said growth factors. In some embodiments, at least one of the polypeptides is encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 35 and 37.

In another aspect of the invention, a binding construct comprises a purified polypeptide comprising an amino acid sequence at least 95% identical to a VEGFR-2 fragment, wherein the VEGFR-2 fragment comprises an amino acid sequence consisting of a portion of SEQ ID NO: 4, wherein the amino terminal amino acid of the VEGFR-2 fragment is selected from the group consisting of positions 106-145 of SEQ ID NO: 4, wherein the carboxy terminal amino acid of the VEGFR-2 fragment is selected from the group consisting of positions 203 to 240 of SEQ ID NO: 4, and wherein the VEGFR-2 fragment and the polypeptide bind VEGF-C or VEGF-D. In some embodiments, the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 22, 24, and 26. In some embodiments, the fragment consists of an amino acid sequence selected from the group consisting of residues 118-220, 118-226, and 118-232 of SEQ ID NO: 4. In some embodiments, the polypeptide is part of a binding construct, and the polypeptide is operatively connected with a second polypeptide that binds at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D. In some embodiments, the second polypeptide is selected from the group consisting of a polypeptide comprising a vascular endothelial growth factor receptor extracellular domain fragment, a platelet derived growth factor receptor extracellular domain fragment, and a polypeptide comprising an antigen binding fragment of an antibody that immunoreacts with the at least one of said growth factors. In some embodiments, at least one of the polypeptides is encoded by a polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 21, 23, and 25.

In still another aspect, the invention provides a binding construct comprising a first polypeptide operatively connected to a second polypeptide. The first and second polypeptides each binds at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D polypeptides. The amino acid sequence of the first polypeptide differs from the amino acid sequence of the second

polypeptide. The first and second polypeptides comprise members independently selected from the group consisting of:

- (a) a polypeptide comprising an amino acid sequence at least 90% identical to the VEGFR-1 extracellular domain amino acid sequence comprising positions 27-758 of SEQ ID NO: 2:
- (b) a fragment of (a) that binds VEGF-A, VEGF-B, or PIGF:
- (c) a polypeptide comprising an amino acid sequence at 10 least 90% identical to the VEGFR-2 extracellular domain amino acid sequence comprising positions 20-764 of SEQ ID NO: 4:
- (d) a fragment of (c) that binds VEGF-A, VEGF-C, VEGF-E or VEGF-D;
- (e) a polypeptide comprising an amino acid sequence at least 90% identical to the VEGFR-3 extracellular domain amino acid sequence comprising residues 24-775 of SEQ ID NO: 6:
 - (f) a fragment of (e) that binds VEGF-C or VEGF-D;
- (g) a polypeptide comprising an amino acid sequence at least 90% identical to the neuropilin-1 extracellular domain amino acid sequence comprising residues 22-856 of SEQ ID NO: 113:
- (h) a fragment of (g) that binds VEGF-A, VEGF-B, VEGF- 25 C, VEGF-E, or PIGF:
- (i) a polypeptide comprising an amino acid sequence at least 90% identical to the neuropilin-2 extracellular domain amino acid sequence comprising residues 21-864 of SEQ ID NO: 115:
 - (j) a fragment of (i) that binds VEGF-A, VEGF-C, or PIGF;
- (k) a polypeptide comprising an amino acid sequence at least 90% identical to the platelet derived growth factor receptor alpha extracellular domain amino acid sequence comprising residues 24-524 of SEQ ID NO: 117;
- (l) a fragment of (k) that binds PDGF-A, PDGF-B, or PDGF-C;
- (m) a polypeptide comprising an amino acid sequence at least 90% identical to the platelet derived growth factor beta extracellular domain amino acid sequence comprising residues 33 to 531 of SEQ ID NO: 119;
 - (n) a fragment of (m) that binds PDGF-B or PDGF-D; and
- (o) a polypeptide comprising an antigen binding fragment of an antibody that binds to at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, 45 VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D.

In one embodiment, the binding construct of the invention comprises a first polypeptide comprising a fragment of a polypeptide comprising an amino acid sequence at least 90% 50 identical to the VEGFR-2 extracellular domain amino acid sequence comprising positions 20-764 of SEQ ID NO: 4, wherein the fragment binds VEGF-A, VEGF-C, VEGF-E or VEGF-D. It is contemplated that the binding construct further comprises a second polypeptide comprising a fragment of a 55 polypeptide comprising an amino acid sequence at least 90% identical to the VEGFR-1 extracellular domain amino acid sequence comprising positions 27-758 of SEQ ID NO: 2; wherein the fragment binds VEGF-A, VEGF-B, or PIGF. Additionally, it is contemplated that the binding construct 60 further comprises a third polypeptide operatively connected to the first or second polypeptide, wherein the third polypeptide comprises a fragment of a polypeptide comprising an amino acid sequence at least 90% identical to the VEGFR-3 extracellular domain amino acid sequence comprising resi- 65 dues 24-775 of SEQ ID NO: 6, wherein the fragment binds VEGF-C or VEGF-D.

6

As described herein in greater detail, the extracellular domain of VEGFR or PDGFR have immunoglobulin-like domain structure. In a related embodiment, the binding construct of the invention comprises a first, second and third polypeptide as described above, wherein: (a) the first polypeptide comprises an amino acid sequence at least 90% identical to a fragment of the VEGFR-2 extracellular domain, wherein the fragment comprises immunoglobulin-like domain 2 amino acid sequence; (b) the second polypeptide comprises an amino acid sequence at least 90% identical to a fragment of the VEGFR-1 extracellular domain, wherein the fragment comprises immunoglobulin-like domain 3 amino acid sequence; and (c) the third polypeptide comprises an amino acid sequence at least 90% identical to a fragment of the VEGFR-3 extracellular domain, wherein said fragment comprises VEGFR-3 immunoglobulin-like domain 1 amino acid sequence.

In another aspect, the invention provides a binding construct comprising: a) a first amino acid sequence at least 90% identical to a fragment of the VEGFR-3 extracellular domain, wherein said fragment comprises VEGFR-3 immunoglobulin-like domain 1 amino acid sequence; (b) a second amino acid sequence at least 90% identical to a fragment of the VEGFR-2 extracellular domain, wherein the fragment comprises immunoglobulin-like domain 2 amino acid sequence; and, (c) a third amino acid sequence at least 90% identical to a fragment of the VEGFR-1 extracellular domain, wherein the fragment comprises immunoglobulin-like domain 3 amino acid sequence; wherein the first, second, and third amino acid sequences are operatively connected, and wherein the binding construct binds to at least VEGF-A and VEGF-C. In one embodiment, the binding construct comprises an amino acid sequence at least 95% identical to the amino acid sequence set out in SEQ ID NO: 128. In a related embodiment, the binding construct comprises the amino acid sequence of SEQ ID NO: 128.

In a second embodiment, the binding construct of the invention comprises a first polypeptide comprising a fragment of a polypeptide comprising an amino acid sequence at least 90% identical to the VEGFR-3 extracellular domain amino acid sequence comprising residues 24-775 of SEQ ID NO: 6, wherein the fragment binds VEGF-C or VEGF-D. It is contemplated that the binding construct of the invention comprises a second polypeptide comprising a fragment of a polypeptide comprising an amino acid sequence at least 90% identical to the VEGFR-2 extracellular domain amino acid sequence comprising positions 20-764 of SEQ ID NO: 4, wherein the fragment binds VEGF-A, VEGF-C, VEGF-E or VEGF-D.

In a related embodiment, the binding construct of the invention comprises a first and second polypeptide as described above, wherein: (a) the first polypeptide comprises an amino acid sequence at least 90% identical to a fragment of the VEGFR-3 extracellular domain, wherein said fragment comprises VEGFR-3 immunoglobulin-like domain 1 amino acid sequence; and, (b) the second polypeptide comprises an amino acid sequence at least 90% identical to a fragment of the VEGFR-2 extracellular domain, wherein the fragment comprises immunoglobulin-like domains 2 and 3 amino acid sequence.

In another aspect, the invention provides a binding construct comprising: a) a first amino acid sequence at least 90% identical to a fragment of the VEGFR-3 extracellular domain, wherein said fragment comprises VEGFR-3 immunoglobulin-like domain 1 amino acid sequence; and, (b) a second amino acid sequence at least 90% identical to a fragment of the VEGFR-2 extracellular domain, wherein the fragment

comprises immunoglobulin-like domain 2 amino acid sequence; and an immunoglobulin-like domain 3 amino acid sequence; wherein the first, second, and third amino acid sequences are operatively connected, and wherein the binding construct binds to at least VEGF-A and VEGF-C. It is 5 further contemplated that the construct binds VEGF-D. In one embodiment, the binding construct comprises an amino acid sequence at least 95% identical to the amino acid sequence set out in SEQ ID NO: 125. In a related embodiment, the binding construct comprises the amino acid sequence of SEQ ID NO: 10

Preferably, the binding units of a binding construct are not exclusively (antibody) antigen binding fragments. In some embodiments, the binding construct comprises at least one non-antigen binding fragment binding unit. In some embodiments, the binding units all comprise antigen binding fragments. Exemplary Bispecific antibodies are provided in co-owned, concurrently (Mar. 5, 2004) filed U.S. Provisional Patent Application No. 60/550,511: "Multivalent Antibody Materials And Methods For VEGF/PDGF Family Of Growth 20 Factors," and related, co-filed International Patent Application No. PCT/US05/07742, both applications incorporated herein by reference it their entirety.

Every method of using binding constructs of the invention, and nucleic acids encoding the same, whether for therapeutic, diagnostic, or research purposes, is another aspect of the invention.

For example, the invention further contemplates use of the binding constructs of the invention as a method for screening for inhibition of growth factor binding to receptor and decrease in receptor activation. In one aspect the invention provides a method of screening a binding construct for growth factor neutralization activity comprising: contacting a growth factor and a growth factor receptor in the presence and absence of a binding construct; and, measuring binding between the growth factor and the growth factor receptor in the presence and absence of the binding construct, wherein reduced binding in the presence of the binding construct indicates growth factor neutralization activity for the binding $_{40}$ construct; wherein the growth factor comprises at least one member selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D and combinations thereof; wherein the receptor is at least one member selected from the group consisting of VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-α, PDGFR-β; an extracellular domain fragment of any of said receptors that is effective to bind to the growth factor; a chimeric receptor comprising the extracellular domain fragment; and combinations thereof; and wherein the binding construct comprises a polypeptide or binding construct or a polynucleotide or vector according to the inven-

It is further contemplated in the screening method that the contacting is performed in a cell free system and the measuring of the binding comprises: measuring growth factor bound to the growth factor receptor. In a related embodiment, the contacting comprises contacting a cell that expresses the receptor with the growth factor; and wherein the measuring comprises: measuring growth factor receptor phosphorylation, wherein the phosphorylation is indicative of binding; measuring a growth factor-mediated cellular response in the cell, wherein the cellular response is indicative of binding between the growth factor and the receptor.

The substances are useful for any disorder where one 65 PDGF/VEGF family member is overexpressed and especially useful if two or more are overexpressed.

8

For example, the invention includes a method of inhibiting fibrosis comprising administering to a mammalian subject in need of inhibition of fibrosis a binding construct of the invention

For example, one aspect of the invention is a method for inhibiting angiogenesis or lymphangiogenesis comprising administering to a mammalian subject in need of inhibition of angiogenesis or lymphangiogenesis a binding construct according to the invention, in an amount effective to inhibit angiogenesis or lymphangiogenesis. Methods to determine the extent of inhibition of angiogenesis and lymphangiogenesis are described herein.

The invention further contemplates a method for inhibiting angiogenesis or lymphangiogenesis comprising administering to a mammalian subject in need of inhibition of angiogenesis or lymphangiogenesis a binding construct according to the invention, wherein the subject has a disease characterized by neoplastic cell growth exhibiting angiogenesis or lymphangiogenesis, and the binding construct is administered in an amount effective to inhibit the neoplastic cell growth. Neoplastic cell growth as used herein refers to multiplication of the cells which is uncontrolled and progressive. Cancers, especially vascularized cancers, are examples of neoplastic cell growth that is treatable using materials and methods of the invention.

It is further contemplated that the method of the invention is used wherein the subject has a disease characterized by aberrant angiogenesis or lymphangiogenesis, wherein the disease is selected from the group consisting of inflammation (chronic or acute), an infection, an immunological disease, arthritis, rheumatoid arthritis, diabetes, retinopathy, psoriasis, arthopathies, congestive heart failure, plasma leakage, fluid accumulation due to vascular permeability, lymphangioma, and lymphangiectasis.

The binding constructs also may be used to treat or prevent cancer associated disorders such as cancer associated ascites formation.

In one aspect, the invention provides a method of inhibiting endothelial or smooth muscle cell proliferation in a mammal, comprising administering to a mammal a composition, said composition comprising a polypeptide or binding construct, or a polynucleotide or vector encoding a binding construct, in an amount effective to inhibit endothelial cell proliferation in the mammal.

In some embodiments, the mammal to which the composition is administered has a neoplastic disease characterized by endothelial or smooth muscle cell growth. In some embodiments the neoplastic disease is selected from the group consisting of carcinomas, squamous cell carcinomas, lymphomas, melanomas, and sarcomas. Other cancers may be targeted as well as discussed herein. The composition is preferably administered in an amount effective to inhibit tumor growth or metastasis.

The method may also comprise the step of screening a mammal to identify a neoplastic disorder characterized by endothelial cell proliferation. In some embodiments, the subject of the method is a human, in other a non-human mammal, and in still others a non-mammalian species. In some embodiments, the screening step comprises screening the mammal for elevated serum levels of at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D polypeptides. In some embodiments, the screening step comprises obtaining a tissue sample from the tumor and detecting elevated levels of at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B,

PDGF-C, and PDGF-D polypeptides, or elevated levels of at least one receptor capable of binding the same. The method may also comprise the step of selecting a binding construct, wherein the binding construct binds to one or more of the elevated growth factors identified in the screening step, for 5 use in the administration step.

The methods of the invention may also be carried out with more than one binding construct, or at least one binding construct in combination with another therapeutic. For example, other therapeutics that may be used in combination 10 with the binding constructs of the invention include antisense RNA, RNA interference, bispecific antibodies, other antibody types, and small molecules, e.g., chemotherapeutic agents, which target growth factors and/or their receptors. A cytokine, radiotherapeutic agent, or radiation therapy may 15 also be used in combination with a binding construct. The chemotherapeutic agent or radiotherapeutic agent may be a member of the class of agents including an anti-metabolite; a DNA-damaging agent; a cytokine or growth factor; a covalent DNA-binding drug; a topoisomerase inhibitor; an anti-mi- 20 totic agent; an anti-tumor antibiotic; a differentiation agent; an alkylating agent; a methylating agent; a hormone or hormone antagonist; a nitrogen mustard; a radiosensitizer; and a photosensitizer. Specific examples of these agents are described elsewhere in the application. Combination thera- 25 pies are preferably synergistic, but they need not be, and additive therapies are also considered aspects of the inven-

In addition to their use in methods, the binding constructs may be combined or packaged with other therapeutics in kits 30 or as unit doses. Neoplastic diseases are not the only diseases that may be treated with the binding constructs. The binding constructs may be used as therapeutics for any disease associated with abnormally high levels of growth factor expression.

This summary of the invention is not intended to be limiting or comprehensive, and additional embodiments are described in the drawings and detailed description, including the examples. All such embodiments are aspects of the invention. Moreover, for the sake of brevity, various details that are applicable to multiple embodiments have not been repeated for every embodiment. Variations reflecting combinations and rearrangements of the embodiments described herein are intended as aspects of the invention. In addition to the foregoing, the invention includes, as an additional aspect, all 45 embodiments of the invention narrower in scope in any way than the variations specifically mentioned above. For example, for aspects described as a genus or range, every subgenus, subrange or species is specifically contemplated as an embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic depiction of vascular endothelial growth factor receptors and ligands that bind the same.

FIG. 2 is an autoradiograph of a PAGE from binding assays of VEGFR-2 fragment binding constructs using either radio-labeled VEGF-A or VEGF-C constructs.

FIG. 3 is an autoradiograph of a PAGE from binding assays of VEGFR-3 fragment binding constructs using a radiolabeled VEGF-C construct.

While the disclosure is susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described herein in detail. It should be understood, however, that there is no intention to limit the disclosure to the specific forms disclosed, but on the contrary, the intention is 10

to cover all modifications, alternative constructions, and the equivalents falling within the spirit and scope of the disclosure as defined by the appended claims.

DETAILED DESCRIPTION

The present invention provides novel binding constructs, compositions, and materials and methods for making and using the same. The binding constructs bind growth factors that exert angiogenic, lymphangenic, and other effects in vivo, and are useful for modulating those effects and also for purifying, isolating, and characterizing the growth factors.

I. BINDING CONSTRUCTS

For the purposes of this invention, a "binding construct" comprises one or more binding units associated with each other by covalent or other forms of attachment. A "binding unit" binds a growth factor ligand, i.e., one or more growth factor polypeptides, and preferably does so with high affinity. A binding unit preferably comprises at least one peptide or polypeptide, but other embodiments are possible as well, including organic small molecules, aptamers, and combinations of the same. While a binding unit preferably comprises a single polypeptide, it may comprise multiple polypeptides if a single polypeptide is not sufficient for binding a particular growth factor. When more than one binding unit or polypeptide segment is in a given binding construct, the binding units may be joined directly (i.e., through a covalent bond, e.g., a peptide, ester, or sulfhydryl bond, or non-covalently, e.g., hydrophobically) together via a linker. A binding construct may further include a heterologous peptide or other chemical moieties. Such additions are can modify binding construct properties such as stability, solubility, toxicity, serum half-35 life, immunogenicity, detectability, or other properties.

The term "high affinity" is used in a physiological context pertaining to the relative affinity of the binding construct for the growth factor ligand(s) in vivo in a mammal, such as a laboratory test animal, a domesticated farm or pet animal, or a human. The targeted growth factors of the invention, e.g., the VEGF/PDGF family members, have characteristic affinities for their receptors in vivo, typically measured in terms of sub-nanomolar dissociation constants (K_d) . For the purposes of this invention, a binding construct can bind to its target growth factor(s) with a K_d less than or equal to 1000 times the K_d of the natural growth factor-receptor pair, while retaining the specificity of the natural pair. A binding unit that binds a growth factor with a K_d less than or equal to 10 times the K_d of the natural growth factor-receptor pair, while retaining the specificity of the natural pair, is considered high affinity. While high affinity is preferred, it is not a requirement. In a preferred embodiment, the affinity of the binding unit for the growth factor equals or exceeds the affinity of the natural receptor for the growth factor.

By binding activity is meant the ability to bind to a ligand, receptor, or binding construct, and does not require the retention of biological activity in so far as enzymatic activity or signaling is concerned. Binding may include either binding to a monomer or a dimer, homodimers or heterodimers, whether of receptors or ligands. Polypeptides for use according to the present invention can be used in the form of a protein dimer, particularly a disulfide-linked dimer. Mechanistic descriptions of binding constructs, e.g., as ligand traps, are not meant to be limiting. For example, a binding construct comprising a receptor extracellular domain fragment may function by forming inactive dimers with an endogenous receptor monomer.

In some embodiments, a binding construct comprises a first binding unit (e.g., a polypeptide) operatively associated with a second binding unit (e.g., a polypeptide), wherein each binding unit binds a growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, 5 VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, PDGF-D, D1701 VEGF, NZ2 VEGF, NZ7 VEGF, and fallotein. In some embodiments the first and second binding units act together to bind a single ligand molecule (wherein the ligand may comprise a monomer or dimer). In some embodiments, the binding units act independently, i.e., each polypeptide binds a separate ligand molecule. In some embodiments, the first and second binding units are capable of either acting together or acting independently to bind one or more ligand polypeptides. In some embodiments, a binding unit of a first binding 15 construct is able to interact with a binding unit on a second binding construct, e.g., to form dimers between binding units.

In some embodiments, the binding construct comprises a first polypeptide operatively connected to a second polypeptide, wherein the first and second polypeptides each binds at 20 least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and PDGF polypeptides; wherein the amino acid sequence of the first polypeptide differs from the amino acid sequence of the second polypeptide; and wherein the first and second 25 polypeptides comprise members independently selected from the group consisting of:

- (a) a polypeptide comprising an amino acid sequence at least 35% identical to the VEGFR-1 extracellular domain amino acid sequence comprising positions 27-758 of SEQ ID 30 NO: 2;
- (b) a fragment of (a) that binds VEGF-A, VEGF-B, or PDGF;
- (c) a polypeptide comprising an amino acid sequence at least 35% identical to the VEGFR-2 extracellular domain 35 amino acid sequence comprising positions 20-764 of SEQ ID NO: 4;
- (d) a fragment of (c) that binds VEGF-A, VEGF-C, VEGF-E or VEGF-D;
- (e) a polypeptide comprising an amino acid sequence at 40 least 35% identical to the VEGFR-3 extracellular domain amino acid sequence comprising residues 24-775 of SEQ ID NO: 6;
 - (f) a fragment of (e) that binds VEGF-C or VEGF-D;
- (g) a polypeptide comprising an amino acid sequence at 45 least 35% identical to the neuropilin-1 extracellular domain amino acid sequence comprising residues 22-856 of SEQ ID NO: 113:
- (h) a fragment of (g) that binds VEGF-A, VEGF-B, VEGF-C, VEGF-E, or PDGF;
- (i) a polypeptide comprising an amino acid sequence at least 35% identical to the neuropilin-2 extracellular domain amino acid sequence comprising residues 21-864 of SEQ ID NO: 115;
- (j) a fragment of (i) that binds VEGF-A, VEGF-C, or 55 PDGF;
- (k) a polypeptide comprising an amino acid sequence at least 35% identical to the platelet derived growth factor receptor alpha extracellular domain amino acid sequence comprising residues 24-524 of SEQ ID NO: 117;
- (l) a fragment of (k) that binds PDGF-A, PDGF-B, or PDGF-C;
- (m) a polypeptide comprising an amino acid sequence at least 35% identical to the platelet derived growth factor beta extracellular domain amino acid sequence comprising residues 33 to 531 of SEQ ID NO: 119;
 - (n) a fragment of (m) that binds PDGF-B or PDGF-D;

12

(o) a polypeptide comprising an antigen binding fragment of an antibody that binds to at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D;

(p) a polypeptide that binds at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PDGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D polypeptides, wherein the polypeptide is generated using phage display; and

(q) an organic molecule that mimics the binding properties of (a)-(p).

Preferably, the binding units of a binding construct are not exclusively polypeptides comprising (antibody) antigen binding fragments. In some embodiments, the binding construct comprises at least one non-antigen binding fragment comprising binding unit. In some embodiments, the binding construct comprises two or more receptor fragments. In some embodiments, the binding construct comprising at least one receptor fragment and at least one polypeptide comprising an antigen binding fragment.

In some embodiments, the binding units all comprise antigen binding fragments. Exemplary bispecific antibodies are provided in co-owned, concurrently (Mar. 5, 2004) filed U.S. Provisional Patent Application No. 60/550,511: "Multivalent Antibody Materials And Methods For VEGF/PDGF Family Of Growth Factors," and related, co-filed International Patent Application No. PCT/US05/07742, both applications incorporated herein by reference it their entirety.

In some embodiments, one or more of the polypeptides of a binding construct is replaced with another type of molecule, e.g., a nucleic acid, that mimics the binding properties of any of the polypeptides described above in (a) through (p). Such nucleic acids include, for example, aptamers.

A. Binding Units

60

The growth factors that are the targets of the binding constructs of the invention exert their physiological effects in vivo by binding to the extracellular domains of growth factor receptors. Accordingly, growth factor receptors and fragments thereof constitute examples of binding units. Exemplary human nucleotide and amino acid sequences, for relevant ligands and receptors are set forth in the sequence listing as summarized below:

TABLE 1A

RECEPTOR SEQUENCES					
RECEPTOR SEQ ID NOS:					
VEGFR-1 VEGFR-2 VEGFR-3 short VEGFR-3 long PDGFR-α PDGFR-β Neuropilin-1 Neuropilin-2	1 and 2 3 and 4 5 and 6 120 and 121 116 and 117 118 and 119 112 and 113 114 and 115				

TABLE 1B

RECEPTOR SEQUENCES				
LIGAND	SEQ ID NOS:			
VEGF-A VEGF-A 232 isoform VEGF-B isoform 1 VEGF-B isoform 2	80 and 81 90 and 91 94 and 95 96 and 97			

TABLE 1B-continued

RECEPTOR SEQUENCES				
LIGAND	SEQ ID NOS:			
VEGF-C	82 and 83			
VEGF-D	86 and 87			
VEGF-E (NZ7)	88 and 89			
PIGF	84 and 85			
D1701 VEGF	92 and 93			
PDGF-A	98 and 99			
PDGF-B	100 and 101			
PDGF-C	102 and 103			
PDGF-D	104 and 105			

Other VEGF growth factors members include snake venom VEGFs (e.g., EMBL. AY033151, AY033152, and AY42981), various VEGF-E (orf virus VEGF homologs, some of which are presented in Table 1B) molecules including VEGF-E NZ2 [S67520], VEGF-E NZ7, VEGF-E D1701, VEGF-E Orf-11, and VEGF-E OV-IA82. [See generally, WO 00/25085.]

Members of the PDGF/VEGF family are characterized by a number of structural motifs including a conserved PDGF motif defined by the sequence: P—[PS]—C—V—X(3)-R-C-[GSTA]-G-C—C (SEQ ID NO: 111), where the brackets 25 indicate a variable position that can be any one of the amino acids within the brackets. The number contained within the parentheses indicates the number of amino acids that separate the "V" and "R" residues. This conserved motif falls within a large domain of 70-150 amino acids defined in part by eight 30 highly conserved cysteine residues that form inter- and intramolecular disulfide bonds. This domain forms a cysteine knot motif composed of two disulfide bonds which form a covalently linked ring structure between two adjacent β strands, and a third disulfide bond that penetrates the ring [see 35] for example, FIG. 1 in Muller et al., Structure 5:1325-1338 (1997)], similar to that found in other cysteine knot growth factors, e.g., transforming growth factor-β (TGF-β). The amino acid sequence of all known PDGF/VEGF proteins, with the exception of VEGF-E, contains the PDGF domain. 40 The PDGF/VEGF family proteins are predominantly secreted glycoproteins that form either disulfide-linked or non-covalently bound homo- or heterodimers whose subunits are arranged in an anti-parallel manner [Stacker and Achen, Growth Factors 17:1-11 (1999); Muller et al., Structure 45 5:1325-1338 (1997)]. Binding constructs of the invention include those that bind VEGF/PDGF growth factor monomers, homodimers, and heterodimers.

The VEGF subfamily is composed of members that share a VEGF homology domain (VHD) characterized by the 50 sequence: C-X(22-24)-P-[PSR]-C-V-X(3)-R-C-[GSTA]-G—C—C—X(6)-C—X(32-41)-C. (SEQ ID: 110) The VHD domain, determined through analysis of the VEGF subfamily members, comprises the PDGF motif but is more specific. The VEGF subfamily of growth factors and recep- 55 tors regulate the development and growth of the vascular endothelial system. VEGF family members include, but are not limited to VEGF-A, VEGF-B, VEGF-C, VEGF-D and PIGF [Li, X. and U. Eriksson, "Novel VEGF Family Members: VEGF-B, VEGF-C and VEGF-D," Int. J. Biochem. Cell. 60 Biol., 33(4):421-6 (2001))] Other VEGFs are bacterial or viral, the "VEGF-Es." Other VEGFs are derived from snake venom, the "NZ" series. [See e.g., Komori, et al. Biochemistry, 38(36):11796-803 (1999); Gasmi, et al., Biochem Biophys Res Commun, 268(1):69-72 (2002); Gasmi, et al., J Biol 65 Chem; 277(33):29992-8 (2002); de Azevedo, et al., J. Biol. Chem., 276: 39836-39842 (2001)].

14

At least seven cell surface receptors that interact with PDGF/VEGF family members have been identified. These include PDGFR-α [See e.g., GenBank Acc. No. NM006206; Swiss Prot No. P16234], PDGFR-β [See e.g., GenBank Acc. No. NM002609; Swiss Prot. No. P09619], VEGFR-1/Flt-1 (fms-like tyrosine kinase-1; hereinafter "R-1") [GenBank Acc. No. X51602; De Vries, et al., Science 255:989-991 (1992)]; VEGFR-2/KDR/Flk-1 (kinase insert domain containing receptor/fetal liver kinase-1, hereinafter "R-2") [Gen-Bank Acc. Nos. X59397 (Flk-1) and L04947 (KDR); Terman, et al., Biochem. Biophys. Res. Comm. 187:1579-1586 (1992); Matthews, et al., Proc. Natl. Acad. Sci. USA 88:9026-9030 (1991)]; VEGFR-3/Flt4 (fms-like tyrosine kinase 4; hereinafter "R-3") [U.S. Pat. No. 5,776,755 and GenBank Ace. No. X68203 and S66407; Pajusola et al., Oncogene 9:3545-3555 (1994); Hughes, et al., J. Mol. Evol. 52(2):77-79 (2001); Pajusola, et al., Oncogene 8(11):2931-37) (1993); Borg, et al., Oncogene 10(5):973-984 (1995), neuropilin-1 [Gen Bank Acc. No. NM003873], and neuropilin-2 [Gen Bank Acc. No. NM003872; SwissProt O60462]. The two PDGF receptors mediate signaling of PDGFs. Non-human VEGF and PDGF receptors may also be employed as part of the invention, e.g., chicken VEGFR-1 may be used alone or in hybrid form with human R-1 for improved expression.

VEGF121, VEGF165, VEGF-B, PIGF-1 and PIGF-2 bind VEGF-R1; VEGF121, VEGF145, VEGF165, (fully processed mature) VEGF-C, (fully processed mature) VEGF-D, VEGF-E, and NZ2 VEGF bind VEGF-R2; VEGF-C and VEGF-D bind VEGFR-3; VEGF165, VEGF-C, PIGF-2, and NZ2 VEGF bind neuropilin-1; and VEGF165 and VEGF-C binds neuropilin-2. [Neufeld, et al., *FASEB. J.* 13:9-22 (1999); Stacker and Achen, *Growth Factors* 17:1-11 (1999); Ortega, et al., *Fron. Biosci.* 4:141-152 (1999); Zachary, *Intl. J. Biochem. Cell. Bio.* 30:1169-1174 (1998); Petrova, et al., *Exp. Cell. Res.* 253:117-130 (1999); U.S. Pat. Appl. Pub. No. 20030113324]. Ligand, receptor interactions for the VEGFR subfamily are summarized in FIG. 1. PDGF-A, PDGF-B, and PDGF-C bind PDGFR-α. PDGF-B and PDGF-D bind PDGF-β.

Both the ligands and the receptors generally exist as dimers, including both homodimers and heterodimers. Such dimers can influence binding. For example, for the PDGFs, PDGF-AA binds PDGFR-α/α. PDGF-AB and PDGF-CC bind PDGFR-α/α and PDGFR-α/β. PDGFR-BB binds both of the homodimers and the heterodimeric PDGF receptor. PDGF-DD binds PDGF receptor heterodimers and beta receptor homodimers. [See, e.g., Pietras, et al., Cancer Cell, 3:439-443 (2003).] VEGF-A can heterodimerize with VEGF-B and PIGF. The VEGFs, PDGFs, and PIGFs, may exist as two or more isoforms, e.g., splice variants, and not all isoforms of a particular growth factor will share the same binding profile, or ability to dimerize with particular molecules. Certain isoforms of the same growth factor may also dimerize with each other. For example the 167 and 186 isoforms of VEGF-B can heterodimerize with each other.

Growth factor receptor tyrosine kinases generally comprise three principal domains: an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain binds ligands, the transmembrane domain anchors the receptor to a cell membrane, and the intracellular domain possesses one or more tyrosine kinase enzymatic domains and interacts with downstream signal transduction molecules. The vascular endothelial growth factor receptors (VEGFRs) and platelet derived growth factor receptors (PDGFRs) bind their ligand through their extracellular domains (ECDs), which are comprised of multiple immunoglobulin-like domains (Ig-domains). Ig-domains are

identified herein using the designation "D#." For example "D1" refers to the first Ig-domain of a particular receptor ECD. "D1-3" refers to a construct containing at least the first three Ig-domains, and intervening sequence between domains 1 and 2 and 2 and 3, of a particular construct. Table 5 2 defines the boundaries of the Ig-domains for VEGFR-1, VEGFR-2, and VEGFR-3 of the invention. These boundaries are significant as the boundaries chosen can be used to form constructs, and so can influence the binding properties of the resulting constructs. This relationship is discussed in 10 Example 1.

The complete ECD of PDGFRs and VEGFRs is not required for ligand (growth factor) binding. The ECD of VEGFR-1 (R-1) and VEGFR-2 (R-2) consists of seven Iglike domains and the ECD of VEGFR-3 (R-3) has six intact 15 Ig-like domains—D5 of R-3 is cleaved post-translationally into disulfide linked subunits leaving VEGFR-3. Veikkola, T., et al., *Cancer Res.* 60:203-212 (2000). In general, receptor fragments of at least the first three Ig-domains for this family are sufficient to bind ligand. The PDGFRs have five Ig-domains.

16

ally, Ferrara, *J. Mol. Med.* 77:527-543 (1999).] Two VEGF-β isoforms generated by alternative mRNA splicing exist, VEGF-B186 and VEGF-B167, with the first isoform accounting for about 80% of the total VEGF-B transcripts [Li, X., et al., Growth Factor, 19:49-59 (2001); Grimmond, et al., Genome Res., 6:124-131 (1996); Olofsson, et al., J. Biol. Chem., 271:19310-19317 (1996).] Three isoforms of PIGF produced by alternative mRNA splicing have been described [Hauser, et al., Growth Factors 9:259-268 (1993); Maglione, et al., Oncogene 8:925-931 (1993)]. PDGF-A and PDGF-B can homodimerize or heterodimerize to produce three different isoforms: PDGF-AA, PDGF-AB, or PDGF-BB.

The term "identity", as known in the art, refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness nucleic acid molecules or polypeptides sequences, as the case may be, as determined by the match between strings of two or more nucleotide or two or more amino acid sequences. "Identity" measures the percent of identical matches between the

TABLE 2

	IMMUNOGLOBULIN-LIKE DOMAINS FOR VEGFR-1, VEGFR-2 AND VEGFR-3						
	R-1 SEQ ID NO: 1 positions	R-1 SEQ ID NO: 2 positions	R-2 SEQ ID NO: 3 positions	R-2 SEQ ID NO: 4 positions	R-3 SEQ ID NO: 5 positions	R-3 SEQ ID NO: 6 positions	
D1	394-580	49-111	145-316	48-105	158-364	47-115	
D2	709-880	154-211	436-610	145-203	479-649	154-210	
D3	990-1192	248-315	724-931	241-310	761-961	248-314	
D4	1303-1474	352-409	1039-1204	346-401	1070-1228	351-403	
D5	1957-1864	450-539	1321-1600	440-533	1340-1633	441-538	
D6 1966-2167 573-640 1699-1936 566-645 1739-1990 57					574-657		
D7	2281-2452	678-735	2050-2221	683-740	2102-2275	695-752	

In some embodiments, a binding unit of a binding construct ₄₀ comprises the ECD of a growth factor receptor. A binding unit may comprise at least one Ig-domain of a VEGFR as described in Table 2, to as many as seven. Ig-domain information for PDGFR-α and PDGFR-β is provided in Lokker, et al., J. Biol. Chem. 272: 33037-33044 (1997), which is incor-45 porated by reference in its entirety. A binding unit may include sequence before the N-terminal most Ig-domain, may include sequence beyond the C-terminal most Ig-domain, and may include sequence between the Ig-domains as well. Binding units may also comprise variants, e.g., with one or more 50 amino acid substitutions, additions, or deletions of an amino acid residue. Binding units also may comprise chimeras, e.g., combinations of Ig-domains from different receptors. In some embodiments, the first or second polypeptide comprises a receptor fragment comprising at least the first three Ig 55 domains of a receptor tyrosine kinase.

The binding of a binding unit to a particular growth factor ligand refers to the ability to bind at least one natural isoform of at least one target growth factor, especially processed forms that are secreted from cells and circulate in vivo and/or 60 bind heparin moieties. For example, "capable of binding VEGF-A" refers to the ability to bind at least one isoform of VEGF-A under physiological conditions. At least five human VEGF-A isoforms of 121, 145, 165, 189 or 206 amino acids in length (VEGF121-VEGF206), encoded by distinct mRNA 65 splice variants, have been described, all of which are capable of stimulating mitogenesis in endothelial cells. [See gener-

smaller of two or more sequences with gap alignments (if any) addressed by particular a mathematical model of computer program (i.e., "algorithms"). Appropriate algorithms for determining the percent identities of the invention include BLASTP and BLASTN, using the most common and accepted default parameters.

1. VEGFR-1-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a VEGFR-1 polypeptide or fragment thereof, preferably from the same species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably comprises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 2, wherein the fragment and the polypeptide binds one or more growth factors selected from the group consisting of VEGF-A, VEGF-B, and PIGF. The fragment minimally comprises enough of the VEGFR-1 sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated.

Preferred polypeptides may also be described as having an amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:1 encoding

a ligand binding fragment of VEGFR-1. Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the complement of a nucleotide sequence that corresponds to the cDNA sequence encoding the R-1 receptor. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more R-1 ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of SEQ ID NO: 1 under moderately or highly stringent conditions discussed herein.

Exemplary R1 fragments for use as binding unit polypeptides (or for use as a starting point for designing R-1 analogs) have an amino terminal residue selected from the group consisting of positions 1 to 129 of SEQ ID NO: 2, and a carboxy terminal residue selected from the group consisting of positions 229 to 758 of SEQ ID NO: 2, wherein the VEGFR-1 20 fragment binds at least one of VEGF-A, VEGF-B, and PIGF.

2. VEGFR-2-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a VEGFR-2 polypeptide or fragment thereof, preferably from the same 25 species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably comprises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 4, wherein the fragment and the polypeptide binds one or more growth factors selected from 30 the group consisting of VEGF-A, VEGF-C, VEGF-D, or VEGF-E. The fragment minimally comprises enough of the VEGFR-2 sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence 35 at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated.

Preferred polypeptides may also be described as having an amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:3 encoding a ligand binding fragment of VEGFR-2. Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 45 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the comple- 50 ment of a nucleotide sequence that corresponds to the cDNA sequence encoding the R-2 receptor. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more R-2 ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of 55 SEQ ID NO: 3 under moderately or highly stringent conditions discussed herein.

Exemplary R2 fragments for use as binding unit polypeptides (or for use as a starting point for designing R-2 analogs) have an amino terminal residue selected from the group consisting of positions 1 to 118 of SEQ ID NO: 4, and a carboxy terminal residue selected from the group consisting of positions 326 to 764 of SEQ ID NO: 4, wherein VEGFR-2 fragment binds at least one of VEGF-A, VEGF-C, VEGF-D, and VEGF-E. Exemplary R2 fragments for use as binding unit 65 polypeptides (or for use as a starting point for designing R-2 analogs) may alternatively have an amino terminal residue

selected from the group consisting of positions 1 to 192 of SEQ ID NO: 4, and a carboxy terminal residue selected from the group consisting of positions 393 to 764 of SEQ ID NO: 4, wherein the VEGFR-2 fragment binds at least one of VEGF-A, VEGF-C, VEGF-D, and VEGF-E. Exemplary R2 fragments for use as binding unit polypeptides (or for use as a starting point for designing R-2 analogs) may also have an amino terminal residue selected from the group consisting of positions 1 to 48 of SEQ ID NO: 4, and a carboxy terminal residue selected from the group consisting of positions 214 to 764 of SEQ ID NO: 4, wherein the VEGFR-2 fragment binds at least one of VEGF-A, VEGF-C, VEGF-D, and VEGF-E.

In some embodiments, a binding unit of the binding construct comprises a fragment of R-2, SEQ ID NO: 4, selected from the group consisting of positions 24-326 (SEQ ID NO: 8), 118-326 (SEQ ID NO: 20), positions 118-220 (SEQ ID NO: 22), positions 118-226 (SEQ ID NO: 24), and positions 118-232 (SEQ ID NO: 26). In some embodiments, a binding unit of the binding construct comprises a fragment of R-2, SEO ID NO: 4, selected from the group consisting of positions 106-240, positions 112-234, positions 114-220, positions 115-220, positions 116-222, positions 117-220, positions 118-221, positions 118-222, positions 118-223, positions 118-224, and positions 118-228. In some embodiments, a binding unit of the binding construct comprises a fragment of R-2, SEQ ID NO: 4, selected from the group consisting of positions 48-203, and 145-310 and 48-310. Exemplary embodiments are also discussed in Example 1.

3. VEGFR-3-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a VEGFR-3 polypeptide or fragment thereof, preferably from the same species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably comprises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 6, where the fragment and the polypeptide binds one or more growth factors selected from the group consisting of VEGF-C and VEGF-D. The fragment minimally comprises enough of the VEGFR-3 sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the complement of a nucleotide sequence that corresponds to the cDNA sequence encoding the R-3 receptor.

Preferred polypeptides may also be described as having an amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:5 encoding a ligand binding fragment of VEGFR-3. Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more R-3 ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of SEQ ID NO: 5 under moderately or highly stringent conditions discussed herein.

Exemplary R-3 fragments for use as binding unit polypeptides (or for use as a starting point for designing R-3 analogs) have an amino terminal residue selected from the group con-

sisting of positions 1 to 47 of SEQ ID NO: 6, and a carboxy terminal residue selected from the group consisting of positions 226 to 775 of SEQ ID NO: 6, wherein VEGFR-3 fragment binds at least one of VEGF-C and VEGF-D.

19

In some embodiments, a binding unit of the binding construct comprises a fragment of R-3, SEQ ID NO: 6, selected from the group consisting of positions 1-226 (SEQ ID NO: 38), positions 1-229 (SEQ ID NO: 36), and positions 1-329 (SEQ ID NO: 44). In some embodiments, a binding unit of the binding construct comprises a fragment of R-3, SEQ ID NO: 10 6, selected from the group consisting of positions 47-224, positions 47-225, positions 47-226, positions 47-227, positions 47-228, positions 47-229, positions 47-230, positions 47-231, positions 47-245. In some embodiments, a binding unit of the binding construct comprises a fragment of R-3, SEQ ID NO: 6, selected from the group consisting of positions 47-314, positions 47-210, and positions 47-247. Exemplary embodiments are also discussed in Example 1.

4. Neuropilin-1-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a neuropilin-1 polypeptide or fragment thereof, preferably from the same species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably com- 25 prises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 113, where the fragment and the polypeptide binds one or more growth factors selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-E, and PIGF. The fragment minimally comprises enough of the neuropilin-1 sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, 35 e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated.

Preferred polypeptides may also be described as having an 40 amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:112 encoding a ligand binding fragment of neuropilin-1. Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are 45 highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the complement of a nucleotide sequence that corresponds to the 50 cDNA sequence encoding the neuropilin-1 receptor. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more neuropilin-1 ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of SEQ ID NO: 112 under 55 moderately or highly stringent conditions discussed herein.

Exemplary neuropilin-1 fragments for use as binding unit polypeptides (or for use as a starting point for designing neuropilin-1 analogs) comprise a neuropilin-1 extracellular domain amino acid sequence comprising residues 22-856 of 60 SEQ ID NO: 113, or a portion thereof; wherein the neuropilin-1 fragment and the binding unit bind at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-E, and PIGF.

5. Neuropilin-2-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a neuropisame species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably comprises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 115, wherein the fragment and the polypeptide binds one or more growth factors selected from the group consisting of VEGF-A, VEGF-C, and PIGF. The fragment minimally comprises enough of the neuropilin-2 sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are

20

lin-2 polypeptide or fragment thereof, preferably from the

the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated.

Preferred polypeptides may also be described as having an amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:114 encoding a ligand binding fragment of neuropilin-2. Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the complement of a nucleotide sequence that corresponds to the cDNA sequence encoding the neuropilin-2 receptor. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more neuropilin-2 ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of SEQ ID NO: 114 under moderately or highly stringent conditions discussed herein.

Exemplary neuropilin-2 fragments for use as binding unit polypeptides comprising residues 21-864 of SEQ ID NO: 115, or a portion thereof; wherein the neuropilin-2 fragment and the binding unit bind at least one growth factor selected from the group consisting of VEGF-A, VEGF-C, and PIGF.

Further neuropilin-1 and -2 species, isoforms, soluble fragments, etc., are provided in WO03/029814, U.S. application Ser. Nos. 10/262,538, 10/669,176, and 60/505,607, which are incorporated by reference in their entireties.

6. PDGFR-Alpha-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a PDGFR-α polypeptide or fragment thereof, preferably from the same species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably comprises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 117, where the fragment and the polypeptide binds one or more growth factors selected from the group consisting of PDGF-A, PDGF-B, and PDGF-C. The fragment minimally comprises enough of the PDGFR-α sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the complement of a nucleotide sequence that corresponds to the cDNA sequence encoding the R- α receptor.

8. Other Binding Units

Preferred polypeptides may also be described as having an amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:116 encoding a ligand binding fragment of R- α Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more R- α ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of SEQ ID NO: 116 under moderately or highly stringent conditions discussed herein.

Exemplary R- α fragments for use as binding unit polypeptides (or for use as a starting point for designing R- α analogs) have an amino terminal residue selected from the group consisting of positions 1 to 123 of SEQ ID NO: 117, and a carboxy terminal residue selected from the group consisting of positions 313 to 524 of SEQ ID NO: 117, wherein the PDGFR- α fragment binds at least one of PDGF-A, PDGF-B, and PDGF-C.

7. PDGFR-Beta-Derived Binding Units

In some embodiments, a binding unit comprises a polypeptide similar or identical in amino acid sequence to a R-β polypeptide or fragment thereof, preferably from the same species as the targeted growth factor(s). Thus, for binding to human growth factors, a binding unit preferably comprises a polypeptide that comprises an amino acid similar or identical to a fragment of SEQ ID NO: 119, where the fragment and the polypeptide binds one or more growth factors selected from the group consisting of PDGF-B and PDGF-D. The fragment minimally comprises enough of the PDGFR-β sequence to bind the ligand, and may comprise the complete receptor. Extracellular domain fragments are preferred. Preferred polypeptides have an amino acid sequence at least 80% identical to a ligand binding fragment thereof. Fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. A genus of similar polypeptides can alternatively be defined by the ability of encoding polynucleotides to hybridize to the complement of a nucleotide sequence that corresponds to the cDNA sequence encoding the R-β receptor.

Preferred polypeptides may also be described as having an amino acid sequence encoded by a nucleic acid sequence at least 80% identical to a fragment of SEQ ID NO:118 encoding a ligand binding fragment of PDGFR- β . Nucleic acid fragments that are more similar, e.g., 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% are highly preferred. Fragments that are 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, and 75% are also contemplated. For example, a preferred binding unit polypeptide comprises an amino acid sequence that binds one or more R- β ligands and that is encoded by a nucleotide sequence that hybridizes to the complement of SEQ ID NO: 118 under moderately or highly stringent conditions discussed herein.

Exemplary R- β fragments for use as binding unit polypeptides (or for use as a starting point for designing R- β analogs) have an amino terminal residue selected from the group consisting of positions 1 to 124 of SEQ ID NO: 119, and a carboxy terminal residue selected from the group consisting of positions 314 to 531 of SEQ ID NO: 119, wherein 65 PDGFR- β fragment binds at least one of PDGF-B and PDGF-D.

Although a binding unit may comprise a polypeptide similar or identical to an extracellular domain fragment of a growth factor receptor tyrosine kinase, other binding units are contemplated as well. In some embodiments, the binding unit is generated using phage display. In some embodiments, the binding unit comprises an antibody. In some embodiments, a binding unit comprises a polypeptide comprising an antibody (antigen binding) fragment, e.g., a domain antibody. Binding units, as well as binding constructs, need not comprise a polypeptide. In some embodiments, the binding construct comprises nucleic acid, e.g., DNA or RNA, such as an aptamer. In some embodiments, the binding construct comprises polysaccharides.

22

Growth factor binding molecules that have been described in the literature may be used as binding units to construct binding constructs of the inventory including molecules taught by the following: Veikkola, T., et al., Cancer Res. 60:203-212 (2000); Davis-Smyth, T., et al., EMBO J., 15(18): 4919-27 (1996), U.S. Pat. Nos. 5,952,199; 6,100,071; 6,383. 486; U.S. Pat. Appl. Nos. 20030092604; Niwa, et al., U.S. Pat. No. 6,348,333; Fairbrother, et al., Biochemistry, 37:17754-64 (1998); Starovasnik, M. et al., J. Mol. Biol., 293: 531-44 (1999); Wiesmann, C., et al., Cell, 91:695-704 (1997); Fuh, et al., J. Biol. Chem., 273(18): 11197-11204 (1998); Shinkai, A. et al., J. Biol. Chem., 273(47):31283-88 (1998); Lu, et al., J. Biol. Chem., 275(19): 14321-14330 (2000); Lu et al., J. Immunological Methods, 230:159-71 (1999); Lu, et al., J. Biol. Chem., 278(44): 43496-43507 (2003); Makkinen, T., et al., Nature Medicine, 7(2), 199-205 (2001); Alitalo, et al., WO 02/060950; Karpanen, T., et al., Cancer Research 61:1786-90 (2001); Liu, et al., U.S. Pat. Appl. Publ. No. 2003/0064053; Kubo, H., et al., Blood, 96(2): 546-553 (2000); Rosen, Hematol. Oncol. Clin. N. Am., 16:1173-1187 (2002); Kaplan, et al., Growth Factors, 14:243-256 (1997); Thomas, et al., U.S. Pat. No. 6,375,929; Kendall and Thomas, *PNAS*, *U.S.A.*, 90:10705-10709 (1993); Kovesdi, U.S. Pat. Appl. Publ. No. 2003/0053989, Daly, et al., U.S. Pat. Appl. Publ. No.: 2004/0014667; and Lokker, et al., J. Biol. Chem. 272: 33037-33044 (1997). These and other documents cited in this application are incorporated in their entireties. Molecules that have not previously been tested for their ability to bind to a particular growth factor may tested according to the assays provided herein. For example, some 45 of the above documents teach a R-2 fragment that binds VEGF-A. That same molecule may be tested for its ability to bind VEGF-C.

Except as otherwise noted, descriptions supplied for receptors, also apply to receptor fragments and such fragments incorporated into binding constructs as described herein.

The growth factor receptors, from which binding units may be derived, include splice variants and naturally-occurring allelic variations. Allelic variants are well known in the art, and represent alternative forms or a nucleic acid sequence that comprise substitution, deletion or addition of one or more nucleotides, but which do not result in any substantial functional alteration of the encoded polypeptide. Standard methods can readily be used to generate such polypeptides including site-directed mutagenesis of polynucleotides, or specific enzymatic cleavage and ligation. Similarly, use of peptidomimetic compounds or compounds in which one or more amino acid residues are replaced by a non-naturally-occurring amino acid or an amino acid analog that retain binding activity is contemplated. Preferably, where amino acid substitution is used, the substitution is conservative, i.e. an amino acid is replaced by one of similar size and with similar charge properties. As used herein, the term "conservative substitu-

tion" denotes the replacement of an amino acid residue by another, biologically similar residue. Examples of conservative substitutions include the substitution of one hydrophobic residue such as isoleucine, valine, leucine, alanine, cysteine, glycine, phenylalanine, proline, tryptophan, tyrosine, norleucine or methionine for another, or the substitution of one polar residue for another, such as the substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like. Neutral hydrophilic amino acids that can be substituted for one another include asparagine, glutamine, serine and threonine. The term "conservative substitution" also includes the use of a substituted amino acid in place of an unsubstituted amino acid.

Alternatively, conservative amino acids can be grouped as described in Lehninger, (*Biochemistry*, Second Edition; 15 Worth Publishers, Inc. NY:NY, pp. 71-77 (1975)) as set out in the following:

Non-polar (hydrophobic)

A. Aliphatic: A, L, I, V, P,

B. Aromatic: F, W,

C. Sulfur-containing: M,

D. Borderline: G.

Uncharged-polar

A. Hydroxyl: S, T, Y,

B. Amides: N, Q,

C. Sulfhydryl: C.

D. Borderline: G.

Positively Charged (Basic): K, R, H.

Negatively Charged (Acidic): D, E.

B. Linkers

While binding units may be directly attached to one another (via a peptide, disulfide or other type of covalent bond), the binding constructs of the present invention may further comprise a (one or more) linker that connects together two or more different binding units, e.g., a receptor fragments 35 with another receptor fragment, or even a copy of itself. A linker may also link a binding unit to other substituents described herein. The linker is generally a heterologous protein polypeptide. In some embodiments, the linker comprises a peptide that links the binding units to form a single continuous peptide that can be expressed as a single molecule. Linkers may be chosen such that they are less likely to induce an allergic reaction. Polysaccharides or other moieties also may be used to link binding units to form a binding construct.

More than one linker may be used per binding construct. 45 The linker may be selected for optimal conformational (steric) freedom between the various ligand binding units to allow them to interact with each other if desired, e.g., to form dimers, or to allow them to interact with ligand. The linker may be linear such that consecutive binding units are linked in 50 series, or the linker may serve as a scaffold to which various binding units are attached, e.g., a branched linker. A linker may also have multiple branches, e.g., as disclosed in Tam, J. Immunol. Methods 196:17 (1996). Binding units may be attached to each other or to the linker scaffold via N-terminal 55 amino groups, C-terminal carboxyl groups, side chains, chemically modified groups, side chains, or other means.

Linker peptides may be designed to have sequences that permit desired characteristics. For example, the use of glycyl residues allow for a relatively large degree of conformational 60 freedom, whereas a proline would tend to have the opposite effect. Peptide linkers may be chosen so that they achieve particular secondary and tertiary structures, e.g., alpha helices, beta sheets or beta barrels. Quaternary structure can also be utilized to create linkers that join two binding units 65 together non-covalently. For example, fusing a protein domain with a hydrophobic face to each binding unit may

24

permit the joining of the two binding units via the interaction between the hydrophobic interaction of the two molecules. In some embodiments, the linker may provide for polar interactions. For example, a leucine zipper domain of the proto-oncoproteins Myc and Max, respectively, may be used. Luscher and Larsson, *Ongogene* 18:2955-2966 (1999). In some embodiments, the linker allows for the formation of a salt bridge or disulfide bond. Linkers may comprise non-naturally occurring amino acids, as well as naturally occurring amino acids that are not naturally incorporated into a polypeptide. In some embodiments, the linker comprises a coordination complex between a metal or other ion and various residues from the multiple peptides joined thereby.

Linear peptide linkers of at least one amino acid residue are
contemplated. In some embodiments the linker has more than
10,000 residues. In some embodiments, the linker has from
1-10,000 residues. In some embodiments, the linker has from
1-100 residues. In some embodiments, the linker has from
1-100 residues. In some embodiments, the linker has from
1-50 residues. In some embodiments the linker has 1-10 residues. In some embodiments the linker has 1-10 residues. In some embodiments, the linear peptide linker comprises residues with relatively inert side chains. Peptide linker amino acid residues need not be linked entirely or at all via alpha-carboxy and alpha-amino groups. That is, peptides may
be linked via side chain groups of various residues.

The linker may affect whether the polypeptide(s) to which it is fused to is able to dimerize to each other or to another polypeptide. The linker serves a number of functions. Native receptor monomers restrained to the roughly two-dimensional plane of the cell membrane enjoy a relatively high local concentration and in the availability of co-receptors (binding units), increasing the probability of finding a partner. Receptors free in solution lacking such advantages may be aided by a linker that increases the effective concentration of the monomers.

In some embodiments, a binding construct may comprise more than one type of linker. Suitable linkers may also comprise the chemical modifications discussed below.

C. Substituents And Other Chemical Modifications

The binding constructs of the invention may be chemically modified with various substituents. Such modifications preferably does not substantially reduce the growth factor binding affinities or specificities of the binding construct. Rather, the chemical modifications impart additional desirable characteristics as discussed herein. Chemical modifications may take a number of different forms such as heterologous peptides, polysaccarides, lipids, radioisotopes, non-standard amino acid resides and nucleic acids, metal chelates, and various toxins.

The receptor fragments, binding constructs, and other peptide molecules of the present invention may be fused to heterologous peptides to confer various properties, e.g., increased solubility, modulation of clearance, targeting to particular cell or tissue types. In some embodiments, the receptor fragment is linked to a Fc domain of IgG or other immunoglobulin. In some embodiments, a receptor fragment is fused to alkaline phosphatase (AP). Methods for making Fc or AP fusion constructs are found in WO 02/060950. By fusing the ligand binding domain of VEGFR-2 or VEGFR-3 (or other receptors) with protein domains that have specific properties (e.g. half life, bioavailability, interaction partners) it is possible to confer these properties to the VEGFR binding domains (e.g., the receptor binding domain could be engineered to have a specific tissue distribution or specific biological half life). In some embodiments, binding construct may include a co-receptor and a VEGFR fragment.

The particular heterologous polypeptide used in a particular construct can influence whether or not a growth factor receptor fragment will dimerize, which in turn may affect ligand binding. Fc fusion all may permit dimers, whereas AP fusions may permit monomers, cited, which along with Igdomain boundary differences as possible reasons for different results obtained by different groups for receptor fragments binging to ligands. [Lu, et al., *J. Biol. Chem.* 275(19): 14321-14330 (2000).]

For substituents such as an Fc region of human IgG, the fusion can be fused directly to a binding construct or fused through an intervening sequence. For example, a human IgG hinge, CH2 and CH3 region may be fused at either the N-terminus or C-terminus of a binding construct to attach the Fc region. The resulting Fc-fusion construct enables purification via a Protein A affinity column (Pierce, Rockford, Ill.). Peptide and proteins fused to an Fc region can exhibit a substantially greater half-life in vivo than the unfused counterpart. A fusion to an Fc region allows for dimerization/multimerization of the fusion polypeptide. The Fc region may be a naturally occurring Fc region, or may be modified for superior characteristics, e.g., therapeutic qualities, circulation time, reduced aggregation.

Polypeptides can be modified, for instance, by glycosylation, amidation, carboxylation, or phosphorylation, or by the 25 creation of acid addition salts, amides, esters, in particular C-terminal esters, and N-acyl derivatives. The proteins also can be modified to create peptide derivatives by forming covalent or noncovalent complexes with other moieties. Covalently bound complexes can be prepared by linking the 30 chemical moieties to functional groups on the side chains of amino acids comprising the peptides, or at the N- or C-terminus.

Polypeptides can be conjugated to a reporter group, including, but not limited to a radiolabel, a fluorescent label, an 35 enzyme (e.g., that catalyzes a calorimetric or fluorometric reaction), a substrate, a solid matrix, or a carrier (e.g., biotin or avidin). Examples of analogs are described in WO 98/28621 and in Olofsson, et al., *Proc. Nat'l. Acad. Sci. USA*, 95:11709-11714 (1998), U.S. Pat. Nos. 5,512,545, and 5,474, 40 982; U.S. Patent Application Nos. 20020164687 and 20020164710.

Cysteinyl residues most commonly are reacted with haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carbocyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, α -bromo- β (5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

Histidyl residues are derivatized by reaction with diethylprocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 55 0.1M sodium cacodylate at pH 6.0.

Lysinyl and amino terminal residues are reacted with succinic or carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing α -aminocontaining residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylissurea; 2,4 pentanedione; and transaminase catalyzed reaction with glyoxylate.

Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 26

2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

The specific modification of tyrosyl residues per se has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizol and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using 125I or 131I to prepare labeled proteins for use in radioimmunoassay.

Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R1) such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1-ethyl-3 (4 azonia 4,4-dimethylpentyl)carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Derivatization with bifunctional agents is useful for crosslinking the binding construct to water-insoluble support matrixes. Such derivation may also provide the linker that may connect adjacent binding elements in a binding construct, or a binding elements to a heterologous peptide, e.g., a Fc fragment. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homo-bifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3propioimidate [(p-azidophenyl) dithio] yield photoactivatable intermediates that are capable of forming cross links in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440, incorporated herein by reference, are employed for protein immobilization.

Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, *Proteins:* Structure and Molecule Properties, W. H. Freeman & Co., San Francisco, pp. 79-86, 1983), acetylation of the N-terminal amine, and, in some instances, amidation of the C-terminal carboxyl groups. Such derivatives are chemically modified polypeptide compositions in which the binding construct polypeptide is linked to a polymer. The polymer selected is typically water soluble so that the protein to which it is attached does not precipitate in an aqueous environment, such as a physiological environment. The polymer selected is usually modified to have a single reactive group, such as an active ester for acylation or an aldehyde for alkylation, so that the degree of polymerization may be controlled as provided for in the present methods. The polymer may be of any molecular weight, and may be branched or unbranched. Included within the scope of the binding construct polypeptide polymers is a

mixture of polymers. Preferably, for therapeutic use of the end-product preparation, the polymer will be pharmaceutically acceptable.

The polymers each may be of any molecular weight and may be branched or unbranched. The polymers each typically have an average molecular weight of between about 2 kDa to about 100 kDa (the term "about" indicating that in preparations of a water soluble polymer, some molecules will weigh more, some less, than the stated molecular weight). The average molecular weight of each polymer is between about 5 kDa 10 and about 50 kDa, more preferably between about 12 kDa to about 40 kDa and most preferably between about 20 kDa to about 35 kDa.

Suitable water soluble polymers or mixtures thereof include, but are not limited to, N-linked or O-linked carbo- 15 hydrates, sugars, phosphates, carbohydrates; sugars; phosphates; polyethylene glycol (PEG) (including the forms of PEG that have been used to derivatize proteins, including mono-(C1-C10) alkoxy- or aryloxy-polyethylene glycol); monomethoxy-polyethylene glycol; dextran (such as low 20 try-Biotechnical and Biomedical Applications, 127-36.) molecular weight dextran, of, for example about 6 kD), cellulose; cellulose; other carbohydrate-based polymers, poly-(N-vinyl pyrrolidone)polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide copolymer, polyoxyethylated polyols (e.g., glycerol) and poly- 25 vinyl alcohol. Also encompassed by the present invention are bifunctional crosslinking molecules which may be used to prepare covalently attached multimers.

In general, chemical derivatization may be performed under any suitable condition used to react a protein with an 30 activated polymer molecule. Methods for preparing chemical derivatives of polypeptides will generally comprise the steps of (a) reacting the polypeptide with the activated polymer molecule (such as a reactive ester or aldehyde derivative of the polymer molecule) under conditions whereby the binding 35 construct becomes attached to one or more polymer molecules, and (b) obtaining the reaction product(s). The optimal reaction conditions will be determined based on known parameters and the desired result. For example, the larger the ratio of polymer molecules: protein, the greater the amount of 40 attached polymer molecule. In one embodiment, the binding construct polypeptide derivative may have a single polymer molecule moiety at the amino terminus. (See, e.g., U.S. Pat. No. 5,234,784).

A particularly preferred water-soluble polymer for use 45 herein is polyethylene glycol (PEG). As used herein, polyethvlene glycol is meant to encompass any of the forms of PEG that can be used to derivatize other proteins, such as mono-(C1-C10) alkoxy- or aryloxy-polyethylene glycol. PEG is a linear or branched neutral polyether, available in a broad 50 range of molecular weights, and is soluble in water and most organic solvents. PEG is effective at excluding other polymers or peptides when present in water, primarily through its high dynamic chain mobility and hydrophibic nature, thus creating a water shell or hydration sphere when attached to 55 other proteins or polymer surfaces. PEG is nontoxic, nonimmunogenic, and approved by the Food and Drug Administration for internal consumption.

Proteins or enzymes when conjugated to PEG have demonstrated bioactivity, non-antigenic properties, and decreased 60 clearance rates when administered in animals. F. M. Veronese et al., Preparation and Properties of Monomethoxypoly(ethylene glycol)-modified Enzymes for Therapeutic Applications, in J. M. Harris ed., Poly(Ethylene Glycol) Chemistry-Biotechnical and Biomedical Applications, 127-36, 1992, 65 incorporated herein by reference. These phenomena are due to the exclusion properties of PEG in preventing recognition

28

by the immune system. In addition, PEG has been widely used in surface modification procedures to decrease protein adsorption and improve blood compatibility. S. W. Kim et al., Ann. N.Y. Acad. Sci. 516: 116-30 1987; Jacobs et al., Artif. Organs 12: 500-501, 1988; Park et al., J. Poly. Sci, Part A 29:1725-31, 1991, incorporated herein by reference. Hydrophobic polymer surfaces, such as polyurethanes and polystyrene can be modified by the grafting of PEG (MW 3,400) and employed as nonthrombogenic surfaces. Surface properties (contact angle) can be more consistent with hydrophilic surfaces, due to the hydrating effect of PEG. More importantly, protein (albumin and other plasma proteins) adsorption can be greatly reduced, resulting from the high chain motility, hydration sphere, and protein exclusion properties of PEG.

PEG (MW 3,400) was determined as an optimal size in surface immobilization studies, Park et al., J. Biomed. Mat. Res. 26:739-45, 1992, while PEG (MW 5,000) was most beneficial in decreasing protein antigenicity. (F. M. Veronese et al., In J. M. Harris, et al., Poly(Ethylene Glycol) Chemis-

Methods for preparing pegylated binding construct polypeptides will generally comprise the steps of (a) reacting the polypeptide with polyethylene glycol (such as a reactive ester or aldehyde derivative of PEG) under conditions whereby the binding construct polypeptide becomes attached to one or more PEG groups, and (b) obtaining the reaction product(s). In general, the optimal reaction conditions for the acylation reactions will be determined based on known parameters and the desired result. For example, the larger the ratio of PEG:protein, the greater the percentage of polypegylated product. In some embodiments, the binding construct will have a single PEG moiety at the N-terminus. See U.S. Pat. No. 8,234,784, herein incorporated by reference.

Derivatized binding constructs disclosed herein may have additional activities, enhanced or reduced biological activity, or other characteristics, such as increased or decreased halflife, as compared to the non-derivatized molecules.

II. POLYNUCLEOTIDES ENCODING BINDING CONSTRUCTS AND EXPRESSION SYSTEMS

The invention comprises not only the binding constructs, binding units, and polypeptides described herein, but also nucleic acids encoding such molecules, vectors comprising such molecules, and host cells comprising such vectors. Method employing any of the constructs, units, polypeptides, nucleic acids, vectors, and hosts cells are all considered aspects of the invention.

A. Nucleic Acids of the Invention

This invention also includes nucleic acid molecules whose sequence encode the polypeptides, binding units, and binding constructs of the invention. Nucleic acid molecules include those molecules which comprise nucleotide sequences which hybridize under moderately or highly stringent conditions as defined herein with the fully complementary sequence of the nucleic acid molecule of receptor tyrosine kinases described in Table 1A, or of a molecule encoding a polypeptide, which polypeptide comprises the receptor tyrosine kinase amino acids sequences described in Table 1A, or of a nucleic acid fragment as defined herein, or of a nucleic acid fragment encoding a polypeptide as defined herein.

Hybridization probes may be prepared using the sequences provided herein to screen cDNA, genomic or synthetic DNA libraries for related sequences. Regions of the DNA and/or amino acid sequence that exhibit significant identity to known sequences are readily determined using sequence alignment

algorithms as described herein, and those regions may be used to design probes for screening.

The term "highly stringent conditions" refers to those conditions that are designed to permit hybridization of DNA strands whose sequences are highly complementary, and to exclude hybridization of significantly mismatched DNAs. Hybridization stringency is principally determined by temperature, ionic strength, and the concentration of denaturing agents such as formamide. Examples of "highly stringent conditions" for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68° C. or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42° C. See Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold 15 Spring Harbor Laboratory, (Cold Spring Harbor, N.Y. 1989); and Anderson et al., Nucleic Acid Hybridization: a Practical approach, Ch. 4, IRL Press Limited (Oxford, England). Limited, Oxford, England. Other agents may be included in the hybridization and washing buffers for the purpose of reducing 20 non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate (NaDodSO₄ or SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), 25 and dextran sulfate, although other suitable agents can also be used. The concentration and types of these additives can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4, 6.8-7.4; however, at typical 30 ionic strength conditions, the rate of hybridization is nearly independent of pH. See Anderson et al., Nucleic Acid Hybridization: a Practical Approach, Ch. 4, IRL Press Limited (Oxford, England).

Factors affecting the stability of a DNA duplex include base composition, length, and degree of base pair mismatch. Hybridization conditions can be adjusted by one skilled in the art in order to accommodate these variables and allow DNAs of different sequence relatedness to form hybrids. The melting temperature of a perfectly matched DNA duplex can be estimated by the following equation:

 $Tm(^{\circ} C.)=81.5+16.6(log [Na+])+0.41(\%G+C)-600/N-0.72(\% formamide)$

where N is the length of the duplex formed, [Na+] is the molar concentration of the sodium ion in the hybridization or washing solution, % G+C is the percentage of (guanine+cytosine) bases in the hybrid. For imperfectly matched hybrids, the melting temperature is reduced by approximately 1° C. for each 1% mismatch.

The term "moderately" stringent conditions" " refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Examples of typical "moderately stringent conditions" are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65° C. or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50° C. By way of example, a "moderately stringent" condition of 50° C. in 0.015 M sodium ion will allow about a 21% mismatch.

It will be appreciated by those skilled in the art that there is no absolute distinction between "highly" and "moderately" stringent conditions. For example, at 0.015M sodium ion (no formamide), the melting temperature of perfectly matched 65 long DNA is about 71° C. With a wash at 65° C. (at the same ionic strength), this would allow for approximately a 6%

30

mismatch. To capture more distantly related sequences, one skilled in the art can simply lower the temperature or raise the ionic strength.

A good estimate of the melting temperature in 1M NaCl* for oligonucleotide probes up to about 20 nt is given by:

 $Tm=2^{\circ}$ C. per A-T base pair+4° C. per G-C base pair

*The sodium ion concentration in 6x salt sodium citrate (SSC) is 1 M. See Suggs et al., Developmental Biology Using Purified Genes, p. 683, Brown and Fox (eds.) (1981).

High stringency washing conditions for oligonucleotides are usually at a temperature of 0-5° C. below the Tm of the oligonucleotide in 6×SSC, 0.1% SDS.

Differences in the nucleic acid sequence may result in conservative and/or non-conservative modifications of the amino acid sequence relative to the amino acid sequence. The invention is also directed to an isolated and/or purified DNA that corresponds to, or that hybridizes under stringent conditions with, any one of the foregoing DNA sequences.

B. Preparation of DNA Encoding Ligand, Receptor, and Binding Construct Polypeptides

A nucleic acid molecule encoding all or part of a polypeptide of the invention such as a binding construct or binding unit of the invention can be made in a variety of ways, including, without limitation, chemical synthesis, cDNA or genomic library screening, expression library screening, and/ or PCR amplification of cDNA or genomic DNA. These methods and others useful for isolating such DNA are set forth, for example, by Sambrook, et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), by Ausubel, et al., eds., "Current Protocols In Molecular Biology," Current Protocols Press (1994), and by Berger and Kimmel, "Methods In Enzymology: Guide To Molecular Cloning Techniques," vol. 152, Academic Press, Inc., San Diego, Calif. (1987). Preferred nucleic acid sequences are mammalian sequences, such as human, rat, and mouse.

Chemical synthesis of nucleic acid molecules can be accomplished using methods well known in the art, such as those set forth by Engels, et al., *Angew. Chem. Intl. Ed.*, 28:716-734 (1989). These methods include, inter alia, the phosphotriester, phosphoramidite and H-phosphonate methods of nucleic acid synthesis. Nucleic acids larger than about 100 nucleotides in length can be synthesized as several fragments, each fragment being up to about 100 nucleotides in length. The fragments can then be ligated together, as described below, to form the full length nucleic acid of interest. A preferred method is polymer-supported synthesis using standard phosphoramidite chemistry.

C. Preparation of a Vector for Expression

The term "vector" refers to a nucleic acid molecule amplification, replication, and/or expression vehicle, often derived from or in the form of a plasmid or viral DNA or RNA system, where the plasmid or viral DNA or RNA is functional in a selected host cell, such as bacterial, yeast, plant, invertebrate, and/or mammalian host cells. The vector may remain independent of host cell genomic DNA or may integrate in whole or in part with the genomic DNA. The vector will contain all necessary elements so as to be functional in any host cell it is compatible with. Such elements are set forth below.

Nucleic acid encoding a polypeptide or fragment thereof has been isolated, it is preferably inserted into an amplification and/or expression vector in order to increase the copy number of the gene and/or to express the encoded polypeptide in a suitable host cell and/or to transform cells in a target organism (to express the polypeptide in vivo). Numerous commercially available vectors are suitable, though "custom

made" vectors may be used as well. The vector is selected to be functional in a particular host cell or host tissue (i.e., for replication and/or expression). The polypeptide or fragment thereof may be amplified/expressed in prokaryotic and/or eukaryotic host cells, e.g., yeast, insect (baculovirus systems), plant, and mammalian cells. Selection of the host cell will depend at least in part on whether the polypeptide or fragment thereof is to be glycosylated. If so, yeast, insect, or mammalian host cells are preferable; yeast and mammalian cells will glycosylate the polypeptide if a glycosylation site is 10 present on the amino acid sequence.

Typically, the vectors used in any of the host cells will contain 5' flanking sequence and other regulatory elements such as an enhancer(s), a promoter, an origin of replication element, a transcriptional termination element, a complete 15 intron sequence containing a donor and acceptor splice site, a signal peptide sequence, a ribosome binding site element, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element. Optionally, the vector may 20 contain a "tag" sequence, i.e., an oligonucleotide sequence located at the 5' or 3' end of the coding sequence that encodes polyHis (such as hexaHis) or another small immunogenic sequence. This tag will be expressed along with the protein, and can serve as an affinity tag for purification of the polypep- 25 tide from the host cell. Optionally, the tag can subsequently be removed from the purified polypeptide by various means such as using a selected peptidase.

The vector/expression construct may optionally contain elements such as a 5' flanking sequence, an origin of replication, a transcription termination sequence, a selectable marker sequence, a ribosome binding site, a signal sequence, and one or more intron sequences. The 5' flanking sequence may be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than 35 the host cell species or strain), hybrid (i.e., a combination of 5' flanking sequences from more than one source), synthetic, or it may be the native polypeptide 5' flanking sequence. As such, the source of the 5' flanking sequence may be any unicellular prokaryotic or eukaryotic organism, any verte- 40 brate or invertebrate organism, or any plant, provided that the 5' flanking sequence is functional in, and can be activated by, the host cell machinery.

A transcription termination element is typically located 3' to the end of the polypeptide coding sequence and serves to 45 terminate transcription of the polypeptide. Usually, the transcription termination element in prokaryotic cells is a G-C rich fragment followed by a poly T sequence. Such elements can be cloned from a library, purchased commercially as part of a vector, and readily synthesized.

Selectable marker genes encode proteins necessary for the survival and growth of a host cell in a selective culture medium. Typical selectable marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host 55 tion") of the vector into the selected host cell may be accomcells, (b) complement auxotrophic deficiencies of the cell; or (c) supply critical nutrients not available from complex media.

A ribosome binding element, commonly called the Shine-Dalgarno sequence (prokaryotes) or the Kozak sequence (eu- 60 karyotes), is necessary for translation initiation of mRNA. The element is typically located 3' to the promoter and 5' to the coding sequence of the polypeptide to be synthesized. The Shine-Dalgarno sequence is varied but is typically a polypurine (i.e., having a high A-G content). Many Shine-Dalgarno 65 sequences have been identified, each of which can be readily synthesized using methods set forth above.

32

All of the elements set forth above, as well as others useful in this invention, are well known to the skilled artisan and are described, for example, in Sambrook, et al., "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Berger, et al., eds., "Guide To Molecular Cloning Techniques," Academic Press, Inc., San Diego, Calif. (1987].

For those embodiments of the invention where the recombinant polypeptide is to be secreted, a signal sequence is preferably included to direct secretion from the cell where it is synthesized. Typically, the polynucleotide encoding the signal sequence is positioned at the 5' end of the coding region. Many signal sequences have been identified, and any of them that are functional in a target cell or species may be used in conjunction with the transgene.

In many cases, gene transcription is increased by the presence of one or more introns on the vector. The intron may be naturally-occurring, especially where the transgene is a full length or a fragment of a genomic DNA sequence. The intron may be homologous or heterologous to the transgene and/or to the transgenic mammal into which the gene will be inserted. The position of the intron with respect to the promoter and the transgene is important, as the intron must be transcribed to be effective. A preferred position for an intron is 3' to the transcription start site, and 5' to the polyA transcription termination sequence. For cDNA transgenes, an intron is placed on one side or the other (i.e., 5' or 3') of the transgene coding sequence. Any intron from any source, including any viral, prokaryotic and eukaryotic (plant or animal) organisms, may be used to express the polypeptide, provided that it is compatible with the host cell(s) into which it is inserted. Also included herein are synthetic introns. Optionally, more than one intron may be used in the vector.

Preferred vectors for recombinant expression are those that are compatible with bacterial, insect, and mammalian host cells. Such vectors include, inter alia, pCRII (Invitrogen Company, San Diego, Calif.), pBSII (Stratagene Company, La Jolla, Calif.), and pETL (BlueBacII; Invitrogen).

After the vector has been constructed and a nucleic acid has been inserted into the proper site of the vector, the completed vector may be inserted into a suitable host cell for amplification and/or polypeptide expression. Commonly used include: Prokaryotic cells such as gram negative or gram positive bacteria, i.e., any strain of E. coli, Bacillus, Streptomyces, Saccharomyces, Salmonella, and the like; eukaryotic cells such as CHO (Chinese hamster ovary) cells; human kidney 293 cells; COS-7 cells; insect cells such as Sf4, Sf5, Sf9, and Sf21 and High 5 (all from the Invitrogen Company, San Diego, Calif.); plant cells and various yeast cells such as Saccharomyces and Pichia. Any transformable or transfectable cell or cell line derived from any organism such as bacteria, yeast, fungi, monocot and dicot plants, plant cells, and animals are suitable.

Insertion (also referred to as "transformation" or "transfecplished using such methods as calcium chloride, electroporation, microinjection, lipofection or the DEAE-dextran method. The method selected will in part be a function of the type of host cell to be used. These methods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook, et al., supra.

The host cells containing the vector (i.e., transformed or transfected) may be cultured using standard media well known to the skilled artisan. The media will usually contain all nutrients necessary for the growth and survival of the cells. Suitable media for culturing E. coli cells are for example, Luria Broth (LB) and/or Terrific Broth (TB). Suitable media

for culturing eukaryotic cells are RPMI 1640, MEM, DMEM, all of which may be supplemented with serum and/or growth factors as required by the particular cell line being cultured. A suitable medium for insect cultures is Grace's medium supplemented with yeastolate, lactalbumin hydrolysate, and/ or fetal calf serum as necessary.

Typically, an antibiotic or other compound useful for selective growth of the transformed cells only is added as a supplement to the media. The compound to be used will be dictated by the selectable marker element present on the plasmid with which the host cell was transformed. For example, where the selectable marker element is kanamycin resistance, the compound added to the culture medium will be kanamycin.

The amount of polypeptide produced in the host cell can be evaluated using standard methods known in the art. Such 15 methods include, without limitation, Western blot analysis, SDS-polyacrylamide gel electrophoresis, non-denaturing gel electrophoresis, HPLC separation, immunoprecipitation, and/or binding assays.

D. Purification of Polypeptides

If the polypeptide has been designed to be secreted from the host cells, the majority of polypeptide will likely be found in the cell culture medium. If, however, the polypeptide is not secreted from the host cells, it will be present in the cytoplasm (for eukaryotic, gram positive bacteria, and insect host cells) 25 or in the periplasm (for gram negative bacteria host cells).

For intracellular polypeptides, the host cells are first disrupted mechanically or osmotically to release the cytoplasmic contents into a buffered solution. The polypeptide is then isolated from this solution.

Purification of the polypeptide from solution can be accomplished using a variety of techniques. If the polypeptide has been synthesized such that it contains a tag such as hexahistidine or other small peptide at either its carboxyl or amino terminus, it may essentially be purified in a one-step 35 process by passing the solution through an affinity column where the column matrix has a high affinity for the tag or for the polypeptide directly (i.e., a monoclonal antibody specifically recognizing the polypeptide). For example, polyhistidine binds with great affinity and specificity to nickel, thus an affinity column of nickel (such as the Qiagen nickel columns) can be used for purification of the His-tagged polypeptide. (See, for example, Ausubel, et al., eds., "Current Protocols In Molecular Biology," Section 10.11.8, John Wiley & Sons, New York (1993)).

The strong affinity a ligand for its receptor permits affinity purification of binding constructs, and binding constructs using an affinity matrix comprising a complementary binding partner. Affinity chromatography may be employed, e.g., using either natural binding partners (e.g. a ligand when purifying a binding construct with affinity for the same) or antibodies generated using standard procedures (e.g., immunizing a mouse, rabbit or other animal with an appropriate polypeptide). The peptides of the present invention may be used to generate such antibodies. Known antibodies or antibodies to known growth factor receptors may be employed when they share an epitope with a targeted binding construct.

In addition, other well known procedures for purification can be used. Such procedures include, without limitation, ion exchange chromatography, molecular sieve chromatography, 60 HPLC, native gel electrophoresis in combination with gel elution, and preparative isoelectric focusing ("Isoprime" machine/technique, Hoefer Scientific). In some cases, two or more of these techniques may be combined to achieve increased purity. Preferred methods for purification include 65 polyhistidine tagging and ion exchange chromatography in combination with preparative isoelectric focusing.

34

Polypeptide found in the periplasmic space of the bacteria or the cytoplasm of eukaryotic cells, the contents of the periplasm or cytoplasm, including inclusion bodies (bacteria) if the processed polypeptide has formed such complexes, can be extracted from the host cell using any standard technique known to the skilled artisan. For example, the host cells can be lysed to release the contents of the periplasm by French press, homogenization, and/or sonication. The homogenate can then be centrifuged.

If the polypeptide has formed inclusion bodies in the periplasm, the inclusion bodies can often bind to the inner and/or outer cellular membranes and thus will be found primarily in the pellet material after centrifugation. The pellet material can then be treated with a chaotropic agent such as guanidine or urea to release, break apart, and solubilize the inclusion bodies. The solubilized polypeptide can then be analyzed using gel electrophoresis, immunoprecipitation or the like. If it is desired to isolate the polypeptide, isolation may be accomplished using standard methods such as those set forth below and in [Marston, et al., *Meth. Enz.*, 182:264-275 (1990).]

III. ANTI-LIGAND AND ANTI-RECEPTOR THERAPEUTIC COMPOUNDS

Anti-ligand or anti-receptor therapies as discussed below include, but are not limited to antibody, aptamer, antisense and interference RNA techniques and therapies. The following description makes specific reference to the production, testing, and use of particular anti-VEGFR-2 antibodies. However, the methods described may also be readily adapted for the production of other antibodies of the present invention, e.g., anti-growth factor ligand antibodies as binding units of the binding constructs. Such antibody-type binding units may form one binding unit of a binding construct. In some embodiments a binding construct has at least one binding unit that comprising a receptor fragment and at least one binding unit that comprises an antigen binding fragment. Antibodies directed against growth factors and receptors may also be used in combination with the binding constructs of the invention. Exemplary antibodies may be found in the co-owned, concurrently (Mar. 5, 2004) filed U.S. Provisional Patent Application Nos. 60/550,511: "Multivalent Antibody Materials And Methods For VEGF/PDGF Family Of Growth Factors," and related, co-filed International Patent Application No. PCT/US05/07742; and 60/550, 441: "Chimeric Anti-VEGF-D Antibodies And Humanized Anti-VEGF-D Antibodies And Methods Of Using Same," and related, co-filed International Patent Application No. PCT/US05/07283; all applications are incorporated by reference in their entireties.

A. Therapeutic Anti-VEGFR-2 Selective VEGF-A Antagonist Antibodies

Antibodies can be used for purification for VEGFR-2 constructs as described above or therapeutically where inhibition of VEGF-A binding by VEGFR-2 is desired (e.g., to achieve anti-neoplastic effects).

Polyclonal or monoclonal therapeutic anti-VEGFR-2 anti-bodies useful in practicing this invention may be prepared in laboratory animals or by recombinant DNA techniques using the following methods. Polyclonal antibodies to the VEGFR-2 molecule or a fragment thereof containing the target amino acid sequence generally are raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the VEGFR-2 molecule in combination with an adjuvant such as Freund's adjuvant (complete or incomplete). To enhance immunogenicity, it may be useful to first conjugate the VEGFR-2 molecule or a fragment containing the target

amino acid sequence of a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl, or R¹N=C=NR, where R and R¹ are different alkyl groups. Alternatively, VEGF-2-immunogenic conjugates can be produced recombinantly as fusion proteins.

Animals are immunized against the immunogenic VEGFR-2 conjugates or derivatives (such as a fragment containing the target amino acid sequence) by combining about 1 mg or about 1 microgram of conjugate (for rabbits or mice, respectively) with about 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. Approximately 7 to 14 days later, animals are bled and the serum is assayed for anti-VEGFR-2 titer. Animals are boosted with antigen repeatedly until the titer plateaus. Preferably, the animal is boosted with the same VEGFR-2 molecule or fragment thereof as was used for the initial immunization, but conjugated to a different protein and/or through a different cross-linking agent. In addition, aggregating agents such as alum are used in the injections to enhance the immune response.

Monoclonal antibodies may be prepared by recovering spleen cells from immunized animals and immortalizing the cells in conventional fashion, e.g. by fusion with myeloma cells. The clones are then screened for those expressing the desired antibody. The monoclonal antibody preferably does 30 not cross-react with other VEGFR family members.

Preparation of antibodies using recombinant DNA methods such as the phagemid display method, may be accomplished using commercially available kits, as for example, the Recombinant Phagemid Antibody System available from 35 Pharmacia (Uppsala, Sweden), or the SurfZAPTM phage display system (Stratagene Inc., La Jolla, Calif.).

One may increase the population of anti-VEGFR-2 antibodies that selectively block VEGF-A binding by using a Ig-domain 3 or other fragment as the immunogen, but that is 40 not necessary. After antibodies are generated, they may be tested to ascertain their specific affinities. Competition studies may be performed that show that the antibody competes for binding to VEGFR-2 with VEGF-A, but not with VEGF-C.

One method comprises incubating VEGFR-2 expressing cells with either labeled-VEGF-A alone, the antibody being tested alone, or with both the VEGF-A and the antibody. A label on the antibody may be employed in addition to that on VEGF-A or instead of that label. The antibody may also be 50 detected using a labeled secondary antibody. The first two groups acting as controls allow one to confirm that both the antibody and the VEGF-A ligand (or optionally VEGF-E) are able to bind to the receptor in the absence of the other. Those cell samples treated with both VEGF-A (or VEGF-E) and an 55 antibody, that reveal binding of the antibody, bould be further tested. As described below, stoichiometric analysis can be used to ascertain that the ligand and antibody are competing for the same molecule.

This further testing may comprise binding studies that reveal that both VEGF-C (or VEGF-D) and the antibody are able to bind the receptor simultaneously. This testing also is designed to determine whether VEGF-C and the antibody are simultaneously binding to a single VEGFR-2 molecule as 65 opposed to binding of VEGF-C and the antibody binding to different VEGFR-2 molecules. Comparative quantitative

36

binding studies may accordingly be used. The VEGFR-2 cells are counted in each sample. VEGFR-2 samples, having been counted, are incubated with either labeled VEGF-C alone or labeled (or unlabelled using a secondary antibody for detection) antibody alone. The degree of binding is measured, quantitated, using suitable imaging procedures, e.g., if radiolabel is employed using a phosphoimager. The average number of VEGFR-2 receptors per cell are calculated by dividing the amount of bound molecules by the total number of cells. Whether the receptors are saturated with molecules may be achieved by repeating the assay with increasing amounts of the labeled molecule(s). The binding assay is repeated again with both ligand and antibody. If the quantification reveals that the number of antibodies and ligands bound is greater than the total number of receptors, then the antibody has the desired characteristics.

The described protocols may also be modified and used to produce antibodies against binding constructs and other constructs of the inventions to aid in purification of such constructs.

Preferably, antibodies for administration to humans, although prepared in a laboratory animal such as a mouse, will be "humanized", or chimeric, i.e. made to be compatible with the human immune system such that a human patient will not develop an immune response to the antibody. Even more preferably, human antibodies which can now be prepared using methods such as those described for example, in Lonberg, et al., *Nature Genetics*, 7:13-21 (1994) are preferred for therapeutic administration to patients. Fully human antibodies are highly preferred.

1. Humanization of Anti-VEGFR-2 Monoclonal Antibodies

Selective binding agents, including monoclonal antibodies, which selectively block VEGF-A without blocking VEGF-C (or VEGF-D) binding may be applied therapeutically. Following are protocols to improve the utility of anti-VEGFR-2 monoclonal antibodies as therapeutics in humans, by "humanizing" the monoclonal antibodies to improve their serum half-life and render them less immunogenic in human hosts (i.e., to prevent human antibody response to non-human anti-VEGFR-2 antibodies).

The principles of humanization have been described in the literature and are facilitated by the modular arrangement of antibody proteins. To minimize the possibility of binding complement, a humanized antibody of the IgG4 isotype is preferred.

For example, a level of humanization is achieved by generating chimeric antibodies comprising the variable domains of non-human antibody proteins of interest, such as the anti-VEGFR-2 monoclonal antibodies described herein, with the constant domains of human antibody molecules. (See, e.g., Morrison and Oi, *Adv. Immunol.*, 44:65-92 (1989).) The variable domains of VEGFR-2 neutralizing anti-VEGFR-2 antibodies are cloned from the genomic DNA of a B-cell hybridoma or from cDNA generated from mRNA isolated from the hybridoma of interest. The V region gene fragments are linked to exons encoding human antibody constant domains, and the resultant construct is expressed in suitable mammalian host cells (e.g., myeloma or CHO cells).

To achieve an even greater levels of humanization, only those portions of the variable region gene fragments that encode antigen-binding complementarity determining regions ("CDR") of the non-human monoclonal antibody genes are cloned into human antibody sequences. [See, e.g., Jones et al., *Nature*, 321:522-525 (1986); Riechmann et al., *Nature*, 332:323-327 (1988); Verhoeyen et al., *Science*, 239: 1534-36 (1988); and Tempest et al., *Bio/Technology*, 9:266-

71 (1991).] If necessary, the B-sheet framework of the human antibody surrounding the CDR3 regions also is modified to more closely mirror the three dimensional structure of the antigen-binding domain of the original monoclonal antibody. [(See Kettleborough et al., Protein Engin., 4:773-783 (1991); 5 and Foote et al., J. Mol. Biol., 224:487-499 (1992).)]

In an alternative approach, the surface of a non-human monoclonal antibody of interest is humanized by altering selected surface residues of the non-human antibody, e.g., by site-directed mutagenesis, while retaining all of the interior 10 and contacting residues of the non-human antibody. [See Padlan, Molecular Immunol., 28(4/5):489-98 (1991).]

The foregoing approaches are employed using VEGFR-2neutralizing anti-VEGFR-2 monoclonal antibodies and the hybridomas that produce them to generate humanized 15 VEGFR-2-neutralizing antibodies useful as therapeutics to treat or palliate conditions wherein VEGFR-2 expression is detrimental and/or activation by VEGF-A. One therapeutic target is selective promotion of lymphangiogenesis while minimizing promotion of angiogenesis.

2. Human VEGFR-2-Neutralizing Antibodies from Phage Display

Human VEGFR-2-neutralizing antibodies are generated by phage display techniques such as those described in Aujame et al., Human Antibodies, 8(4):155-168 (1997); Hoo- 25 genboom, *TIBTECH*, 15:62-70 (1997); and Rader et al., *Curr*. Opin. Biotechnol., 8:503-508 (1997), all of which are incorporated by reference. For example, antibody variable regions in the form of Fab fragments or linked single chain Fv fragments are fused to the amino terminus of filamentous phage 30 minor coat protein pIII. Expression of the fusion protein and incorporation thereof into the mature phage coat results in phage particles that present an antibody on their surface and contain the genetic material encoding the antibody. A phage library comprising such constructs is expressed in bacteria, 35 and the library is panned (screened) for VEGFR-2-specific phage-antibodies using labeled or immobilized VEGFR-2 as antigen-probe.

3. Human VEGFR-2-Neutralizing Antibodies from Transgenic Mice

Human VEGFR-2-neutralizing antibodies are generated in transgenic mice essentially as described in Bruggemann and Neuberger, Immunol. Today, 17(8):391-97 (1996) and Bruggemann and Taussig, Curr. Opin. Biotechnol., 8:455-58 (1997). Transgenic mice carrying human V-gene segments in 45 germline configuration and that express these transgenes in their lymphoid tissue are immunized with an VEGFR-2 composition using conventional immunization protocols. Hybridomas are generated using B cells from the immunized mice using conventional protocols and screened to identify hybri- 50 domas secreting anti-VEGFR-2 human antibodies (e.g., as described above).

4. Bispecific Antibodies

Bispecific antibodies that specifically bind to VEGFR-2 ogy and/or treatment are produced, isolated, and tested using standard procedures that have been described in the literature. See, e.g., Pluckthun & Pack, Immunotechnology, 3:83-105 (1997); Carter et al., J. Hematotherapy, 4: 463-470 (1995); Renner & Pfreundschuh, Immunological Reviews, 1995, No. 60 145, pp. 179-209; Pfreundschuh U.S. Pat. No. 5,643,759; Segal et al., J. Hematotherapy, 4: 377-382 (1995); Segal et al., Immunobiology, 185: 390-402 (1992); and Bolhuis et al., Cancer Immunol. Immunother., 34: 1-8 (1991), all of which are incorporated herein by reference in their entireties. Bispecific antibodies that may be employed in combination with the binding constructs of the invention include those

38

described in the co-owned, concurrently (Mar. 5, 2004) filed U.S. Provisional Patent Application No. 60/550,511: "Multivalent Antibody Materials And Methods For VEGF/PDGF Family Of Growth Factors,".

For example, bispecific antibodies (bscAb) are produced by joining two single-chain Fv fragments via a glycine-serine linker using recombinant methods. The V light-chain (V_I) and V heavy-chain (V_H) domains of two antibodies of interest are isolated using standard PCR methods. The V_L and V_H cDNA's obtained from each hybridoma are then joined to form a single-chain fragment in a two-step fusion PCR. Bispecific fusion proteins are prepared in a similar manner. Bispecific single-chain antibodies and bispecific fusion proteins are antibody substances included within the scope of the present invention.

Antibody fragments that contain the antigen binding, or idiotype, of the molecule may be generated by known techniques. For example, such fragments include, but are not limited to, the F(ab')₂ fragment which may be produced by pepsin digestion of the antibody molecule; the Fab' fragments which may be generated by reducing the disulfide bridges of the F(ab')₂ fragment, and the two Fab' fragments which may be generated by treating the antibody molecule with papain and a reducing agent.

Chemically constructed bispecific antibodies may be prepared by chemically cross-linking heterologous Fab or F(ab')₂ fragments by means of chemicals such as heterobifunctional reagent succinimidyl-3-(2-pyridyldithiol)-propionate (SPDP, Pierce Chemicals, Rockford, Ill.). The Fab and F(ab'), fragments can be obtained from intact antibody by digesting it with papain or pepsin, respectively (Karpovsky et al., J. Exp. Med. 160:1686-701, 1984; Titus et al., J. Immunol., 138:4018-22, 1987).

5. Humanization of Known Anti-VEGFR-2 Antibodies

Existing anti-VEGF-2 antibodies may also be employed in the various methods and compositions of the present invention, and, if not already humanized, may be humanized as discussed herein. Known anti-VEGFR-2 antibodies may be tested for the ability to selectively block VEGF-A binding using the methods discussed herein. Known anti-VEGFR-2 antibodies (anti-KDR antibodies) are taught for example in Lu et al., J. Immunological Methods, 230:159-71 (1999); Lu, et al., J. Biol. Chem., 275(19): 14321-14330 (2000); and Lu, et al., J. Biol. Chem., 278(44): 43496-43507 (2003).

6. Domain Antibodies

A domain antibody comprises a functional binding unit of an antibody, and can correspond to the variable regions of either the heavy (V_H) or light (V_L) chains of antibodies. A domain antibody can have a molecular weight of approximately 13 kDa, or approximately one-tenth of a full antibody. Domain antibodies may be derived from full antibodies such as those described herein.

B. Anti-Receptor and Anti-Ligand Aptamers

Recent advances in the field of combinatorial sciences have and that specifically bind to other antigens relevant to pathol- 55 identified short polymer sequences with high affinity and specificity to a given target. For example, SELEX technology has been used to identify DNA and RNA aptamers with binding properties that rival mammalian antibodies, the field of immunology has generated and isolated antibodies or antibody fragments which bind to a myriad of compounds and phage display has been utilized to discover new peptide sequences with very favorable binding properties. Based on the success of these molecular evolution techniques, it is certain that molecules can be created which bind to any target molecule. A loop structure is often involved with providing the desired binding attributes as in the case of: aptamers which often utilize hairpin loops created from short regions

without complimentary base pairing, naturally derived antibodies that utilize combinatorial arrangement of looped hyper-variable regions and new phage display libraries utilizing cyclic peptides that have shown improved results when compared to linear peptide phage display results. Thus, sufficient evidence has been generated to suggest that high affinity ligands can be created and identified by combinatorial molecular evolution techniques. For the present invention, molecular evolution techniques can be used to isolate binding constructs specific for ligands described herein. For more on aptamers, See generally, Gold, L., Singer, B., He, Y. Y., Brody. E., "Aptamers As Therapeutic And Diagnostic Agents," *J. Biotechnol.* 74:5-13 (2000). Relevant techniques for generating aptamers may be found in U.S. Pat. No. 6,699,843, which is incorporated by reference in its entirety.

In some embodiments, the aptamer may be generated by preparing a library of nucleic acids; contacting the library of nucleic acids with a growth factor, wherein nucleic acids having greater binding affinity for the growth factor (relative to other library nucleic acids) are selected and amplified to yield a mixture of nucleic acids enriched for nucleic acids with relatively higher affinity and specificity for binding to the growth factor. The processes may be repeated, and the selected nucleic acids mutated and rescreened, whereby a growth factor aptamer is be identified. Nucleic acids may be screened to select for molecules that bind to more than growth factor. Binding more than one growth factor can refer to binding more than one growth factor simultaneously or competitively. In some embodiments a binding construct will comprise at least one aptamer, wherein a first binding unit binds VEGF-A and a second binding unit binds VEGF-C. In some embodiments a binding construct will comprise at least one aptamer, wherein a first binding unit binds a VEGF growth factor subfamily member and a second binding unit binds a PDGF subfamily member.

C. Anti-Sense Molecules and Therapy

Another class of inhibitors that may be used in conjunction with the present invention is isolated antisense nucleic acid molecules that can hybridize to, or are complementary to, the 40 nucleic acid molecule, nucleotide sequence, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein (e.g., complementary to the coding strand of a double-stranded cDNA molecule or 45 complementary to an mRNA sequence). In specific embodiments, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire receptor or ligand coding strand, or to only a portion thereof. Nucleic acid 50 molecules encoding fragments, homologs, derivatives and analogs of receptor or ligand or antisense nucleic acids complementary to a receptor or ligand nucleic acid sequence are additionally provided.

In one embodiment, an antisense nucleic acid molecule is 55 antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a receptor or ligand protein (or fragments or fragment combination thereof). The term "coding region" refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "conceding region" of the coding strand of a nucleotide sequence encoding the receptor or ligand protein. The term "conceding region" refers to 5' and 3' sequences that flank the coding region and that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

40

Given the coding strand sequences encoding the receptor or ligand protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a ligand or receptor mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of receptor or ligand mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of receptor or ligand mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally-occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids (e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used).

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following section).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a receptor or ligand to thereby inhibit expression of the protein (e.g., by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface (e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells

using the vectors described herein. To achieve sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an alpha-anomeric nucleic acid molecule. An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual alpha-units, the strands run parallel to each other. See, e.g., Gaultier, et al., *Nucl. Acids Res.*, 15:6625-6641 (1987). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (see, e.g., Inoue, et al. *Nucl. Acids Res.*, 15:6131-6148 (1987)) or a chimeric RNA-DNA analogue (see, e.g., Inoue, et al., *FEBS Lett.*, 215:327-330 (1987)).

Production and delivery of antisense molecules are facilitated by providing a vector comprising an anti-sense nucleotide sequence complementary to at least a part of the Receptor or ligand DNA sequence. According to a yet further aspect of the invention such a vector comprising an anti-sense 20 sequence may be used to inhibit, or at least mitigate, Receptor or ligand expression. The use of a vector of this type to inhibit Receptor or ligand expression is favored in instances where Receptor or ligand expression is associated with a particular disease state.

D. Anti-Ligand or Anti-Receptor RNA Interference

Use of RNA Interference to inactivate or modulate receptor or ligand expression is also contemplated by this invention. RNA interference is described in U.S. Patent Appl. No. 2002-0162126, and Hannon, G., J. Nature, 11:418:244-51 (2002). 30 "RNA interference," "post-transcriptional gene silencing," "quelling"—these terms have all been used to describe similar effects that result from the overexpression or misexpression of transgenes, or from the deliberate introduction of double-stranded RNA into cells (reviewed in Fire, A., Trends 35 Genet. 15:358-363 (1999); Sharp, P. A., Genes Dev., 13:139-141 (1999); Hunter, C., Curr. Biol., 9:R440-R442 (1999); Baulcombe, D. C., Curr. Biol. 9:R599-R601 (1999); Vaucheret, et al. Plant J. 16:651-659 (1998), all incorporated by reference. RNA interference, commonly referred to as 40 RNAi, offers a way of specifically and potently inactivating a cloned gene.

IV. THERAPEUTIC FORMULATIONS AND ADMINISTRATION

A. Therapeutic Formulations

Binding constructs, or polynucleotides encoding the same, can be used directly to practice materials and methods of the invention, but in preferred embodiments, the compounds are 50 formulated with pharmaceutically acceptable diluents, adjuvants, excipients, or carriers. The phrase "pharmaceutically or pharmacologically acceptable" refers to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or 55 a human, e.g., orally, topically, transdermally, parenterally, by inhalation spray, vaginally, rectally, or by intracranial injection. (The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intracisternal injection, or infusion techniques. Administration by intra- 60 intradermal, intramusclar, intramammary, intraperitoneal, intrathecal, retrobulbar, intrapulmonary injection and/or surgical implantation at a particular site is contemplated as well.) Generally, this will also entail preparing compositions that are essentially free of pyrogens, as well 65 as other impurities that could be harmful to humans or animals. The term "pharmaceutically acceptable carrier"

42

includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art.

Therapeutic formulations of the compositions useful for practicing the invention such as polypeptides, polynucle-otides, or antibodies may be prepared for storage by mixing the selected composition having the desired degree of purity with optional physiologically pharmaceutically-acceptable carriers, excipients, or stabilizers (*Remington's Pharmaceutical Sciences*, 18th edition, A. R. Gennaro, ed., Mack Publishing Company (1990)) in the form of a lyophilized cake or an aqueous solution. Pharmaceutical compositions may be produced by admixing with one or more suitable carriers or adjuvants such as water, mineral oil, polyethylene glycol, starch, talcum, lactose, thickeners, stabilizers, suspending agents, etc. Such compositions may be in the form of solutions, suspensions, tablets, capsules, creams, salves, ointments, or other conventional forms.

Acceptable carriers, excipients or stabilizers are nontoxic to recipients and are preferably inert at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants such as ascorbic acid; low molecular weight polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; saltforming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).

The composition to be used for in vivo administration should be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. Therapeutic compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. The route of administration of the composition is in accord with known methods, e.g. oral, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, or by sustained 45 release systems or implantation device. Where desired, the compositions may be administered continuously by infusion, bolus injection or by implantation device. The composition for parenteral administration ordinarily will be stored in lyophilized form or in solution.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form should be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial an antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid,

thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate 5 and gelatin.

Suitable examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices include polyesters, hydrogels, polylactides 10 (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman, et al., Biopolymers, 22: 547-556 (1983)), poly(2-hydroxyethylmethacrylate) (Langer, et al., J. Biomed. Mater. Res., 15:167-277 (1981) and Langer, Chem. Tech., 12:98-105 (1982)), 15 ethylene vinyl acetate (Langer, et al., supra) or poly-D(-)-3hydroxybutyric acid (EP 133,988). Sustained-release compositions also may include liposomes, which can be prepared by any of several methods known in the art (e.g., DE 3,218,121; Epstein, et al., *Proc. Natl. Acad. Sci. USA*, 82:3688-3692 20 (1985); Hwang, et al., Proc. Natl. Acad. Sci. USA, 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949).

An effective amount of the compositions to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. A therapist can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. A typical daily dosage may range from about 1 µg/kg to up to 100 mg/kg or more, depending on the factors mentioned above. Typically, a clinician will administer the composition until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays designed to evaluate the particular disease state being treated.

B. Kits and Unit Doses

In related variations of the preceding embodiments, a binding construct may be packaged or formulated together with another binding construct or other therapeutic (e.g., a chemotherapy agent), e.g., in a kit or package or unit dose, to permit co-administration, but these two components are not in 40 admixture. In some embodiments, the two components to the kit/unit dose are packaged with instructions for administering the two compounds to a human subject for treatment of one of the disorders and diseases described herein.

C. Polynucleotide-Based Therapies

The present invention also includes gene therapy materials and methods. Specifically, polypeptides and binding constructions of the invention can be produced at therapeutic levels in vivo by administration of a gene therapy contrast that enters cells and is expressed in vivo to produce the polypep- 50 tides or binding constructs. For example, in some embodiments, the vasculature of a cancer cell or cancer cells may be contacted with an expression construct capable of providing a therapeutic peptide or binding constructs of the present invention. Expression of the polypeptide or binding construct 55 causes a therapeutic outcome, for example, inhibition of growth factors and receptors in the vasculature of a tumor, an inhibition of angiogenesis, an inhibition of lymphangiogenesis, an ablation, regression or other inhibition of tumor growth, an induction of apoptosis of the blood or lymphatic 60 vasculature of the tumor or indeed the tumor cells themselves.

For these embodiments, an exemplary expression construct comprises a virus or engineered construct derived from a viral genome. Such vectors and constructs are considered aspect of the invention. The expression construct generally 65 comprises a nucleic acid encoding the gene or binding construct, including any nucleic acid molecule described herein,

44

to be expressed and also additional regulatory regions that will effect the expression of the gene in the cell to which it is administered. Such regulatory regions include for example promoters, enhancers, polyadenylation signals and the like.

DNA may be introduced into a cell using a variety of viral vectors. In such embodiments, expression constructs comprising viral vectors containing the genes of interest may be adenoviral (see, for example, U.S. Pat. No. 5,824,544; U.S. Pat. No. 5,707,618; U.S. Pat. No. 5,693,509; U.S. Pat. No. 5,670,488; U.S. Pat. No. 5,585,362, each incorporated herein by reference), retroviral (see, for example, U.S. Pat. No. 5,888,502; U.S. Pat. No. 5,830,725; U.S. Pat. No. 5,770,414; U.S. Pat. No. 5,686,278; U.S. Pat. No. 4,861,719, each incorporated herein by reference), adeno-associated viral (see, for example, U.S. Pat. No. 5,474,935; U.S. Pat. No. 5,139,941; U.S. Pat. No. 5,622,856; U.S. Pat. No. 5,658,776; U.S. Pat. No. 5,773,289; U.S. Pat. No. 5,789,390; U.S. Pat. No. 5,834, 441; U.S. Pat. No. 5,863,541; U.S. Pat. No. 5,851,521; U.S. Pat. No. 5,252,479, each incorporated herein by reference), an adenoviral-adenoassociated viral hybrid (see, for example, U.S. Pat. No. 5,856,152 incorporated herein by reference) or a vaccinia viral or a herpesviral (see, for example, U.S. Pat. No. 5,879,934; U.S. Pat. No. 5,849,571; U.S. Pat. No. 5,830, 727; U.S. Pat. No. 5,661,033; U.S. Pat. No. 5,328,688, each incorporated herein by reference) vector. Other vectors described herein may also be employed. Replication-deficient viral vectors are specifically contemplated.

In other embodiments, non-viral delivery is contemplated. These include calcium phosphate precipitation (Graham and Van Der Eb, Virology, 52:456-467 (1973); Chen and Okayama, Mol. Cell. Biol., 7:2745-2752, (1987); Rippe, et al., Mol. Cell. Biol., 10:689-695 (1990)), DEAE-dextran (Gopal, Mol. Cell. Biol., 5:1188-1190 (1985)), electroporation (Tur-Kaspa, et al., Mol. Cell. Biol., 6:716-718, (1986); Potter, 35 et al., Proc. Nat. Acad. Sci. USA, 81:7161-7165, (1984)), direct microinjection (Harland and Weintraub, J. Cell Biol., 101:1094-1099 (1985)), DNA-loaded liposomes (Nicolau and Sene, Biochim. Biophys. Acta, 721:185-190 (1982); Fraley, et al., Proc. Natl. Acad. Sci. USA, 76:3348-3352 (1979); Felgner, Sci. Am., 276(6):102-6 (1997); Felgner, Hum. Gene Ther., 7(15):1791-3, (1996)), cell sonication (Fechheimer, et al., Proc. Natl. Acad. Sci. USA, 84:8463-8467 (1987)), gene bombardment using high velocity microprojectiles (Yang, et al., Proc. Natl. Acad. Sci. USA, 87:9568-9572 (1990)), and receptor-mediated transfection (Wu and Wu, J. Biol. Chem., 262:4429-4432 (1987); Wu and Wu, Biochemistry, 27:887-892 (1988); Wu and Wu, Adv. Drug Delivery Rev., 12:159-167 (1993)).

In a particular embodiment of the invention, the expression construct (or indeed the peptides discussed above) may be entrapped in a liposome. Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, "In Liver Diseases, Targeted Diagnosis And Therapy Using Specific Receptors And Ligands," Wu, G., Wu, C., ed., New York: Marcel Dekker, pp. 87-104 (1991)). The addition of DNA to cationic liposomes causes a topological transition from liposomes to optically birefringent liquid-crystalline condensed globules (Radler, et al., Science, 275(5301):810-4, (1997)). These DNA-lipid complexes are potential non-viral vectors for use in gene therapy and delivery.

to generate an electrical current, which in turn provides the motive force (Yang, et al., *Proc. Natl. Acad. Sci. USA*, 87:9568-9572 (1990)). The microprojectiles used have consisted of biologically inert substances such as tungsten or gold beads.

Those of skill in the art are well aware of how to apply gene delivery to in vivo and or vivo situations. For viral vectors

Liposome-mediated nucleic acid delivery and expression of foreign DNA in vitro has been very successful. Also contemplated in the present invention are various commercial approaches involving "lipofection" technology. In certain embodiments of the invention, the liposome may be complexed with a hemagglutinating virus (HVJ). This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda, et al., Science, 243:375-378 (1989)). In other embodiments, the liposome may be complexed or employed in conjunction with 10 nuclear nonhistone chromosomal proteins (HMG-1) (Kato, et al., J. Biol. Chem., 266:3361-3364 (1991)). In yet further embodiments, the liposome may be complexed or employed in conjunction with both HVJ and HMG-1. In that such expression constructs have been successfully employed in 15 transfer and expression of nucleic acid in vitro and in vivo, then they are applicable for the present invention.

Those of skill in the art are well aware of how to apply gene delivery to in vivo and ex vivo situations. For viral vectors, one generally will prepare a viral vector stock. Depending on the kind of virus and the titer attainable, one will deliver 1×10^4 , 1×10^5 , 1×10^6 , 1×10^7 , 1×10^8 , 1×10^9 , 1×10^{10} , 1×10^{11} or 1×10^{12} infectious particles to the patient. Similar figures may be extrapolated for liposomal or other non-viral formulations by comparing relative uptake efficiencies. Formulation as a pharmaceutically acceptable composition is discussed below.

Other vector delivery systems that can be employed to deliver a nucleic acid encoding a therapeutic gene into cells include receptor-mediated delivery vehicles. These take 20 advantage of the selective uptake of macromolecules by receptor-mediated endocytosis in almost all eukaryotic cells. Because of the cell type-specific distribution of various receptors, the delivery can be highly specific (Wu and Wu (1993), supra).

Various routes are contemplated for various cell types. For practically any cell, tissue or organ type, systemic delivery is contemplated. In other embodiments, a variety of direct, local and regional approaches may be taken. For example, the cell, tissue or organ may be directly injected with the expression vector or protein.

Receptor-mediated gene targeting vehicles generally consist of two components: a cell receptor-specific ligand and a DNA-binding agent. Several ligands have been used for receptor-mediated gene transfer. The most extensively characterized ligands are asialoorosomucoid (ASOR) (Wu and Wu (1987), supra) and transferrin (Wagner, et al., *Proc. Nat'l. Acad. Sci. USA*, 87(9):3410-3414 (1990)). Recently, a synthetic neoglycoprotein, which recognizes the same receptor as ASOR, has been used as a gene delivery vehicle (Ferkol, et al., *FASEB. J.*, 7:1081-1091 (1993); Perales, et al., *Proc. Natl. Acad. Sci., USA* 91:4086-4090 (1994)) and epidermal growth factor (EGF) has also been used to deliver genes to squamous carcinoma cells (Myers, EPO 0273085).

Promoters for gene therapy for use in this invention include cytomegalovirus (CMV) promoter/enhancer, long terminal repeat (LTR) of retroviruses, keratin 14 promoter, and a myosin heavy chain promoter.

In other embodiments, the delivery vehicle may comprise a ligand and a liposome. For example, Nicolau, et al., *Methods Enzymol.*, 149:157-176 (1987) employed lactosyl-ceramide, 40 a galactose-terminal asialganglioside, incorporated into liposomes and observed an increase in the uptake of the insulin gene by hepatocytes. Thus, it is feasible that a nucleic acid encoding a therapeutic gene also may be specifically delivered into a particular cell type by any number of receptorligand systems with or without liposomes.

In a different embodiment, ex vivo gene therapy is contemplated. In an ex vivo embodiment, cells from the patient are removed and maintained outside the body for at least some period of time. During this period, a therapy is delivered, after which the cells are reintroduced into the patient; preferably, any tumor cells in the sample have been killed.

In another embodiment of the invention, the expression construct may simply consist of naked recombinant DNA or plasmids. Transfer of the construct may be performed by any of the methods mentioned above that physically or chemically permeabilize the cell membrane. This is applicable particularly for transfer in vitro, however, it may be applied for in vivo use as well. Dubensky, et al., *Proc. Nat. Acad. Sci. USA*, 81:7529-7533 (1984) successfully injected polyomavirus DNA in the form of CaPO₄ precipitates into liver and spleen of adult and newborn mice demonstrating active viral replication and acute infection. Benvenisty and Neshif, *Proc. Nat. Acad. Sci. USA*, 83:9551-9555 (1986) also demonstrated that direct intraperitoneal injection of CaPO₄ precipitated plas-

The techniques, procedures and methods outlined herein are applicable to any and all of the polypeptides and binding constructs of the present invention.

Another embodiment of the invention for transferring a naked DNA expression construct into cells may involve particle bombardment. This method depends on the ability to accelerate DNA coated microprojectiles to a high velocity allowing them to pierce cell membranes and enter cells without killing them (Klein, et al., *Nature*, 327:70-73 (1987)). Several devices for accelerating small particles have been developed. One such device relies on a high voltage discharge

mids results in expression of the transfected genes.

D. Chemotherapy and Other Combination Therapies

Any one of the binding constructs of the present invention when used in a method of treating a disease, e.g. a neoplastic condition such as a tumor, may be employed alone, or in combination with other agents. In some embodiments, more than one binding construct may be administered. In some embodiments, a binding construct may be administered together with a chemotherapeutic agent.

Certain cancers or patients may lend themselves to a treatment of combined binding construct and chemotherapeutic agent to achieve an additive or even a synergistic effect compared to the use of any one therapy alone. The chemotherapeutic agents may include, but are not limited to, platinum coordination compounds, topoisomerase inhibitors, antibiotics, antimitotic alkaloids and difluoronucleosides, as described in U.S. Pat. No. 6,630,124. The binding construct and chemotherapeutic agent need not be administered simultaneously, nor must they be administered by the same means.

In some embodiments, the chemotherapeutic agent is a platinum coordination compound. The term "platinum coordination compound" refers to any tumor cell growth inhibiting platinum coordination compound that provides the platinum in the form of an ion. Preferred platinum coordination compounds include, but are not limited to, cis-diamminediaquoplatinum (II)-ion; chloro(diethylenetriamine)-platinum (II) chloride; dichloro(ethylenediamine)-platinum(II), diamplatinum(I) mine(1,1-cyclobutanedicarboxylato) (carboplatin); spiroplatin; iproplatin; diammine(2-ethylma $lonato) \hbox{-platinum} (II); ethylenediamine malonato platinum (II);$ aqua(1,2-diaminodyclohexane)-sulfatoplatinum(II); (1,2-diaminocyclohexane)malonatoplatinum(II); (4-caroxyphthalato)(1,2-diaminocyclohexane)platinum(II); (1,2-diaminocyclohexane)-(isocitrato)platinum(II); (1,2diaminocyclohexane)cis(pyruvato)platinum(II); (1,2diaminocyclohexane)oxalatoplatinum(II); ormaplatin; and

tetraplatin.

46

In some embodiments, cisplatin is the preferred platinum coordination compound employed in the compositions and methods of the present invention. Cisplatin is commercially available under the name PLATINOLTM from Bristol Myers-Squibb Corporation and is available as a powder for constitution with water, sterile saline or other suitable vehicle. Other platinum coordination compounds suitable for use in the present invention are known and are available commercially and/or can be prepared by conventional techniques. Cisplatin, or cis-dichlorodiammineplatinum II, has been used successfully for many years as a chemotherapeutic agent in the treatment of various human solid malignant tumors. More recently, other diamino-platinum complexes have also shown efficacy as chemotherapeutic agents in the treatment of various human solid malignant tumors. Such diamino-platinum complexes include, but are not limited to, spiroplatinum and carboplatinum. Although cisplatin and other diamino-platinum complexes have been widely used as chemotherapeutic agents in humans, they have had to be delivered at high dosage levels that can lead to toxicity problems such as kidnev damage.

Preferably, when cisplatin is used in combination with the binding constructs of the present invention, the results obtained are synergistic. That is to say, the effectiveness of the combination therapy of a binding construct and the platinum coordination compound is synergistic, i.e., the effectiveness is greater than the effectiveness expected from the additive individual effects of each. Therefore, the dosage of the platinum coordination compound can be reduced and thus, the risk of the toxicity problems and other side effects is concomitantly reduced.

In some embodiments, the chemotherapeutic agent of the present invention is a topoisomerase inhibitor. Topoisomerases are enzymes that are capable of altering DNA topology in eukaryotic cells. They are critical for cellular functions and cell proliferation. Generally, there are two classes of topoisomerases in eukaryotic cells, type I and type II. Topoisomerase I is a monomeric enzyme of approximately 100,000 molecular weight. The enzyme binds to DNA and introduces a transient single-strand break, unwinds the double helix (or allows it to unwind), and subsequently reseals the break before dissociating from the DNA strand. Various topoisomerase inhibitors have recently shown clinical efficacy in the treatment of humans afflicted with ovarian, cancer, esophageal cancer or non-small cell lung carcinoma.

One especially preferred topoisomerase inhibitor of the present invention is camptothecin and camptothecin analogs. 45 Camptothecin is a water-insoluble, cytotoxic alkaloid produced by *Camptotheca accuminata* trees indigenous to China and *Nothapodytes foetida* trees indigenous to India. Camptothecin exhibits tumor cell growth inhibiting activity against a number of tumor cells. Compounds of the camptothecin analog class are typically specific inhibitors of DNA topoisomerase I. By the term "inhibitor of topoisomerase" is meant any tumor cell growth inhibiting compound that is structurally related to camptothecin. Compounds of the camptothecin analog class include, but are not limited to, topotecan, irinotecan and 9-amino-camptothecin.

In addition to the foregoing topoisomerase inhibitors, such compounds also include, but are not limited to, any tumor cell growth inhibiting camptothecin analog claimed or described in: U.S. Pat. No. 5,004,758, issued on Apr. 2, 1991 and European Patent Application Number 88311366.4, published on Jun. 21, 1989 as Publication Number EP 0 321 122; U.S. Pat. No. 4,604,463, issued on Aug. 5, 1986 and European Patent Application Publication Number EP 0 137 145, published on Apr. 17, 1985; U.S. Pat. No. 4,473,692, issued on Sep. 25, 1984 and European Patent Application Publication Number EP 0 074 256, published on Mar. 16, 1983; U.S. Pat. No. 4,545,880, issued on Oct. 8, 1985 and European Patent Appli-

48

cation Publication Number EP 0 074 256, published on Mar. 16, 1983; European Patent Application Publication Number EP 0 088 642, published on Sep. 14, 1983; Wani et al, *J. Med*. Chem., 29, 2358-2363 (1986); Nitta et al., Proc. 14th International Congr. Chemotherapy, Kyoto, 1985, Tokyo Press, Anticancer Section 1, p. 28-30, especially a compound called CPT-11. CPT-11 is a camptothecin analog with a 4-(piperidino)-piperidine side chain joined through a carbamate linkage at C-10 of 10-hydroxy-7-ethyl camptothecin. CPT-11 is currently undergoing human clinical trials and is also referred to as irinotecan; Wani et al, J. Med. Chem., 23, 554 (1980); Wani et. al., J. Med. Chem., 30, 1774 (1987); U.S. Pat. No. 4,342,776, issued on Aug. 3, 1982; U.S. patent application Ser. No. 581,916, filed on Sep. 13, 1990 and European Patent Application Publication Number EP 418 099, published on Mar. 20, 1991; U.S. Pat. No. 4,513,138, issued on Apr. 23, 1985 and European Patent Application Publication Number EP 0 074 770, published on Mar. 23, 1983; U.S. Pat. No. 4,399,276, issued on Aug. 16, 1983 and European Patent Application Publication Number 0 056 692, published on Jul. 20 28, 1982; the entire disclosure of each of which is hereby incorporated by reference. All of the above-listed compounds of the camptothecin analog class are available commercially and/or can be prepared by conventional techniques including those described in the above-listed references. The topoisomerase inhibitor may be selected from the group consisting of topotecan, irinotecan and 9-aminocamptothecin.

Preferably, when a topoisomerase inhibitor is used in combination with the binding constructs of the present invention, the results obtained are synergistic. That is, the effectiveness of the combination therapy of a binding construct and the topoisomerase inhibitor is synergistic, i.e., the effectiveness is greater than the effectiveness expected from the additive individual effects of each. Therefore, the dosage of the topoisomerase inhibitor can be reduced and thus, the risk of the toxicity problems and other side effects is concomitantly reduced.

The preparation of numerous compounds of the camptothecin analog class (including pharmaceutically acceptable salts, hydrates and solvates thereof) as well as the preparation of oral and parenteral pharmaceutical compositions comprising such a compounds of the camptothecin analog class and an inert, pharmaceutically acceptable carrier or diluent, is extensively described in U.S. Pat. No. 5,004,758, issued on Apr. 2, 1991 and European Patent Application Number 88311366.4, published on Jun. 21, 1989 as Publication Number EP 0 321 122, the teachings of which are incorporated herein by reference.

In still yet another embodiment of the present invention, the chemotherapeutic agent is an antibiotic compound. Suitable antibiotic include, but are not limited to, doxorubicin, mitomycin, bleomycin, daunorubicin and streptozocin.

Preferably, when an antibiotic is used in combination with the binding constructs of the present invention, the results obtained are synergistic. That is, the effectiveness of the combination therapy of a binding construct and the antibiotic compound is synergistic, i.e., the effectiveness is greater than the effectiveness expected from the additive individual effects of each. Therefore, the dosage of the antibiotic compound can be reduced and thus, the risk of the toxicity problems and other side effects is concomitantly reduced.

In some embodiments, the chemotherapeutic agent is an antimitotic alkaloid. In general, antimitotic alkaloids can be extracted from *Cantharanthus roseus*, and have been shown to be efficacious as anticancer chemotherapy agents. A great number of semi-synthetic derivatives have been studied both chemically and pharmacologically (see, O. Van Tellingen et al, Anticancer Research, 12, 1699-1716 (1992)). The antimitotic alkaloids of the present invention include, but are not limited to, vinblastine, vincristine, vindesine, Taxol and

vinorelbine. The latter two antimitotic alkaloids are commercially available from Eli Lilly and Company, and Pierre Fabre Laboratories, respectively (see, U.S. Pat. No. 5,620,985). In a preferred aspect of the present invention, the antimitotic alkaloid is vinorelbine.

Preferably, when an antimitotic alkaloid is used in combination with the binding constructs of the present invention, the results obtained are synergistic. That is, the effectiveness of the combination therapy of a binding construct and an antimitotic alkaloids compound is synergistic, i.e., the effectiveness is greater than the effectiveness expected from the additive individual effects of each. Therefore, the dosage of the antimitotic alkaloid can be reduced and thus, the risk of the toxicity problems and other side effects is concomitantly reduced

In another embodiment of the present invention, the chemotherapeutic agent is a difluoronucleoside. 2'-deoxy-2',2'-difluoronucleosides are known in the art as having antiviral activity. Such compounds are disclosed and taught in U.S. Pat. Nos. 4,526,988 and 4,808,614. European Patent Application Publication 184,365 discloses that these same difluoronucleosides have oncolytic activity. Preferably, the 2'-deoxy-2',2'-difluoronucleoside used in the compositions and methods of the present invention is 2'-deoxy-2',2'-difluorocytidine hydrochloride, also known as gemcitabine hydrochloride. Gemcitabine is commercially available or can be synthesized in a multi-step process as disclosed and taught in U.S. Pat. Nos. 4,526,988, 4,808,614 and 5,223,608, the teachings of which are incorporated herein by reference.

Preferably, when a difluoronucleoside is used in combination with the binding constructs of the present invention, the results obtained are synergistic. That is, the effectiveness of the combination therapy of a binding construct and a difluoronucleoside compound is synergistic, i.e., the effectiveness is greater than the effectiveness expected from the additive individual effects of each. Therefore, the dosage of the difluoronucleoside can be reduced and thus, the risk of the toxicity problems and other side effects is concomitantly reduced.

E. Disease Targets

1. Neoplasms

Neoplasms treatable by the present invention include solid tumors, for example, carcinomas and sarcomas. Carcinomas include malignant neoplasms derived from epithelial cells which infiltrate, for example, invade, surrounding tissues and give rise to metastases. Adenocarcinomas are carcinomas 45 derived from glandular tissue, or from tissues that form recognizable glandular structures. Another broad category of cancers includes sarcomas and fibrosarcomas, which are tumors whose cells are embedded in a fibrillar or homogeneous substance, such as embryonic connective tissue. The 50 invention also provides methods of treatment of cancers of myeloid or lymphoid systems, including leukemias, lymphomas, and other cancers that typically are not present as a tumor mass, but are distributed in the vascular or lymphoreticular systems. Further contemplated are methods for treatment of adult and pediatric oncology, growth of solid tumors/ malignancies, myxoid and round cell carcinoma, locally advanced tumors, cancer metastases, including lymphatic metastases. The cancers listed herein are not intended to be limiting. Both age (child and adult), sex (male and female), primary and secondary, pre- and post-metastatic, acute and chronic, benign and malignant, anatomical location cancer embodiments and variations are contemplated targets. Cancers are grouped by embryonic origin (e.g., carcinoma, lymphomas, and sarcomas), by organ or physiological system, and by miscellaneous grouping. Particular cancers may over- 65 lap in their classification, and their listing in one group does not exclude them from another.

50

Carcinomas that may targeted include adrenocortical, acinar, acinic cell, acinous, adenocystic, adenoid cystic, adenoid squamous cell, cancer adenomatosum, adenosquamous, adnexel, cancer of adrenal cortex, adrenocortical, aldosteroneproducing, aldosterone-secreting, alveolar, alveolar cell, ameloblastic, ampullary, anaplastic cancer of thyroid gland, apocrine, basal cell, basal cell, alveolar, comedo basal cell, cystic basal cell, morphea-like basal cell, multicentric basal cell, nodulo-ulcerative basal cell, pigmented basal cell, sclerosing basal cell, superficial basal cell, basaloid, basosquamous cell, bile duct, extrahepatic bile duct, intrahepatic bile duct, bronchioalveolar, bronchiolar, bronchioloalveolar, bronchoalveolar, bronchoalveolar cell, bronchogenic, cerebriform, cholangiocelluarl, chorionic, choroids plexus, clear cell, cloacogenic anal, colloid, comedo, corpus, cancer of corpus uteri, cortisol-producing, cribriform, cylindrical, cylindrical cell, duct, ductal, ductal cancer of the prostate, ductal cancer in situ (DCIS), eccrine, embryonal, cancer en cuirasse, endometrial, cancer of endometrium, endometroid, epidermoid, cancer ex mixed tumor, cancer ex pleomorphic adenoma, exophytic, fibrolamellar, cancer fibro'sum, follicular cancer of thyroid gland, gastric, gelatinform, gelatinous, giant cell, giant cell cancer of thyroid gland, cancer gigantocellula're, glandular, granulose cell, hepatocellular, Hürthle cell, hypemephroid, infantile embryonal, islet cell carcinoma, inflammatory cancer of the breast, cancer in si'tu, intraductal, intraepidermal, intraepithelial, juvenile embryonal, Kulchitsky-cell, large cell, leptomeningeal, lobular, infiltrating lobular, invasive lobular, lobular cancer in situ (LCIS), lymphoepithelial, cancer medullare, medullary, medullary cancer of thyroid gland, medullary thyroid, melanotic, meningeal, Merkel cell, metatypical cell, micropapillary, cancer mol'le, mucinous, cancer muci'parum, cancer mucocellula're, mucoepidermoid, cancer muco'sum, mucous, nasopharyngeal, neuroendocrine cancer of the skin, noninfiltrating, non-small cell, non-small cell lung cancer (NSCLC), oat cell, cancer ossi'ficans, osteoid, Paget's, papillary, papillary cancer of thyroid gland, periampullary, preinvasive, prickle cell, primary intrasseous, renal cell, scar, schistosomal bladder, Schneiderian, scirrhous, sebaceous, signet-ring cell, cancer sim'plex, small cell, small cell lung cancer (SCLC), spindle cell, cancer spongio'sum, squamous, squamous cell, terminal duct, anaplastic thyroid, follicular thyroid, medullary thyroid, papillary thyroid, trabecular cancer of the skin, transitional cell, tubular, undifferentiated cancer of thyroid gland, uterine corpus, verrucous, villous, cancer villo'sum, yolk sac, squamous cell particularly of the head and neck, esophageal squamous cell, and oral cancers and

Sarcomas that may be targeted include adipose, alveolar soft part, ameloblastic, avian, botryoid, sarcoma botryoi'des, chicken, chloromatous, chondroblastic, clear cell sarcoma of kidney, embryonal, endometrial stromal, epithelioid, Ewing's, fascial, fibroblastic, fowl, giant cell, granulocytic, hemangioendothelial, Hodgkin's, idiopathic multiple pigmented hemorrhagic, immunoblastic sarcoma of B cells, immunoblastic sarcoma of T cells, Jensen's, Kaposi's, kupffer cell, leukocytic, lymphatic, melanotic, mixed cell, multiple, lymphangio, idiopathic hemorrhagic, multipotential primary sarcoma of bone, osteoblastic, osteogenic, parosteal, polymorphous, pseudo-kaposi, reticulum cell, reticulum cell sarcoma of the brain, rhabdomyosarcoma, rous, soft tissue, spindle cell, synovial, telangiectatic, sarcoma (osteosarcoma)/malignant fibrous histiocytoma of bone, and soft tissue sarcomas.

Lymphomas that may targeted include AIDS-related, non-Hodgkin's, Hodgkin's, T-cell, T-cell leukemia/lymphoma, African, B-cell, B-cell monocytoid, bovine malignant, Burkitt's, centrocytic, lymphoma cu'tis, diffuse, diffuse, large cell, diffuse, mixed small and large cell, diffuse, small

cleaved cell, follicular, follicular center cell, follicular, mixed small cleaved and large cell, follicular, predominantly large cell, follicular, predominantly small cleaved cell, giant follicle, giant follicular, granulomatous, histiocytic, large cell, immunoblastic, large cleaved cell, large nocleaved cell, Lennert's, lymphoblastic, lymphocytic, intermediate; lymphocytic, intermediately differentiated, plasmacytoid; poorly diflymphocytic, well ferentiated lymphocytic, small differentiated lymphocytic, lymphoma of cattle; MALT, mantle cell, mantle zone, marginal zone, Mediterranean lymphoma mixed lymphocytic-histiocytic, nodular, plasmacytoid, pleomorphic, primary central nervous system, primary effusion, small b-cell, small cleaved cell, small concleaved cell, T-cell lymphomas; convoluted T-cell, cutaneous t-cell, small lymphocytic T-cell, undefined lymphoma, u-cell, undifferentiated, aids-related, central nervous system, cutaneous T-cell, effusion (body cavity based), thymic lymphoma, and cutaneous T cell lymphomas.

Leukemias and other blood cell malignancies that may be targeted include acute lymphoblastic, acute myeloid, lymphocytic, chronic myelogenous, hairy cell, lymphoblastic, 20 myeloid, lymphocytic, myelogenous, leukemia, hairy cell, T-cell, monocytic, myeloblastic, granulocytic, gross, hand mirror-cell, basophilic, hemoblastic, histiocytic, leukopenic, lymphatic, Schilling's, stem cell, myelomonocytic, prolyniphocytic, micromyeloblastic, megakaryoblastic, megakaryoctyic, rieder cell, bovine, aleukemic, mast cell, myelocytic, plamsa cell, subleukemic, multiple myeloma, nonlymphocytic, and chronic myelocytic leukemias.

Brain and central nervous system (CNS) cancers and tumors that may be targeted include astrocytomas (including 30 cerebellar and cerebral), brain stem glioma, brain tumors, malignant gliomas, ependymoma, glioblastoma, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic gliomas, primary central nervous system lymphoma, ependymoma, brain stem glioma, visual pathway and hypothalamic glioma, extracranial germ cell tumor, medulloblastoma, myelodysplastic syndromes, oligodendroglioma, myelodysplastic/myeloproliferative diseases, myelogenous leukemia, myeloid leukemia, multiple myeloma, myeloproliferative disorders, neuroblastoma, plasma cell neoplasm/multiple myeloma, central nervous 40 system lymphoma, intrinsic brain tumors, astrocytic brain tumors, gliomas, and metastatic tumor cell invasion in the central nervous system.

Gastrointestinal cancers that may be targeted include extrahepatic bile duct cancer, colon cancer, colon and rectum 45 cancer, colorectal cancer, gallbladder cancer, gastrointestinal carcinoid tumor, gastrointestinal carcinoid tumors, gastrointestinal stromal tumors, bladder cancers, islet cell carcinoma (endocrine pancreas), pancreatic cancer, islet cell pancreatic cancer, prostate cancer rectal cancer, salivary gland cancer, small intestine cancer, colon cancer, and polyps associated with colorectal neoplasia.

Bone cancers that may be targeted include osteosarcoma and malignant fibrous histiocytomas, bone marrow cancers, bone metastases, osteosarcoma/malignant fibrous histiocytoma of bone, and osteomas and osteosarcomas. Breast cancers that may be targeted include small cell carcinoma and ductal carcinoma.

Lung and respiratory cancers that may be targeted include bronchial adenomas/carcinoids, esophagus cancer esophageal cancer, esophageal cancer, hypopharyngeal cancer, laryngeal cancer, hypopharyngeal cancer, lung carcinoid tumor, non-small cell lung cancer, small cell lung cancer, small cell carcinoma of the lungs, mesothelioma, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, oral cavity and lip cancer, oropharyngeal cancer; paranasal sinus and nasal cavity cancer, and pleuropulmonary blastoma.

52

Urinary tract and reproductive cancers that may be targeted include cervical cancer, endometrial cancer, ovarian epithelial cancer, extragonadal germ cell tumor, extracranial germ cell tumor, extragonadal germ cell tumor, ovarian germ cell tumor, gestational trophoblastic tumor, spleen, kidney cancer, ovarian cancer, ovarian epithelial cancer, ovarian germ cell tumor, ovarian low malignant potential tumor, penile cancer, renal cell cancer (including carcinomas), renal cell cancer, renal pelvis and ureter (transitional cell cancer), transitional cell cancer of the renal pelvis and ureter, gestational trophoblastic tumor, testicular cancer, ureter and renal pelvis, transitional cell cancer, urethral cancer, endometrial uterine cancer, uterine sarcoma, vaginal cancer, vulvar cancer, ovarian carcinoma, primary peritoneal epithelial neoplasms, cervical carcinoma, uterine cancer and solid tumors in the ovarian follicle), superficial bladder tumors, invasive transitional cell carcinoma of the bladder, and muscle-invasive bladder can-

Skin cancers and melanomas (as well as non-melanomas) that may be targeted include cutaneous t-cell lymphoma, intraocular melanoma, tumor progression of human skin keratinocytes, basal cell carcinoma, and squamous cell cancer. Liver cancers that may be targeted include extrahepatic bile duct cancer, and hepatocellular cancers. Eye cancers that may be targeted include intraocular melanoma, retinoblastoma, and intraocular melanoma Hormonal cancers that may be targeted include: parathyroid cancer, pineal and supratentorial primitive neuroectodermal tumors, pituitary tumor, thymoma and thymic carcinoma, thymoma, thymus cancer, thyroid cancer, cancer of the adrenal cortex, and ACTH-producing tumors.

Miscellaneous other cancers that may be targeted include advanced cancers, AIDS-related, anal cancer adrenal cortical, aplastic anemia, aniline, betel, buyo cheek, cerebriform, chimney-sweeps, clay pipe, colloid, contact, cystic, dendritic, cancer a deux, duct, dye workers, encephaloid, cancer en cuirasse, endometrial, endothelial, epithelial, glandular, cancer in situ, kang, kangri, latent, medullary, melanotic, mulespinners', non-small cell lung, occult cancer, paraffin, pitch workers', scar, schistosomal bladder, scirrhous, lymph node, small cell lung, soft, soot, spindle cell, swamp, tar, and tubular cancers

Miscellaneous other cancers that may be targeted also include carcinoid (gastrointestinal and bronchal) Castleman's disease chronic myeloproliferative disorders, clear cell sarcoma of tendon sheaths, Ewing's family of tumors, head and neck cancer, lip and oral cavity cancer, Waldenström's macroglobulinemia, metastatic squamous neck cancer with occult primary, multiple endocrine neoplasia syndrome, multiple myeloma/plasma cell neoplasm, Wilms' tumor, mycosis fungoides, pheochromocytoma, sezary syndrome, supratentorial primitive neuroectodermal tumors, unknown primary site, peritoneal effusion, malignant pleural effusion, trophoblastic neo-plasms, and hemangiopericytoma.

2. Other Disease Targets

Neoplasms are not the only diseases that may be targeted using the binding constructs of the invention. The binding constructs of the invention may also be used to treat such diseases as rheumatoid arthritis, edemas (and other types of plasma leakage), cancer associated disorders such as cancer-associated ascites formation, diabetes, and inflammatory diseases such as psoriasis. The binding constructs may be used as therapeutics for any disease associated with abnormally high levels of growth factor expression.

V. NON-EXCLUSIVE EXAMPLES OF THE INVENTION

The invention may be more readily understood by reference to the following examples, which are given to illustrate

forward primer 5'-AGCGCTAGCTATAGGATTTATGAT-GTG-3' (SEQ ID NO: 70), and reverse primer

54

the invention and not in any way to limit its scope. These examples primarily make reference to binding constructs that bind particular growth factors of the VEGF subfamily, but they may also be adapted for use of binding constructs that bind other VEGF subfamily members, as well as for binding 5 constructs that bind PDGF subfamily members. Similarly, binding constructs comprising other VEFGR receptor fragments, PDGFR receptor fragments, and neuropilin receptor fragments may also be employed in variations of these examples.

(SEQ ID NO: 71) 5'-ATGTGTGAGGTTTTGCACAAG-3'(R-2 L),

Example 1

The PCR products were digested with NheI and BstYI (R-2 F and L constructs), NheI and BamHI (R-2 E, and H-K constructs), BamHI (R-2 linker B and C constructs), BamHI and BsaI (R-2 D construct), or NheI and BsmBI (R-2 G construct), and cloned into the Signal pIgplus vector. In order to repair frame-shifts in constructs containing nucleotide sequence coding for domain 1 of VEGFR-2, the vectors were cut with restriction enzyme NotI, blunted with Klenow 15 enzyme, cut with EcoRV and back-ligated.

VEGFR-2 and VEGFR-3 Fragments that Bind VEGF-A or VEGF-C

R-3 Constructs

To determine the portion of a receptor's extracellular domain (ECD) that was sufficient for ligand binding, frag- 20 ments of the ECDs of VEGFR-2 (R-2) and VEGFR-3 (R-3) were used to make various soluble constructs. The constructs included Fc domain human IgG fragments fused to the C-terminus of the receptor fragments. As indicated in Tables 3 and 4, some constructs were made using a heterologous (N-ter- 25 minal) signal peptide derived from CD33.

A series of R-3 constructs with N-termini between Ig domains 2 and 3 of VEGFR-3 (R-3 C through F constructs) was created by PCR using the expression plasmid comprising the R-3 D1-3 transcript (e.g., the R-3 G construct, SEQ ID NO: 43) as template, T7 as forward primer and the following reverse primers:

Construction of Fragments and Plasmids R-2 Constructs

```
5'-TCAGGATCCGCGAGCTCGTTGCCTG-3',
                                    (SEQ ID NO: 74)
5'-TACAGGATCCCCTGTGATGTGCACCAG-3', (SEQ ID NO: 75)
5'-TCAGGATCCGCGTGCACCAGGAAGG-3',
                                    (SEO ID NO: 76)
and
```

To construct the VEGFR-2/IgG expression plasmid, the construct, R-2 A, comprising the first three Ig-domains (D1- $_{30}$ 5'-TCAGGATCCGCGAAGGGGTTGGAAAG-3'. (SEQ ID NO: 77) 3) of VEGFR-2 was amplified by PCR using primers 5'-GCG-GATCCTTGCCTAGTGTTTCTCTTGATC-3' (SEO ID NO: 72), and 5'-CCAGTCACCTGCTCCGGATCTTCATG-GACCCTGACAAATG-3' (SEQ ID NO: 73), and cloned into the Signal pIgplus vector (Novagen, Madison, Wis.). The resulting plasmid was digested with BamHI and KpnI, treated with T4 polymerase and back-ligated. To assemble other VEGFR-2/IgG constructs, PCRs were performed using the D1-3 construct as the template, T7 forward primer and the 40 following reverse primers:

forward primer 5'-AGCGCTAGCGTTCAAGATTACA-

reverse primers:

GATCTCC-3' (SEQ ID NO: 64), and the following

The Ig homology domain 1 was deleted from the D1-3 expression plasmid (R-3 G construct) by site-directed mutagenesis using primers

5'CCTTGAACATCACGGAGGAGTCACACGT-CAGAGACTTTGA GCAGCCATTCATCAACAAGC-3' (SEQ ID NO: 78) and

5'AGCTGCTGGTAGGGGAGAAGGATCCT-GAACTGCACCGTGT GG-3' (SEQ ID NO: 79), and excision of the BamH I fragment from the resulting plasmid. That procedure combined with the described truncation primers, for R-3 C through F constructs, allows for the production of

```
5'-GCTGGATCTTGAACATAGACATAAATG-3' (R-2 F),,
                                                       (SEQ ID NO: 59)
5'-CTAGGATCCCCTACAACGACAACTATG-3' (R-2 B),,
                                                      (SEQ ID NO: 60)
5'-CTAGGATCCACATCATAAATCCTATAC-3' (R-2 C),,
                                                      (SEQ ID NO: 61)
5'-GCATGGTCTCGGATCATGAGAAGACGGACTCAGAAC-3' (R-2 D),, (SEQ ID NO: 62)
5'-CTAGGATCCTTTTCTCCAACAGATAG-3' (R-2 E);
                                                       (SEO ID NO: 63)
```

the R-3 constructs (e.g., C, D, E, F, J, K, L, and M). The plasmid coding for domains 2 and 3 of VEGFR-3 (R-3 I) was made by transfer of the Sph I fragment from the original

```
5'-ATGTGTGAGGTTTTGCACAAG-3' (R-2 G),,
                                                       (SEQ ID NO: 65)
5'-CTAGGATCCCCTACAACGACAACTATG-3' (R-2 H),,
                                                       (SEQ ID NO: 66)
5'-CTAGGATCCACATCATAAATCCTATAC-3' (R-2 I),,
                                                      (SEQ ID NO: 67)
5'-GCATGGTCTCGGATCATGAGAAGACGGACTCAGAAC-3' (R-2 J),, (SEQ ID NO: 68)
5'-CTAGGATCCTTTTCTCCAACAGATAG-3' (R-2 K),,
                                                      (SEQ ID NO: 69)
```

expression R-3 D1-3 plasmid into the plasmid encoding only domain 2 of VEGFR-3 (R-3 J). The sequence derived from a particular receptor is listed in Table 2. Expression was performed using standard calcium phosphate-mediated transfection into 293T cells.

The binding assays utilized minimal VEGF-A (SEQ ID NOS: 106 and 107) and VEGF-C (SEQ ID NOS: 108 and 109) fragments with 109 residues each (called VEGF-A 109 and VEGF-C 109). These constructs are not naturally occurring, but are effective for binding assays. Other growth factor constructs, either natural or artificial, may also be used for performing these assays.

Either Tritiated VEGF-A 109 or VEGF-C 109 was used in a given binding experiment. Ligand in solution was precipitated by mixing 175 µl of ligand solution with 100 µl binding mix at 4° C. overnight, with agitation. The ligand solution may be the supernatant of metabolically labeled 293T cells. The binding mixes used for the receptor binding analysis were as follows: for VEGFR-1 binding assays, the binding mix was phosphate buffered saline (PBS) containing 1.5% BSA, 0.06% Tween 20, 3 ug/ml heparin and 400 ng/ml 20 VEGFR-1-Fc fusion protein (100 μl of this binding mix was added to 200 µl of ligand solution). For VEGFR-2 binding assays, the binding mix was 82% conditioned cell supernatant from 293T cells transiently expressing VEGFR-2-Fc fusion protein in mixture with 18% of a PBS solution that contained 25 5% BSA, 0.2% Tween 20, and 10 μg/ml heparin (250 μl of binding mix was added to 200 µl of ligand solution). For VEGFR-3 binding assays, the binding mix was 82% condi56

tioned cell supernatant from 293T cells transiently expressing VEGFR-3-Fc fusion protein, 18% of PBS containing 5% BSA, 0.2% Tween 20, and 10 $\mu g/ml$ heparin (250 μl of binding mix was added to 200 μl of ligand solution). To collect precipitated ligand, 50 μl of a 30% protein A sepharose (PAS, Pharmacia) slurry in PBS was added and incubated under agitation for at least 1.5 hr at 4° C. Standard buffer was added to each immunoprecipitation sample and boiled for 5 minutes at 95° C. during which the immunoprecipitated proteins become dissociated from the protein A sepharose. After centrifugation, 10 μl of each sample was analyzed on 15% SDS-PAGE under reducing conditions. The gels were dried and exposed for either 12 hours on phosphorimager plates or 4 weeks on X-ray film.

Tables 3 and 4 identify constructs by name, a DNA and deduced amino acid sequence from the sequence listing, the portion of VEGFR-2 (SEQ ID NO: 4) or VEGFR-3 (SEQ ID NO: 6) amino acid sequence that was included in the constructs, whether the constructs expressed, and, if tested, whether constructs bound ligand. The table data is compiled from the PAGE gels shown in FIGS. 2 and 3. The asterisk adjacent to the "B*" indicates a "spill-over" from the adjacent lane, as the origin of the bands seen in the "B" lane. A failure to express under the particular experimental conditions used in this instance should not be interpreted as a failure to bind. The experiments can be repeated using different receptor fragments, binding constructs, ligands, or combinations thereof.

TABLE 3

		TADDED 3				
VEGFR-2 CONSTRUCTS						
Fc Fusion Constructs	SEQ ID NOS:	SEQ ID NO: 4	Expression	Binds VEGF-A	Binds VEGF-C	
R-2 A with CD33 Signal Peptide	SEQ ID NOS: 7 and 8	24-326	Yes	Yes	Yes	
R-2 B with CD33 Signal Peptide	SEQ ID NOS: 9 and 10	24-220	Yes	No	No	
R-2 C with CD33 Signal Peptide	SEQ ID NOS: 11 and 12	24-226	Yes	No	No	
R-2 D with CD33 Signal Peptide	SEQ ID NOS: 13 and 14	24-232	Yes	No	No	
R-2 E with CD33 Signal Peptide	SEQ ID NOS: 15 and 16	24-241	Yes	No	No	
R-2 F with CD33 Signal Peptide	SEQ ID NOS: 17 and 18	24-122	Yes	No	No	
R-2 G with CD33 Signal Peptide	SEQ ID NOS: 19 and 20	118-326	Yes	Yes	Yes	
R-2 H with CD33 Signal Peptide	SEQ ID NOS: 21 and 22	118-220	Yes	No	Yes	
R-2 I with CD33 Signal Peptide	SEQ ID NOS: 23 and 24	118-226	Yes	No	Weak	
R-2 J with CD33 Signal Peptide	SEQ ID NOS: 25 and 26	118-232	Yes	No	Very Weak	
R-2 K with CD33 Signal Peptide	SEQ ID NOS: 27 and 28	118-241	Yes	No	No	
R-2 L with CD33 Signal Peptide	SEQ ID NOS: 29 and 30	220-326	Yes	No	No	

TABLE 4

VEGFR-3 CONSTRUCTS							
Fc Fusion Constructs	Sequence ID Nos.	SEQ ID NO: 6	Expression	Binds VEGF-C			
R-3 A with CD33	SEQ ID NOS:	138-329	No	_			
Signal Peptide	31 and 32						
R-3 B with CD33	SEQ ID NOS:	138-226	Yes	No			
Signal Peptide	33 and 34						
R-3 C	SEQ ID NOS:	1-229	Yes	Yes			
	35 and 36						
R-3 D	SEQ ID NOS:	1-226	Yes	Yes			
	37 and 38						
R-3 E	SEQ ID NOS:	1-223	No	_			
	39 and 40						
R-3 F	SEQ ID NOS:	1-220	No	_			
	41 and 42						
R-3 G	SEQ ID NOS:	1-329	Yes	Yes			
	43 and 44						
R-3 H	SEQ ID NOS:	1-134	Yes	No			
	45 and 46						
R-3 I	SEQ ID NOS:	1-39,	Yes	No			
	47 and 48	132-329					
R-3 J	SEQ ID NOS:	1-39,	Yes	No			
	49 and 50	132-247					
R-3 K	SEQ ID NOS:	1-39,	Yes	No			
	51 and 52	132-229					
R-3 L	SEQ ID NOS:	1-39,	No	_			
	53 and 54	132-226					
R-3 M	SEQ ID NOS:	1-39,	No	_			
	55 and 56	132-223					
R-3 N	SEQ ID NOS:	1-40,		_			
	57 and 58	226-329					

The results of these assays demonstrate that novel receptor fragments are capable of binding ligands that the receptor as a whole may bind. In addition to providing a clearer picture as to what regions of the ECD are necessary for ligand binding, the binding data identifies receptor fragments useful as therapeutics.

The present data show that the R-2H fragment of R-2 of approximately 100 residues and spanning D2 of R-2 is sufficient for VEGF-C binding. For R-3, a larger fragment is required for VEGF-C binding, e.g., the R-3 D construct in table 4, which spans D1-2 of R-3.

Three-dimensional modeling based on the structure of VEGFR-1 complexed with VEGF-A was used to predict that a groove in VEGF-C might accommodate the region between 45 Ig-like domains 2 and 3 of VEGFR-3 (Flt4). WO 01/62942. The present data shows for the first time that sequence intermediate between the second and third Ig domains of R-3 is important for ligand binding.

For R-1 and R-2, the first Ig-domain has been described as 50 inhibitory for VEGF-A binding. Lu, et al, *J. Biol. Chem.*, 275(19): 14321-14330 (2000); Shinkai, A. et al., *J. Biol. Chem.*, 273(47):31283-88 (1998). For VEGF-C binding, the present data show that the inhibitory role of the first Ig-domain appears to apply to R-2 fragments, but not R-3 frag-55 ments.

The data also provides novel information regarding R-2 fragments and VEGF-A binding. Conflicting reports exist for constructs comprising the second and third Ig-domains of R-2 and VEGF-A binding. Fuh, et al., *J. Biol. Chem.*, 273(18): 60 11197-11204 (1998); Niwa, et al., U.S. Pat. No. 6,348,333; Shinkai, A. et al., *J. Biol. Chem.*, 273(47):31283-88 (1998). Fuh reported that only domains 2 and 3 were needed. Niwa taught that only 1 and 2 were needed. Shinkai stressed the importance of domain 4 of R-2. The issue is further confused 65 because different reports have defined the boundaries of the Ig-domains in different ways, i.e., different start and stop

points, a practice that has been recognized as potentially affecting whether fragments bind ligands, and with what degree of affinity. Shinkai, A. et al., *J. Biol. Chem.*, 273(47): 31283-88 (1998).

Example 2

Ligand Binding Assays Involving Binding Constructs with More than One Binding Element

The assays as performed in Example 1 are repeated, substituting a binding construct with multiple binding units. For example, one employs a binding construct comprising a binding unit that binds VEGF-A and a binding unit that binds VEGF-C. One looks for the ability of such a binding construct to bind both VEGF-A and VEGF-C. This information may be obtained by using different radio- or other labels, e.g., fluorescent labels for fluorescence resonance energy transfer (FRET), on each type of ligand or use of labels on the binding 20 construct and or ligands, to determine whether a given binding construct molecules are binding a molecule of VEGF-A and VEGF-C. Constructs that are shown to bind more than one growth factor ligand, as well as those described in Example 1 and elsewhere herein, have an indication for anti-25 neoplastic therapies where multiple growth factors contribute to neoplastic cell growth.

Example 3

Chimeric VEGFR Binding Constructs which Bind Multiple Ligands

As stated above, constructs that bind more than one growth factor ligand have an indication as anti-neoplastic therapies where multiple growth factors contribute to neoplastic cell growth. In order to determine the efficacy of a binding construct designed to bind more than one growth factor, two chimeric binding constructs were generated and their ability of each to bind to two growth factors was measured.

The binding constructs were designed as immunoblobulin fusion proteins as described above. To construct chimeric VEGF receptor/hIgG1Fc fusion proteins, the pIgPlus vector was used to build a construct comprising the first immunoglobulin-like domain of VEGFR-3 and the second and third Ig-like domains of VEGFR-2. The construct is designated R-3D1-R2D2+3/hIgG1Fc. To clone the R-3D1-R2D2+3/ hIgG1Fc construct, PCR was performed with CMV forward primer (18782, 5' TACTTGGCAGTACATCTACGTATT-AGTCATCGC-3') (SEQ ID NO: 122) and reverse primer v360 (5'-CGGAGATCTGTAGTCTTGCACGTACACG-TAGGAGCTGGC-3') (SEQ ID NO: 123) using plgPlushVEGFR-3D1-3-IgG1Fc as a template. The PCR-product was cut with SnaBI and BglII. The 718 bp D1-R2D2+3/ hIgG1Fc insert was ligated into the SnaBI- and partially BglII-cut vector plgPlus-hVEGFR-2D1-3-IgG1Fc described above. The presence and sequence of the correct insert was confirmed by sequencing a representative isolated hVEGFR-3D1-R2D2+3/hIgG1Fc clone (clone #2). (SEQ ID NO: 124 and SEQ ID NO: 125).

In addition to the above chimeric construct, a chimeric VEGF receptor/hIgG1Fc fusion protein was constructed having the first Ig-like domain of VEGFR-3, the second Ig-like domain of VEGFR-2 and the third Ig-like domain of VEGFR-1. The construct is designated R-3D1-R2D2-R1D3/hIgG1Fc.

To clone the pIgPlus-hVEGFR-3D1-R2D2-R1D3/hIgG1Fc construct, PCR was performed using pIgPlus-hVEGFR-3D1-R2D2+3/hIgG1Fc as a template and the T7

forward and reverse primer v362 (5'-TACAATTGAGGA-CAAGCGTATGTCCACGAAGTAGTT-

TAACTGGACGAGGC GTGCTTATTTGCACATCAT-AAATCCTATACC-3') (SEQ ID NO: 126). The PCR-product was cut with HindIII and MfeI/MunI. The 787 bp VEGFR-53D1-R2D2+3/hIgG1Fc insert was ligated into the HindIII-and partially MfeI-cut vector plgPlus-hVEGFR-1D1-3-IgG1Fc. The presence and sequence of the correct chimeric insert was confirmed by sequencing the a representative hVEGFR-3D1-R2D2-R1D3/hIgG1Fc clone (clone #6) (SEQ 10 ID NO: 127 and SEQ ID NO: 128).

Expression of Chimeric VEGFR/hIgG1Fc Fusions:

For expression analysis, the two new chimeric VEGF receptors and control constructs expressing R-1D1-3/ 15 hIgG1Fc, R-2D1-3/hIgG1Fc, R-3D1-3/hIgG1Fc, mature VEGF-C and VEGF-A₁₆₅ were transiently transfected into 293T cells using JetPEI (QBioGene/MP Biomedicals, Irvine, Calif.). Metabolic labeling with 35S-methionine and 35S-cysteine was carried out at 48 hours post-transfection and labeling maintained for 24 hours. The serum-free conditioned medium was then immunoprecipitated using Protein A sepharose and either: a) specific antiserum against human mature VEGF-C; b) goat polyclonal antibody against human VEGF-A (R&D systems, Minneapolis, Minn.); or, c) serumfree medium of 293T cells taken 48 to 72 hours post-transient transfection with VEGF receptor/hIgG1Fc proteins (control proteins, R-1D1-3, R-2D1-3, R-3D1-3; chimeric proteins, R-3D1-R2D2+3 and R-3D1-R2D2-R1D3).

The immunoprecipitated fractions were analyzed on 17% 30 SDS-PAGE and the dried gels were exposed for 12 hours on phosphoimager plates or 36 hours on X-ray films. Expression analysis demonstrated that the chimeric receptor fusion proteins exhibited high expression levels in transfected 293 T cells.

Analysis of Binding Properties of Chimeric VEGF Receptor/hIgG1Fc Fusions:

Ligand binding analysis was performed as described for the VEGF-C/VEGF-A hybrid growth factors in Example 1. Briefly, the unlabeled conditioned medium of transiently transfected 293T cells expressing the chimeric VEGFR/ IgG1Fc fusion proteins was used to precipitate the ³⁵S metabolically labeled mature VEGF-C, full-length VEGF-C, and VEGF-A₁₆₅. SDS-PAGE of ligands immunoprecipitated with chimeric and control VEGFR/IgFc showed that the R-3D1-R2D2-R1D3/Ig chimeric protein strongly bound both VEGF-A and VEGF-C, as predicted based on the VEGFR2 and R1 immunoglobulin domains. In one experiment, the chimeric construct R-3D1-R2D2+3/Ig exhibited binding to VEGF-C and not VEGF-A. A second experiment with the R-3D-R2D2+3 μg construct showed only weak binding to VEGF-A.

These results demonstrate that the ligand binding constructs generated herein are useful in developing compositions that bind multiple growth factors involved in numerous cell activities. These constructs provide promising therapy for diseases such as cancer and other proliferative diseases wherein multiple growth factors mediate the condition or disease state.

Example 4

Assay for Neutralization of Growth Factor Activity

The following protocol provides an assay to determine whether a binding construct neutralizes one or more PDGF/

60

VEGF growth factors by preventing the growth factor(s) from stimulating phosphorylation of its receptor.

Cells such as NIH 3T3 cells are transformed or transfected with a cDNA encoding a PDGFR/VEGFR receptor, such as VEGFR-3, and cultured under conditions where the encoded receptor is expressed on the surface of the cells. Transfected cells are cultured with either 1) plain growth medium; 2) growth medium supplemented with 50 ng/ml of one or more ligands for the recombinant receptor, such as fully processed VEGF-C and/or VEGF-D, which are ligands for VEGFR-3; 3) growth medium supplemented with 50 ng/ml of growth factor that does not bind the recombinant receptor (e.g., VEGF-A in the case of VEGFR-3), to serve as a control; or any of (1), (2), or (3) that is first pre-incubated with varying concentrations of a binding construct to be tested.

After culturing with the culture mediums described above in the presence or absence of the binding construct, the cells are lysed, immunoprecipitated using anti-receptor (e.g., anti-VEGFR-3) antiserum, and analyzed by Western blotting using anti-phosphotyrosine antibodies. Cells stimulated with the appropriate growth factor ligand (VEGF-C/D) stimulate VEGFR-3 autophosphorylation, which is detected with the anti-phosphotyrosine antibodies. Binding constructs that reduce or eliminate the ligand-mediated stimulation of receptor phosphorylation (e.g., in a dose-dependent manner) are considered neutralizing binding constructs.

Example 5

EPO Chimera Survival/Proliferation Blocking Assay

A binding construct is tested for the ability to block the binding of the growth factor(s) to their receptors, using bioassays of receptor binding and cross-linking. These assays involve the use of Ba/F3 pre-B cells which have been transfected with plasmid constructs encoding chimeric receptors consisting of the extracellular domain of growth factor receptors and the cytoplasmic domain of the erythropoietin receptor (Stacker, S A. et al., J. Biol. Chem. 274:34884-34892, 1999; Achen, M.G. et al., Eur. J. Biochem. 267:2505-2515, 2000). These cells are routinely passaged in interleukin-3 (IL-3) and will die in the absence of IL-3. However, if signaling is induced from the cytoplasmic domain of the chimeric receptors, these cells survive and proliferate in the absence of IL-3. Such signaling is induced by ligands which bind and cross-link the extracellular domains of the chimeric receptors. Therefore binding of a growth factor ligand to the extracellular domains of the chimeric receptors causes the cells to survive and proliferate in the absence of IL-3. Addition of binding constructs that block the binding of growth factor to the extracellular domains will cause cell death in the absence of IL-3. An alternative Ba/F3 cell line which expresses a chimeric receptor containing the extracellular domain of the Tie2 receptor (that does not bind VEGF family members) is not induced by the relevant growth factors to proliferate and is used, in the presence of IL-3, as a control to test for nonspecific effects of potential inhibitors.

In an exemplary assay, a binding construct that can bind VEGF-A and VEGF-C is tested. Samples of purified VEGF-A and VEGF-C are incubated with varying amounts of the binding construct for one hour at 4° C. in PBS before dilution of the mixtures 1:10 with IL-3-deficient cell culture medium. Ba/F3 cell lines expressing receptor(s) capable of binding the growth factors are then incubated in the media for 48 hours at 37° C. To measure DNA synthesis in the cells, 1 μCi of 3H-thymidine is added and the cells are incubated for 4 hours prior to harvesting. Incorporated 3H-thymidine is

measured using a cell harvester (Tomtec®) and beta counting. The ability of the binding construct to block growth factor-mediated cell growth and survival (as measured by DNA synthesis) is analyzed relative to the control Tie2 cell line in the presence of IL-3. Growth inhibition in the experimental group relative to the control group demonstrates that the binding construct blocks cell growth, presumably by blocking the binding and cross-linking of receptors by growth factor ligands at the cell surface.

Example 6

Effect of Binding Constructs on BCE Migration

Solutions containing growth factors pre-incubated alone or with varying concentrations of a binding construct are placed in wells made in collagen gel and used to stimulate the migration of bovine capillary endothelial (BCE) cells in the gel as follows. A further control comprising neither growth factor ligand nor binding construct may also be employed, as may a control with just binding construct. Binding constructs that cause a decrease in migration (relative to when growth factor alone is employed) have an indication as therapeutics to prevent or retard angiogenesis.

BCE cells (Folkman et al., Proc. Natl. Acad. Sci. (USA), 76:5217-5221 (1979)) are cultured as described in Pertovaara et al., J. Biol. Chem., 269:6271-74 (1994). These or other 30 cells employed may be transformed with growth factor receptor if not already expressed. For testing of VEGF-A/VEGF-C binding constructs, cells would be transformed with both VEGFR-2 and/or VEGFR-3. The collagen gels are prepared by mixing type I collagen stock solution (5 mg/ml in 1 mM HCl) with an equal volume of 2×MEM and 2 volumes of MEM containing 10% newborn calf serum to give a final collagen concentration of 1.25 mg/ml. The tissue culture plates (5 cm diameter) are coated with about 1 mm thick layer of the solution, which is allowed to polymerize at 37° C. BCE cells were seeded on top of this layer. For the migration assays, the cells are allowed to attach inside a plastic ring (1 cm diameter) placed on top of the first collagen layer. After 30 minutes, the ring is removed and unattached cells are rinsed 45 away. A second layer of collagen and a layer of growth medium (5% newborn calf serum (NCS)), solidified by 0.75% low melting point agar (FMC BioProducts, Rockland, Me.), are added. A well (3 mm diameter) is punched through all the layers on both sides of the cell spot at a distance of 4 50 mm, and the sample or control solutions are pipetted daily into the wells. Photomicrographs of the cells migrating out from the spot edge are taken after six days through an Olympus CK 2 inverted microscope equipped with phase-contrast optics. The migrating cells are counted after nuclear staining with the fluorescent dye bisbenzimide (1 mg/ml, Hoechst 33258, Sigma).

The number of cells migrating at different distances from the original area of attachment towards wells containing sample solutions are determined 6 days after addition of the media. The number of cells migrating out from the original ring of attachment is counted in five adjacent 0.5 mm×0.5 mm squares using a microscope ocular lens grid and 10× magnification with a fluorescence microscope. Cells migrating further than 0.5 mm are counted in a similar way by moving the grid in 0.5 mm steps. The experiments are carried out twice

62

with similar results. Daily addition of 1 ng of FGF2 into the wells may be employed as a positive control for cell migration

Example 7

Soluble VEGFR-1, VEGFR-2, and/or VEGFR-3 Containing Constructs Inhibitory Effect on VEGF-C Mediated Tumor Growth and Metastasis

To demonstrate the ability of polypeptides and binding constructs of the invention employed to inhibit tumor growth and/or metastasis, any accepted tumor model may be employed. Exemplary models include animals predisposed to developing various types of cancers, animals injected with tumors or tumor cells or tumor cell lines from the same or different species, including optionally cells transformed to recombinantly overexpress one or more growth factors such as VEGF-A, VEGF-B, VEGF-C, VEGF-D, or VEGF-E, or PDGF-A, or PDGF-B, or PDGF-C, or PDGF-D or PIGF. To provide a model for tumors in vivo in which multiple growth factors are detectable, it is possible to transform tumor cell lines with exogenous DNA to cause expression of multiple growth factors.

Polypeptide binding constructs may be administered directly, e.g., in protein form by i.v. transfusion or by implanted micropumps, or in nucleic acid form as part of a gene therapy regimen. Subjects are preferably grouped by sex, weight, age, and medical history to help minimize variations amongst subjects.

Efficacy is measured by a decrease in tumor, size (volume) and weight. One may also examine the nature of the effect on tumor size, spreads (metasteses) and number of tumors. For example, use of specific cell markers can be used to show the effect on angiogenesis relative to lymphangiogenesis, a VEGF-A binding construct expected to have a greater effect on the former, and a VEGF-C binding construct expected to have a greater effect on the latter. Animals may be looked at as a whole for survival time and changes in weight. Tumors and specimens are examined for evidence of angiogenesis, lymphangiogenesis, and/or necrosis.

SCID mice may be used as subjects for the ability of the soluble binding constructs of the present invention to inhibit or prevent the growth of tumors. The binding construct used in the therapy is generally chosen such that it binds to a growth factor ligand expressed by the tumor cell, especially growth factors that are overexpressed by the tumor cell relative to non-neoplastic cells in the subject. In the SCID model, tumor cells, e.g., MCF-7 cells, may be transfected with a virus encoding a particular growth factor under the control of a promoter or other expression control sequence that provides for overexpression of the growth factor as described in WO 02/060950. Alternatively, other cell lines may be employed, e.g., HT-1080, as described in U.S. Pat. No. 6,375,929. One may transfect the tumor cells with as may growth factor ligands as one desires to overexpress, or a tumor cell line may be chosen that already overexpresses one or more growth factor ligands of interest. One group of subjects is implanted with cells that have been mock-transfected, i.e., with a vector lacking a growth factor ligand insert.

Either before, concurrently with, or after the tumor implantation of the above-described cells, subjects are treated with a particular binding construct. There are a number of different ways of administering the construct. In vivo and/or ex vivo gene therapy may be employed. For example, cells may be transfected with a adenovirus, or other vector, that encodes the construct and implanted with the tumor cells expressing

63

the growth factor(s), the cells transfected with the binding construct may be the same as those transformed with growth factor(s) (or already overexpressing the growth factor(s)). In some embodiments, an adenovirus that encodes that binding construct is injected in vivo, e.g., intravenously. In some 5 embodiments, the binding construct itself (e.g., in protein form) is administered either systematically or locally, e.g., using a micropump. When testing the efficacy of a particular binding construct, at least one control is normally employed. For example, in the case of a vector-based therapy, a vector with an empty insert or LacZ is employed, or the insert may be a construct comprising a complete ECD of a growth factor receptor capable of binding the growth factor(s) of interest, such a control may employ more than one ECD construct if necessary (e.g., for binding multiple ligands if binding con- 15 structs with multiple ligand binding affinities are employed).

Exemplary Procedures

A. Preparation of Plasmid Expression Vectors, Transfection of Cells, and Testing of the Same

A cDNA encoding VEGF-A, VEGF-B, VEGF-C, VEGF- 20 D, PIGF, PDGF-A, PDGF-B, PDGF-C, PDGF-D, or combinations thereof introduced into a pEBS7 plasmid (Peterson and Legerski, Gene, 107: 279-84, 1991). This same vector may be used for the expression of the soluble binding constructs.

The MCF-7S1 subclone of the human MCF-7 breast carcinoma cell line is transfected with the plasmid DNA by electroporation and stable cell pools are selected and cultured as previously described (Egeblad and Jaattela, Int. J. Cancer, 86: 617-25, 2000). The cells are metabolically labeled in 30 methionine and cysteine free MEM (Gibco) supplemented with 100 µCi/ml [35S]-methionine and [35S]-cysteine (Redivue Pro-Mix, Amersham Pharmacia Biotech). The labeled growth factors are immunoprecipitated from the conditioned medium using antibodies against the expressed growth 35 factor(s). The immunocomplexes and the binding complexes are precipitated using protein A sepharose (Amersham Pharmacia Biotech), washed twice in 0.5% BSA, 0.02% Tween 20 in PBS and once in PBS and analyzed in SDS-PAGE under reducing conditions.

B. Subject Preparation and Treatment

Cells (20,000/well) are plated in quadruplicate in 24-wells, trypsinized on replicate plates after 1, 4, 6, or 8 days and counted using a hemocytometer. Fresh medium is provided after 4 and 6 days. For the tumorgenesis assay, sub-confluent 45 cultures are harvested by trypsination, washed twice and 10^7 cells in PBS are inoculated into the fat pads of the second (axillar) mammary gland of ovariectomized SCID mice, carrying subcutaneous 60-day slow-release pellets containing 0.72 mg 17β-estradiol (Innovative Research of America). The 50 ovarectomy and implantation of the pellets are performed 4-8 days before tumor cell inoculation.

The cDNA coding for the binding construct(s) is subcloned into the pAdBglII plasmid and the adenoviruses produced as previously described (Laitinen et al., Hum. Gene Ther., 9: 55 1481-6, 1998). The binding construct(s) or LacZ control (Laitinen et al., Hum. Gene Ther., 9: 1481-6, 1998) adenoviruses, 10⁹ pfu/mouse, are injected intravenously into the SCID mice 3 hours before the tumor cell inoculation.

C. Analysis of Treatment Efficacy

Tumor length and width are measured twice weekly in a blinded manner, and the tumor volume are calculated as the length×width×depth×0.5, assuming that the tumor is a hemiellipsoid and the depth is the same as the width (Benz et al., Breast Cancer Res. Treat., 24: 85-95, 1993).

The tumors are excised, fixed in 4% paraformaldehyde (pH 7.0) for 24 hours, and embedded in paraffin. Sections (7 μ m)

64

are immunostained with monoclonal antibodies against, for example, PECAM-1 (Pharmingen), VEGFR-1, VEGFR-2, VEGFR-3 (Kubo et al., *Blood*, 96: 546-553, 2000) or PCNA (Zymed Laboratories), PDGFR-α, PDGFR-β or polyclonal antibodies against LYVE-1 (Banerji et al., J Cell Biol, 144: 789-801, 1999), VEGF-C (Joukov et al., EMBO J., 16: 3898-911, 1997), laminin according to published protocols (Partanen et al., Cancer, 86: 2406-12, 1999), or any of the growth factors. The average of the number of the PECAM-1 positive vessels are determined from three areas (60× magnification) of the highest vascular density (vascular hot spots) in a section. All histological analyses are performed using blinded tumor samples.

Three weeks after injection of adenovirus constructs and/ or protein therapy, four mice from each group are narcotized, the ventral skin is opened and a few microliters 3% Evan's blue dye (Sigma) in PBS is injected into the tumor. The drainage of the dye from the tumor is followed macroscopi-

Imagining and monitoring of blood and blood proteins to provide indication of the health of subjects and the extent of tumor vasculature may also be performed.

Example 8

Effects on Tumor Progression in Subjects Using a Combined Therapy of a Binding Construct and a Chemotherapeutic Agent

This study is carried out to test the efficacy of using the binding constructs of the invention in combination with other anti-cancer therapies and/or using multiple binding constructs of the invention. Such therapies include chemotherapy, radiation therapy, anti-sense therapy, RNA interference, and monoclonal antibodies directed to cancer targets. The combinatorial effect may be additive, but it is preferably synergistic in its anti-cancer effects, e.g., prevention, suppression, regression, and elimination of cancers, prolongation of life, and/or reduction in side-effects.

Subjects are divided into groups with one group receiving a chemotherapeutic agent, one group receiving a binding construct, and one group receiving both a chemotherapeutic agent and a binding construct at regular periodic intervals, e.g., daily, weekly or monthly. In human studies, the subjects are generally grouped by sex, weight, age, and medical history to help minimize variations among subjects. Ideally, the subjects have been diagnosed with the same type of cancer. In human or non-human subjects, progress can be followed by measuring tumor size, metastases, weight gain/loss, vascularization in tumors, and white blood cells counts.

Biopsies of tumors are taken at regular intervals both before and after beginning treatment. For example, biopsies are taken just prior to treatment, at one week, and then at one month intervals, thereafter, or whenever possible, e.g., as tumors are excised. One examines the biopsies for cell markers, and overall cell and tissue morphology to assess the effectiveness of the treatment. In addition, or in the alternative, imagining techniques may be employed.

For non-human animal studies, an additional placebo control may be employed. Animal studies, performed in accordance with NIH guidelines, also provide the advantage of the insertion of relatively uniform cancer cell population, and tumors that selectively overproduce the one or more growth factors targeted by the binding construct. Tumors may be excised and analyzed as described in any one of Examples

Example 9

Animal Models to Demonstrate the Efficacy of Anti-VEGFR-2 Therapies for Treatment of Diseases by Inhibition of VEGF-A Mediated Effects While Preserving VEGF-C Binding

An acceptable animal model is used, e.g., mice or rats. In some embodiments, animals with tumors are treated with selective VEGF-A antagonist anti-VEGFR-2 antibodies or a 10 control. At various time points, before, during, and after treatment, tumors are excised from the two groups. The tumors are then examined for VEGF-A and VEGF-C mediated characteristics to determine whether VEGF-A mediated characteristic have been diminished relative to VEGF-C mediated 15 characteristics. These characteristics may be assessed using cell surface markers indicative of angiogenesis and markers indicative of lymphangiogenesis.

The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to

<160> NUMBER OF SEQ ID NOS: 128

66

be limiting. Because modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof. The patents, patent application publications and other publications (e.g., Journal articles, and web/Internet materials) referenced herein are incorporated in their entirety.

Although the applicant(s) invented the full scope of the claims appended hereto, the claims are not intended to encompass within their scope the prior art work of others. Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

SEQUENCE LISTING

```
<210> SEQ ID NO 1
<211> LENGTH: 5777
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-1
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (250)..(4266)
<400> SEQUENCE: 1
qcqqacactc ctctcggctc ctccccggca gcggcggcgg ctcggagcgg gctccggggc
                                                                          60
                                                                         120
tegggtgeag eggeeagegg geetggegge gaggattace eggggaagtg gttgteteet
ggetggagee gegagaeggg egeteaggge geggggeegg eggeggegaa egagaggaeg
                                                                         180
gactetggeg geegggtegt tggeeggggg agegegggea eegggegage aggeegegte
                                                                         240
gcgctcacc atg gtc agc tac tgg gac acc ggg gtc ctg ctg tgc gcg ctg
Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu
                                                                         291
ctc agc tgt ctg ctt ctc aca gga tct agt tca ggt tca aaa tta aaa
                                                                         339
Leu Ser Cys Leu Leu Thr Gly Ser Ser Ser Gly Ser Lys Leu Lys
15
                    20
gat cct gaa ctg agt tta aaa ggc acc cag cac atc atg caa gca ggc
                                                                         387
Asp Pro Glu Leu Ser Leu Lys Gly Thr Gln His Ile Met Gln Ala Gly
                35
                                      40
cag aca ctg cat ctc caa tgc agg ggg gaa gca gcc cat aaa tgg tct
                                                                         435
Gln Thr Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys Trp Ser
                                 55
            50
ttg cct gaa atg gtg agt aag gaa agc gaa agg ctg agc ata act aaa
                                                                         483
Leu Pro Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys
tot goo tgt gga aga aat ggo aaa caa tto tgo agt act tta acc ttg
                                                                         531
Ser Ala Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu
                         85
aac aca gct caa gca aac cac act ggc ttc tac agc tgc aaa tat cta
                                                                         579
Asn Thr Ala Gln Ala Asn His Thr Gly Phe Tyr Ser Cys Lys Tyr Leu
                    100
                                         105
```

												0011	0 111	404			
	gta Val															627	
	att Ile															675	
	gaa Glu															723	
	gtt Val 160	_						_				_				771	
_	act Thr	_			_			_				_	_	_	_	819	
	ttc Phe					_	_			_				_		867	
	gaa Glu															915	
His	cga Arg	Gln 225	Thr	Asn	Thr	Ile	Ile 230	Asp	Val	Gln	Ile	Ser 235	Thr	Pro	Arg	963	
Pro	gtc Val 240	Lys	Leu	Leu	Arg	Gly 245	His	Thr	Leu	Val	Leu 250	Asn	Cys	Thr	Āla	1011	
Thr 255	Thr	Pro	Leu	Asn	Thr 260	Arg	Val	Gln	Met	Thr 265	Trp	Ser	Tyr	Pro	Asp 270	1059	
Glu	aaa Lys	Asn	Lys	Arg 275	Ala	Ser	Val	Arg	Arg 280	Arg	Ile	Asp	Gln	Ser 285	Asn	1107 1155	
Ser	cat His aaa	Ala	Asn 290	Ile	Phe	Tyr	Ser	Val 295	Leu	Thr	Ile	Asp	300 Tàa	Met	Gln	1203	
Asn	Lys	Asp 305	Lys	Gly	Leu	Tyr	Thr 310	Cys	Arg	Val	Arg	Ser 315	Gly	Pro	Ser	1251	
Phe	Lys 320	Ser	Val	Asn	Thr	Ser 325	Val	His	Ile	Tyr	Asp 330	ГÀв	Ala	Phe	Ile	1299	
Thr 335	Val	Lys	His	Arg	Lys 340	Gln	Gln	Val	Leu	Glu 345	Thr	Val	Āla	Gly	Lys 350	1347	
Arg	Ser	Tyr	Arg	Leu 355	Ser	Met	Lys	Val	160 160	Ala	Phe	Pro	Ser	Pro 365	Glu	1395	
Val	Val	Trp	Leu 370	ГÀз	Asp	Gly	Leu	Pro 375	Ala	Thr	Glu	Lys	Ser 380	Ala	Arg	1443	
Tyr	Leu	Thr 385	Arg	Gly	Tyr	Ser	Leu 390	Ile	Ile	Lys	Āsp	Val 395	Thr	Glu	Glu	1491	
Asp	Ala 400 aaa	Gly	Asn	Tyr	Thr	Ile 405	Leu	Leu	Ser	Ile	Lys 410	Gln	Ser	Asn	Val	1539	
Phe	Lys	Asn	Leu	Thr	Ala	Thr	Leu	Ile	Val	Asn	Val	ГЛа	Pro	Gln	Ile		

											_	con	tin [.]	ued		
415					420					425					430	
	gaa Glu	_	_			_			_	_	_				_	1587
	agc Ser	_			_		-		-							1635
	atc Ile	_						_						_	_	1683
	tgt Cys 480															1731
	agc Ser															1779
	ata Ile	_		_		_	_	-	_		_	_		_	_	1827
	aga Arg															1875
	gtg Val		_			_					_	-				1923
	cat His 560	_		_	_		_	_	_	_			_	_		1971
_	tct Ser	_		_		_				_	_	_				2019
	ctg Leu															2067
	aaa Lys															2115
	atg Met		_		_		-					_	_	_	_	2163
	aat Asn 640															2211
	aga Arg															2259
	gtg Val	_		_	_					_	_		_			2307
	ccc Pro															2355
	gag Glu															2403
	aga Arg 720															2451
aac	cag	aag	ggc	tct	gtg	gaa	agt	tca	gca	tac	ctc	act	gtt	caa	gga	2499

Asn Gln Lys Gly Ser Val Glu Ser Ser Ala Tyr Leu Thr Val Gln Gly 735 740 745 750	
acc tcg gac aag tct aat ctg gag ctg atc act cta aca tgc acc tgt Thr Ser Asp Lys Ser Asn Leu Glu Leu Ile Thr Leu Thr Cys Thr Cys 755 760 765	2547
gtg gct gcg act ctc ttc tgg ctc cta tta acc ctc ctt atc cga aaa Val Ala Ala Thr Leu Phe Trp Leu Leu Leu Thr Leu Leu Ile Arg Lys 770 775 780	2595
atg aaa agg tct tct tct gaa ata aag act gac tac cta tca att ata Met Lys Arg Ser Ser Ser Glu Ile Lys Thr Asp Tyr Leu Ser Ile Ile 785 790 795	2643
atg gac cca gat gaa gtt cct ttg gat gag cag tgt gag cgg ctc cct Met Asp Pro Asp Glu Val Pro Leu Asp Glu Gln Cys Glu Arg Leu Pro 800 805 810	2691
tat gat gcc agc aag tgg gag ttt gcc cgg gag aga ctt aaa ctg ggc Tyr Asp Ala Ser Lys Trp Glu Phe Ala Arg Glu Arg Leu Lys Leu Gly 815 820 825 830	2739
aaa tca ctt gga aga ggg gct ttt gga aaa gtg gtt caa gca tca gca Lys Ser Leu Gly Arg Gly Ala Phe Gly Lys Val Val Gln Ala Ser Ala 835 840 845	2787
ttt ggc att aag aaa tca cct acg tgc cgg act gtg gct gtg aaa atg Phe Gly Ile Lys Lys Ser Pro Thr Cys Arg Thr Val Ala Val Lys Met 850 855 860	2835
ctg aaa gag ggg gcc acg gcc agc gag tac aaa gct ctg atg act gag Leu Lys Glu Gly Ala Thr Ala Ser Glu Tyr Lys Ala Leu Met Thr Glu 865 870 875	2883
cta aaa atc ttg acc cac att ggc cac cat ctg aac gtg gtt aac ctg Leu Lys Ile Leu Thr His Ile Gly His His Leu Asn Val Val Asn Leu 880 885 890	2931
ctg gga gcc tgc acc aag caa gga ggg cct ctg atg gtg att gtt gaa Leu Gly Ala Cys Thr Lys Gln Gly Gly Pro Leu Met Val Ile Val Glu 895 900 905 910	2979
tac tgc aaa tat gga aat ctc tcc aac tac ctc aag agc aaa cgt gac Tyr Cys Lys Tyr Gly Asn Leu Ser Asn Tyr Leu Lys Ser Lys Arg Asp 915 920 925	3027
tta ttt ttt ctc aac aag gat gca gca cta cac atg gag cct aag aaa Leu Phe Phe Leu Asn Lys Asp Ala Ala Leu His Met Glu Pro Lys Lys 930 935 940	3075
gaa aaa atg gag cca ggc ctg gaa caa ggc aag aaa cca aga cta gat Glu Lys Met Glu Pro Gly Leu Glu Gln Gly Lys Lys Pro Arg Leu Asp 945 950 955	3123
agc gtc acc agc agc gaa agc ttt gcg agc tcc ggc ttt cag gaa gat Ser Val Thr Ser Ser Glu Ser Phe Ala Ser Ser Gly Phe Gln Glu Asp 960 965 970	3171
aaa agt ctg agt gat gtt gag gaa gag gag gat tct gac ggt ttc tac Lys Ser Leu Ser Asp Val Glu Glu Glu Glu Asp Ser Asp Gly Phe Tyr 975 980 985 990	3219
aag gag ccc atc act atg gaa gat ctg att tct tac agt ttt caa gtg Lys Glu Pro Ile Thr Met Glu Asp Leu Ile Ser Tyr Ser Phe Gln Val 995 1000 1005	3267
gcc aga ggc atg gag ttc ctg tct tcc aga aag tgc att cat cgg Ala Arg Gly Met Glu Phe Leu Ser Ser Arg Lys Cys Ile His Arg 1010 1015 1020	3312
gac ctg gca gcg aga aac att ctt tta tct gag aac aac gtg gtg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Asn Asn Val Val 1025 1030 1035	3357
aag att tgt gat ttt ggc ctt gcc cgg gat att tat aag aac ccc Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asn Pro 1040 1045 1050	3402

								cga Arg 1060							3447	
_		_				_		atc Ile 1075	Tyr	_		_	-	-	3492	
								tgg Trp 1090	Glu						3537	
								atg Met 1105							3582	
_	-		_	~ ~	_		_	aga Arg 1120	-						3627	
	_			_		_	_	gac Asp 1135	_			_	-		3672	
								ctt Leu 1150							3717	
								gat Asp 1165							3762	
								agt Ser 1180						act Thr	3807	
								aag Lys 1195							3852	
								gat Asp 1210							3897	
	_		_	_	_	_	_	atc Ile 1225				-	_		3942	
	_		_			_		gat Asp 1240	_		_		_	agc Ser	3987	
_		_	_	_			_	ctg Leu 1255	Lys	_				act Thr	4032	
				Lys				aag Lys 1270	Ile						4077	
_		_	_		_		_	tct Ser 1285	_	_	_			_	4122	
	-			_	_			gtc Val 1300	_	_		_	-		4167	
				His				gaa Glu 1315	Arg						4212	
								gtg Val 1330							4257	
	atc Ile	tag	agtti	gaca	ac ga	aagc	ctta	t ttc	taga	agc a	acat	gtgt	at		4306	

-continued

				0011011	1404	
ttataccccc	aggaaactag	cttttgccag	tattatgcat	atataagttt	acacctttat	4366
ctttccatgg	gagccagctg	ctttttgtga	tttttttaat	agtgcttttt	ttttttgact	4426
aacaagaatg	taactccaga	tagagaaata	gtgacaagtg	aagaacacta	ctgctaaatc	4486
ctcatgttac	tcagtgttag	agaaatcctt	cctaaaccca	atgacttccc	tgctccaacc	4546
cccgccacct	cagggcacgc	aggaccagtt	tgattgagga	gctgcactga	tcacccaatg	4606
catcacgtac	cccactgggc	cagccctgca	gcccaaaacc	cagggcaaca	agcccgttag	4666
ccccagggga	tcactggctg	gcctgagcaa	catctcggga	gtcctctagc	aggcctaaga	4726
catgtgagga	ggaaaaggaa	aaaaagcaaa	aagcaaggga	gaaaagagaa	accgggagaa	4786
ggcatgagaa	agaatttgag	acgcaccatg	tgggcacgga	gggggacggg	gctcagcaat	4846
gccatttcag	tggcttccca	gctctgaccc	ttctacattt	gagggcccag	ccaggagcag	4906
atggacagcg	atgaggggac	attttctgga	ttctgggagg	caagaaaagg	acaaatatct	4966
tttttggaac	taaagcaaat	tttagacctt	tacctatgga	agtggttcta	tgtccattct	5026
cattcgtggc	atgttttgat	ttgtagcact	gagggtggca	ctcaactctg	agcccatact	5086
tttggctcct	ctagtaagat	gcactgaaaa	cttagccaga	gttaggttgt	ctccaggcca	5146
tgatggcctt	acactgaaaa	tgtcacattc	tattttgggt	attaatatat	agtccagaca	5206
cttaactcaa	tttcttggta	ttattctgtt	ttgcacagtt	agttgtgaaa	gaaagctgag	5266
aagaatgaaa	atgcagtcct	gaggagagtt	ttctccatat	caaaacgagg	gctgatggag	5326
gaaaaaggtc	aataaggtca	agggaagacc	ccgtctctat	accaaccaaa	ccaattcacc	5386
aacacagttg	ggacccaaaa	cacaggaagt	cagtcacgtt	tccttttcat	ttaatgggga	5446
ttccactatc	tcacactaat	ctgaaaggat	gtggaagagc	attagctggc	gcatattaag	5506
cactttaagc	tccttgagta	aaaaggtggt	atgtaattta	tgcaaggtat	ttctccagtt	5566
gggactcagg	atattagtta	atgagccatc	actagaagaa	aagcccattt	tcaactgctt	5626
tgaaacttgc	ctggggtctg	agcatgatgg	gaatagggag	acagggtagg	aaagggcgcc	5686
tactcttcag	ggtctaaaga	tcaagtgggc	cttggatcgc	taagctggct	ctgtttgatg	5746
ctatttatgc	aagttagggt	ctatgtattt	a			5777
<210> SEQ 1 <211> LENG <212> TYPE	ΓH: 1338					

<212> TYPE: PRT <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser 1 $$ 5

Glu Leu Ser Leu Lys Gly Thr Gln His Ile Met Gln Ala Gly Gln Thr

Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys Trp Ser Leu Pro $50 \hspace{1.5cm} 60$

Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala 65 70707575

Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr 85 9095

Ala Gln Ala Asn His Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val 100 105 110

Pro	Thr	Ser 115	Lys	Lys	Lys	Glu	Thr 120	Glu	Ser	Ala	Ile	Tyr 125	Ile	Phe	Ile
Ser	Asp 130	Thr	Gly	Arg	Pro	Phe 135	Val	Glu	Met	Tyr	Ser 140	Glu	Ile	Pro	Glu
Ile 145	Ile	His	Met	Thr	Glu 150	Gly	Arg	Glu	Leu	Val 155	Ile	Pro	Cys	Arg	Val 160
Thr	Ser	Pro	Asn	Ile 165	Thr	Val	Thr	Leu	Lys 170	Lys	Phe	Pro	Leu	Asp 175	Thr
Leu	Ile	Pro	Asp 180	Gly	Lys	Arg	Ile	Ile 185	Trp	Asp	Ser	Arg	Lys 190	Gly	Phe
Ile	Ile	Ser 195	Asn	Ala	Thr	Tyr	Lys 200	Glu	Ile	Gly	Leu	Leu 205	Thr	Cys	Glu
Ala	Thr 210	Val	Asn	Gly	His	Leu 215	Tyr	Lys	Thr	Asn	Tyr 220	Leu	Thr	His	Arg
Gln 225	Thr	Asn	Thr	Ile	Ile 230	Asp	Val	Gln	Ile	Ser 235	Thr	Pro	Arg	Pro	Val 240
ГÀз	Leu	Leu	Arg	Gly 245	His	Thr	Leu	Val	Leu 250	Asn	CÀa	Thr	Ala	Thr 255	Thr
Pro	Leu	Asn	Thr 260	Arg	Val	Gln	Met	Thr 265	Trp	Ser	Tyr	Pro	Asp 270	Glu	Lys
Asn	Lys	Arg 275	Ala	Ser	Val	Arg	Arg 280	Arg	Ile	Asp	Gln	Ser 285	Asn	Ser	His
Ala	Asn 290	Ile	Phe	Tyr	Ser	Val 295	Leu	Thr	Ile	Asp	300 TÀa	Met	Gln	Asn	Lys
Asp 305	Lys	Gly	Leu	Tyr	Thr 310	CÀa	Arg	Val	Arg	Ser 315	Gly	Pro	Ser	Phe	Lys 320
Ser	Val	Asn	Thr	Ser 325	Val	His	Ile	Tyr	Asp 330	Lys	Ala	Phe	Ile	Thr 335	Val
ГÀа	His	Arg	Lys 340	Gln	Gln	Val	Leu	Glu 345	Thr	Val	Ala	Gly	350 Tàa	Arg	Ser
Tyr	Arg	Leu 355	Ser	Met	ràa	Val	360 Lys	Ala	Phe	Pro	Ser	Pro 365	Glu	Val	Val
Trp	Leu 370	ГÀв	Asp	Gly	Leu	Pro 375	Ala	Thr	Glu	Lys	Ser 380	Ala	Arg	Tyr	Leu
Thr 385	Arg	Gly	Tyr	Ser	Leu 390	Ile	Ile	Lys	Asp	Val 395	Thr	Glu	Glu	Asp	Ala 400
Gly	Asn				Leu			Ile						Phe 415	
Asn	Leu	Thr	Ala 420	Thr	Leu	Ile	Val	Asn 425	Val	Lys	Pro	Gln	Ile 430	Tyr	Glu
Lys	Ala	Val 435	Ser	Ser	Phe	Pro	Asp 440	Pro	Ala	Leu	Tyr	Pro 445	Leu	Gly	Ser
Arg	Gln 450	Ile	Leu	Thr	CAa	Thr 455	Ala	Tyr	Gly	Ile	Pro 460	Gln	Pro	Thr	Ile
Lys 465	Trp	Phe	Trp	His	Pro 470	CAa	Asn	His	Asn	His 475	Ser	Glu	Ala	Arg	Cys 480
Asp	Phe	Сла	Ser	Asn 485	Asn	Glu	Glu	Ser	Phe 490	Ile	Leu	Asp	Ala	Asp 495	Ser
Asn	Met	Gly	Asn 500	Arg	Ile	Glu	Ser	Ile 505	Thr	Gln	Arg	Met	Ala 510	Ile	Ile
Glu	Gly	Lys 515	Asn	Lys	Met	Ala	Ser 520	Thr	Leu	Val	Val	Ala 525	Asp	Ser	Arg
Ile	Ser	Gly	Ile	Tyr	Ile	Cys	Ile	Ala	Ser	Asn	Lys	Val	Gly	Thr	Val

												COII	CIII	ucu	
	530					535					540				
Gly 545	Arg	Asn	Ile	Ser	Phe 550	Tyr	Ile	Thr	Asp	Val 555	Pro	Asn	Gly	Phe	His 560
Val	Asn	Leu	Glu	Lys 565	Met	Pro	Thr	Glu	Gly 570	Glu	Asp	Leu	Lys	Leu 575	Ser
CAa	Thr	Val	Asn 580	ГÀа	Phe	Leu	Tyr	Arg 585	Asp	Val	Thr	Trp	Ile 590	Leu	Leu
Arg	Thr	Val 595	Asn	Asn	Arg	Thr	Met 600	His	Tyr	Ser	Ile	Ser 605	ГЛа	Gln	Lys
Met	Ala 610	Ile	Thr	Lys	Glu	His 615	Ser	Ile	Thr	Leu	Asn 620	Leu	Thr	Ile	Met
Asn 625	Val	Ser	Leu	Gln	Asp 630	Ser	Gly	Thr	Tyr	Ala 635	CAa	Arg	Ala	Arg	Asn 640
Val	Tyr	Thr	Gly	Glu 645	Glu	Ile	Leu	Gln	Lys 650	Lys	Glu	Ile	Thr	Ile 655	Arg
Asp	Gln	Glu	Ala 660	Pro	Tyr	Leu	Leu	Arg 665	Asn	Leu	Ser	Asp	His 670	Thr	Val
Ala	Ile	Ser 675	Ser	Ser	Thr	Thr	Leu 680	Asp	Сла	His	Ala	Asn 685	Gly	Val	Pro
Glu	Pro 690	Gln	Ile	Thr	Trp	Phe 695	Lys	Asn	Asn	His	Lys 700	Ile	Gln	Gln	Glu
Pro 705	Gly	Ile	Ile	Leu	Gly 710	Pro	Gly	Ser	Ser	Thr 715	Leu	Phe	Ile	Glu	Arg 720
Val	Thr	Glu	Glu	Asp 725	Glu	Gly	Val	Tyr	His 730	Cys	Lys	Ala	Thr	Asn 735	Gln
rya	Gly	Ser	Val 740	Glu	Ser	Ser	Ala	Tyr 745	Leu	Thr	Val	Gln	Gly 750	Thr	Ser
Asp	Lys	Ser 755	Asn	Leu	Glu	Leu	Ile 760	Thr	Leu	Thr	Cys	Thr 765	Cha	Val	Ala
Ala	Thr 770	Leu	Phe	Trp	Leu	Leu 775	Leu	Thr	Leu	Leu	Ile 780	Arg	Lys	Met	Lys
Arg 785	Ser	Ser	Ser	Glu	Ile 790	Lys	Thr	Asp	Tyr	Leu 795	Ser	Ile	Ile	Met	Asp
Pro	Asp	Glu	Val	Pro 805	Leu	Asp	Glu	Gln	Cys 810	Glu	Arg	Leu	Pro	Tyr 815	Asp
Ala	Ser	Lys	Trp 820	Glu	Phe	Ala	Arg	Glu 825	Arg	Leu	Lys	Leu	Gly 830	Lys	Ser
Leu	Gly	Arg 835	Gly	Ala	Phe	Gly	Lys 840	Val	Val	Gln	Ala	Ser 845	Ala	Phe	Gly
Ile	Lys 850	Lys	Ser	Pro	Thr	Сув 855	Arg	Thr	Val	Ala	Val 860	Lys	Met	Leu	Lys
Glu 865	Gly	Ala	Thr	Ala	Ser 870	Glu	Tyr	Lys	Ala	Leu 875	Met	Thr	Glu	Leu	880
Ile	Leu	Thr	His	Ile 885	Gly	His	His	Leu	Asn 890	Val	Val	Asn	Leu	Leu 895	Gly
Ala	Сув	Thr	Lys 900	Gln	Gly	Gly	Pro	Leu 905	Met	Val	Ile	Val	Glu 910	Tyr	Cys
Lys	Tyr	Gly 915	Asn	Leu	Ser	Asn	Tyr 920	Leu	Lys	Ser	Lys	Arg 925	Asp	Leu	Phe
Phe	Leu 930	Asn	Lys	Asp	Ala	Ala 935	Leu	His	Met	Glu	Pro 940	Lys	Lys	Glu	Lys
Met 945	Glu	Pro	Gly	Leu	Glu 950	Gln	Gly	Lys	Lys	Pro 955	Arg	Leu	Asp	Ser	Val 960

Thr Ser Ser Glu Ser Phe Ala Ser Ser Gly Phe Gln Glu Asp Lys Ser 965 970 975	er
Leu Ser Asp Val Glu Glu Glu Glu Asp Ser Asp Gly Phe Tyr Lys G 980 985 990	Lu
Pro Ile Thr Met Glu Asp Leu Ile Ser Tyr Ser Phe Gln Val Ala 995 1000 1005	Arg
Gly Met Glu Phe Leu Ser Ser Arg Lys Cys Ile His Arg Asp Let 1010 1015 1020	1
Ala Ala Arg Asn Ile Leu Leu Ser Glu Asn Asn Val Val Lys Ile 1025 1030 1035	€
Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asn Pro Asp Tyr 1040 1045 1050	£
Val Arg Lys Gly Asp Thr Arg Leu Pro Leu Lys Trp Met Ala Pro 1055 1060 1065	>
Glu Ser Ile Phe Asp Lys Ile Tyr Ser Thr Lys Ser Asp Val Tr 1070 1075 1080	Þ
Ser Tyr Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Gly Ser 1085 1090 1095	£
Pro Tyr Pro Gly Val Gln Met Asp Glu Asp Phe Cys Ser Arg Let 1100 1105 1110	1
Arg Glu Gly Met Arg Met Arg Ala Pro Glu Tyr Ser Thr Pro Glu 1115 1120 1125	1
Ile Tyr Gln Ile Met Leu Asp Cys Trp His Arg Asp Pro Lys Glu 1130 1135 1140	1
Arg Pro Arg Phe Ala Glu Leu Val Glu Lys Leu Gly Asp Leu Let 1145 1150 1155	1
Gln Ala Asn Val Gln Gln Asp Gly Lys Asp Tyr Ile Pro Ile Ass 1160 1165 1170	1
Ala Ile Leu Thr Gly Asn Ser Gly Phe Thr Tyr Ser Thr Pro Ala 1175 1180 1185	à
Phe Ser Glu Asp Phe Phe Lys Glu Ser Ile Ser Ala Pro Lys Phe 1190 1195 1200	€
Asn Ser Gly Ser Ser Asp Asp Val Arg Tyr Val Asn Ala Phe Ly: 1205 1210 1215	3
Phe Met Ser Leu Glu Arg Ile Lys Thr Phe Glu Glu Leu Leu Pro 1220 1225 1230	>
Asn Ala Thr Ser Met Phe Asp Asp Tyr Gln Gly Asp Ser Ser Th 1235 1240 1245	£
Leu Leu Ala Ser Pro Met Leu Lys Arg Phe Thr Trp Thr Asp Ser 1250 1255 1260	£
Lys Pro Lys Ala Ser Leu Lys Ile Asp Leu Arg Val Thr Ser Lys 1265 1270 1275	3
Ser Lys Glu Ser Gly Leu Ser Asp Val Ser Arg Pro Ser Phe Cys 1280 1285 1290	3
His Ser Ser Cys Gly His Val Ser Glu Gly Lys Arg Arg Phe Th 1295 1300 1305	£
Tyr Asp His Ala Glu Leu Glu Arg Lys Ile Ala Cys Cys Ser Pro 1310 1315 1320	>
Pro Pro Asp Tyr Asn Ser Val Val Leu Tyr Ser Thr Pro Pro Ile 1325 1330 1335	9
Olo, dio TD NO 3	

2213 DURANGEN Homo mapsens 2220 FRATURE: 2221 NUMBENY: CON 2221 DUCATION: (11 (2292) 22400 SEQUENCE: 3 and goad and stop ctd ctd god got got ctd god ctd tog gtd goad Met Gill ser lys Val Leu Leu Nis Val Nis Leu Trp Leu Cyd Val Cill 25														<u> </u>	<u></u>			 		
atg gag age aag gtg ttg ctg gc gtc gtc gtc ttg gctc tgc gtg gag Net Glu Ser Lye Val Leu Leu hal a Val hila Leu Tep Leu Cyp Val Glu 15 acc cgg gcc gcc ctc gtg ggt ttg cct agt gtt tct ctt gat ctg ccc Thr Arg hila hila ser Val Gly Leu Pro Ser Val Ser Leu App Leu Tr Arg hila hila ser Val Gly Leu Pro Ser Val Ser Leu App Leu Tr Arg hila hila ser Val Gly Leu Pro Ser Val Ser Leu App Leu Pro 20 20 agg ctc agc atc can ana gac atc ctt acc att acg att age tgt ttg ccc Thr Arg hila hila ser Val Gly Leu Pro Ser Val Ser Leu And Thr Thr 43 Arg Leu Ser Ile Gln Luya App Ile Leu Thr Ile Lye Ala Ann Thr Thr 43 ctt can att act tgc agg gga cag agg gag ttg gac tgg ctt tgg coc Leu Gln Ile Thr Cyp Arg Gly Gln Arg Anp leu App Trp Leu Trp Pro 50 60 aat aat cag agt ggc agt gag can ag ggt gag gg gg att gag tgg ct gag gag Ann Ann Gln Ser Gly Ser Glu Gln Arg Yal Glu Val Tr Glu Cyp Ser 65 70 70 75 80 gag ggc ttc ttc ggt aag cac ttc aca ant cca ana gg att gga att Amp Gly Leu Phe Cyp Lyp Thr Leu Thr Ile Pro Lyp Val Ile Gly Ann 85 gac act gga gcc tac ang tgc ttc tac cgg gan act gac ttg gcc tcg Anp Thr Gly Ala Tyr Lya Cyp Phe Tyr Arg Glu Thr App Leu Ala Ser 110 gtc att tat gtc tat gtt can gat tac aga ttc cac ttt att gct tct Val Ile Tyr Val Tyr Val Gln App Tyr Arg Ser Pro Phe Ile Ala Ser 115 120 gtt agt gac cac act ggg gtc gtg gtg act att act gag ana ana ana ana 281 act gtg gtg att cac tgt ctc ggg tcc att tcc and ttc ana Lyc Ann Leu Ann Ser App Gln Hile Gly Val Val Tyr Ile Thr Glu Ann Lyc Ann Lyc 115 120 act gtg gtg att cac tgt ctc ggg tcc att tcc and ctc ana gtg tca 120 act gtg gtg att cac tgt ctc ggg gtc act tcc and ctc ana gtg tca 121 act tcc tgg gan gan ana gag ttt act att ccc age tca 126 act tcq gag aga aga gan gag ttt act tcc gag tca 127 act tcc tgg aga tac cac gc tcc ggg tcc att tcc and ctc ana 128 act tcc tgg aga tac cac gc tcc atg ggt tac att act con aga tac 128 act tcc tgg aga tac cac gc tcc atg gtc tta act act ccc age tac 128 act tcc tgg atg ttt ct atg gag aga gag att act act gcc gd ana act 128 act tcc tga att atg tac atg gtc ttc act gga	<213 <220 <221	3 > OF 0 > FI L > NA	RGAN: EATUI AME/I	ISM: RE: KEY:	CDS			s												
Mee Glu Ser bye Val Leu Leu Ala Val Ah Leu Trp Leu Cye Val Glu acc egg gcc gcc tet gtg ggt ttg cct agt gtt tct ctt gat ctg ccc Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu App Leu Pro 20 20 20 20 20 20 20 20 20 20 20 20 20						, , , , ,	,													
Thr Arg Ala Ala Ser Val Gily Lew Pro Ser Val Ser Lew App Lew Pro 20 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30	Met				Val					Āla					Val		48			
Arg Les Ser Ile Gin Lye Åep Ile Leu Thr Ile Lye Åla Aan Thr Thr 46 cut cas att act tgo agg ggs cag agg ggs ttg gac ttg cut tgg ccc Leu Gin Ile Thr Cye Arg Gly Gin Arg App Leu App Trp Leu Trp Pro 50 aat aat cag agt ggc agt gag caa agg gtg gag gtg act gag tgc agc Aen Aen Gin Ser Giy Ser Gin Gin Arg Val Gin Val Thr Gin Cye Ser 65 gat ggc ctc ttc ttgt aag aca ctc aca att cca aas gtg atc ggs act gag tgc agc Aep Giy Leu Phe Cye Lye Thr Leu Thr Ile Pro Lye Val Ile Giy Aen 86 gac act gga gcc tac aag tgc tc tac cgg gaa act gac ttg gcc tcg Aep Thr Giy Ala Tyr Lye Cye Phe Tyr Arg Glu Thr Aep Leu Ala Ser 100 gtc att tat gtc tat gtt caa gat tac aga tct cca ttt att gct tct Val Ile Tyr Val Tyr Val Gln App Tyr Arg Ser Pro Phe Ile Ala Ser 115 gt agt gac caa cat gga gct gt gat act att act gag aac aaa aac aaa Val Ser App Gin Hie Giy Val Val Tyr Ile Thr Glu Aen Lye Aen Lye 130 act gtg gtg att cca gt tcc gg tcc att tca aat ctc aca gtg tcc Val Ile Tyr Val Tyr Val Gry Phe Tyr App Phe Val Pro Aep Gly Aen Arg 140 act gtg gtg att cca tgt ctc gg tcc att tca aat ctc act gtg tac Ctt gtg gca aga tac cca gaa aga gag tt gt gtc Ser Ile Ser Aen Leu Aen Val Ser 145 att tcc tgg gac aga tac cca gaa aga gag tt gt ctc gt gt aca tt tca 141 att cct gg gac aga tac cca gaa aga gag tt gt gt cc 145 att tcc tgg gac aga tac ca gaa aga gag tt gt cc 155 att tcc tgg gac aga tac cca gaa aga gag tt tac 160 att tcc tgg gac aga tac cca gaa aga gag tt tac 170 att tcc tgg gac aga tac cca gaa aga gag tt tact 185 act gtg gac aga tac cca gaa aga gag tt tact 185 act tcc tgg gac aga tac cca gaa aga gag tt tact 187 att tcc tgg gac aga tac cac gag aga gag aga 187 att tcc tgg gac aga tac cac gag aga gag act 180 act gtg gac aga tac gac aga aga gag tt tact 180 act gac aga tac gac gac aga gag gag tac 180 act gac gac ata gac gac gac aga gag gag act 180 act tgt gac aga tac gac gac gac gac gac 180 act gac gac aga aga aga gag tt gac 180 act gac gac ata gac gac gac gac 280 acc tac gac gac aga gac gac gac 280 acc tac gac gac aga ga				Āla					Pro					Asp			96			
Leu Gin 1le Thr Cys Arg Gily Gin Arg Asp Leu Asp Trp Leu Trp Pro 55 56 60 aat aat cag agt ggc agt gag caa agg gtg gag gtg act gag tgc agc Asm Asm Gin Ser Gily Ser Giu Gin Arg Val Giu Val Thr Giu Cys Ser 65 70 70 gat ggc ctc ttc tgt aag aca ctc aca att cca aaa gtg atc gga aat Asp Gily Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gily Asm 85 gac act gga gcc tac aag tgc ttc tac cgg gaa act gac ttg gcc tcg Asp Thr Gily Ala Tyr Lys Cys Phe Tyr Arg Giu Thr Asp Leu Ala Ser 100 100 gtc att tat gtc tat gtt caa gat tac aga ctc cat tt att gct tct Val Ile Tyr Val Tyr Val Gin Asp Tyr Arg Ser Pro Phe Ile Ala Ser 115 110 110 gtt agt gac caa cat gga gtc gtg tac att act gag aac aaa aac aaa Val Ser Asp Gin His Gily Val Val Tyr Ile Thr Giu Asm Lys Asm Lys 130 135 136 act gtg gtg att cca tgt ctc ggg tcc att tca aat ctc aac gtg tca Thr Val Val Ile Fro Cys Leu Gily Ser Ile Ser Asm Leu Asm Val Ser 115 126 ctt tgt gca aga tac cca gaa aag aga ttt gtt cct gag ggt aac aga Leu Cys Ala Arg Tyr Pro Giu Lys Arg Phe Val Pro Asp Gily Asm Arg 185 186 187 187 att tcc tgg gac atg aga aag aag ggc ttt act att ccc agc tac atg atc 188 189 180 180 180 180 180 180 180 180 180 180			Ser					Ile					Āla				144			
Aem Aem Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser 65 80 gat ggc ctc ttc tgt aag aca ctc aca att cca aaa gtg atc gga aat Aep Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Aen 95 95 gac act gga gcc tac aag tgc ttc tac gg gaa act gac ttg gcc tcg Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser 100 100 100 100 100 100 100 100 100 10		Gln					Gly					Asp					192			
Agp Gly Leu Phe Cys Lys Thr Leu Thr 11e Pro Lys Val I1e Gly Asn 95 gac act gga gcc tac asag tgc ttc tac cogg gas act gac ttg gcc tcg Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser 100 gtc att tat gtc tat gtt cas gat tac ags tct cat tat gct tct Yal I1e Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe I1e Ala Ser 115 gtt agt gac caa cat gga gtc gtg tac att act gag aca asa aca aca 432 Val Ser Asp Gln His Gly Val Val Tyr I1e Thr Glu Asn Lys Asn Lys 130 act gtg gtg att cas tgt ctc ggg tcc att tca act ct acc gtg tca act gtg gtg att cat gt ctc ggg tcc att tca act ct acc gtg tca act yal Val Val Tyr I1e Thr Glu Asn Lys Asn Val Ser 145 act gtg gca aga tac cca gas asag aga ttt gtc ct gat ggt aca act act gac gdt aca act gac gcc yal Val Val Val Val Val Val Pro Asp Gly Asn Arg 170 ctt tgt gca aga tac cca gas asag aga ttt gtc ct gat ggt aca aca act cca gcc aca aca gac yal As Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg 175 att cc tcg gga aga aga aga ggc tt act act act cca gc tac atg atc 11e Ser Tyr Asp Ser Lys Lys Gly Phe Thr I1e Pro Ser Tyr Met I1e 180 agc tat gct ggc atg gtc ttc tgt gas gca asa att act gat gas act yal Gly Ser 195 cac gat gtc att atg tac ata gtt gtc gtt gta ggg tat agg att tat yal Gly Tyr Arg 11e Tyr 210 gat gtg gtt ctg agt ccg tct cat ggs att gas cta tct gtt gga gas acc aga acc aga acc yal Val Val Leu Ser Pro Ser His Gly I1e Glu Leu Ser Val Gly Glu 225 asg ttt act tgc agt ccg tct cat gga act gas cta act gtg ggg att ggg gas acc yal gtg gtt cta act gtg acc acc acc acc acc acc acc acc acc ac	Asn					Ser					Glu					Ser	240			
Asp Thr Gly Ala Tyr Lye Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser 100 100 100 100 100 100 100 100 100 10					Cys					Ile					Gly		288			
Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser 115 115 120 120 120 120 120 120 120 125 125 125 125 125 125 125 125 125 125 120 125 120 125 120	_			Āla		_	_		Tyr		_		_	Leu	_	_	336			
Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys 135 act gtg gtg att coa tgt ctc ggg tcc att tca aat ctc aac gtg tca Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser 160 ctt tgt gca aga tac cca gaa aag aga ttt gtt cct gat ggt aac aga Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg 175 att tcc tgg gac agc aag aag ggc ttt act att ccc agc tac atg atc Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile 180 agc tat gct ggc atg gtc ttc tgt gaa gca aaa att aat gat gaa agt Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser 195 tac cag tct att atg tac ata gtt gtc gtt gtg ggg tat agg att tat Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile Tyr 210 gat gtg gtt ctg agt ccg tct cat gga att gaa cta tct gtt gag gaa ta gag tt gtg ggg att Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 235 gac tt aac tgg gaa tac cct tct tcg aag act aact a	-		Tyr	_		-		Asp		_			Phe		_		384			
Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser 165 Ctt tgt gca aga tac cca gaa aag aga ttt gtt cct gat ggt aac aga Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg 165 att tcc tgg gac agc aag aag agg ggt tt act att ccc agc tac atg atc 160 att tcc tgg gac agc aag aag agg ggt tt act att ccc agc tac atg atc 180 Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile 180 agc tat gct ggc atg gtc ttc tgt gaa gca aaa att aat gat gaa agt Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser 195 200 tac cag tct att atg tac ata gtt gtc gtt gta ggg tat agg att tat Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile Tyr 210 gat gtg gtt ctg agt ccg tct cat gga att gaa cta tct gtt gga gaa Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 2240 aag ctt gtc tta aat tgt aca gca aga act gaa cta aat gtg ggg att Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 245 gac ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aac tta Asp Val Clu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 265 gac ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aac tt Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 270 gta aac cag gac cta aaa acc cag tct ggg agt gag atg aga aat ttt Asp Asp Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe		Ser					Val					Glu					432			
Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg 1175 att too tyg gac agc aag aag ggc ttt act att coc agc tac atg atc 180	Thr					Cys					Ser					Ser	480			
Age tat gct ggc atg gtc ttc tgt gaa gca aaa att aat gat gaa agt for tat atg tac ata gtt gtc gtc gtt gta ggg tat agg att tat for glan Ser Ile Met Tyr Ile Val Val Val Val Qly Tyr Arg Ile Tyr 210 gat gtg gtt ctg agt ccg tct cat gga att gat gas cta tct gtt gaa gca at for glan Ser Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 235 gat gtg ctt gta aat tgt aca gaa agt glan Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 235 gat ctg gtc tta aat tgt aca gaa aga act gaa cta at gtg ggg att agg gat tat glan Cya		_	_	_	Tyr		_	_	-	Phe	_		-		Asn	-	528			
Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser 195 tac cag tct att atg tac ata gtt gtc gtt gta ggg tat agg att tat Tyr Gln Ser Ile Met Tyr Ile Val Val Val Gly Tyr Arg Ile Tyr 210 gat gtg gtt ctg agt ccg tct cat gga att gaa cta tct gtt gga gaa Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 225 aag ctt gtc tta aat tgt aca gca aga act gaa cta aat gtg ggg att Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 255 gac ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aaa ctt Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 270 gta aac cga gac cta aaa acc cag tct ggg agt gag atg aag aaa ttt Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe				Asp					Phe					Tyr			576			
Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile Tyr 210 gat gtg gtt ctg agt ccg tct cat gga att gaa cta tct gtt gga gaa Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 225 aag ctt gtc tta aat tgt aca gca aga act gaa cta aat gtg ggg att Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 245 gac ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aac ctt Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 265 gta aac cga gac cta aaa acc cag tct ggg agt gag atg aag aaa ttt Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe 720 720 720 720 720 720 768 768 768 816 816 816 827 8364	_		Ala		_	_		Cys	_	_			Asn	_	_	_	624			
Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 225 230 235 240 aag ctt gtc tta aat tgt aca gca aga act gaa cta aat gtg ggg att Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 245 250 255 gac ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aaa ctt Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 260 265 270 gta aac cga gac cta aaa acc cag tct ggg agt gag atg aag aaa ttt Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe		Gln			_		Ile	_	_	_	_	Gly					672			
Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 245 gac ttc aac tgg gaa tac cct tct tcg aag cat cag cat aag aaa ctt Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 260 gta aac cga gac cta aaa acc cag tct ggg agt gag atg aag aaa ttt Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe	Asp					Pro					Glu					Glu	720			
Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 260 265 270 gta aac cga gac cta aaa acc cag tct ggg agt gag atg aag aaa ttt Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe					Asn					Thr					Gly		768			
Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe	_			Trp	_				Ser	_		_		Lys			816			
	-		Arg	_				Gln			_		Met	_			864			

_	_			ata Ile	_		_		 _	_			_	912	
				tcc Ser 310										960	
				gaa Glu										1008	
				gcc Ala										1056	
_				cca Pro			_							1104	
				aat Asn					 		_	_	_	1152	
				gaa Glu 390										1200	
				aag Lys		_	_	_		-		_	-	1248	
				cag Gln										1296	
				ggc Gly										1344	
_			_	cat His						_	_		-	1392	
				ccc Pro 470										1440	
				aga Arg										1488	
	-	_		aat Asn			-		-					1536	
				gtt Val										1584	
				aac Asn										1632	
				ggt Gly 550										1680	
				agc Ser										1728	
_				aca Thr			_			_		_		1776	
				ttg Leu										1824	

-continued
595 600 605
ctt tgg aaa ttg aat gcc acc atg ttc tct aat agc aca aat gac att 1872 Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser Thr Asn Asp Ile 610 615 620
ttg atc atg gag ctt aag aat gca tcc ttg cag gac caa gga gac tat 1920 Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr 625 630 635 640
gtc tgc ctt gct caa gac agg aag acc aag aaa aga cat tgc gtg gtc 1968 Val Cys Leu Ala Gln Asp Arg Lys Thr Lys Lys Arg His Cys Val Val 645 650 655
agg cag ctc aca gtc cta gag cgt gtg gca ccc acg atc aca gga aac 2016 Arg Gln Leu Thr Val Leu Glu Arg Val Ala Pro Thr Ile Thr Gly Asn 660 665 670
ctg gag aat cag acg aca agt att ggg gaa agc atc gaa gtc tca tgc 2064 Leu Glu Asn Gln Thr Thr Ser Ile Gly Glu Ser Ile Glu Val Ser Cys 675 680 685
acg gca tct ggg aat ccc cct cca cag atc atg tgg ttt aaa gat aat 2112 Thr Ala Ser Gly Asn Pro Pro Pro Gln Ile Met Trp Phe Lys Asp Asn 690 695 700
gag acc ctt gta gaa gac tca ggc att gta ttg aag gat ggg aac cgg 2160 Glu Thr Leu Val Glu Asp Ser Gly Ile Val Leu Lys Asp Gly Asn Arg 705 710 715 720
aac ctc act atc cgc aga gtg agg aag gac gaa ggc ctc tac acc 2208 Asn Leu Thr Ile Arg Arg Val Arg Lys Glu Asp Glu Gly Leu Tyr Thr 725 730 735
tgc cag gca tgc agt gtt ctt ggc tgt gca aaa gtg gag gca ttt ttc 2256 Cys Gln Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 740 745 750
ata ata gaa ggt gcc cag gaa aag acg aac ttg gaa 2292 Ile Ile Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu 755 760
<210> SEQ ID NO 4 <211> LENGTH: 764 <212> TYPE: PRT <213> ORGANISM: Homo sapiens
<400> SEQUENCE: 4
Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu 1 5 10 15
Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro 20 25 30
Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr 35 40 45 Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro
50 55 60 Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser 65 70 75 80
Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn 85 90 95
Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser 100 105 110
Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser 115 120 125
Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys 130 135 140 Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser
145 150 155 160

Leu	Cya	Ala	Arg	Tyr 165	Pro	Glu	Lys	Arg	Phe 170	Val	Pro	Asp	Gly	Asn 175	Arg
Ile	Ser	Trp	Asp 180	Ser	Lys	Lys	Gly	Phe 185	Thr	Ile	Pro	Ser	Tyr 190	Met	Ile
Ser	Tyr	Ala 195	Gly	Met	Val	Phe	Cys 200	Glu	Ala	ГЛа	Ile	Asn 205	Asp	Glu	Ser
Tyr	Gln 210	Ser	Ile	Met	Tyr	Ile 215	Val	Val	Val	Val	Gly 220	Tyr	Arg	Ile	Tyr
Asp 225	Val	Val	Leu	Ser	Pro 230	Ser	His	Gly	Ile	Glu 235	Leu	Ser	Val	Gly	Glu 240
Lys	Leu	Val	Leu	Asn 245	Cya	Thr	Ala	Arg	Thr 250	Glu	Leu	Asn	Val	Gly 255	Ile
Asp	Phe	Asn	Trp 260	Glu	Tyr	Pro	Ser	Ser 265	Lys	His	Gln	His	Lys 270	Lys	Leu
Val	Asn	Arg 275	Asp	Leu	Lys	Thr	Gln 280	Ser	Gly	Ser	Glu	Met 285	Lys	Lys	Phe
Leu	Ser 290	Thr	Leu	Thr	Ile	Asp 295	Gly	Val	Thr	Arg	Ser 300	Asp	Gln	Gly	Leu
Tyr 305	Thr	Cys	Ala	Ala	Ser 310	Ser	Gly	Leu	Met	Thr 315	Lys	Lys	Asn	Ser	Thr 320
Phe	Val	Arg	Val	His 325	Glu	ГÀа	Pro	Phe	Val 330	Ala	Phe	Gly	Ser	Gly 335	Met
Glu	Ser	Leu	Val 340	Glu	Ala	Thr	Val	Gly 345	Glu	Arg	Val	Arg	Ile 350	Pro	Ala
ГÀа	Tyr	Leu 355	Gly	Tyr	Pro	Pro	Pro 360	Glu	Ile	Lys	Trp	Tyr 365	ГÀа	Asn	Gly
Ile	Pro 370	Leu	Glu	Ser	Asn	His 375	Thr	Ile	Lys	Ala	Gly 380	His	Val	Leu	Thr
Ile 385	Met	Glu	Val	Ser	Glu 390	Arg	Aap	Thr	Gly	Asn 395	Tyr	Thr	Val	Ile	Leu 400
Thr	Asn	Pro	Ile	Ser 405	ГЛа	Glu	ГЛа	Gln	Ser 410	His	Val	Val	Ser	Leu 415	Val
Val	Tyr	Val	Pro 420	Pro	Gln	Ile	Gly	Glu 425	Lys	Ser	Leu	Ile	Ser 430	Pro	Val
Asp	Ser	Tyr 435	Gln	Tyr	Gly	Thr	Thr 440	Gln	Thr	Leu	Thr	Cys 445	Thr	Val	Tyr
Ala	Ile 450	Pro	Pro	Pro	His	His 455	Ile	His	Trp	Tyr	Trp 460	Gln	Leu	Glu	Glu
Glu 465	Сув	Ala	Asn	Glu	Pro 470	Ser	Gln	Ala	Val	Ser 475	Val	Thr	Asn	Pro	Tyr 480
Pro	Сув	Glu	Glu	Trp 485	Arg	Ser	Val	Glu	Asp 490	Phe	Gln	Gly	Gly	Asn 495	ГЛа
Ile	Glu	Val	Asn 500	Lys	Asn	Gln	Phe	Ala 505	Leu	Ile	Glu	Gly	Lys 510	Asn	ГÀа
Thr	Val	Ser 515	Thr	Leu	Val	Ile	Gln 520	Ala	Ala	Asn	Val	Ser 525	Ala	Leu	Tyr
ГÀа	Сув 530	Glu	Ala	Val	Asn	Lys 535	Val	Gly	Arg	Gly	Glu 540	Arg	Val	Ile	Ser
Phe 545	His	Val	Thr	Arg	Gly 550	Pro	Glu	Ile	Thr	Leu 555	Gln	Pro	Asp	Met	Gln 560
Pro	Thr	Glu	Gln	Glu 565	Ser	Val	Ser	Leu	Trp 570	Cys	Thr	Ala	Asp	Arg 575	Ser

The Pine Gill Aam Lou in Trip Tyr Lye Lou Gly Pro Giln Pro Lou Pro 500	-continued	
Leu Thy Lya Leu Ann Ala Thr Met Phe Ser Ann Ser Thir Ann App IIe 610 Cas Thy Lya Leu Ann Ala Thr Met Phe Ser Ann Ser Thir Ann App IIe 610 Cas		
Leu Ile Met Glu Leu Lye Ann Ala Ser Leu Gln Anp Gln Gly Anp Tyre decided to the case of th		
Val Cys Leu Ala Glin Asp Arg Lys Thr Lys Lys Arg His Cys Val Val Glin Leu Thr Val Leu Glin Arg Val Ala Pro Thr Ile Thr Gly Ass 650 665 665 665 665 665 665 665 665 665		
Arg Gin Leu Thr Val Leu Glu Arg Val Ala Pro Thr He Thr Gily Asm 660 665 665 665 665 665 665 665 665 665		
Leu Glu Ann Glu Thr Thr Ser Ile Gly Glu Ser Ile Glu Val Ser Cys 685 Thr Ala Ser Gly Ann Pro Pro Pro Glu Ile Met Trp Phe Lys Ann Ann 680 Glu Thr Leu Val Glu Ann Ser Gly Ile Val Leu Lys Ann Gly 710 Ann Leu Thr Ile Arg Arg Val Arg Lys Glu Ann Glu Gly Leu Tyr Thr 725 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 746 747 748 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 748 749 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 749 740 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 740 741 Cys Elu Dio 5 4210 4210 ARI Glu Agn Gly Ala Glu Glu Lys Thr Ann Leu Glu 755 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 Ala Cys Ser Val Leu Gly Lys Thr Ann Leu Glu 755 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 Cys Glu Ala Cys Ser Val Leu Gly Lys Thr Ann Leu Glu 755 Cys Glu Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 Cys Cys Leu Ann Cys Leu Ann Gly Ala Ala Leu Cys Leu Ann Glu Ala Thr Leu Cys Leu Gly Leu Ann Gly Ala Ala Leu Cys Leu Ann Glu Ala Thr Leu Cys Leu Gly Leu Ann Gly Leu Val Ser Gly Tyr Ser Met 75 Cys Glu Cys		
Thr Ala Ser Gly Ann Pro Pro Pro Gln Ile Met Trp Phe Lye Amp Amn 690 695 700 715 715 720 Am Arg 720 Am		
G10 The Leu Val G1u App Ser G1y 11e Val Leu Lys App G1y App 720 Asn Leu Thr I1e Arg Arg Val Arg Lys G1u App G1u G1y Leu Tyr Thr 725 Cys G1n Ala Cys Ser Val Leu G1y Cys Ala Lys Val G1u Ala Phe Phe 740 735 Cys G1n Ala Cys Ser Val Leu G1y Cys Ala Lys Val G1u Ala Phe Phe 750 I1e I1e G1u G1y Ala G1n G1u Lys Thr Apn Leu G1u 755		
Asm Leu Thr 11e Arg Arg Val Arg Lye Glu Asp Glu Gly Leu Tyr Thr 735 Cye Gln Ala Cye Ser Val Leu Gly Cye Ala Lye Val Glu Ala Phe Phe 740 Cye Gln Ala Cye Ser Val Leu Gly Cye Ala Lye Val Glu Ala Phe Phe 750 Ile Ile Glu Gly Ala Gln Glu Lye Thr Aen Leu Glu 755 Ceac Cye Gln No 5 Call's LENGTH: 4195 Call's LENGTH: 4195 Call's Cye Type: DNA Call's SEQ ID No 5 Call's LENGTH: 6195 Call's Open Cye		
Cys Gln Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe 745 The Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu 755 C210> SEQ ID NO 5 C211> FYER DNA C212>		
THE FILE GIU GIY ALA GIN GIU LYS THY ASN LEU GIU 755 210 SEQ ID NO 5 2213 LENGTH: 4195 2213 CORNING: Homo sapiens 2223 FEATURE: 2221 STYPE: DNA 2223 LOCATION: (20)(3913) 2400 SEQUENCE: 5 ccacgcgcag cggccggag atg cag cgg ggc gcc gcg ctg tgc ctg cga ctg Met GIN Arg GIY Ala Ala Leu Cys Leu Arg Leu 1 5 10 tgg ctc tgc ctg gga ctc ctg gac ggc ctg gtg agt ggc tac tcc atg 15 20 acc ccc ccg acc ttg aac atc acg gag gga ggc ggc ggc gtg tgr try fyr ser Met 15 20 acc ccc ccg acc ttg aac atc acg gag gag tac aca gtc atc gac acc Thr Po Pro Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr 30 35 40 ggt gac agc ctg tcc atc tcc tgc agg ggc aca ccc ctc gag tgg Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 45 gct tgg cca gga gct cag gag gcc aca cca gga gac aag gac acc ccc tcd gag tgg Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 50 gct tgg cca gga gct cag gag ctc gag cac acc gga gac aag gac acc 60 Res Cys Arg Gly Gln His Pro Leu Glu Trp 50 gct tgg cca gga gct cag gag ctg gag acc acc gga gac aag gac acc 60 Res Cys Arg Gly Gln His Pro Leu Glu Trp 65 gct tgg cca gga gct cag gag tg cag acc acc acc gga gac aag gac acc 60 Res Cys Arg Gly Gln His Pro Leu Glu Trp 65 gct tgg cca gga gct cag gag tg cag acc acc acc gga gac aag gac acc 60 Res Cys Arg Gly Gln His Pro Leu Glu Trp 65 gct tgg cca gga gct cag gag tg cag acc acc acc gga gac aag gac acc 60 Res Cys Arg Gly Gln His Pro Ala Arr Gly Asp Lys Asp Ser 60 Res Cys Arg Ala Arg Asp Cys Clu Gly Thr Asp Ala Arg Pro 80 30 31 32 340 340 35 360 361 362 362 363 364 365 367 367 368		
<pre>755</pre>		
<pre> c211> LENGTH: 4195 c212> TYPE: DNA c213> ORGANISM: Homo sapiens c220> FEATURE: c221> NAME/KEY: CDS c222> LOCATION: (20)(3913) <400> SEQUENCE: 5 ccacgcgcag cggccggag atg cag cgg ggc gcc gcg ctg tgc ctg cga ctg</pre>	•	
ccacgegcag eggecggag atg cag egg ggc gcc gcg ctg tgc ctg cga ctg Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu 1	<213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (20)(3913)	
tgg ctc tgc ctg gga ctc ctg gac ggc ctg gtg agt ggc tac tcc atg Trp Leu Cys Leu Gly Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met 15 20 25 acc ccc ccg acc ttg aac atc acg gag gag tca cac gtc atc gac acc Thr Pro Pro Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr 30 35 40 ggt gac agc ctg tcc atc tcc tgc agg gga cag cac ccc ctc gag tgg Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 45 50 gct tgg cca gga gct cag gag gcg cca gcc acc gga gac aag gac aag Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser 60 65 70 75 gag gac acg ggg gtg gtg cga gac tgc gag ggc aca gac gcc agg ccc Glu Asp Thr Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro 80 85 90 tac tgc aag gtg ttg ctg ctc acc gag gta cat gcc aac gac aca ggc Tyr Cys Lys Val Leu Leu Leu His Glu Val His Ala Asn Asp Thr Gly 95 100 105 agc tac gtc tgc tac tac aag tac atc aag gca cgc acc gag ggc acc Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	-	52
Trp Leu Cys Leu Gly Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met acc ccc ccg acc ttg aac atc acg gag gag tca cac gtc atc gac acc Thr Pro Pro Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr 30 35 40 11e Asp Thr 40 196 ggt gac agc ctg tcc atc tcc tgc agg gga cag cac ccc ctc gag tgg Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 45 50 55 gct tgg cca gga gct cag gag gcg cca gcc acc gga gac aag gac aag gac agc Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser 60 65 70 70 75 gag gac acg ggg gtg gtg cga gac tgc gag ggc aca gac gcc acg gcc acg gac cac gcc acg gac acg gcc acg gac gcc acg gac gcc acg gac aca gac gcc acg gac acc gcc acg gac aca gac gcc acg gac acc gcc acc gac acc gcc acc gc	Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu	
Thr Pro Pro Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr 30 ggt gac agc ctg tcc atc tcc tgc agg gga cag cac ccc ctc gag tgg Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 45 gct tgg cca gga gct cag gag gcg cca gcc acc gga gac aag gac agg agc agg Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser 60 gag gac acg ggg gtg gtg cga gac tgc gag ggc aca gac gcc acc gag gcc acc gca acc gag gcc aca gac Ala Trp Pro Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro 85 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc acc ga gac aca gac 292 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca gac 292 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca gac 292 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca gac 292 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca gac 292 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca gac 292 tac tgc acc gtc tgc tac tac aag tac atc aag gca cgc atc gag ggc acc 340 sgc tac gtc tgc tac tac tac aag tac atc aag gca cgc atc gag ggc acc 388 Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	Trp Leu Cys Leu Gly Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met	100
Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 45 get tgg cca gga get cag gag geg cca gec acc gga gac aag gac agc Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser 60 gag gac acg ggg gtg gtg cga gac tgc gag ggc aca gac gcc agg ccc Glu Asp Thr Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro 80 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca ggc Tyr Cys Lys Val Leu Leu His Glu Val His Ala Asn Asp Thr Gly 95 agc tac gtc tgc tac tac aag tac atc aag gca cgc atc gag ggc acc Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	Thr Pro Pro Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr	148
Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser 60 65 70 75 gag gac acg ggg gtg gtg cga gac tgc gag ggc aca gac gcc agg ccc Glu Asp Thr Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro 80 85 90 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca ggc Tyr Cys Lys Val Leu Leu His Glu Val His Ala Asn Asp Thr Gly 95 100 105 agc tac gtc tgc tac tac aag tac atc aag gca cgc atc gag ggc acc Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp	196
Glu Asp Thr Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro 80 tac tgc aag gtg ttg ctg ctg cac gag gta cat gcc aac gac aca ggc Tyr Cys Lys Val Leu Leu His Glu Val His Ala Asn Asp Thr Gly 95 agc tac gtc tgc tac tac aag tac atc aag gca cgc atc gag ggc acc Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser	244
Tyr Cys Lys Val Leu Leu His Glu Val His Ala Asn Asp Thr Gly 95 100 105 age tac gtc tgc tac tac aag tac atc aag gca cgc atc gag ggc acc 388 Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	Glu Asp Thr Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro	292
Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	Tyr Cys Lys Val Leu Leu His Glu Val His Ala Asn Asp Thr Gly	340
	Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr	388

												con	tin	uea			
_	gcc Ala 125	_	_						_	_			_			436	
	aac Asn															484	
	ccc Pro															532	
	agc Ser															580	
	cgg Arg															628	
	cag Gln 205															676	
	ctg Leu										_		_	_	_	724	
	agg Arg															772	
	acc Thr															820	
	cca Pro															868	
	cag Gln 285															916	
	agc Ser															964	
	cag Gln															1012	
	atc Ile			Glu		Leu	Lys	Gly	Pro	Ile	Leu	Glu	Āla	Thr		1060	
	gac Asp		_		_	_			_	_	_				_	1108	
	gag Glu 365															1156	
	cca Pro															1204	
	tac Tyr			_	_				_	_		_		_		1252	
	agc Ser															1300	
	gcc Ala															1348	

	tgc Cys 445	_	_					_			_		_		1396
	g cgg Arg														1444
	g cgg g Arg														1492
_	g acc L Thr	_	_	_	_						_	_	_		1540
	gag Glu					_		_			_	_	_		1588
	g aat n Asn 525	_				_	_		_	_		_		_	1636
	g ggc L Gly	_	_												1684
_	ggc Gly				-		_							 	1732
	g ccg n Pro														1780
	g cgc ı Arg														1828
	c ccg n Pro 605		_		-	_	_				_		_		1876
	g gcc ı Ala														1924
	c agc ı Ser														1972
	g tgc L Cys														2020
	g tac s Tyr														2068
	g acc ı Thr 685														2116
	g gtg ı Val														2164
	g ctg g Leu														2212
	g ctg E Leu														2260
	c agc s Ser														2308

gcc gtg gaa ggc tcc gag gat aag ggc agc atg gag at cgt gtg at ctc tcc tcc tcc tcc tcc tcc tcc tcc
Ala Val Glu Gly Ser Glu Asp Lys Gly Ser Met Glu Ile Val Ile Leu 765 gtc ggt acc ggc gtc atc gct gtc ttc ttc tgg gtc ctc ctc ctc c
Val Gly Thr Gly Val Ile Ala Val Phe Phe Trp Val Leu Leu Leu Leu Leu Leu Typ5 atc ttc tgt aac atg agg agg ccg gcc cac gca gac atc aag acg ggc 2452 Ile Phe Cys Asn Met Arg Arg Pro Ala His Ala Asp Ile Lys Thr Gly 800 tac ctg tcc atc atc atg gac ccc ggg gag gtg cct ctg gag gag caa 2500 Tyr Leu Ser Ile Ile Met Asp Pro Gly Glu Val Pro Leu Glu Glu Gln 825 tgc gaa tac ctg tcc tac gat gcc agc cag tgg gaa ttc ccc cga gag Cys Glu Tyr Leu Ser Tyr Asp Ala Ser Gln Trp Glu Phe Pro Arg Glu 830 cgg ctg cac ctg ggg aga gtg ctc ggc tac ggc gcc ttc ggg aag gtg cgg ctg cac ctg ggg aga gtg ctc ggc tac ggc gcc ttc ggg aag gtg Arg Leu His Leu Gly Arg Val Leu Gly Tyr Gly Ala Phe Gly Lys Val 845
Ile Phe Cys Asn Met Arg Arg Pro Ala His Ala Asp Ile Lys Thr Gly 800 tac ctg tcc atc atc atg gac ccc ggg gag gtg cct ctg gag gag caa Tyr Leu Ser Ile Ile Met Asp Pro Gly Glu Val Pro Leu Glu Glu Gln 825 tgc gaa tac ctg tcc tac gat gcc agc cag tgg gaa ttc ccc cga gag Cys Glu Tyr Leu Ser Tyr Asp Ala Ser Gln Trp Glu Phe Pro Arg Glu 830 cgg ctg cac ctg ggg aga gtg ctc ggc tac ggc gcc ttc ggg aag gtg 2596 Arg Leu His Leu Gly Arg Val Leu Gly Tyr Gly Ala Phe Gly Lys Val 845
Tyr Leu Ser Ile Ile Met Asp Pro Gly Glu Val Pro Leu Glu Glu Gln 815 tgc gaa tac ctg tcc tac gat gcc agc cag tgg gaa ttc ccc cga gag Cys Glu Tyr Leu Ser Tyr Asp Ala Ser Gln Trp Glu Phe Pro Arg Glu 830 cgg ctg cac ctg ggg aga gtg ctc ggc tac ggc gcc ttc ggg aag gtg Arg Leu His Leu Gly Arg Val Leu Gly Tyr Gly Ala Phe Gly Lys Val 845
Cys Glu Tyr Leu Ser Tyr Asp Ala Ser Gln Trp Glu Phe Pro Arg Glu 830 835 840 cgg ctg cac ctg ggg aga gtg ctc ggc tac ggc gcc ttc ggg aag gtg 2596 Arg Leu His Leu Gly Arg Val Leu Gly Tyr Gly Ala Phe Gly Lys Val 845 850 855
Arg Leu His Leu Gly Arg Val Leu Gly Tyr Gly Ala Phe Gly Lys Val 845 850 855
gtg gaa gcc tcc gct ttc ggc atc cac aag ggc agc agc tgt gac acc 2644
Val Glu Ala Ser Ala Phe Gly Ile His Lys Gly Ser Ser Cys Asp Thr 860 865 870 875
gtg gcc gtg aaa atg ctg aaa gag ggc gcc acg gcc agc gag cac cgc 2692 Val Ala Val Lys Met Leu Lys Glu Gly Ala Thr Ala Ser Glu His Arg 880 885 890
gcg ctg atg tcg gag ctc aag atc ctc att cac atc ggc aac cac ctc 2740 Ala Leu Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly Asn His Leu 895 900 905
aac gtg gtc aac ctc ctc ggg gcg tgc acc aag ccg cag ggc ccc ctc 2788 Asn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gln Gly Pro Leu 910 915 920
atg gtg atc gtg gag ttc tgc aag tac ggc aac ctc tcc aac ttc ctg 2836 Met Val Ile Val Glu Phe Cys Lys Tyr Gly Asn Leu Ser Asn Phe Leu 925 930 935
cgc gcc aag cgg gac gcc ttc agc ccc tgc gcg gag aag tct ccc gag 2884 Arg Ala Lys Arg Asp Ala Phe Ser Pro Cys Ala Glu Lys Ser Pro Glu 940 945 950 955
cag cgc gga cgc ttc cgc gcc atg gtg gag ctc gcc agg ctg gat cgg 2932 Gln Arg Gly Arg Phe Arg Ala Met Val Glu Leu Ala Arg Leu Asp Arg 960 965 970
agg cgg ccg ggg agc agc gac agg gtc ctc ttc gcg cgg ttc tcg aag 2980 Arg Arg Pro Gly Ser Ser Asp Arg Val Leu Phe Ala Arg Phe Ser Lys 975 980 985
acc gag ggc gga gcg agg cgg gct tct cca gac caa gaa gct gag gac 3028 Thr Glu Gly Gly Ala Arg Arg Ala Ser Pro Asp Gln Glu Ala Glu Asp 990 995 1000
ctg tgg ctg agc ccg ctg acc atg gaa gat ctt gtc tgc tac agc ttc 3076 Leu Trp Leu Ser Pro Leu Thr Met Glu Asp Leu Val Cys Tyr Ser Phe 1005 1010 1015
cag gtg gcc aga ggg atg gag ttc ctg gct tcc cga aag tgc atc cac 3124 Gln Val Ala Arg Gly Met Glu Phe Leu Ala Ser Arg Lys Cys Ile His 1020 1025 1030 1035
aga gac ctg gct gct cgg aac att ctg ctg tcg gaa agc gac gtg gtg 3172 Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Ser Asp Val Val 1040 1045 1050
aag atc tgt gac ttt ggc ctt gcc cgg gac atc tac aaa gac cct gac 3220 Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asp Pro Asp 1055 1060 1065
tac gtc cgc aag ggc agt gcc cgg ctg ccc ctg aag tgg atg gcc cct 3268

-continued
Tyr Val Arg Lys Gly Ser Ala Arg Leu Pro Leu Lys Trp Met Ala Pro 1070 1075 1080
gaa agc atc ttc gac aag gtg tac acc acg cag agt gac gtg tgg tcc 3316 Glu Ser Ile Phe Asp Lys Val Tyr Thr Thr Gln Ser Asp Val Trp Ser 1085 1090 1095
ttt ggg gtg ctt ctc tgg gag atc ttc tct ctg ggg gcc tcc ccg tac 3364 Phe Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Ala Ser Pro Tyr 1100 1115
cct ggg gtg cag atc aat gag gag ttc tgc cag cgg ctg aga gac ggc 3412 Pro Gly Val Gln Ile Asn Glu Glu Phe Cys Gln Arg Leu Arg Asp Gly 1120 1125 1130
aca agg atg agg gcc ccg gag ctg gcc act ccc gcc ata cgc cgc atc 3460 Thr Arg Met Arg Ala Pro Glu Leu Ala Thr Pro Ala Ile Arg Arg Ile 1135 1140 1145
atg ctg aac tgc tgg tcc gga gac ccc aag gcg aga cct gca ttc tcg 3508 Met Leu Asn Cys Trp Ser Gly Asp Pro Lys Ala Arg Pro Ala Phe Ser 1150 1155 1160
gag ctg gtg gag atc ctg ggg gac ctg ctc cag ggc agg ggc ctg caa 3556 Glu Leu Val Glu Ile Leu Gly Asp Leu Leu Gln Gly Arg Gly Leu Gln 1165 1170 1175
gag gaa gag gat tgc atg gcc ccg cgc agc tct cag agc tca gaa 3604 Glu Glu Glu Glu Val Cys Met Ala Pro Arg Ser Ser Gln Ser Ser Glu 1180 1185 1190 1195
gag ggc agc ttc tcg cag gtg tcc acc atg gcc cta cac atc gcc cag 3652 Glu Gly Ser Phe Ser Gln Val Ser Thr Met Ala Leu His Ile Ala Gln 1200 1205 1210
gct gac gct gag gac agc ccg cca agc ctg cag cgc cac agc ctg gcc 3700 Ala Asp Ala Glu Asp Ser Pro Pro Ser Leu Gln Arg His Ser Leu Ala 1215 1220 1225
gcc agg tat tac aac tgg gtg tcc ttt ccc ggg tgc ctg gcc aga ggg 3748 Ala Arg Tyr Tyr Asn Trp Val Ser Phe Pro Gly Cys Leu Ala Arg Gly 1230 1235 1240
gct gag acc cgt ggt tcc tcc agg atg aag aca ttt gag gaa ttc ccc 3796 Ala Glu Thr Arg Gly Ser Ser Arg Met Lys Thr Phe Glu Glu Phe Pro 1245 1250 1255
atg acc cca acg acc tac aaa ggc tct gtg gac aac cag aca gac agt 3844 Met Thr Pro Thr Thr Tyr Lys Gly Ser Val Asp Asn Gln Thr Asp Ser 1260 1265 1270 1275
ggg atg gtg ctg gcc tcg gag gag ttt gag cag ata gag agc agg cat 3892 Gly Met Val Leu Ala Ser Glu Glu Phe Glu Gln Ile Glu Ser Arg His 1280 1285 1290
aga caa gaa agc ggc ttc agg tagctgaagc agagagagag aaggcagcat 3943 Arg Gln Glu Ser Gly Phe Arg 1295
acgtcagcat tttcttctct gcacttataa gaaagatcaa agactttaag actttcgcta 4003
tttcttctac tgctatctac tacaaacttc aaagaggaac caggaggaca agaggagcat 4063
gaaagtggac aaggagtgtg accactgaag caccacaggg aaggggttag gcctccggat 4123 qactqcqqqc aqqcctqqat aatatccaqc ctcccacaaq aaqctqqtqq aqcaqaqtqt 4183
teeetgaete et 4195
<210> SEQ ID NO 6 <211> LENGTH: 1298 <212> TYPE: PRT <213> ORGANISM: Homo sapiens
<400> SEQUENCE: 6
Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu Trp Leu Cys Leu Gly 1 5 10 15

Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu
Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45	Ser	Leu	Ser
Ile	Ser 50	Cys	Arg	Gly	Gln	His 55	Pro	Leu	Glu	Trp	Ala 60	Trp	Pro	Gly	Ala
Gln 65	Glu	Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75	Glu	Asp	Thr	Gly	Val 80
Val	Arg	Asp	СЛа	Glu 85	Gly	Thr	Asp	Ala	Arg 90	Pro	Tyr	CÀa	Lys	Val 95	Leu
Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105	Thr	Gly	Ser	Tyr	Val 110	Cys	Tyr
Tyr	Lys	Tyr 115	Ile	Lys	Ala	Arg	Ile 120	Glu	Gly	Thr	Thr	Ala 125	Ala	Ser	Ser
Tyr	Val 130	Phe	Val	Arg	Asp	Phe 135	Glu	Gln	Pro	Phe	Ile 140	Asn	Lys	Pro	Asp
Thr 145	Leu	Leu	Val	Asn	Arg 150	Lys	Asp	Ala	Met	Trp 155	Val	Pro	Cys	Leu	Val 160
Ser	Ile	Pro	Gly	Leu 165	Asn	Val	Thr	Leu	Arg 170	Ser	Gln	Ser	Ser	Val 175	Leu
Trp	Pro	Asp	Gly 180	Gln	Glu	Val	Val	Trp 185	Asp	Asp	Arg	Arg	Gly 190	Met	Leu
Val	Ser	Thr 195	Pro	Leu	Leu	His	Asp 200	Ala	Leu	Tyr	Leu	Gln 205	Сув	Glu	Thr
Thr	Trp 210	Gly	Asp	Gln	Asp	Phe 215	Leu	Ser	Asn	Pro	Phe 220	Leu	Val	His	Ile
Thr 225	Gly	Asn	Glu	Leu	Tyr 230	Asp	Ile	Gln	Leu	Leu 235	Pro	Arg	Lys	Ser	Leu 240
Glu	Leu	Leu	Val	Gly 245	Glu	Lys	Leu	Val	Leu 250	Asn	Cys	Thr	Val	Trp 255	Ala
Glu	Phe	Asn	Ser 260	Gly	Val	Thr	Phe	Asp 265	Trp	Asp	Tyr	Pro	Gly 270	Lys	Gln
Ala	Glu	Arg 275	Gly	Lys	Trp	Val	Pro 280	Glu	Arg	Arg	Ser	Gln 285	Gln	Thr	His
Thr	Glu 290	Leu	Ser	Ser	Ile	Leu 295	Thr	Ile	His	Asn	Val 300	Ser	Gln	His	Asp
Leu 305	Gly	Ser	Tyr	Val	Cys 310	Lys	Ala	Asn	Asn	Gly 315	Ile	Gln	Arg	Phe	Arg 320
Glu	Ser	Thr	Glu	Val 325	Ile	Val	His	Glu	Asn 330	Pro	Phe	Ile	Ser	Val 335	Glu
Trp	Leu	Lys	Gly 340	Pro	Ile	Leu	Glu	Ala 345	Thr	Ala	Gly	Asp	Glu 350	Leu	Val
Lys	Leu	Pro 355	Val	Lys	Leu	Ala	Ala 360	Tyr	Pro	Pro	Pro	Glu 365	Phe	Gln	Trp
Tyr	Lys 370	Asp	Gly	Lys	Ala	Leu 375	Ser	Gly	Arg	His	Ser 380	Pro	His	Ala	Leu
Val 385	Leu	Lys	Glu	Val	Thr 390	Glu	Ala	Ser	Thr	Gly 395	Thr	Tyr	Thr	Leu	Ala 400
Leu	Trp	Asn	Ser	Ala 405	Ala	Gly	Leu	Arg	Arg 410	Asn	Ile	Ser	Leu	Glu 415	Leu
Val	Val	Asn	Val 420	Pro	Pro	Gln	Ile	His 425	Glu	Lys	Glu	Ala	Ser 430	Ser	Pro

Ser	Ile	Tyr 435	Ser	Arg	His	Ser	Arg 440	Gln	Ala	Leu	Thr	Cys 445	Thr	Ala	Tyr
Gly	Val 450	Pro	Leu	Pro	Leu	Ser 455	Ile	Gln	Trp	His	Trp 460	Arg	Pro	Trp	Thr
Pro 465	Cys	Lys	Met	Phe	Ala 470	Gln	Arg	Ser	Leu	Arg 475	Arg	Arg	Gln	Gln	Gln 480
Asp	Leu	Met	Pro	Gln 485	CAa	Arg	Asp	Trp	Arg 490	Ala	Val	Thr	Thr	Gln 495	Asp
Ala	Val	Asn	Pro 500	Ile	Glu	Ser	Leu	Asp 505	Thr	Trp	Thr	Glu	Phe 510	Val	Glu
Gly	Lys	Asn 515	Lys	Thr	Val	Ser	Lys 520	Leu	Val	Ile	Gln	Asn 525	Ala	Asn	Val
Ser	Ala 530	Met	Tyr	Lys	CAa	Val 535	Val	Ser	Asn	Lys	Val 540	Gly	Gln	Asp	Glu
Arg 545	Leu	Ile	Tyr	Phe	Tyr 550	Val	Thr	Thr	Ile	Pro 555	Asp	Gly	Phe	Thr	Ile 560
Glu	Ser	Lys	Pro	Ser 565	Glu	Glu	Leu	Leu	Glu 570	Gly	Gln	Pro	Val	Leu 575	Leu
Ser	Cys	Gln	Ala 580	Asp	Ser	Tyr	Lys	Tyr 585	Glu	His	Leu	Arg	Trp 590	Tyr	Arg
Leu	Asn	Leu 595	Ser	Thr	Leu	His	Asp 600	Ala	His	Gly	Asn	Pro 605	Leu	Leu	Leu
Asp	Cys 610	Lys	Asn	Val	His	Leu 615	Phe	Ala	Thr	Pro	Leu 620	Ala	Ala	Ser	Leu
Glu 625	Glu	Val	Ala	Pro	Gly 630	Ala	Arg	His	Ala	Thr 635	Leu	Ser	Leu	Ser	Ile 640
Pro	Arg	Val	Ala	Pro 645	Glu	His	Glu	Gly	His 650	Tyr	Val	CÀa	Glu	Val 655	Gln
Asp	Arg	Arg	Ser 660	His	Asp	ГЛа	His	Сув 665	His	Lys	ГЛа	Tyr	Leu 670	Ser	Val
Gln	Ala	Leu 675	Glu	Ala	Pro	Arg	Leu 680	Thr	Gln	Asn	Leu	Thr 685	Asp	Leu	Leu
Val	Asn 690	Val	Ser	Asp	Ser	Leu 695	Glu	Met	Gln	Cys	Leu 700	Val	Ala	Gly	Ala
His 705	Ala	Pro	Ser	Ile	Val 710	Trp	Tyr	Lys	Asp	Glu 715	Arg	Leu	Leu	Glu	Glu 720
Lys	Ser	Gly			Leu			Ser				Leu		Ile 735	
Arg	Val	Arg	Glu 740	Glu	Asp	Ala	Gly	Arg 745	Tyr	Leu	Cys	Ser	Val 750	Cys	Asn
Ala	Lys	Gly 755	Сув	Val	Asn	Ser	Ser 760	Ala	Ser	Val	Ala	Val 765	Glu	Gly	Ser
Glu	Asp 770	Lys	Gly	Ser	Met	Glu 775	Ile	Val	Ile	Leu	Val 780	Gly	Thr	Gly	Val
Ile 785	Ala	Val	Phe	Phe	Trp 790	Val	Leu	Leu	Leu	Leu 795	Ile	Phe	Сув	Asn	Met 800
Arg	Arg	Pro	Ala	His 805	Ala	Asp	Ile	Lys	Thr 810	Gly	Tyr	Leu	Ser	Ile 815	Ile
Met	Asp	Pro	Gly 820	Glu	Val	Pro	Leu	Glu 825	Glu	Gln	СЛа	Glu	Tyr 830	Leu	Ser
Tyr	Asp	Ala 835	Ser	Gln	Trp	Glu	Phe 840	Pro	Arg	Glu	Arg	Leu 845	His	Leu	Gly
Arg	Val	Leu	Gly	Tyr	Gly	Ala	Phe	Gly	Lys	Val	Val	Glu	Ala	Ser	Ala

	850					855					860					
Phe 865	Gly	Ile	His	Lys	Gly 870	Ser	Ser	Cys	Asp	Thr 875	Val	Ala	Val	Lys	Met 880	
Leu	ГЛа	Glu	Gly	Ala 885	Thr	Ala	Ser	Glu	His 890	Arg	Ala	Leu	Met	Ser 895	Glu	ı
Leu	Lys	Ile	Leu 900	Ile	His	Ile	Gly	Asn 905	His	Leu	Asn	Val	Val 910	Asn	Leu	1
Leu	Gly	Ala 915	Cys	Thr	Lys	Pro	Gln 920	Gly	Pro	Leu	Met	Val 925	Ile	Val	Glu	1
Phe	030 Cya	Lys	Tyr	Gly	Asn	Leu 935	Ser	Asn	Phe	Leu	Arg 940	Ala	Lys	Arg	Asp	P
Ala 945	Phe	Ser	Pro	CAa	Ala 950	Glu	Lys	Ser	Pro	Glu 955	Gln	Arg	Gly	Arg	Phe 960	
Arg	Ala	Met	Val	Glu 965	Leu	Ala	Arg	Leu	Asp 970	Arg	Arg	Arg	Pro	Gly 975	Sei	r
Ser	Asp	Arg	Val 980	Leu	Phe	Ala	Arg	Phe 985	Ser	Lys	Thr	Glu	Gly 990	Gly	Ala	a
Arg	Arg	Ala 995	Ser	Pro	Asp	Gln	Glu 1000		a Glu	ı Asl	o Lev	ı Tr <u>ı</u> 100		eu S	er E	Pro
Leu	Thr 1010		Glu	ı Asp	Leu	ι Val		ys Ty	r Se	er Pl		ln 7 020	/al /	Ala i	Arg	Gly
Met 1025		ı Ph∈	e Leu	ı Ala	Ser 103		g L	As GZ	/s II		is <i>1</i> 035	Arg <i>l</i>	Asp 1	Leu 1	Ala	Ala 1040
Arg	Asn	Ile	Leu	Leu 1045		Glu	ı Sei	r Ası	Val 109		al Ly	/s I	le C		sp 055	Phe
Gly	Leu	Ala	Arg 1060	Asp	Ile	ту1	: Lys	s Asp 106		co As	sp Ty	∕r Va		rg :	ГЛа	Gly
Ser	Ala	Arg 1075		ı Pro	Leu	ı Lys	Trp 108		et Al	La Pi	ro Gl		er :	Ile :	Phe	Aap
ГÀа	Val 1090	_	Thr	Thr	Glr	109		sp Va	al Ti	rp Se		ne (∃ly \	Val 1	Ĺеu	Leu
Trp 1105		ı Ile	Ph∈	e Ser	Leu 111		Ly Al	la Se	er Pi		yr I 115	Pro (Gly V	Val (Gln	Ile 1120
Asn	Glu	Glu	Phe	Cys 1125		a Arg	j Lei	ı Arç	g Asp 113		ly Th	nr Ai	rg Me		rg 135	Ala
Pro	Glu	Leu	Ala 1140		Pro	Ala	ı Ile	e Arg		rg II	le Me	et Le		∍n (150	Cys	Trp
Ser	Gly	Asp 1155		Lys	Ala	Arg	Pro 1160		Phe	Ser	Glu	Leu 1165		Glu	Ile	Э
Leu	Gly 1170		Leu	ı Leu	Glr	1 Gly		rg G	Ly Le	eu Gi		Lu (Glu (Glu (Glu	Val
Cys 1185		: Ala	Pro	Arg	Ser 119		er G	ln Se	er Se		lu (195	3lu (Gly :	Ser 1	Phe	Ser 1200
Gln	Val	Ser	Thr	Met 1205		ı Lev	ı His	∃ Ile	e Ala 121		ln Al	la As	sp Ai		lu 215	Asp
Ser	Pro	Pro	Ser 1220	Leu)	Glr	a Arg	g His	s Sei 122		eu Al	la Al	la Ai	-	yr ' 230	Tyr	Asn
Trp	Val	Ser 1235		Pro	Gly	r Cys	Let 124		la Ai	rg GI	ly Al		lu '	Thr I	Arg	Gly
Ser	Ser 1250		, Met	: Lys	Thr	Phe 125		lu G	Lu Pł	ne Pi		et :	Thr 1	Pro '	Thr	Thr
Tyr 1265		: Gly	/ Ser	. Val	Asp 127		sn G	ln Th	ır As		er G] 275	Ly Me	et Va	al L		Ala L280

Ser	Glu	Glu	Phe	Glu 128		n Ile	e Glu	ı Sei	129		is A:	rg G	ln G		er Gly 295	
Phe	Arg															
<211 <212 <213 <220 <223 <220 <221 <223 <220 <223	L> LI 22> TY 33> OB 00> FI 00> FI L> NA 00> FI L> NA	EATUI CHER EATUI AME/I CHER EATUI AME/I	H: 1' DNA ISM: RE: INF(RE: KEY: INF(RE: RE: REY:	Art: ORMA mise ORMA CDS	ific: TION: C_fea TION:	: Syr ature : R-2	nthe		oolyr	nucle	eotic	de				
<400)> SI	EQUEI	ICE :	7												
					ctg Leu											48
					agc Ser											96
					caa Gln											144
					tgc Cys											192
					ggc Gly 70											240
					tgt Cys											288
					tac Tyr											336
_	-			-	tat Tyr	-		-		_					_	384
					cat His											432
					cca Pro 150											480
					tac Tyr											528
					agc Ser											576
	_		_	-	atg Met	_		_	_	_				_	_	624
					atg Met											672
tat	gat	gtg	gtt	ctg	agt	ccg	tct	cat	gga	att	gaa	cta	tct	gtt	gga	720

Type Age Val Leu Ser Pro Ser His Gly Lie Glu Leu Ser Val Gly 240 230 230 230 230 230 235 236
citu tye Leu Val Leu Aon Cye Thr Ala Arg Thr Glu Leu Aon Val Gly 245 att gao tto aac tgg gaa tac oct tot tog aag cat cag cat aag aaa Ile Aop Fhe Aon Trp Glu Tyr Pro Ser Ser Lye Hie Gln Hie Lye Lye 220 ctt gta aac cga gac cta aaa acc cag tot ggg agt aga atg aag aaa Leu Val Aan Arg Aep Leu Lye Thr Gln Ser Gly Ser Gly Met Lye Lye 275 285 ttt ttg agc acc tta act ata gat ggg gt ac cgg agt gac caa gga 100 ttg tac acc ttg cac gac acc agt ggg ctg atg acc aaa gaa aac Leu Yur Thr Cye Ala Ala Ser Ser Gly Ser Gly Ser Gly 290 cac ttg tac acc ttg cac gac acc agt ggc ctg atg acc aaa gaa aac agc Leu Tyr Thr Cye Ala Ala Ser Ser Gly Leu Met Thr Lye Lye Aen Ser 305 Thr Phe Val Arg Val Hie Glu Aep Pro Ile Glu Gly Arg Gly Gly Gly 325 ggt ggt gat occ aaa act tgg aca acc acc aca tgg cgg ggt ggt ggt ggt gac occ aaa tct tgg ac aaa cct cac aca tgc cca ctg tgc Gly Gly Aep Pro Lye Ser Cye Aep Lye Pro Hie Thr Cye Pro Leu Cye 345 cca gac cct gaa ctc ctg ggg gga cg tac gtc tct ctc tcc cc cca Gly Gly Aep Pro Lye Ser Cye Aep Lye Pro Hie Thr Cye Pro Leu Cye 345 cca gac acc gaa cac ctc atg atg tcc tcc etc tcc cc cca 315 aaa cc aag gac acc ctc atg atc tcc etg gac cct gag gt cac acc acc acc acc acc acc acc acc ac
Ile App Phe Apn Tup Glu Tyr Pro Ser Ser Lyō His Gln His Lyō Lys 220 260 270 270 270 270 270 270 270 270 270 27
Leu Val Amm Arg Amp Leu Lye Thr Gin Ser Giy Ser Giu Met Lye Lye 275 280 285 ttt ttg age acc tta act ata gat ggt gta acc cgg agt gac caa gga Phe Leu Ser Thr Leu Thr 11e Amp Gly Val Thr Arg Ser Amp Gln Gly 290 ttg tac acc tgt gca gca tcc agt ggg ctg atg acc aag aag aac agc Leu Tyr Thr Cye Ala Ala Ser Ser Gly Leu Met Thr Lye Lye Am Ser 300 315 aca ttt gtc agg gtc cat gaa gat ccc atc gaa ggt cgt ggt ggt ggt ggt ggt ggt ggt ggt
the beu Ser Thr Leu Thr Ile Āep Ğly Val Thr Arg Ser Āep Gln Ğly 290 ttg tac acc tgt gea gea toc agt ggg ctg atg acc aag aag aac agc Leu Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Aen Ser 300 aca ttt gtc agg gtc cat gaa gat ccc atc gaa ggt cgt ggt ggt ggt Thr Phe Val Arg Val His Glu Aep Pro Ile Glu Gly Arg Gly Gly Gly 315 ggt ggt gat ccc aaa tct tgt gac aaa cct cac aca tgc cca ctg tgc Gly Gly Aep Pro Lys Ser Cys Aep Lys Pro His Thr Cys Pro Leu Cys 340 cca gca cct gaa ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca 340 cca gca cct gaa ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca 340 cca gca cct gaa ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca 4104 cca gca cct gaa ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca 355 aaa ccc aag gac acc ctc atg atc tcc cgg acc cct gag gtc aca tgc Lys Pro Lys Aep Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 370 gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aca tgc Val Val Val Aep Val Ser His Glu Aep Pro Glu Val Lys Phe Aen Trp 385 385 386 aaa ccc agg gcg gtg gag gtg cat aat gcc aag aca aag ccg ggg gag Val Val Val Aep Oly Val Clu Val His Aen Ala Lys Thr Lys Pro Arg Glu 405 406 aaa ccc aag gac acc gca gac gac gac gtc gac gtc ct aca gtc ttc 410 420 425 426 cac cac gac gtc gc gt gat ggc cac gag gac aca aag ccc ggg gag 1344 435 aaa gcc ctc cca gcc ccc atc gag gac aca gac aca gac aca gac aca gac 336 aaa ccc aag gac tgg tcg at gac gtc ctc acc gtc ctc acc 420 425 aaa gcc ctc acc gcc ccc atc gag aaa acc atc tcc acc gtc ctg Clu Cln Tyr Aen Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 420 425 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aca aca gcc 346 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aca gcc gcg gad gal 447 448 449 cca gca gaa tag cac aca gac gta cc gt gcc gcc gcc gaa gac 447 448 449 ctg acc aag acc aca acg gtg gac gac gac gac act gcc cc acc cc gag gac gac 447 448 449 cca gca gaa cac aca gg ga gac gac ctg acc gcc gcc gaa gac 447 448 449 ccc acc gag aac ccc ccc gtg gac gcg gac acc gac gcc ga gac 447 448 459 ccc ac
Leu Tyr Thr Cye Âla Âla Ser Ser GIÝ Leu Met Thr Lye Lye Aen Ser 310 305 316 317 318 320 320 320 320 321 320 320 321 321
The Pe val Arg val His Glu Asp Pro Ile Glu Gly Arg Gly Gly Gly Sys 335 325 335 335 336 325 336 325 336 325 336 325 336 325 336 325 336 325 336 325 325 325 325 325 325 325 325 325 325
Cas gas cet gas at cet at at the cet at the set of the
Pro Ala Pro Glu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 355 aaa coc aag gac acc ctc atg atc toc cgg acc ct gag gtc aca tgc Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 370 gtg gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aag ttc aac tgg Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 385 tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg cgg gag Ty Val Asp Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 415 gag cag tac aac agc acg tac cgt gtg cac agt gtc agc gtc ctc acc gtc ctg glu Glu Glu Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 420 cac cag gac tgg ctg aat ggc agg gag tac aat acc agg gtc ctc acc gtc ctg Glu Glu Tyr Lys Cys Lys Val Ser Asn 445 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu 470 cag ccc gag aac cac cag gtg tac acc ctg ccc cat cca gag aaa acc atc tcc aga gcc caa aggg Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Glu 470 cag ccc cga gaa cca cag gtg tac acc ctg ccc cac tcc gg gat gag Glu Pro Arg Glu Pro Glu Val Tyr Tyr Lys Cys Lys Val Ser Asn 470 cca cag gac ccc ga gaa cca cag gtg tac acc ctg ccc cac tcc gg gat gag Glu Pro Arg Glu Pro Glu Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 470 ccc agc ccc ga gaa cca cag gtg tac acc ctg ccc cca tcc gg gat gag Gln Pro Arg Glu Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 470 ccc agc gac atc gcc gtg gag tgg gag agc aat ggg cag cag gag ttc tat tat Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 ccc agc gac atc gcc gtg gag tgg gag agc aat ggg cag cag gag aac Pro Ser Asp Gln Val Cru Tyr Glu Ser Asn Gly Gln Pro Glu Asn 500 aac tac aag gcc acc ccc gtg gag tag gad aac ag gag cag cag ggg tcc ttt ttc Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 370 gtg gtg gtg gtg gac gtg acc cac gaa gac cct gag gtc aag ttc aac ttgg Val Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 385 tac gtg gac gtg gag gtg cat aat gcc aag aca aag ccg cgg gag Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 410 gag cag tac aac agc acg tac cgt gtg gtc at 240 gag cag tac aac agc acg tac cgt gtg gtc ctc acc gtc ctg Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 420 cac cag gac tgg ctg aat ggc aag gag tac aag tac aag tcc aca gtc ctc acc gtc ctg 435 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa gcc aca ggc Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 455 aca cag gac cgg aac cac acg gtc acc ctg ccc cac tcc cgg gat gag Clys Ala Leu Pro Ala Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 465 ccg acc aag aac cag gtc acc ctg acc ctg ccc cac tcc cgg gat gag Ccc agc gac acc cag gtc acc ctg acc tcc acc gtc ctc acc gtc ctc acc agc gac acc gcg ccc acc gtc ctc acc gtc gtc acc ctc cac gtc ctc acc gtc ctc acc gtc ctc acc gtc gtc acc ctc ccc acc gtc gtc gtc acc ctc ccc acc ccc acc gtc gtc acc ctc ccc acc gtc gtc acc gtc gtc gtc acc gtc acc gtc gtc gtc gtc gtc gtc gtc gtc gtc g
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 385 tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg cgg gag Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 405 gag cag tac aac agc acg tac cgt gtg gtc agc gtc ctc acc gtc ctg Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 420 cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 435 aaa gcc ctc cca gcc cct atc gag aaa acc atc tcc aaa gcc aaa ggg Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 450 cag ccc cga gaa cca cag gtg tac acc ctg ccc cca tcc cgg gat gag Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 480 ctg acc aag acc aca ggt ctg acc gc cta gcc gc cta gtc aaa ggc ttc tat Leu Thr Lys Asn Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 480 ccc agc gac acc aca gt gt acc acc ctg cta gtc aac ggc ttc tat Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 ccc agc gac atc gcc gtg gag tgg gag agc aat ggc cag ccg gag aac Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 505 aac tac aag gcc acc cc cc gtg ccc gtg ctg gac tcc gac cgc gag acc ccc ctc ttc ttc Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 ctc tac agc aag ctc acc gtg gac aag agc aag agc agc ag cag ggg aac Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 405 gag cag tac aac acg acg tac cgt gtg gtc agc gtc ctc acc gtc ctg Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu Arg 420 cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc acc acc gtg ctg Arg His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 435 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg Lys Arg Arg Arg Val Leu Tyr Lys Cys Lys Val Ser Asn 445 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg Lys Arg
Cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac lade lade lade lade lade lade lade lade
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 435 aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg lag lag lag lag lag lag lag lag
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 450 cag ccc cga gaa cca cag gtg tac acc ctg ccc cca tcc cgg gat gag Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 465 ctg acc aag aac cag gtc agc ctg acc tgc cta gtc aaa ggc ttc tat Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 ccc agc gac atc gcc gtg gag tgg gag agc aat ggg cag ccg gag aac Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 aac tac aag gcc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 ctc tac agc aag ctc acc gtg gac aag agc aag agc agg tgg cag cag ggg aac Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 1632
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 465 470 475 480 ctg acc aag aac cag gtc agc ctg acc tgc cta gtc aaa ggc ttc tat Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 490 495 ccc agc gac atc gcc gtg gag tgg gag agc aat ggg cag ccg gag aac Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 505 510 aac tac aag gcc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 520 525 ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 ccc agc gac atc gcc gtg gag tgg gag agc aat ggg cag ccg gag aac Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 aac tac aag gcc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 505 505 510 aac tac aag gcc acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc 1584 Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 520 525 ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac 1632 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 520 ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg aac Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn

	ttc Phe															1680
	aag Lys									tga						1713
< 210)> SE	ZO TI	ом с	8												
<211 <212	L> LE 2> TY	ENGTI YPE :	H: 5'	70												
<220	3 > OF 0 > FE 3 > OT	EATUI	RE:				_		വിയ	nent	ide					
)> SE					. ~1.		,		p o p o						
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
Met	Asp	Lys		Ala	Ser	Gly	Ser		Pro	Ser	Val	Ser		Asp	Leu	
Pro	Arg		20 Ser	Ile	Gln	Lys	_	25 Ile	Leu	Thr	Ile	_	30 Ala	Asn	Thr	
Thr	Leu	35 Gln	Ile	Thr	Cvs	Ara	40 Glv	Gln	Ara	Asp	Leu	45 Asp	Tro	Leu	Tro	
	50				-	55	_		_	_	60	_	_		_	
Pro 65	Asn	Asn	Gln	Ser	Gly 70	Ser	Glu	Gln	Arg	Val 75	Glu	Val	Thr	Glu	Cys	
Ser	Asp	Gly	Leu	Phe 85	CAa	Lys	Thr	Leu	Thr 90	Ile	Pro	Lys	Val	Ile 95	Gly	
Asn	Asp	Thr	Gly 100	Ala	Tyr	Lys	Cys	Phe 105	Tyr	Arg	Glu	Thr	Asp 110	Leu	Ala	
Ser	Val	Ile 115	Tyr	Val	Tyr	Val	Gln 120	Asp	Tyr	Arg	Ser	Pro	Phe	Ile	Ala	
Ser	Val		Asp	Gln	His			Val	Tyr	Ile			Asn	Lys	Asn	
Lys	130 Thr	Val	Val	Ile	Pro	135 Cys	Leu	Gly	Ser	Ile	140 Ser	Asn	Leu	Asn	Val	
145	Leu				150					155					160	
		-		165	-			-	170					175		
Arg	Ile	Ser	Trp 180	Asp	Ser	Lys	Lys	Gly 185	Phe	Thr	Ile	Pro	Ser 190	Tyr	Met	
Ile	Ser	Tyr 195	Ala	Gly	Met	Val	Phe 200	Cys	Glu	Ala	Lys	Ile 205	Asn	Asp	Glu	
Ser	Tyr 210	Gln	Ser	Ile	Met	Tyr 215	Ile	Val	Val	Val	Val 220	Gly	Tyr	Arg	Ile	
Tyr 225	Asp	Val	Val	Leu	Ser 230	Pro	Ser	His	Gly	Ile 235	Glu	Leu	Ser	Val	Gly 240	
	Lys	Leu	Val		Asn	Сув	Thr	Ala	_		Glu	Leu	Asn			
Ile	Asp	Phe	Asn	245 Trp		Tyr	Pro	Ser	250 Ser	Lys	His	Gln	His	255 Lys	Lys	
	-		260	_		-		265		-			270	-	_	
ьeu	Val	Asn 275	arg	Asp	ьeu	гуз	Thr 280	ыn	ser	чтλ	ser	G1u 285	Met	гуз	пув	
Phe	Leu 290	Ser	Thr	Leu	Thr	Ile 295	Asp	Gly	Val	Thr	Arg 300	Ser	Asp	Gln	Gly	
Leu 305	Tyr	Thr	Cys	Ala	Ala 310	Ser	Ser	Gly	Leu	Met 315	Thr	ГЛа	ГХа	Asn	Ser 320	
Thr	Phe	Val	Arg	Val	His	Glu	Asp	Pro	Ile	Glu	Gly	Arg	Gly	Gly	Gly	

325 330 335 Gly Gly Asp Pro Lys Ser Cys Asp Lys Pro His Thr Cys Pro Leu Cys 340 340 345 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 355 Lys Pro Lys Asp Thr Leu Met 11e Ser Arg Thr Pro Glu Val Thr Cys 370 375 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 385 390 390 395 41 Val Lys Phe Asn Trp 400 415 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 415 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 425 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 435 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 455 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 480 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 480 Asn Tyr Lys Asn Gln Val Ser Leu Thr Cys Asp Gly Ser Phe Phe 515 Leu Thr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Thr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Cau Pro Ser Asp Le Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Ser Asp Gly Ser Phe Phe 520 Callo SeQ ID No 9 «210- SEQ ID No 9 «211- Lennoth: 1416 «212- Type: DNA «212- NAMK/KEY: misc.feature «223- OTHER HIPCORMATION: Synthetic polynucleotide «220- FEATURE: «221- NAMK/KEY: disc.feature «221- NAMK/KEY: disc.feature «222- FEATURE: «	concinaca												
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 365 Lye Pro Lye Asp Thr Leu Met 11e Ser Arg Thr Pro Glu Val Thr Cye 375 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lye Phe Asn Trp 380 Tyr Val Asp Gly Val Glu Val His Asn Ala Lye Thr Lye Pro Arg Glu 415 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 420 His Gln Asp Trp Leu Asn Gly Lye Glu Tyr Lye Cye Lye Val Ser Asn 445 His Gln Asp Trp Leu Asn Gly Lye Glu Tyr Lye Cye Lye Val Ser Asn 445 His Gln Asp Trp Leu Asn Gly Lye Glu Tyr Lye Cye Lye Val Ser Asn 445 His Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 475 Lye Ala Leu Pro Ala Pro Ile Glu Lye Thr Ile Ser Lye Ala Lye Gly 450 His Thr Lye Asn Gln Val Ser Leu Thr Cye Leu Val Lye Gly Phe Tyr 495 Asn Tyr Lye Asn Gln Val Ser Leu Thr Glu Ser Asn Gly Gln Pro Glu Asn 550 Asn Tyr Lye Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Eue Tyr Ser Lye Leu Thr Val Asp Lye Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cye Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Ser Leu Ser Leu Ser Pro Gly Lye 570 Callow Sep Leu Ser Leu Ser Pro Gly Lye 570 Callow Ser Leu Ser Leu Ser Pro Gly Lye 570 Callow Ser Leu Ser Leu Ser Pro Gly Lye 5220 Early Type: DNA 6220 Callow Ser Leu Ser Leu Ser Pro Lye Gly Ser Asp Gly Ser Cye Cye Ser Cye Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Callow Ser Leu Ser Leu Ser Pro Gly Lye 570 Callow Ser Leu Ser Leu Ser Pro Gly Lye 570 Callow Ser Leu Ser Leu Ser Pro Gly Lye 570 Callow Ser Leu Ser Leu Ser Pro Gly Lye 570 Callow Ser Lye Leu Thr Val Lye Gly	335			330					325				
255 360 365 365 265 275 276 277 276 375 375 375 380 380 380 380 375 375 375 380		Thr	His	Pro	-	Asp	Cys	Ser	Lys		Asp	Gly	Gly
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 380		Phe	Val	Ser			Gly	Leu	Leu	Glu		Ala	Pro
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu			Thr	Arg	Ser	Ile		Leu	Thr	Asp	Lys		ГÀа
Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 425 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 435 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 450 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 466 Gln Pro Arg Glu Pro Gln Val Tyr Thr Lys Cys Lys Gly Phe Tyr 485 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 490 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 555 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 523 OTHER INFORMATION: Synthetic polynucleotide 2220> FEATURE: 2223> OTHER INFORMATION: R-2 B 2220> FEATURE: 2221> NAME/KEY: misc feature 2223> OTHER INFORMATION: R-2 B 2220> SEQUENCE: 9 atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Leu Leu Pro Leu Leu Tyr Pala Gly Ala Leu Ala 1				Pro	Asp	Glu	His		Val	Asp	Val	Val	
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 435 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 455 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 465 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 465 Aro 470 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 535 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 550 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 570 <210> SEQ ID NO 9 <211> ENGTH: 1416 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <222> FEATURE: <222> TORRINENCRMATION: R-2 B <222> FEATURE: <222> INAMB/KEY: CDS <222> LOZATION: (1) (1416) <400> SEQUENCE: 9 atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Trp Ala Gly Ala Leu Ala 11 atg gat asg ctt gct acg ggt acc ctc gag gat ggc cgc gga tcc ttg Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 12 atg gat asg ctt gct acg ggt acc ctc gag gat ggc cgc gga tcc ttg Met Asp Lys Leu Ala Ser Gly Thr Leu Glu Asp Gly Arg Gly Ser Leu 20 Cct agt gtt tct ctt gat ctg ccc agg ctc agc ata caa asa gac ata 144 Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser IIe Gln Lys Asp IIe	-	Thr	Lys		Asn	His	Val	Glu		Gly	Asp	Val	Tyr
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 450 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 470 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 Fro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 570 <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <p< td=""><td></td><td>Val</td><td>Ser</td><td>Val</td><td></td><td>Arg</td><td>Tyr</td><td>Thr</td><td>Ser</td><td></td><td>Tyr</td><td>Gln</td><td>Glu</td></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		Val	Ser	Val		Arg	Tyr	Thr	Ser		Tyr	Gln	Glu
450		CAa	Lys	Tyr	Glu		Gly	Asn	Leu	Trp		Gln	His
465 470 475 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 485 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 C210 > SEQ ID NO 9 <211 > LENGTH: 1416 <212 > TYPE: DNA 213 > ORGANISM: Artificial sequence <220 > FEATURE: <221 > NAME/KEY: misc_feature <222 > OTHER INFORMATION: Synthetic polynucleotide <222 > FEATURE: <221 > NAME/KEY: CDS <222 > LOCATION: (1) (1416) 48 Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1 1			Ile	Thr	ГЛа	Glu		Pro	Ala	Pro	Leu		rys
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 500 Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 570 <pre> </pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <p< td=""><td>5 -</td><td></td><td></td><td>Leu</td><td>Thr</td><td>Tyr</td><td>Val</td><td></td><td>Pro</td><td>Glu</td><td>Arg</td><td>Pro</td><td></td></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	5 -			Leu	Thr	Tyr	Val		Pro	Glu	Arg	Pro	
Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 515 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 <pre></pre>		. Val	Leu	-	Thr	Leu	Ser	Val		Asn	Lys	Thr	Leu
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 530 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 S50 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 C210> SEQ ID NO 9 C211> LENGTH: 1416 C212> TYPE: DNA C213> ORGANISM: Artificial sequence C220> FEATURE: C221> NAME/KEY: misc_feature C220> FEATURE: C221> NAME/KEY: misc_feature C221> C221> COTHER INFORMATION: R-2 B C222> LOCATION: (1) (1416) C400> SEQUENCE: 9 atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1	•	Gly	Asn	Ser		Trp	Glu	Val	Ala		Asp	Ser	Pro
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 545 S50 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 S70 <210 > SEQ ID NO 9 <211 > LENGTH: 1416 <212 > TYPE: DNA <213 > ORGANISM: Artificial sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic polynucleotide <220 > FEATURE: <221 > NAME/KEY: misc_feature <2220 > FEATURE: <2221 > NAME/KEY: misc_feature <2220 > FEATURE: <2221 > NAME/KEY: CDS <2222 > LOCATION: (1) (1416) <4400 > SEQUENCE: 9 atg ccg ctg ctg cta ctg ctg ccc ctg ctg ttg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1		Asp	Ser	Asp	Leu		Pro	Pro	Thr	Ala		Tyr	Asn
545 550 555 560 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 570 <210> SEQ ID NO 9 <211> LENGTH: 1416 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <221> RAME/KEY: misc_feature <221> SEATURE: <221> NAME/KEY: misc_feature <221> NAME/KEY: CDS <222> LOCATION: (1) . (1416) <400> SEQUENCE: 9 atg ccg ctg ctg cta ctg ctg ccc ctg ctg ttg ttg gca ggg gcc ctg gct 48 Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1	-	_	Arg	Ser	ГХа	Asp		Thr	Leu	Lys	Ser		Leu
<pre></pre>	-			Ala	Glu	His	Met		Ser	Cys	Ser	Phe	
<pre><211> LENGTH: 1416 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: R-2 B <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)(1416) </pre> <pre><400> SEQUENCE: 9</pre> atg ccg ctg ctg cta ctg ctg ccc ctg ctg ttg gca ggg gcc ctt gct Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1					Gly	Pro	Ser	Leu		Leu	Ser	Lys	Gln
atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1 5 10 15 atg gat aag ctt gct agc ggt acc ctc gag gat ggc cgc gga tcc ttg Met Asp Lys Leu Ala Ser Gly Thr Leu Glu Asp Gly Arg Gly Ser Leu 25 30 cct agt gtt tct ctt gat ctg ccc agg ctc agc ata caa aaa gac ata Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile	ide	eoti	nucl:	polyı		nthei	: Syr ature : R-2	TION c_fea	Art ORMA misorMA CDS	H: 1 DNA ISM: RE: INF RE: KEY: INF RE: KEY:	ENGTI YPE: RGAN: EATUI THER EATUI AME/: THER EATUI AME/:	L> LH 22> T7 33> OH 00> FH 00> FH 10> FH	<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <223
Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1 5 5 6 96 atg gat aag ctt gct agc ggt acc ctc gag gat ggc cgc gga tcc ttg Met Asp Lys Leu Ala Ser Gly Thr Leu Glu Asp Gly Arg Gly Ser Leu 20 25 30 cct agt gtt tct ctt gat ctg ccc agg ctc agc ata caa aaa gac ata 144 Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile									9	NCE:	EQUE)> SI	< 400
Met Asp Lys Leu Ala Ser Gly Thr Leu Glu Asp Gly Arg Gly Ser Leu 20 25 30 cct agt gtt tct ctt gat ctg ccc agg ctc agc ata caa aaa gac ata 144 Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile	a Gly Ala Leu Ala			Leu					Leu				Met
Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile	y Arg Gly Ser Leu				Leu					Leu			
	e Gln Lys Asp Ile					Pro					Val		
ctt aca att aag gct aat aca act ctt caa att act tgc agg gga cag 192 Leu Thr Ile Lys Ala Asn Thr Thr Leu Gln Ile Thr Cys Arg Gly Gln 50 55 60	5 55 55 5	Thr					Thr					Thr	

									-	con	tinı	ıea		
agg gac tt Arg Asp Le 65		Trp I						_	_		_			240
agg gtg ga Arg Val Gl	lu Val													288
aca att co Thr Ile Pr														336
tac cgg ga Tyr Arg Gl 11	lu Thr	_		Ala	_	-			-		_		-	384
tac aga to Tyr Arg Se 130			Ile A	_		_	_	_				_		432
tac att ac Tyr Ile Th 145		Asn I												480
toc att to Ser Ile Se	er Asn													528
aga ttt gt Arg Phe Va														576
ttt act at Phe Thr Il 19	le Pro	-		Met		_		_		_	_		_	624
gaa gca aa Glu Ala Ly 210			Asp (672
gtc gtt gt Val Val Va 225		Āsp E												720
ccc aaa to Pro Lys Se	er Cys	_					_		_	_		_		768
gaa ctc ct Glu Leu Le														816
gac acc ct Asp Thr Le 27				Arg										864
gac gtg ag Asp Val Se 290	_	-	Asp I			_	_						_	912
ggc gtg ga Gly Val Gl 305		His A												960
aac agc ac Asn Ser Th	hr Tyr													1008
tgg ctg aa Irp Leu As					_	_	_	_				_		1056
cca gcc cc Pro Ala Pr 35	ro Ile			Thr				_			_		_	1104
gaa cca ca Glu Pro Gl 370			Thr I											1152

	cag Gln	_	_	_		_		_						_	_	1200
	gcc Ala															1248
	acg Thr															1296
	ctc Leu															1344
	tcc Ser 450															1392
	tcc Ser	_		_			tga									1416
<211 <212 <213 <220)> SE L> LE 2> TY B> OF 0> FE B> OT	ENGTH (PE : RGAN] EATUR	H: 47 PRT ISM: RE:	71 Arti					polyp	pepti	ide					
< 400)> SE	EQUE	ICE :	10												
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
Met	Asp	Lys	Leu 20	Ala	Ser	Gly	Thr	Leu 25	Glu	Asp	Gly	Arg	Gly 30	Ser	Leu	
Pro	Ser	Val 35	Ser	Leu	Asp	Leu	Pro 40	Arg	Leu	Ser	Ile	Gln 45	ГÀа	Asp	Ile	
Leu	Thr 50	Ile	Lys	Ala	Asn	Thr 55	Thr	Leu	Gln	Ile	Thr 60	Cys	Arg	Gly	Gln	
Arg 65	Asp	Leu	Asp	Trp	Leu 70	Trp	Pro	Asn	Asn	Gln 75	Ser	Gly	Ser	Glu	Gln 80	
Arg	Val	Glu	Val	Thr 85	Glu	Cys	Ser	Asp	Gly 90	Leu	Phe	Cys	Lys	Thr 95	Leu	
Thr	Ile	Pro	Lys	Val	Ile	Gly	Asn	Asp 105	Thr	Gly	Ala	Tyr	Lys 110	Cys	Phe	
Tyr	Arg	Glu 115	Thr	Asp	Leu	Ala	Ser 120	Val	Ile	Tyr	Val	Tyr 125	Val	Gln	Asp	
Tyr	Arg 130	Ser	Pro	Phe	Ile	Ala 135	Ser	Val	Ser	Asp	Gln 140	His	Gly	Val	Val	
Tyr 145	Ile	Thr	Glu	Asn	Lys 150	Asn	Lys	Thr	Val	Val 155	Ile	Pro	Сув	Leu	Gly 160	
Ser	Ile	Ser	Asn	Leu 165	Asn	Val	Ser	Leu	Cys 170	Ala	Arg	Tyr	Pro	Glu 175	ГÀз	
Arg	Phe	Val	Pro 180	Asp	Gly	Asn	Arg	Ile 185	Ser	Trp	Asp	Ser	Lys 190	Lys	Gly	
Phe	Thr	Ile 195	Pro	Ser	Tyr	Met	Ile 200	Ser	Tyr	Ala	Gly	Met 205	Val	Phe	Cys	
Glu	Ala 210	Lys	Ile	Asn	Asp	Glu 215	Ser	Tyr	Gln	Ser	Ile 220	Met	Tyr	Ile	Val	
Val 225	Val	Val	Gly	Asp	Pro 230	Ile	Glu	Gly	Arg	Gly 235	Gly	Gly	Gly	Gly	Asp 240	

Pro	Lys	Ser	Cys	Asp 245	Lys	Pro	His	Thr	Cys 250	Pro	Leu	Cya	Pro	Ala 255	Pro	
Glu	Leu	Leu	Gly 260	Gly	Pro	Ser	Val	Phe 265	Leu	Phe	Pro	Pro	Lys 270	Pro	Lys	
Asp	Thr	Leu 275	Met	Ile	Ser	Arg	Thr 280	Pro	Glu	Val	Thr	Сув 285	Val	Val	Val	
Asp	Val 290	Ser	His	Glu	Asp	Pro 295	Glu	Val	ГÀа	Phe	Asn 300	Trp	Tyr	Val	Asp	
Gly 305	Val	Glu	Val	His	Asn 310	Ala	Lys	Thr	Lys	Pro 315	Arg	Glu	Glu	Gln	Tyr 320	
Asn	Ser	Thr	Tyr	Arg 325	Val	Val	Ser	Val	Leu 330	Thr	Val	Leu	His	Gln 335	Asp	
Trp	Leu	Asn	Gly 340	Lys	Glu	Tyr	Lys	Сув 345	Lys	Val	Ser	Asn	350	Ala	Leu	
Pro	Ala	Pro 355	Ile	Glu	Lys	Thr	Ile 360	Ser	Lys	Ala	Lys	Gly 365	Gln	Pro	Arg	
Glu	Pro 370	Gln	Val	Tyr	Thr	Leu 375	Pro	Pro	Ser	Arg	Asp 380	Glu	Leu	Thr	ГÀЗ	
Asn 385	Gln	Val	Ser	Leu	Thr 390	СЛа	Leu	Val	ГÀа	Gly 395	Phe	Tyr	Pro	Ser	Asp 400	
Ile	Ala	Val	Glu	Trp 405	Glu	Ser	Asn	Gly	Gln 410	Pro	Glu	Asn	Asn	Tyr 415	ГÀЗ	
	Thr		420					425					430			
	Leu	435					440					445				
	Ser 450					455	Leu	His	Asn	His	Tyr 460	Thr	Gln	Lys	Ser	
Leu 465	Ser	Leu	Ser	Pro	Gly 470	Lys										
<211 <212 <213 <220 <221 <221 <221 <221 <221 <221 <221	0> SE L> LE 2> TY 3> OF 0> FE L> NA 0> FE L> NA 1> OT 1> OT 1	ENGTH PE: RGANI EATUR CHER CHER EATUR AME / R AME / R	H: 14 DNA ISM: EE: INFO EE: INFO EE: CEY: CEY: CEY: CON:	Arti DRMAT misc DRMAT CDS (1)	TION: c_fea	: Syr iture : R-2	nthet		oolyr	nucle	eotic	de				
	ccg				ctg	ctg	ccc	ctg	ctg	tgg	gca	ggg	gcc	ctg	gct	48
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
	gat Asp															96
	agt Ser															144
	aca Thr 50															192
agg	gac	ttg	gac	tgg	ctt	tgg	ccc	aat	aat	cag	agt	ggc	agt	gag	caa	240

-continued	
Arg Asp Leu Asp Trp Leu Trp Pro Asn Asn Gln Ser Gly Ser Glu Gln 65 70 75 80	
agg gtg gag gtg act gag tgc agc gat ggc ctc ttc tgt aag aca ctc Arg Val Glu Val Thr Glu Cys Ser Asp Gly Leu Phe Cys Lys Thr Leu 85 90 95	288
aca att cca aaa gtg atc gga aat gac act gga gcc tac aag tgc ttc Thr Ile Pro Lys Val Ile Gly Asn Asp Thr Gly Ala Tyr Lys Cys Phe 100 105 110	336
tac egg gaa act gac ttg gcc teg gtc att tat gtc tat gtt caa gat Tyr Arg Glu Thr Asp Leu Ala Ser Val Ile Tyr Val Tyr Val Gln Asp 115 120 125	384
tac aga tot oca tit att got tot git agt gac caa cat gga gic gig Tyr Arg Ser Pro Phe Ile Ala Ser Val Ser Asp Gln His Gly Val Val 130 135 140	432
tac att act gag aac aaa aac aaa act gtg gtg att cca tgt ctc ggg Tyr Ile Thr Glu Asn Lys Asn Lys Thr Val Val Ile Pro Cys Leu Gly 145 150 160	480
tcc att tca aat ctc aac gtg tca ctt tgt gca aga tac cca gaa aag Ser Ile Ser Asn Leu Asn Val Ser Leu Cys Ala Arg Tyr Pro Glu Lys 165 170 175	528
aga ttt gtt cct gat ggt aac aga att tcc tgg gac agc aag aag ggc Arg Phe Val Pro Asp Gly Asn Arg Ile Ser Trp Asp Ser Lys Lys Gly 180 185 190	576
ttt act att ccc agc tac atg atc agc tat gct ggc atg gtc ttc tgt Phe Thr Ile Pro Ser Tyr Met Ile Ser Tyr Ala Gly Met Val Phe Cys 195 200 205	624
gaa gca aaa att aat gat gaa agt tac cag tct att atg tac ata gtt Glu Ala Lys Ile Asn Asp Glu Ser Tyr Gln Ser Ile Met Tyr Ile Val 210 215 220	672
gtc gtt gta ggg tat agg att tat gat gtg gat ccc atc gaa ggt cgt Val Val Val Gly Tyr Arg Ile Tyr Asp Val Asp Pro Ile Glu Gly Arg 225 230 235 240	720
ggt ggt ggt ggt ggt gat ccc aaa tct tgt gac aaa cct cac aca tgc Gly Gly Gly Gly Asp Pro Lys Ser Cys Asp Lys Pro His Thr Cys 245 250 255	768
cca ctg tgc cca gca cct gaa ctc ctg ggg gga ccg tca gtc ttc ctc Pro Leu Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 260 265 270	816
ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct gag Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 275 280 285	864
gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aag Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 290 295 300	912
ttc aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 305 310 315 320	960
ccg cgg gag gag cag tac aac agc acg tac cgt gtg gtc agc gtc ctc Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 325 330 335	1008
acc gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 340 345 350	1056
gtc tcc aac aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 355 360 365	1104
gcc aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc cca tcc Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 370 375 380	1152

									con	tin	ued		
cgg gat ga Arg Asp Gl 385		Thr L											1200
ggc ttc ta Gly Phe Ty	r Pro												1248
ccg gag aa Pro Glu As													1296
tcc ttc tt Ser Phe Ph 43	e Leu				Thr								1344
cag ggg aa Gln Gly As 450				s Ser									1392
cac tac ac His Tyr Th 465		Lys S								tga			1434
<210 > SEQ <211 > LENG <212 > TYPE <213 > ORGA <220 > FEAT <223 > OTHE	TH: 47 : PRT NISM: URE:	7 Artif		_		polyp	pept:	ide					
<400> SEQU	ENCE:	12											
Met Pro Le 1		Leu I 5	eu Le	u Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
Met Asp Ly	s Leu 20	Ala S	Ser Gl	y Thr	Leu 25	Glu	Asp	Gly	Arg	Gly 30	Ser	Leu	
Pro Ser Va 35		Leu A	Aap Le	u Pro 40	Arg	Leu	Ser	Ile	Gln 45	Lys	Asp	Ile	
Leu Thr Il 50	e Lys	Ala A	Asn Th	r Thr	Leu	Gln	Ile	Thr 60	Cys	Arg	Gly	Gln	
Arg Asp Le 65	u Asp		∟eu Tr 70	p Pro	Asn	Asn	Gln 75	Ser	Gly	Ser	Glu	Gln 80	
Arg Val Gl		Thr G	3lu Cy	s Ser	Asp	Gly 90	Leu	Phe	СЛа	Lys	Thr 95	Leu	
Thr Ile Pr	0 Lys 100	Val I	lle Gl	y Asn	Asp 105	Thr	Gly	Ala	Tyr	Lys 110	CÀa	Phe	
Tyr Arg Gl 11		Asp L	Jeu Al	a Ser 120		Ile	Tyr	Val	Tyr 125	Val	Gln	Asp	
Tyr Arg Se 130	r Pro	Phe I	lle Al 13		Val	Ser	Asp	Gln 140	His	Gly	Val	Val	
Tyr Ile Th 145	r Glu		ıya As	n Lys	Thr	Val	Val 155	Ile	Pro	Cys	Leu	Gly 160	
Ser Ile Se		Leu A 165	Asn Va	l Ser	Leu	Cys 170	Ala	Arg	Tyr	Pro	Glu 175	Lys	
Arg Phe Va	l Pro 180	Asp G	Gly As	n Arg	Ile 185	Ser	Trp	Asp	Ser	Lys 190	Lys	Gly	
Phe Thr Il		Ser I	Tyr Me	t Ile 200		Tyr	Ala	Gly	Met 205	Val	Phe	Cys	
Glu Ala Ly 210	s Ile	Asn A	Asp Gl 21		Tyr	Gln	Ser	Ile 220	Met	Tyr	Ile	Val	
Val Val Va 225	l Gly		Arg Il 230	e Tyr	Asp	Val	Asp 235	Pro	Ile	Glu	Gly	Arg 240	

_																		 		
G	ly	Gly	Gly	Gly	Gly 245		Pro	Lys	Ser	Сув 250	Asp	Lys	Pro	His	Thr 255	Cys				
P	ro	Leu	Cys	Pro 260	Ala	Pro	Glu	Leu	Leu 265		Gly	Pro	Ser	Val 270	Phe	Leu				
P.	ne	Pro	Pro 275	Lys	Pro	Lys	Asp	Thr 280	Leu	Met	Ile	Ser	Arg 285	Thr	Pro	Glu				
V		Thr 290	Cys	Val	Val	Val	Asp 295		Ser	His	Glu	Asp	Pro	Glu	Val	Lys				
	he 05	Asn	Trp	Tyr	Val	Asp 310	Gly	Val	Glu	Val	His 315	Asn	Ala	Lys	Thr	Lys 320				
		Arg	Glu	Glu	Gln 325	Tyr	Asn	Ser	Thr	Tyr 330		Val	Val	Ser	Val 335					
T	hr	Val	Leu	His			Trp	Leu	Asn 345	Gly	Lys	Glu	Tyr	Lys	Сув	Lys				
V	al	Ser			Ala	Leu	Pro				Glu	ГÀз			Ser	Lys				
А			355 Gly	Gln	Pro	Arg			Gln	Val	Tyr		365 Leu	Pro	Pro	Ser				
	rg	370 Asp	Glu	Leu	Thr	_	375 Asn		Val	Ser		380 Thr	Сув	Leu	Val	Lys				
	85 ly	Phe	Tyr	Pro	Ser	390 Asp	Ile	Ala	Val	Glu	395 Trp	Glu	Ser	Asn	Gly	400 Gln				
P	ro	Glu	Asn	Asn	405 Tyr	Lys	Ala	Thr	Pro	410 Pro	Val	Leu	Asp	Ser	415 Asp	Gly				
S	er	Phe	Phe	420 Leu	Tyr	Ser	Lys	Leu	425 Thr	Val	Asp	Lys	Ser	430 Arg	Trp	Gln				
			435					440					445		His					
		450				Ser	455					460		Lou		11011				
	65	171	1111	GIII	пув	470	пец	per	пец	per	475	GIY	цув							
			EQ II																	
<	212	> T3	ENGTI	DNA																
<	220	> FE	EATUI	RE:		ific:		-			_		_							
<	220	> FE	EATUI	RE:		TION	_		tic]	ротуі	nucle	eoti	ae							
<	223	> O1	THER	INF		c_fea TION														
<	221	> NA	EATUI AME/I	KEY:																
< .	222	> LC	CAT:	ON:	(1)	(1	452)													
<	400	> SI	EQUEI	ICE :	13															
	et														ctg Leu 15		48			
															tcc		96			
			-	20			_		25		_	_		30	Ser					
															gac Asp		144			
															gga		192			
L		Thr 50	ıle	гуз	Ala	Asn	Thr 55	Thr	Leu	Gln	Ile	Thr 60	Cys	Arg	Gly	Gln				
															gag Glu		240			

•	65					70					75					80	
										ggc Gly 90							288
										act Thr							336
										att Ile							384
										agt Ser							432
,										gtg Val							480
										tgt Cys 170							528
	_		_		_			_		tcc Ser		_	_	_	_		576
										tat Tyr							624
										cag Gln							672
7	_	_	_						_	gtg Val	_	_	_	_			720
										ggt Gly 250							768
										cca Pro							816
										aaa Lys							864
										gtg Val							912
(tac Tyr							960
			_	_		_	_		-	gag Glu 330	_			_	_		1008
										cac His							1056
	_			_	_	_	_			aaa Lys	_			_			1104
										cag Gln							1152
1	tac	acc	ctg	ccc	cca	tcc	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	agc	1200

											con	tin	ued		
Tyr Thi	r Leu	Pro	Pro	Ser 390	Arg	Asp	Glu	Leu	Thr 395	ГÀа	Asn	Gln	Val	Ser 400	
ctg acc															1248
tgg gag Trp Gli				_	_					_	_	_			1296
gtg ctg Val Let															1344
gac aaq Asp Ly: 450	s Ser														1392
cat gaq His Glu 465															1440
ccg ggt Pro Gly		tga													1452
<210 > 8 < 211 > 1 < 212 > 5 < 213 > 6 < 220 > 1 < 223 > 6 < 2400 > 8	LENGTI TYPE: ORGAN: FEATUI OTHER	H: 49 PRT ISM: RE: INFO	B3 Art: DRMA'			_		polyp	pept:	ide					
Met Pro				Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala		Ala	
Met Ası	b ŗĀa	Leu 20		Ser	Gly	Thr	Leu 25		Asp	Gly	Arg	Gly 30	15 Ser	Leu	
Pro Sei	r Val 35		Leu	Asp	Leu	Pro 40		Leu	Ser	Ile	Gln 45		Asp	Ile	
Leu Thi		Lys	Ala	Asn	Thr 55	Thr	Leu	Gln	Ile	Thr	CÀa	Arg	Gly	Gln	
Arg Ası 65	p Leu	Asp	Trp	Leu 70	Trp	Pro	Asn	Asn	Gln 75	Ser	Gly	Ser	Glu	Gln 80	
Arg Val	l Glu	Val	Thr 85	Glu	CAa	Ser	Asp	Gly 90	Leu	Phe	CAa	ГÀв	Thr 95	Leu	
Thr Ile	e Pro	Lys 100	Val	Ile	Gly	Asn	Asp 105	Thr	Gly	Ala	Tyr	Lys 110	CAa	Phe	
Tyr Arg	g Glu 115	Thr	Asp	Leu	Ala	Ser 120	Val	Ile	Tyr	Val	Tyr 125	Val	Gln	Asp	
Tyr Arg	-	Pro	Phe	Ile	Ala 135	Ser	Val	Ser	Asp	Gln 140	His	Gly	Val	Val	
Tyr Ile 145	e Thr	Glu	Asn	Lys 150	Asn	Lys	Thr	Val	Val 155	Ile	Pro	Сув	Leu	Gly 160	
Ser Ile	e Ser	Asn	Leu 165	Asn	Val	Ser	Leu	Cys 170	Ala	Arg	Tyr	Pro	Glu 175	Lys	
Arg Phe	e Val	Pro 180	Asp	Gly	Asn	Arg	Ile 185	Ser	Trp	Asp	Ser	Lys 190	Lys	Gly	
Phe Th	r Ile 195	Pro	Ser	Tyr	Met	Ile 200	Ser	Tyr	Ala	Gly	Met 205	Val	Phe	Сув	
Glu Ala 210	_	Ile	Asn	Asp	Glu 215	Ser	Tyr	Gln	Ser	Ile 220	Met	Tyr	Ile	Val	
Val Val	l Val	Gly	Tyr	Arg	Ile	Tyr	Asp	Val	Val	Leu	Ser	Pro	Ser	His	

225 28 20 235 240 235 240 Amp Pro 11e Olu Clyar Gly Gly Gly Gly Gly Amp Pro Lys Ser Cys 255 Amp Lys Pro His The Cys Pro Len Cys Pro Lan Pro Glu Len Leu Gly 265 265 Gly Pro Ser Val Phe Leu Phe Pro Pro Lyo Pro Lys Amp Thr Leu Het 275 Gly Pro Ser Val Phe Leu Phe Pro Pro Lyo Pro Lys Amp Thr Leu Het 275 Gly Pro Ser Val Phe Leu Phe Pro Pro Lyo Pro Lys Amp Thr Leu Het 275 Gly Pro Ser Val Phe Leu Phe Pro Pro Lyo Pro Lys Amp Thr Leu Het 275 Gly Pro Ser Val Phe Leu Thr Val Leu Hat Gly Amp Cly Val Glu Val Glu Val 305 Amp Val Val Lyo Pro Arg Glu Glu Glu Glu Glu Tyr Am Ser Thr Tyr 326 Arg Val Val Ser Val Leu Thr Val Leu Hat Gln Amp Try Leu Amn Gly 265 Lyo Glu Tyr Lys Cyc Lys Val Ser Amn Lyo Ala Leu Dro Ala Pro Ile 375 Glu Lyo Thr Ile Ser Lyw Ala Luy Gly Gln Pro Arg Glu Pro Glu Val 375 Glu Lyo Thr Ile Ser Lyw Ala Luy Gly Gln Pro Arg Glu Pro Gln Val 375 Tyr Thr Leu Pro Pro Ser Amp Amp Glu Leu Thr Lyo Ann Gln Val Ser 385 Seu Thr Cys Leu Val Vag Gly Pre Tyr Pro Ser Amp Ile Ala Val Glu Glu 415 Trp Glu Ser Amn Gly Gln Pro Glu Amn Amn Tyr Lyw Ala Thr Pro Pro 284 Amp Lye Ser Amp Gly Gln Pro Glu Amn Amn Tyr Lyw Ala Thr Pro Pro 284 Amp Lye Ser Amp Gly Ser Phe Pte Leu Tyr Ser Lyw Leu Thr Val 445 Amp Lye Ser Amp Trp Gln Gln Gly Amn Val Phe Ser Cyc Ser Val Met 455 Amp Lye Ser Amp Trp Gln Gln Gly Amn Val Phe Ser Cyc Ser Val Met 465 Amp Lye Ser Amp Trp Gln Gln Cly Amn Val Phe Ser Cyc Ser Val Met 465 Amp Lye Ser Amp Trp Gln Gln Cly Amn Val Phe Ser Cyc Ser Val Met 465 Amp Lye Ser Amp Trp Gln Gln Cly Amn Val Phe Ser Cyc Ser Val Met 465 Amp Lye Ser Amn MindoMoriton' Synchetic polymucleotide 4221 Man Moriton' Synchetic polymucleotide 4222 Mornation' (1) (1479) 4400 Ser Que Leu Ala Ser Gly Thr Leu Glu Amp Gly Ang Gly Ser Leu 368 Amg Og Ctg Ctg Cta Cta Ctg Ctg Ctc Ctg C	_													con	tın	ued					
245	2.	25					230					235					240				
260 265 270 Gly Pro Ser Val Phe Leu Phe Pro Pro Lye Pro Lye Amp Thr Leu Met 275 280 280 280 280 280 280 280 280 280 280	A	ap	Pro	Ile	Glu			Gly	Gly	Gly		Gly	Asp	Pro	Lys		Cys				
275 280 285 The Ser Arg Thr Pro Glu Val Thr Cye Val Val Val Ang Val Ser Hin 280 Arg Thr Pro Glu Val Lye Phe Am Trp Tyr Val Amp Gly Val Glu Val 320 320 310 320 320 320 320 320 320 320 320 320 32	A	ap	Lys	Pro			Cys	Pro	Leu		Pro	Ala	Pro	Glu		Leu	Gly				
290 295 300 300 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 310 315	G.	ly	Pro		Val	Phe	Leu	Phe		Pro	Lys	Pro	Lys	_	Thr	Leu	Met				
310 310 315 320 His Aen Ala Ley Brh Lye Pro Arg Glu Glu Glu Glu Tyr Aen Ser Thr Tyr 325 325 326 327 325 336 326 328 328 328 328 328 328 328 328 328 328	I	le		Arg	Thr	Pro	Glu		Thr	CAa	Val	Val		Asp	Val	Ser	His				
Arg Val Val Ser Val Leu Thr Val Leu His Gin Aep Trp Leu Aen Giy 340 Lys Glu Tyr Lys Cys Lys Val Ser Aen Lys Ala Leu Pro Ala Pro Ile 355 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 Tyr Thr Leu Pro Pro Ser Arg Aep Glu Leu Thr Lys Aen Gln Val Ser 385 195 Lys Glu Ser Aen Gly Gln Pro Glu Aen Aen Tyr Lys Ala Thr Pro Pro 420 Val Leu Anp Ser Aep Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 445 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 445 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Leu Ser Leu Ser 445 Pro Gly Lys 4210 > SEQ ID NO 15 4213 > CRUMTHS: 4210 > FRATURE: 4211 > LENDIN: 4212 > TIPE: DNA 4213 > GROWINSIN: Artificial sequence 4220 > FRATURE: 4221 > NAME/KEY: misc. feature 4222 > OTHER INFORMATION: R-2 E 4222 > TORE INFORMATION: () (1479) 4400 > SEQUENCE: 15 atg ceg etg etg etg eta etg etg ce ctg etg etg etg egg agg gec etg etg 48 Met Arp Lys Leu Ala Ser Gly Thr Leu Glu Aep Gly Arg Gly Ser Leu 20 cet agt ett tet ett gat etg ce can etc and at aca and agac ata 40 cet and ett tet can at eac et et can at aca at aca geg agg ec 412 et aca att aca et aca et et can et et can att act teg agg aca et et teg 412 et aca att aca et aca aca aca at aca aca aca aca etc et aca etc etc aca etc etg etg aca att aca aca aca aca aca aca etc etc aca etc etg etg etg etg eta eta etg etg eac aca etc aca aca aca aca aca aca etc etg etg etg etg etg eta etc aca att aca aca aca aca etc etg etc etc etc etc etg			Asp	Pro	Glu	Val		Phe	Asn	Trp	Tyr		Asp	Gly	Val	Glu					
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 355 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 385 380 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala Thr Pro Pro 420 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 445 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 465 Asp Lys Ser Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 4210 > SEO LD NO 15 4210 > SEO LD NO 15 4211 > LEMOTH: 1479 4222 > TOFER INFORMATION: Synthetic polynucleotide 4220 > FEATURE: 4221 > TOHER INFORMATION: Synthetic polynucleotide 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220 > FEATURE: 4221 > TOHER INFORMATION: R-2 E 4220	H	is	Asn	Ala	Lys			Pro	Arg	Glu		Gln	Tyr	Asn	Ser		Tyr				
355 360 360 365 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 370 375 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 385 390 395 400 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 415 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala Thr Pro Pro 420 425 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 450 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 450 470 Pro Gly Lys **210> SEQ ID NO 15 **221> LENGTH: 1479 **211> LTYPE: DNA **212> TYPE: DNA **212> TYPE: DNA **212> START INFORMATION: Synthetic polynucleotide **222> GPEATURE: **221> NAME/KEY: CDS **222> OTHER INFORMATION: R-2 E **221> NAME/KEY: CDS **222> LOCATION: (1) (1479) **400> SEQUENCE: 15 atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Asp Lys Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 15 atg gat asg ctt gct acc ggg acc ctc agg gat gcc gcg gga tcc ttg Met Asp Lys Leu Ala Ser Gly Thr Leu Glu Asp Gly Arg Gly Ser Leu 35 cct agt gtt tct ctt gat ctg ccc agg ctc agc aca aca aca aca aca aca 44 cct aca att aca gct act acc act ct ca act ctc aca att act tgc agg gca ccc ctt aca att aca gct act acc act ctc aca act ctc aca att act tgc agg gca cct ctt acc att aca att aca act ctt caa act ctt caa act ctt caa act act	A:	rg	Val	Val			Leu	Thr	Val		His	Gln	Asp	Trp		Asn	Gly				
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asm Gln Val Ser 383 385 380 400 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 415 Trp Glu Ser Asm Gly Gln Pro Glu Asm Asm Tyr Lys Ala Thr Pro Pro 420 425 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 440 Asp Lys Ser Arg Trp Gln Gln Gly Asm Val Phe Ser Cys Ser Val Met 450 455 His Glu Ala Leu His Asm His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 465 470 Pro Gly Lys **Colon SEQ ID NO 15** **Coll LEENGTH: 1479* **Coll Seq Colon Sep Colon	L	Хa	Glu	_	Lys	Cys	Lys	Val		Asn	Lys	Ala	Leu		Ala	Pro	Ile				
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 405 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala Thr Pro Pro 420 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 450 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 465 470 A70 A75 Pro Gly Lys <pre> </pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td>G:</td><td>lu</td><td></td><td>Thr</td><td>Ile</td><td>Ser</td><td>Lys</td><td></td><td>Lys</td><td>Gly</td><td>Gln</td><td>Pro</td><td></td><td>Glu</td><td>Pro</td><td>Gln</td><td>Val</td><td></td><td></td><td></td><td></td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	G:	lu		Thr	Ile	Ser	Lys		Lys	Gly	Gln	Pro		Glu	Pro	Gln	Val				
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala Thr Pro Pro 420 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Leu Ser 470 Asp Lys Ser Leu Ser 480 Pro Gly Lys <pre> <a href="https://docs.org/linearing/files/linearing/fi</td><td></td><td></td><td>Thr</td><td>Leu</td><td>Pro</td><td>Pro</td><td></td><td>Arg</td><td>Asp</td><td>Glu</td><td>Leu</td><td></td><td>Lys</td><td>Asn</td><td>Gln</td><td>Val</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 435 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 465 470 475 Pro Gly Lys <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <p</td><td>L</td><td>eu</td><td>Thr</td><td>Сув</td><td>Leu</td><td></td><td></td><td>Gly</td><td>Phe</td><td>Tyr</td><td></td><td>Ser</td><td>Asp</td><td>Ile</td><td>Ala</td><td></td><td>Glu</td><td></td><td></td><td></td><td></td></tr><tr><td>Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 450 Ass Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 465 470 475 Ass Eleu Ser Leu Ser 480 Pro Gly Lys <pre> <a< td=""><td>T</td><td>rp</td><td>Glu</td><td>Ser</td><td></td><td></td><td>Gln</td><td>Pro</td><td>Glu</td><td></td><td>Asn</td><td>Tyr</td><td>Lys</td><td>Ala</td><td></td><td>Pro</td><td>Pro</td><td></td><td></td><td></td><td></td></a<></pre>	T	rp	Glu	Ser			Gln	Pro	Glu		Asn	Tyr	Lys	Ala		Pro	Pro				
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 465 470 475 480 Pro Gly Lys	V	al	Leu	_	Ser	Asp	Gly	Ser		Phe	Leu	Tyr	Ser	_	Leu	Thr	Val				
470 475 480 Pro Gly Lys <pre> <210> SEQ ID NO 15 <211> LENGTH: 1479 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <221> NAME/KEY: misc_feature <222> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <221> NAME/KEY: CDS <222> LOCATION: (1) (1479) </pre> <pre> <400> SEQUENCE: 15 atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1</pre>	A	sp		Ser	Arg	Trp	Gln		Gly	Asn	Val	Phe		CAa	Ser	Val	Met				
<pre><210> SEQ ID NO 15 <211> LENGTH: 1479 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: R-2 E <221> NAME/KEY: CDS <222> LOCATION: (1)(1479) </pre> <pre><400> SEQUENCE: 15</pre> atg ccg ctg ctg cta ctg ctg ccc ctg ctg ttgg gca ggg gcc ctg gct 48 Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1			Glu	Ala	Leu	His		His	Tyr	Thr	Gln	_	Ser	Leu	Ser	Leu					
<pre><211> LENGTH: 1479 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <221> INFORMATION: Synthetic polynucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <221> NAME/KEY: misc_feature <222> FEATURE: <221> NAME/KEY: CDS <222> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)(1479) </pre> <pre><400> SEQUENCE: 15 atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1</pre>	P:	ro	Gly	Lys																	
atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala 1	< :	211 212 213 220 223 221 223 221	.> LI -> T -> OI -> OI -> NI -> NI -> NI -> NI -> NI	ENGTI YPE: RGAN: EATUI THER EATUI THER EATUI AME/:	H: 1 DNA ISM: RE: INF RE: KEY: INF RE: KEY:	Art ORMA misorMA CDS	TION c_fea TION	: Syr ature : R-:	nthe		polyı	nucle	eoti:	de							
Met Pro Leu Leu Leu Leu Leu Pro Leu Leu Tro Ala Gly Ala Leu Ala 1	< 4	400)> SI	EQUE	NCE:	15															
Met Asp Lys Leu Ala Ser Gly Thr Leu Glu Asp Gly Arg Gly Ser Leu 20 25 30 cct agt gtt tct ctt gat ctg ccc agg ctc agc ata caa aaa gac ata 144 Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile 35 40 45 ctt aca att aag gct aat aca act ctt caa att act tgc agg gga cag 192	M	et									Leu					Leu		48			
Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser Ile Gln Lys Asp Ile 35 40 45 ctt aca att aag gct aat aca act ctt caa att act tgc agg gga cag 192					Leu					Leu					Gly			96			
				Val					Pro					Gln				144			
																		192			

												COII	CIII	ueu		
	50					55					60					
	_	_	_			tgg Trp				_	_		_			240
						tgc Cys										288
						gga Gly		_			_		_	_		336
						gcc Ala										384
						gct Ala 135										432
						aac Asn										480
						gtg Val										528
						aac Asn										576
						atg Met										624
-	_				_	gaa Glu 215	_		_			_			-	672
						att Ile										720
						gga Gly										768
						aaa Lys										816
						ctc Leu										864
						acc Thr 295										912
						gtg Val										960
						gtg Val										1008
			_			agc Ser	_		_		-	_	_			1056
						ctg Leu										1104
tcc	aac	aaa	gcc	ctc	сса	gcc	ccc	atc	gag	aaa	acc	atc	tcc	aaa	gcc	1152

											_	con	tin [.]	ued			
Ser	Asn 370	Lys	Ala	Leu	Pro	Ala 375	Pro	Ile	Glu	Lys	Thr 380	Ile	Ser	Lys	Ala		
														tcc Ser		1200	
														aaa Lys 415		1248	
														cag Gln		1296	
														ggc Gly		1344	
														cag Gln		1392	
		_			_			_			_	_		aac Asn		1440	
	acg Thr	_	_	_			_		_			tga				1479	
<21: <22: <22:	2 > T) 3 > OF 0 > FE 3 > OT 0 > SE	RGANI EATUF THER	SM: RE: INFO	ORMA!			-		polyp	pept:	ide						
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala		
Met	Asp	Lys	Leu 20	Ala	Ser	Gly	Thr	Leu 25	Glu	Asp	Gly	Arg	Gly 30	Ser	Leu		
Pro	Ser	Val 35	Ser	Leu	Asp	Leu	Pro 40	Arg	Leu	Ser	Ile	Gln 45	ГÀа	Asp	Ile		
Leu	Thr 50	Ile	Lys	Ala	Asn	Thr 55	Thr	Leu	Gln	Ile	Thr 60	СЛв	Arg	Gly	Gln		
Arg 65	Asp	Leu	Asp	Trp	Leu 70	Trp	Pro	Asn	Asn	Gln 75	Ser	Gly	Ser	Glu	Gln 80		
J				85		•		-	90			-	-	Thr 95			
			100			-		105		_		-	110	Cys			
-	_	115		_			120			-		125		Gln			
-	130					135				_	140		-	Val			
145					150		-			155			-	Leu	160		
				165					170					Glu 175 Lys			
			180	_	-			185		_	_		190	Phe	_		
-110		195			-1-		200		-1-		y	205	. 41	-110	-15		

Glu Ala Lys	Ile Asn A	sp Glu S	Ser Tyr	Gln Ser	Ile Met	Tyr	Ile	Val	
210	Clar Mars A	215	Dr. 120 7 0020	Wel Wel	220	Dwa	Com	II. a	
Val Val Val 225		30	ryr Asp	235	ned Ser	PIO	ser	240	
Gly Ile Glu	Leu Ser V 245	al Gly (Glu Lys	Asp Pro 250	Ile Glu	Gly	Arg 255	Gly	
Gly Gly Gly	Gly Asp P 260	ro Lys S	Ser Cys 265	Asp Lys	Pro His	Thr 270	Cha	Pro	
Leu Cys Pro 275	Ala Pro G		Leu Gly 280	Gly Pro	Ser Val		Leu	Phe	
Pro Pro Lys 290	Pro Lys A	sp Thr I 295	Leu Met	Ile Ser	Arg Thi	Pro	Glu	Val	
Thr Cys Val		sp Val S 10	Ser His	Glu Asp 315	Pro Glu	. Val	Lys	Phe 320	
Asn Trp Tyr	Val Asp G 325	ly Val (Glu Val	His Asn	Ala Lys	Thr	Lys 335	Pro	
Arg Glu Glu	Gln Tyr A	sn Ser 1	Thr Tyr 345	Arg Val	Val Ser	Val 350	Leu	Thr	
Val Leu His 355	Gln Asp T		Asn Gly 360	Lys Glu	Tyr Lys		Lys	Val	
Ser Asn Lys 370	Ala Leu P	ro Ala E 375	Pro Ile	Glu Lys	Thr Ile	Ser	Lys	Ala	
Lys Gly Gln 385		lu Pro (90	Gln Val	Tyr Thr	Leu Pro	Pro	Ser	Arg 400	
Asp Glu Leu	Thr Lys A	sn Gln V	/al Ser	Leu Thr	Cys Let	. Val	Lys 415	Gly	
Phe Tyr Pro	Ser Asp I	le Ala V	/al Glu 425	Trp Glu	Ser Asr	Gly 430	Gln	Pro	
Glu Asn Asn 435	Tyr Lys A		Pro Pro	Val Leu	Asp Ser		Gly	Ser	
Phe Phe Leu 450	Tyr Ser L	ys Leu 1 455	Thr Val	Aap Lya	Ser Arg	Trp	Gln	Gln	
Gly Asn Val			/al Met	His Glu 475		His	Asn	His 480	
Tyr Thr Gln			Leu Ser		Tàa			100	
	403			490					
<210> SEQ II <211> LENGTH									
<212> TYPE: <213> ORGANI		icial se	equence						
<220> FEATUR <223> OTHER		ON: Synt	thetic p	oolynucl	eotide				
<220> FEATUR <221> NAME/K		Teature							
<223> OTHER <220> FEATUR		ON: R-2	F						
<221> NAME/K <222> LOCATI		(1113)							
<400> SEQUEN	NCE: 17								
atg ccg ctg Met Pro Leu 1									48
atg gat aag Met Asp Lys									96
	20		25			30			

_												COII	CIII	ueu			
									ctc Leu							144	
									caa Gln							192	
									aat Asn							240	
									ggc Gly 90							288	
								~	act Thr		_			_		336	
		_		_	_	_	_	_	att Ile		_		_		_	384	
									ggt Gly							432	
				_		_	_		gca Ala		_		_			480	
									ccc Pro 170							528	
									gtg Val							576	
									gtg Val							624	
									cag Gln							672	
	-	_	_			_	_		cag Gln	_		_			_	720	
		_	_	_	_				gcc Ala 250			_				768	
									ccc Pro							816	
									acc Thr							864	
	_		_						agc Ser	_		_				912	
									tac Tyr							960	
_	_		_						tac Tyr 330	_	_				_	1008	
									ttc Phe							1056	

					cac His											1104
ggt Gly	aaa Lys 370	tga														1113
<211 <212 <213 <220)> FI	ENGTI (PE : RGAN) EATUI	H: 3' PRT ISM: RE:	70 Art:	ific: TION		_		oolyr	oept:	ide					
< 400)> SI	EQUEI	ICE :	18												
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
Met	Asp	Lys	Leu 20	Ala	Ser	Gly	Thr	Leu 25	Glu	Asp	Gly	Arg	Gly 30	Ser	Leu	
Pro	Ser	Val 35	Ser	Leu	Asp	Leu	Pro 40	Arg	Leu	Ser	Ile	Gln 45	ГÀз	Asp	Ile	
Leu	Thr 50	Ile	ГÀз	Ala	Asn	Thr 55	Thr	Leu	Gln	Ile	Thr 60	CAa	Arg	Gly	Gln	
Arg 65	Asp	Leu	Asp	Trp	Leu 70	Trp	Pro	Asn	Asn	Gln 75	Ser	Gly	Ser	Glu	Gln 80	
Arg	Val	Glu	Val	Thr 85	Glu	Cys	Ser	Asp	Gly 90	Leu	Phe	Cys	Lys	Thr 95	Leu	
Thr	Ile	Pro	Lys 100	Val	Ile	Gly	Asn	Asp 105	Thr	Gly	Ala	Tyr	Lys 110	CÀa	Phe	
Tyr	Arg	Glu 115	Thr	Asp	Leu	Ala	Ser 120	Val	Ile	Tyr	Val	Tyr 125	Val	Gln	Asp	
Pro	Ile 130	Glu	Gly	Arg	Gly	Gly 135	Gly	Gly	Gly	Asp	Pro 140	Lys	Ser	CÀa	Asp	
Lys 145	Pro	His	Thr	CAa	Pro 150	Leu	Cys	Pro	Ala	Pro 155	Glu	Leu	Leu	Gly	Gly 160	
Pro	Ser	Val	Phe	Leu 165	Phe	Pro	Pro	Lys	Pro 170	Lys	Asp	Thr	Leu	Met 175	Ile	
Ser	Arg	Thr	Pro 180	Glu	Val	Thr	Сув	Val 185	Val	Val	Asp	Val	Ser 190	His	Glu	
Asp	Pro	Glu 195	Val	Lys	Phe	Asn	Trp 200	Tyr	Val	Asp	Gly	Val 205	Glu	Val	His	
Asn	Ala 210	Lys	Thr	ГÀа	Pro	Arg 215	Glu	Glu	Gln	Tyr	Asn 220	Ser	Thr	Tyr	Arg	
Val 225	Val	Ser	Val	Leu	Thr 230	Val	Leu	His	Gln	Asp 235	Trp	Leu	Asn	Gly	Lys 240	
Glu	Tyr	Lys	Cys	Lys 245	Val	Ser	Asn	Lys	Ala 250	Leu	Pro	Ala	Pro	Ile 255	Glu	
ГÀз	Thr	Ile	Ser 260	Lys	Ala	Lys	Gly	Gln 265	Pro	Arg	Glu	Pro	Gln 270	Val	Tyr	
Thr	Leu	Pro 275	Pro	Ser	Arg	Asp	Glu 280	Leu	Thr	Lys	Asn	Gln 285	Val	Ser	Leu	
Thr	Сув 290	Leu	Val	ГÀа	Gly	Phe 295	Tyr	Pro	Ser	Asp	Ile 300	Ala	Val	Glu	Trp	
Glu 305	Ser	Asn	Gly	Gln	Pro 310	Glu	Asn	Asn	Tyr	Lys 315	Ala	Thr	Pro	Pro	Val 320	

Le	ı As	р	Ser	Asp	Gly 325	Ser	Phe	Phe	Leu	Tyr 330	Ser	Lys	Leu	Thr	Val 335	Asp	
Ly	s S∈	r	Arg			Gln	Gly	Asn			Ser	Сув	Ser			His	
Glı	ı Al	.a	Leu	340 His	Asn	His	Tyr	Thr	345 Gln	Lys	Ser	Leu	Ser	350 Leu	Ser	Pro	
			355				•	360		•			365				
GΙ	7 Ly 37																
<22 <22 <22 <22 <22 <22 <22 <22 <22	L1> L2> L3> 20> 23> 20> 21> 23>	LE TY OR FE OT FE NA OT FE	NGTH PE: GANI ATUF HER ATUF ME/H HER ATUF	RE: INF RE: REY: INF RE:	Art: ORMA' mis	TION c_fea				polyı	nucl	eotio	de				
					CDS (1)	(1	425)										
			-	ICE :													
								ccc Pro									48
								caa Gln									96
		1						gtc Val 40									144
		ır					_	ctc Leu									192
			_	_	_			gaa Glu	_	_		_		_			240
_					_	_	_	aag Lys						_		_	288
								ttc Phe									336
_		r	_			_		ata Ile 120	_	_	_	_					384
		p						tct Ser									432
_	ι Ьу	_		-			_	aca Thr	-	_		_					480
	_					_		cct Pro		_	_		_		_		528
	_			_	_			acc Thr	_			_		_	_		576
		u	_					gat Asp 200		-			_	_			624

_		acc Thr	_	_	_		_		_	_		_	_		_	672	
		gtc Val														720	
		gat Asp				_	-					_		_	_	768	
		cct Pro														816	
		aag Lys 275	_			_							_		_	864	
		gtg Val	_		_		_	_			_	_				912	
		gac Asp							_	_		_	_			960	
		tac Tyr														1008	
		gac Asp														1056	
	_	ctc Leu 355		_									_			1104	
		cga Arg														1152	
_		aag Lys		_	-	_	_		_		-					1200	
		gac Asp														1248	
		aag Lys														1296	
		agc Ser 435														1344	
		tca Ser														1392	
		agc Ser								tga						1425	

<210> SEQ ID NO 20 <211> LENGTH: 474 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide

<400> SEQUENCE: 20

Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala
Met	Asp	Lys	Leu 20	Ala	Ser	Val	Gln	Asp 25	Tyr	Arg	Ser	Pro	Phe 30	Ile	Ala
Ser	Val	Ser 35	Asp	Gln	His	Gly	Val 40	Val	Tyr	Ile	Thr	Glu 45	Asn	Lys	Asn
Lys	Thr 50	Val	Val	Ile	Pro	Сув 55	Leu	Gly	Ser	Ile	Ser 60	Asn	Leu	Asn	Val
Ser 65	Leu	Cya	Ala	Arg	Tyr 70	Pro	Glu	Lys	Arg	Phe 75	Val	Pro	Asp	Gly	Asn 80
Arg	Ile	Ser	Trp	Asp 85	Ser	Lys	Lys	Gly	Phe 90	Thr	Ile	Pro	Ser	Tyr 95	Met
Ile	Ser	Tyr	Ala 100	Gly	Met	Val	Phe	Cys 105	Glu	Ala	Lys	Ile	Asn 110	Asp	Glu
Ser	Tyr	Gln 115	Ser	Ile	Met	Tyr	Ile 120	Val	Val	Val	Val	Gly 125	Tyr	Arg	Ile
Tyr	Asp 130	Val	Val	Leu	Ser	Pro 135	Ser	His	Gly	Ile	Glu 140	Leu	Ser	Val	Gly
Glu 145	Lys	Leu	Val	Leu	Asn 150	Cys	Thr	Ala	Arg	Thr 155	Glu	Leu	Asn	Val	Gly 160
Ile	Asp	Phe	Asn	Trp 165	Glu	Tyr	Pro	Ser	Ser 170	Lys	His	Gln	His	Lys 175	ГЛа
Leu	Val	Asn	Arg 180	Asp	Leu	Lys	Thr	Gln 185	Ser	Gly	Ser	Glu	Met 190	Lys	Lys
Phe	Leu	Ser 195	Thr	Leu	Thr	Ile	Asp 200	Gly	Val	Thr	Arg	Ser 205	Asp	Gln	Gly
Leu	Tyr 210	Thr	СЛа	Ala	Ala	Ser 215	Ser	Gly	Leu	Met	Thr 220	Lys	Lys	Asn	Ser
Thr 225	Phe	Val	Arg	Val	His 230	Glu	Asp	Pro	Ile	Glu 235	Gly	Arg	Gly	Gly	Gly 240
Gly	Gly	Asp	Pro	Lys 245	Ser	CÀa	Asp	Lys	Pro 250	His	Thr	CÀa	Pro	Leu 255	Cys
Pro	Ala	Pro	Glu 260	Leu	Leu	Gly	Gly	Pro 265	Ser	Val	Phe	Leu	Phe 270	Pro	Pro
Lys	Pro	Lys 275	Asp	Thr	Leu	Met	Ile 280	Ser	Arg	Thr	Pro	Glu 285	Val	Thr	CÀa
Val	Val 290	Val	Asp	Val	Ser	His 295	Glu	Asp	Pro	Glu	Val 300	ГÀа	Phe	Asn	Trp
Tyr 305	Val	Asp	Gly	Val	Glu 310	Val	His	Asn	Ala	Lys 315	Thr	ГÀв	Pro	Arg	Glu 320
Glu	Gln	Tyr	Asn	Ser 325	Thr	Tyr	Arg	Val	Val 330	Ser	Val	Leu	Thr	Val 335	Leu
His	Gln	Asp	Trp 340	Leu	Asn	Gly	Lys	Glu 345	Tyr	Lys	Cys	ГÀЗ	Val 350	Ser	Asn
Lys	Ala	Leu 355	Pro	Ala	Pro	Ile	Glu 360	ГЛа	Thr	Ile	Ser	Lys 365	Ala	Lys	Gly
Gln	Pro 370	Arg	Glu	Pro	Gln	Val 375	Tyr	Thr	Leu	Pro	Pro 380	Ser	Arg	Asp	Glu
Leu 385	Thr	Lys	Asn	Gln	Val 390	Ser	Leu	Thr	Сув	Leu 395	Val	Lys	Gly	Phe	Tyr 400
Pro	Ser	Asp	Ile	Ala 405	Val	Glu	Trp	Glu	Ser 410	Asn	Gly	Gln	Pro	Glu 415	Asn
Asn	Tyr	Lys	Ala	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe

			420					425					430			
Leu	Tyr	Ser 435	Lys	Leu	Thr	Val	Asp 440	Lys	Ser	Arg	Trp	Gln 445	Gln	Gly	Asn	
Val	Phe 450	Ser	Cys	Ser	Val	Met 455	His	Glu	Ala	Leu	His 460	Asn	His	Tyr	Thr	
Gln 465	Lys	Ser	Leu	Ser	Leu 470	Ser	Pro	Gly	Lys							
<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <222	L> LE 22> TY 33> OF 33> OT 33> OT 12> NA 12> LO	EATUF CHER EATUF AME/F CHER EATUF AME/F	H: 1: DNA ISM: RE: INFO RE: IN	Art: DRMA miso DRMA CDS (1)	rion c_fea rion	: Syn ature : R-2	nthet		olyr	nucle	eotiα	de				
atg	ccg	ctg	ctg	cta					ctg Leu 10							48
									tac Tyr							96
									tac Tyr							144
									tcc Ser							192
									aga Arg							240
									ttt Phe 90							288
									gaa Glu							336
									gtc Val							384
									ccc Pro							432
									gaa Glu							480
									gac Asp 170							528
									gac Asp							576
									ggc Gly							624

-continued

	-continued	
aag aca aag ccg cgg gag gag cag tac aac agc Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 210 215		
age gtc etc ace gtc etg cae cag gae tgg etg Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 225 230 235	ı Asn Gly Lys Glu Tyr	
aag tgc aag gtc tcc aac aaa gcc ctc cca gcc Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 245 250		
atc tcc aaa gcc aaa ggg cag ccc cga gaa cca Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 260 265		
ccc cca tcc cgg gat gag ctg acc aag aac cag Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 275 280		
cta gtc aaa ggc ttc tat ccc agc gac atc gcc Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 290 295		
aat ggg cag ccg gag aac aac tac aag gcc acg Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala Thr 305 310 315	Pro Pro Val Leu Asp 320	
tcc gac ggc tcc ttc ttc ctc tac agc aag ctc Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 325 330	ı Thr Val Asp Lys Ser 335	
agg tgg cag cag ggg aac gtc ttc tca tgc tcc Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 340 345	v Val Met His Glu Ala 350	
ctg cac aac cac tac acg cag aag agc ctc tcc Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 355 360	: Leu Ser Pro Gly Lys 365	
tga	1107	
<210> SEQ ID NO 22 <211> LENGTH: 368 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypept <400> SEQUENCE: 22	ide	
Met Pro Leu Leu Leu Leu Pro Leu Leu Trp	Ala Gly Ala Leu Ala 15	
Met Asp Lys Leu Ala Ser Val Gln Asp Tyr Arg 20 25	g Ser Pro Phe Ile Ala 30	
Ser Val Ser Asp Gln His Gly Val Val Tyr Ile 35 40	e Thr Glu Asn Lys Asn 45	
Lys Thr Val Val Ile Pro Cys Leu Gly Ser Ile 50 55	60	
Ser Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe 65 70 75	80	
Arg Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr 85 90 Ile Ser Tyr Ala Gly Met Val Phe Cys Glu Ala	95	
100 105 Ser Tyr Gln Ser Ile Met Tyr Ile Val Val Val	110 L Val Gly Asp Pro Ile	
115 120	125	

His	Thr	Cys	Pro	Leu	Суs 150	Pro	Ala	Pro	Glu	Leu 155	Leu	Gly	Gly	Pro	Ser 160	
Val :	Phe	Leu	Phe	Pro 165		Lys	Pro	Lys	Asp 170		Leu	Met	Ile	Ser 175	Arg	
Thr	Pro	Glu	Val 180	Thr	CAa	Val	Val	Val 185	Asp	Val	Ser	His	Glu 190	Asp	Pro	
Glu '	Val	Lys 195	Phe		Trp	-	Val 200	Asp	Gly	Val	Glu	Val 205	His	Asn	Ala	
Lys	Thr 210	ГЛа	Pro	Arg	Glu	Glu 215	Gln	Tyr	Asn	Ser	Thr 220	Tyr	Arg	Val	Val	
Ser '	Val	Leu	Thr	Val	Leu 230	His	Gln	Asp	Trp	Leu 235	Asn	Gly	Lys	Glu	Tyr 240	
ГЛа	Cys	Lys	Val	Ser 245	Asn	Lys	Ala	Leu	Pro 250	Ala	Pro	Ile	Glu	Lys 255	Thr	
Ile	Ser	Lys	Ala 260	Lys	Gly	Gln	Pro	Arg 265		Pro	Gln	Val	Tyr 270		Leu	
Pro	Pro	Ser 275			Glu	Leu	Thr 280		Asn	Gln	Val	Ser 285		Thr	Cys	
Leu '			Gly	Phe	Tyr			Asp	Ile	Ala			Trp	Glu	Ser	
Asn	290 Gly	Gln	Pro	Glu		295 Asn					300 Pro	Pro	Val	Leu	_	
305 Ser.	Asp	Gly	Ser		310 Phe	Leu		Ser	Lys	315 Leu	Thr	Val	Asp		320 Ser	
Arg	Trp	Gln	Gln	325 Gly	Asn		Phe	Ser	330	Ser	Val	Met	His	335 Glu	Ala	
Leu :	His	Asn	340 His		Thr	Gln	Lys	345 Ser	Leu	Ser	Leu	Ser	350 Pro	Gly	Lys	
		355					360					365		-		
<210 <211 <212	> LE	ENGTI	I: 1	125												
<213 <220 <223	> OF > FE	RGANI EATUR	SM: RE:	Art			_		2011	augl 4	eot i	- A-F				
<220 <221	> FE > NA	EATUF AME/F	RE: KEY:	mis	c_fea	ature	.	J T C 1	JOLYI	Iuci	.001					
<223 <220 <221	> FE > NA	EATUF AME/F	RE: KEY:	CDS			4 1									
<222					(1	125)										
atg Met	_	_	_	Leu	_	_		_	Leu		_		_	Leu	-	48
1 atg	gat	aaq	ctt	5 gct	agc	gtt	caa	gat	10 tac	aga	tct	cca	ttt	15 att	gct	96
Met .																
tct Ser	_	_	_				_									144
aaa .		gtg				_	ctc					aat				192
	50					55					60					
tca Ser 65																240
aga	att	tcc	tgg	gac	agc	aag	aag	ggc	ttt	act	att	ccc	agc	tac	atg	288

-continued

-continued	
Arg Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met 85 90 95	
atc agc tat gct ggc atg gtc ttc tgt gaa gca aaa att aat gat gaa Ile Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu 100 105 110	336
agt tac cag tct att atg tac ata gtt gtc gtt gta ggg tat agg att Ser Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile 115 120 125	384
tat gat gtg gat ccc atc gaa ggt cgt ggt ggt ggt ggt ggt gat ccc Tyr Asp Val Asp Pro Ile Glu Gly Arg Gly Gly Gly Gly Asp Pro 130 135 140	432
aaa tot tgt gac aaa oot oac aca tgc ooa ctg tgc ooa gca oot gaa Lys Ser Cys Asp Lys Pro His Thr Cys Pro Leu Cys Pro Ala Pro Glu 145 150 155 160	480
ctc ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 165 170 175	528
acc ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 180 185 190	576
gtg agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 195 200 205	624
gtg gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 210 215 220	672
age acg tac cgt gtg gtc age gtc etc acc gtc etg cac cag gac tgg Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 225 230 235 240	720
ctg aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 245 250 255	768
gcc ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 260 265 270	816
cca cag gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 275 280 285	864
cag gtc agc ctg acc tgc cta gtc aaa ggc ttc tat ccc agc gac atc Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 290 295 300	912
gcc gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag gcc Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala 305 310 315 320	960
acg cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 325 330 335	1008
ctc acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 340 345 350	1104
tcc gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 355 360 365	1104
tcc ctg tct ccg ggt aaa tga Ser Leu Ser Pro Gly Lys 370	1125

<210> SEQ ID NO 24 <211> LENGTH: 374 <212> TYPE: PRT

				_											
	3 > OF 3 > FF			Art:	ific:	ial :	seque	ence							
<22	3 > 07	THER	INF	ORMA'	rion	: Syı	nthe	cic p	ooly	pept:	ide				
< 40	O> SI	EQUEI	ICE :	24											
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala
Met	Asp	ГÀа	Leu 20	Ala	Ser	Val	Gln	Asp 25	Tyr	Arg	Ser	Pro	Phe 30	Ile	Ala
Ser	Val	Ser 35	Asp	Gln	His	Gly	Val 40	Val	Tyr	Ile	Thr	Glu 45	Asn	Lys	Asn
Lys	Thr 50	Val	Val	Ile	Pro	Сув 55	Leu	Gly	Ser	Ile	Ser 60	Asn	Leu	Asn	Val
Ser 65	Leu	Cys	Ala	Arg	Tyr 70	Pro	Glu	Lys	Arg	Phe 75	Val	Pro	Asp	Gly	Asn 80
Arg	Ile	Ser	Trp	Asp 85	Ser	Lys	Lys	Gly	Phe 90	Thr	Ile	Pro	Ser	Tyr 95	Met
Ile	Ser	Tyr	Ala 100	Gly	Met	Val	Phe	Cys 105	Glu	Ala	ГÀз	Ile	Asn 110	Asp	Glu
Ser	Tyr	Gln 115	Ser	Ile	Met	Tyr	Ile 120	Val	Val	Val	Val	Gly 125	Tyr	Arg	Ile
Tyr	Asp 130	Val	Asp	Pro	Ile	Glu 135	Gly	Arg	Gly	Gly	Gly 140	Gly	Gly	Asp	Pro
Lys 145	Ser	Сув	Asp	Lys	Pro 150	His	Thr	Cys	Pro	Leu 155	Cys	Pro	Ala	Pro	Glu 160
Leu	Leu	Gly	Gly	Pro 165	Ser	Val	Phe	Leu	Phe 170	Pro	Pro	Lys	Pro	Lys 175	Asp
Thr	Leu	Met	Ile 180	Ser	Arg	Thr	Pro	Glu 185	Val	Thr	CÀa	Val	Val 190	Val	Asp
Val	Ser	His 195	Glu	Asp	Pro	Glu	Val 200	Lys	Phe	Asn	Trp	Tyr 205	Val	Asp	Gly
Val	Glu 210	Val	His	Asn	Ala	Lys 215	Thr	Lys	Pro	Arg	Glu 220	Glu	Gln	Tyr	Asn
Ser 225	Thr	Tyr	Arg	Val	Val 230	Ser	Val	Leu	Thr	Val 235	Leu	His	Gln	Asp	Trp 240
Leu	Asn	Gly	Lys	Glu 245	Tyr	Lys	Cys	Lys	Val 250	Ser	Asn	Lys	Ala	Leu 255	Pro
Ala	Pro	Ile	Glu 260	Lys	Thr	Ile	Ser	Lys 265	Ala	Lys	Gly	Gln	Pro 270	Arg	Glu
Pro	Gln	Val 275	Tyr	Thr	Leu	Pro	Pro 280	Ser	Arg	Asp	Glu	Leu 285	Thr	ГÀв	Asn
Gln	Val 290	Ser	Leu	Thr	CAa	Leu 295	Val	ГÀз	Gly	Phe	Tyr 300	Pro	Ser	Asp	Ile
Ala 305	Val	Glu	Trp	Glu	Ser 310	Asn	Gly	Gln	Pro	Glu 315	Asn	Asn	Tyr	ГÀа	Ala 320
Thr	Pro	Pro	Val	Leu 325	Asp	Ser	Asp	Gly	Ser 330	Phe	Phe	Leu	Tyr	Ser 335	Lys
Leu	Thr	Val	Asp 340	Lys	Ser	Arg	Trp	Gln 345	Gln	Gly	Asn	Val	Phe 350	Ser	СЛа
Ser	Val	Met 355	His	Glu	Ala	Leu	His 360	Asn	His	Tyr	Thr	Gln 365	Lys	Ser	Leu
Ser	Leu 370	Ser	Pro	Gly	ГЛа										

<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <223	0 > FE 3 > OT 0 > FE 1 > NE 3 > OT 0 > FE 1 > NE	ENGTH (PE: RGANI EATUR CHER EATUR CHER EATUR	H: 11 DNA ISM: RE: INFO RE: CEY: INFO RE: CEY:	Arti DRMAT misc DRMAT	TION: c_fea	: Syr :ture : R-2	thet		olyr	nucle	eotic	de			
< 400)> SE	EQUE	ICE :	25											
				cta Leu 5										48	
				gct Ala										96	
				caa Gln										144	
				att Ile										192	
				aga Arg										240	
				gac Asp 85										288	
				ggc Gly										336	
				att Ile										384	
				ctg Leu										432	
				gat Asp				_	_				_	480	
				cct Pro 165										528	
				aag Lys										576	
				gtg Val										624	
				gac Asp										672	
				tac Tyr										720	
				gac Asp 245										768	

-continued

								-	con	tinı	ued					
tcc aac aaa Ser Asn Lys													816			
aaa ggg cag Lys Gly Gln 275													864			
gat gag ctg Asp Glu Leu 290													912			
ttc tat ccc Phe Tyr Pro 305													960			
gag aac aac Glu Asn Asn													1008			
ttc ttc ctc Phe Phe Leu													1056			
ggg aac gtc Gly Asn Val 355													1104			
tac acg cag Tyr Thr Gln 370		Leu		_		_			tga				1143			
<210> SEQ II <211> LENGTH <212> TYPE: <213> ORGANI	H: 380 PRT	ifici	ial s	seaue	ence											
<220> FEATUR <223> OTHER	INFORMA					oolyg	ept:	ide								
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu</pre>	INFORMA NCE: 26 Leu Leu	TION :	: Syr	nthet	tic p	Leu			Gly	Ala		Ala				
<220> FEATUR <223> OTHER <400> SEQUEN	INFORMA NCE: 26 Leu Leu 5	TION:	: Syr Leu	nthet Pro	tic p	Leu 10	Trp	Ala	_		15					
<220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20	TION: Leu Ser	: Syr Leu Val	Pro Gln	Leu Asp 25	Leu 10 Tyr	Trp Arg	Ala Ser	Pro	Phe 30	15 Ile	Ala				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile	Leu Ser His	Leu Val Gly Cys 55	Pro Gln Val 40 Leu	Leu Asp 25 Val	Leu 10 Tyr Tyr	Trp Arg Ile	Ala Ser Thr Ser	Pro Glu 45 Asn	Phe 30 Asn Leu	15 Ile Lys Asn	Ala Asn Val				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile Ala Arg Trp Asp	Leu Ser His Pro	Esyr Leu Val Gly Cys 55	Pro Gln Val 40 Leu	Leu Asp 25 Val Gly	Leu 10 Tyr Tyr Ser Arg	Trp Arg Ile Phe 75	Ala Ser Thr Ser 60 Val	Pro Glu 45 Asn Pro	Phe 30 Asn Leu Asp	15 Ile Lys Asn Gly Tyr	Ala Asn Val Asn 80				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser 35 Lys Thr Val 50 Ser Leu Cys 65</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile Ala Arg Trp Asp 85	Leu Ser His Pro Tyr 70 Ser	: Syr Leu Val Gly Cys 55 Pro	Pro Gln Val 40 Leu Glu	Leu Asp 25 Val Gly Lys	Leu 10 Tyr Tyr Ser Arg	Trp Arg Ile Ile Phe 75	Ala Ser Thr Ser 60 Val	Pro Glu 45 Asn Pro	Phe 30 Asn Leu Asp	15 Ile Lys Asn Gly Tyr 95	Ala Asn Val Asn 80				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser 35 Lys Thr Val 50 Ser Leu Cys 65 Arg Ile Ser</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile Ala Arg Trp Asp 85 Ala Gly 100	Leu Ser His Pro Tyr 70 Ser Met	Leu Val Gly Cys 55 Pro Lys Val	Pro Gln Val 40 Leu Glu Lys	Leu Asp 25 Val Gly Lys Gly Cys 105	Leu 10 Tyr Tyr Ser Arg Phe 90 Glu	Trp Arg Ile Ile Phe 75 Thr	Ala Ser Thr Ser 60 Val Ile	Pro Glu 45 Asn Pro	Phe 30 Asn Leu Asp Ser Asn	15 Ile Lys Asn Gly Tyr 95 Asp	Ala Asn Val Asn 80 Met				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser 35 Lys Thr Val 50 Ser Leu Cys 65 Arg Ile Ser Ile Ser Tyr Ser Tyr Gln</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile Ala Arg Trp Asp 85 Ala Gly 100 Ser Ile	Leu Ser His Pro Tyr 70 Ser Met	E. Syrr Leu Val Gly Cys 55 Pro Lys Val	Pro Gln Val 40 Leu Glu Lys Phe 11e 120	Leu Asp 25 Val Gly Lys Gly Cys 105 Val	Leu 10 Tyr Tyr Ser Arg Phe 90 Glu Val	Trp Arg Ile Ile Phe 75 Thr Ala	Ala Ser Thr Ser 60 Val Ile Lys	Pro Glu 45 Asn Pro Ile Gly 125	Phe 30 Asn Leu Asp Ser Asn 110	15 Ile Lys Asn Gly Tyr 95 Asp	Ala Asn Val Asn 80 Met Glu Ile				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser 35 Lys Thr Val 50 Ser Leu Cys 65 Arg Ile Ser Ile Ser Tyr Ser Tyr Gln 115</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile Ala Arg Trp Asp 85 Ala Gly 100 Ser Ile Val Leu	Leu Ser His Pro Tyr 70 Ser Met Met Ser	Leu Val Gly Cys 55 Pro Lys Val Tyr Pro 135	Pro Gln Val 40 Leu Glu Lys Phe Ile 120 Ser	Leu Asp 25 Val Gly Lys Gly Cys 105 Val	Leu 10 Tyr Tyr Ser Arg Phe 90 Glu Val	Trp Arg Ile Ile Phe 75 Thr Ala Val	Ala Ser Thr Ser 60 Val Ile Lys Val Ile 140	Pro Glu 45 Asn Pro Ile Gly 125 Glu	Phe 30 Asn Leu Asp Ser Asn 110 Tyr	15 Ile Lys Asn Gly Tyr 95 Asp Arg	Ala Asn Val Asn 80 Met Glu Ile				
<pre><220> FEATUR <223> OTHER <400> SEQUEN Met Pro Leu 1 Met Asp Lys Ser Val Ser 35 Lys Thr Val 50 Ser Leu Cys 65 Arg Ile Ser Ile Ser Tyr Ser Tyr Gln 115 Tyr Asp Val 130 Gly Gly Gly</pre>	INFORMA NCE: 26 Leu Leu 5 Leu Ala 20 Asp Gln Val Ile Ala Arg Trp Asp 85 Ala Gly 100 Ser Ile Val Leu Gly Asp	Leu Ser His Pro Tyr 70 Ser Met Met Ser	Esyr Leu Val Gly Cys 55 Pro Lys Val Tyr Pro 135 Lys	Pro Gln Val 40 Glu Lys Phe Ile 120 Ser Ser	Leu Asp 25 Val Gly Lys Gly Val His	Leu 10 Tyr Tyr Ser Arg Phe 90 Glu Val Asp	Trp Arg Ile Ile Phe 75 Thr Ala Val Pro Lys 155	Ala Ser Thr Ser 60 Val Ile Lys Val Ile 140 Pro	Pro Glu 45 Asn Pro Ile Gly 125 Glu His	Phe 30 Asn Leu Asp Ser Asn 110 Tyr Gly	15 Ile Lys Asn Gly Tyr 95 Asp Arg Cys	Ala Asn Val Asn 80 Met Glu Ile Gly Pro 160				

Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe

											0011	O	u		
	19	5				200					205				
Asn Ti	rр Ту 10	r Va	l Asp	Gly	Val 215	Glu	Val	His	Asn	Ala 220	ГÀа	Thr	ГЛа	Pro	
Arg G	lu Gl	u Gl	ı Tyr	Asn 230	Ser	Thr	Tyr	Arg	Val 235	Val	Ser	Val	Leu	Thr 240	
Val Le	eu Hi	s Gl	n Asp 245		Leu	Asn	Gly	Lys 250	Glu	Tyr	Lys	Cys	Lys 255	Val	
Ser As	sn Ly	s Al. 26		Pro	Ala	Pro	Ile 265	Glu	Lys	Thr	Ile	Ser 270	Lys	Ala	
Lys G	ly G1 27		Arg	Glu	Pro	Gln 280	Val	Tyr	Thr	Leu	Pro 285	Pro	Ser	Arg	
Asp G	lu Le 90	u Th:	r Lys	Asn	Gln 295	Val	Ser	Leu	Thr	300 200	Leu	Val	Lys	Gly	
Phe Ty 305	yr Pr	o Se:	r Asp	Ile 310	Ala	Val	Glu	Trp	Glu 315	Ser	Asn	Gly	Gln	Pro 320	
Glu As	sn As	n Ty:	r Lys 325		Thr	Pro	Pro	Val 330	Leu	Asp	Ser	Asp	Gly 335	Ser	
Phe Ph	he Le	u Ty:		Lys	Leu	Thr	Val 345	Asp	Lys	Ser	Arg	Trp 350	Gln	Gln	
Gly As	sn Va 35		e Ser	Сув	Ser	Val 360	Met	His	Glu	Ala	Leu 365	His	Asn	His	
Tyr Th	hr Gl 70	n Ly	s Ser	Leu	Ser 375		Ser	Pro	Gly	Tys					
<212><213><220><223><220><221><221><221><223><222><221><222><221><222><	ORGA FEAT OTHE FEAT NAME OTHE FEAT	NISM URE: R IN: URE: /KEY R IN: URE: /KEY	: Art FORMA : mis FORMA : CDS	TION c_fea	: Syr ature : R-:	- nthe		polyı	nucle	eotic	de				
<400>	SEQU	ENCE	: 27												
atg co Met Pi 1															48
atg ga Met As															96
tct gt Ser Va															144
aaa ad Lys Th 50	hr Va		-		_										192
tca ct Ser Le 65															240
aga at Arg II					aag	aag	ggc								288
J	le Se	r Tr	Asp 85	Ser	Lys		Gly	Phe 90	Thr	lle	Pro	Ser	Tyr 95	Met	

												COII	tın.	uea		
_		_			_			_	-	-	-			agg Arg		384
														gtt Val		432
														ccc Pro		480
														gaa Glu 175		528
_			_		_								_	gac Asp		576
														gac Asp		624
_		_	_			_	_						_	ggc Gly	-	672
														aac Asn		720
														tgg Trp 255		768
														cca Pro		816
								-			_		_	gaa Glu		864
_				_					_		_		_	aac Asn	_	912
														atc Ile		960
					Asn		Gln	Pro	Glu	Asn	Asn	Tyr	ГЛа	gcc Ala 335		1008
														aag Lys		1056
		_	_	_			_	_			_			tgc Cys		1104
														ctc Leu		1152
_		ccg Pro			tga											1170
<213 <213 <223	L> LI 2> T: 3> OI 0> FI	EATUI	H: 3: PRT ISM: RE:	89 Art:	ific TION				poly	pept:	ide					

<400)> SI	EQUE	ICE :	28											
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala
Met	Asp	ГÀв	Leu 20	Ala	Ser	Val	Gln	Asp 25	Tyr	Arg	Ser	Pro	Phe 30	Ile	Ala
Ser	Val	Ser 35	Asp	Gln	His	Gly	Val 40	Val	Tyr	Ile	Thr	Glu 45	Asn	Lys	Asn
Lys	Thr 50	Val	Val	Ile	Pro	Сув 55	Leu	Gly	Ser	Ile	Ser 60	Asn	Leu	Asn	Val
Ser 65	Leu	Cha	Ala	Arg	Tyr 70	Pro	Glu	Lys	Arg	Phe 75	Val	Pro	Asp	Gly	Asn 80
Arg	Ile	Ser	Trp	Asp 85	Ser	ГÀв	Lys	Gly	Phe 90	Thr	Ile	Pro	Ser	Tyr 95	Met
Ile	Ser	Tyr	Ala 100	Gly	Met	Val	Phe	Cys 105	Glu	Ala	Lys	Ile	Asn 110	Asp	Glu
Ser	Tyr	Gln 115	Ser	Ile	Met	Tyr	Ile 120	Val	Val	Val	Val	Gly 125	Tyr	Arg	Ile
Tyr	Asp 130	Val	Val	Leu	Ser	Pro 135	Ser	His	Gly	Ile	Glu 140	Leu	Ser	Val	Gly
Glu 145	Lys	Asp	Pro	Ile	Glu 150	Gly	Arg	Gly	Gly	Gly 155	Gly	Gly	Asp	Pro	Lys 160
Ser	Cys	Asp	Lys	Pro 165	His	Thr	Cys	Pro	Leu 170	Cys	Pro	Ala	Pro	Glu 175	Leu
Leu	Gly	Gly	Pro 180	Ser	Val	Phe	Leu	Phe 185	Pro	Pro	Lys	Pro	Lys 190	Asp	Thr
Leu	Met	Ile 195	Ser	Arg	Thr	Pro	Glu 200	Val	Thr	Cys	Val	Val 205	Val	Asp	Val
Ser	His 210	Glu	Asp	Pro	Glu	Val 215	Lys	Phe	Asn	Trp	Tyr 220	Val	Asp	Gly	Val
Glu 225	Val	His	Asn	Ala	230	Thr	Lys	Pro	Arg	Glu 235	Glu	Gln	Tyr	Asn	Ser 240
Thr	Tyr	Arg	Val	Val 245	Ser	Val	Leu	Thr	Val 250	Leu	His	Gln	Asp	Trp 255	Leu
Asn	Gly	ГÀв	Glu 260	Tyr	ГÀз	CAa	Lys	Val 265	Ser	Asn	Lys	Ala	Leu 270	Pro	Ala
Pro	Ile	Glu 275	Lys	Thr	Ile	Ser	Lys 280	Ala	Lys	Gly	Gln	Pro 285	Arg	Glu	Pro
Gln	Val 290	Tyr	Thr	Leu	Pro	Pro 295	Ser	Arg	Asp	Glu	Leu 300	Thr	Lys	Asn	Gln
Val 305	Ser	Leu	Thr	Cys	Leu 310	Val	Lys	Gly	Phe	Tyr 315	Pro	Ser	Asp	Ile	Ala 320
Val	Glu	Trp	Glu	Ser 325	Asn	Gly	Gln	Pro	Glu 330	Asn	Asn	Tyr	Lys	Ala 335	Thr
Pro	Pro	Val	Leu 340	Asp	Ser	Asp	Gly	Ser 345	Phe	Phe	Leu	Tyr	Ser 350	Lys	Leu
Thr	Val	Asp 355	Lys	Ser	Arg	Trp	Gln 360	Gln	Gly	Asn	Val	Phe 365	Ser	Сув	Ser
Val	Met 370	His	Glu	Ala	Leu	His 375	Asn	His	Tyr	Thr	Gln 380	Lys	Ser	Leu	Ser
Leu 385	Ser	Pro	Gly	ГÀа											

<211 <212 <213	0 > SI 1 > LI 2 > TY 3 > OF	ENGTI YPE : RGAN	H: 13 DNA ISM:	116	ific:	ial :	seque	ence								
<220 <221																
<221	<221> NAME/KEY: CDS <222> LOCATION: (1)(1116) <400> SEQUENCE: 29															
< 400	O> SI	EQUEI	ICE :	29												
	ccg Pro															48
	gat Asp															96
	cat His															144
	gca Ala 50															192
	tct Ser															240
	cag Gln															288
	ggt Gly															336
	gly aaa															384
	ccc Pro 130															432
~	aaa Lys				~		_	~		_		_				480
	ccg Pro															528
	tcc Ser															576
	gac Asp															624
	aat Asn 210															672
	gtg Val															720
_	gag Glu		_	-	_	_				-			_			768

-continued

												con	tin	ued		
	aaa Lys															816
	acc Thr	_					_		_		_		_	_	_	864
	acc Thr 290															912
	gag Glu															960
	ctg Leu	_		_							_	_				1008
	aag Lys															1056
	gag Glu															1104
	ggt Gly 370		tga													1116
<213 <213 <223	0 > SI 1 > LI 2 > TY 3 > OF 0 > FI 3 > OT	ENGTH (PE : RGAN) EATUR	H: 3' PRT ISM: RE:	71 Art:					polym	pept:	ide					
< 400	O> SI	EQUE	ICE :	30												
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
	Asp		20					25					30			
	His	35					40					45				
	Ala 50	-				55				_	60				_	
Pro 65	Ser	Ser	Lys	His	Gln 70	His	Lys	Lys	Leu	Val 75	Asn	Arg	Asp	Leu	80 TÀa	
Thr	Gln	Ser	Gly	Ser 85	Glu	Met	Lys	Lys	Phe 90	Leu	Ser	Thr	Leu	Thr 95	Ile	
Asp	Gly	Val	Thr 100	Arg	Ser	Asp	Gln	Gly 105	Leu	Tyr	Thr	CAa	Ala 110	Ala	Ser	
Ser	Gly	Leu 115	Met	Thr	Lys	Lys	Asn 120	Ser	Thr	Phe	Val	Arg 125	Val	His	Glu	
Asp	Pro 130	Ile	Glu	Gly	Arg	Gly 135	Gly	Gly	Gly	Gly	Asp 140	Pro	Lys	Ser	Cys	
Asp 145	Lys	Pro	His	Thr	Сув 150	Pro	Leu	Cys	Pro	Ala 155	Pro	Glu	Leu	Leu	Gly 160	
Gly	Pro	Ser	Val	Phe 165	Leu	Phe	Pro	Pro	Lys 170	Pro	ГÀз	Asp	Thr	Leu 175	Met	
Ile	Ser	Arg	Thr 180	Pro	Glu	Val	Thr	Cys 185	Val	Val	Val	Asp	Val 190	Ser	His	

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val

195
Arg Val Val Ser Val Leu Thr Val Leu His Gin Asp Trp Leu Asm Gly 225 225 225 225 226 227 226 227 227 227 227 227 227 227
Lys Glu Tyr Lys Cys Lys Val Ser Ash Lys Ala Leu Pro Ala Pro Ile 245 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 265 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 267 Tyr Thr Leu Pro Pro Ser Arg Amp Glu Leu Thr Lys Asm Gln Val Ser 275 Tyr Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Amp Ile Ala Val Glu 280 Try Glu Ser Asm Gly Gln Pro Glu Asm Asm Tyr Lys Ala Thr Pro Pro 305 Try Glu Ser Asm Gly Gln Pro Glu Asm Asm Tyr Lys Ala Thr Pro Pro 305 Amp Lys Ser Amp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 326 Amp Lys Ser Arg Try Gln Gln Gly Asm Val Phe Ser Cys Ser Val Met 340 Ali Leu Amp Ser Amp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Ser Leu Ser 345 Amp Lys Ser Arg Try Gln Gln Gly Asm Val Phe Ser Cys Ser Val Met 340 Ali Glu Ala Leu His Asm His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 355 Fro Gly Lys 370 <pre> </pre>

												-	con	tin	ued			
	_	c at p Il 11	e 0	_	_	_			_	_	_		_	_	_		384	
		g ct s Le 0															432	
	l Th	c tt r Ph															480	
		g cc 1 Pr															528	
		g ac u Th	r I				_	_	_		_	_		_			576	
		g gc s Al 19	a A														624	
		g ca l Hi O															672	
	о Ьу	a tc s Se		-	_					_		_	_		_		720	
_		c ct u Le				_		_								_	768	
		c ct r Le	u M														816	
		g ag 1 Se 27	r F														864	
		g ga 1 Gl 0															912	
	n Se	c ac															960	
		g aa u As:									Val						1008	
		c cc a Pr	o I														1056	
		a ca o Gl: 35	n V														1104	
		g gt n Va 0															1152	
	e Āl	c gt a Va															1200	
		g cc r Pr															1248	
		c ac u Th	r V														1296	

		gtg Val 435														1344
		ctg Leu		_			tga									1368
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EQ II ENGTH (PE: RGAN) EATUF THER	H: 45 PRT SM: RE:	55 Art:			_		oolyp	pepti	ide					
< 400)> SE	EQUEN	ICE :	32												
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
Met	Asp	ГÀа	Leu 20	Pro	Phe	Ile	Asn	Lув 25	Pro	Asp	Thr	Leu	Leu 30	Val	Asn	
Arg	Lys	Asp 35	Ala	Met	Trp	Val	Pro 40	Cys	Leu	Val	Ser	Ile 45	Pro	Gly	Leu	
Asn	Val 50	Thr	Leu	Arg	Ser	Gln 55	Ser	Ser	Val	Leu	Trp 60	Pro	Asp	Gly	Gln	
Glu 65	Val	Val	Trp	Asp	Asp 70	Arg	Arg	Gly	Met	Leu 75	Val	Ser	Thr	Pro	Leu 80	
Leu	His	Asp	Ala	Leu 85	Tyr	Leu	Gln	Cys	Glu 90	Thr	Thr	Trp	Gly	Asp 95	Gln	
Asp	Phe	Leu	Ser 100	Asn	Pro	Phe	Leu	Val 105	His	Ile	Thr	Gly	Asn 110	Glu	Leu	
Tyr	Asp	Ile 115	Gln	Leu	Leu	Pro	Arg 120	Lys	Ser	Leu	Glu	Leu 125	Leu	Val	Gly	
Glu	Lys 130	Leu	Val	Leu	Asn	Cys 135	Thr	Val	Trp	Ala	Glu 140	Phe	Asn	Ser	Gly	
Val 145	Thr	Phe	Asp	Trp	Asp 150	Tyr	Pro	Gly	Lys	Gln 155	Ala	Glu	Arg	Gly	Lys 160	
Trp	Val	Pro	Glu	Arg 165	Arg	Ser	Gln	Gln	Thr 170	His	Thr	Glu	Leu	Ser 175	Ser	
Ile	Leu	Thr	Ile 180	His	Asn	Val	Ser	Gln 185	His	Asp	Leu	Gly	Ser 190	Tyr	Val	
CÀa	Lys	Ala 195	Asn	Asn	Gly	Ile	Gln 200	Arg	Phe	Arg	Glu	Ser 205	Thr	Glu	Val	
Ile	Val 210	His	Glu	Asp	Pro	Ile 215	Glu	Gly	Arg	Gly	Gly 220	Gly	Gly	Gly	Asp	
Pro 225	Lys	Ser	Cys	Asp	Lys 230	Pro	His	Thr	Cys	Pro 235	Leu	Cys	Pro	Ala	Pro 240	
Glu	Leu	Leu	Gly	Gly 245	Pro	Ser	Val	Phe	Leu 250	Phe	Pro	Pro	Lys	Pro 255	Lys	
Asp	Thr	Leu	Met 260	Ile	Ser	Arg	Thr	Pro 265	Glu	Val	Thr	Cys	Val 270	Val	Val	
Asp	Val	Ser 275	His	Glu	Asp	Pro	Glu 280	Val	Lys	Phe	Asn	Trp 285	Tyr	Val	Asp	
Gly	Val 290	Glu	Val	His	Asn	Ala 295	Lys	Thr	Lys	Pro	Arg 300	Glu	Glu	Gln	Tyr	
Asn 305	Ser	Thr	Tyr	Arg	Val 310	Val	Ser	Val	Leu	Thr 315	Val	Leu	His	Gln	Asp 320	

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 325 330 335	
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 340 345 350	
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys 355 360 365	
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 370 375 380	
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 385 390 395 400	
Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser	
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser	
420 425 430 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser	
435 440 445 Leu Ser Leu Ser Pro Gly Lys	
450 455	
<210> SEQ ID NO 33 <211> LENGTH: 1059	
<212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide</pre>	
<pre><220> FEATURE: <221> NAME/KEY: misc_feature</pre>	
<223> OTHER INFORMATION: R-3 B	
<220> FEATURE: <221> NAME/KEY: CDS	
<222> LOCATION: (1)(1059)	
<400> SEQUENCE: 33	
atg ccg ctg ctg cta ctg ctg ccc ctg ctg tgg gca ggg gcc ctg gct Met Pro Leu Leu Leu Leu Pro Leu Leu Trp Ala Gly Ala Leu Ala	48
1 5 10 15	
atg gat aag ctt cca ttc atc aac aag cct gac acg ctc ttg gtc aac Met Asp Lys Leu Pro Phe Ile Asn Lys Pro Asp Thr Leu Leu Val Asn 20 25 30	96
	144
Arg Lys Asp Ala Met Trp Val Pro Cys Leu Val Ser Ile Pro Gly Leu 35 40 45	1
	192
Asn Val Thr Leu Arg Ser Gln Ser Ser Val Leu Trp Pro Asp Gly Gln 50 55 60	
	240
Glu Val Val Trp Asp Asp Arg Arg Gly Met Leu Val Ser Thr Pro Leu	∠40
65 70 75 80	000
Leu His Asp Ala Leu Tyr Leu Gln Cys Glu Thr Thr Trp Gly Asp Gln	288
85 90 95	225
Asp Phe Leu Ser Asn Pro Phe Leu Val His Ile Thr Gly Asp Pro Ile	336
	201
gaa ggt cgt ggt ggt ggt ggt gat ccc aaa tct tgt gac aaa cct Glu Gly Arg Gly Gly Gly Gly Asp Pro Lys Ser Cys Asp Lys Pro 115 120 125	384
Glu Gly Arg Gly Gly Gly Gly Asp Pro Lys Ser Cys Asp Lys Pro 115 120 125	384 432
Glu Gly Arg Gly Gly Gly Gly Asp Pro Lys Ser Cys Asp Lys Pro 115 120 125	

-continued

											_	con	tin	uea		
_				ccc Pro				_	_			_				480
			_	aca Thr 165	_				-		_		_	_		528
				aac Asn												576
				cgg Arg												624
				gtc Val												672
_	_	_	_	tcc Ser			_			_						720
				aaa Lys 245												768
				gat Asp		_		_		_	_	_	_		_	816
				ttc Phe												864
		_	_	gag Glu				_	-	_				_	_	912
	_			ttc Phe				_	_				_	_	_	960
		_	_	999 Gly 325		_			_			_			_	1008
				tac Tyr												1056
tga																1059
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EATUI	H: 3! PRT ISM: RE:				_		poly	pept:	ide					
<400)> SI	EQUEI	ICE :	34												
Met 1	Pro	Leu	Leu	Leu 5	Leu	Leu	Pro	Leu	Leu 10	Trp	Ala	Gly	Ala	Leu 15	Ala	
Met	Asp	Lys	Leu 20	Pro	Phe	Ile	Asn	Lув 25	Pro	Asp	Thr	Leu	Leu 30	Val	Asn	
Arg	Lys	Asp 35	Ala	Met	Trp	Val	Pro 40	CÀa	Leu	Val	Ser	Ile 45	Pro	Gly	Leu	
Asn	Val 50	Thr	Leu	Arg	Ser	Gln 55	Ser	Ser	Val	Leu	Trp	Pro	Asp	Gly	Gln	

Glu Val Val Trp Asp Asp Arg Gly Met Leu Val Ser Thr Pro Leu 65 $$ 70 $$ 75 $$ 80

Leu	His	Asp	Ala	Leu 85	Tyr	Leu	Gln	Cys	Glu 90	Thr	Thr	Trp	Gly	Asp 95	Gln			
Asp	Phe	Leu		Asn	Pro	Phe	Leu		His	Ile	Thr	Gly	_	Pro	Ile			
Glu	Gly	Arg	100 Gly	Gly	Gly	Gly	Gly	105 Asp	Pro	Lys	Ser	Cys	110 Asp	Lys	Pro			
TT 4	Mla sa	115	Desc	T	C	Desa	120	Deve	G1	T	T	125	G1	Dave	Com			
нтв	Thr 130	Сув	PIO	ьeu	СУВ	135	AIA	PIO	GIU	Leu	140	GIY	GIY	PIO	ser			
Val 145	Phe	Leu	Phe	Pro	Pro 150	ГÀа	Pro	ГÀа	Asp	Thr 155	Leu	Met	Ile	Ser	Arg 160			
Thr	Pro	Glu	Val	Thr 165	GÀa	Val	Val	Val	Asp 170	Val	Ser	His	Glu	Asp 175	Pro			
Glu	Val	Lys	Phe 180	Asn	Trp	Tyr	Val	Asp 185	Gly	Val	Glu	Val	His	Asn	Ala			
Lys	Thr		Pro	Arg	Glu	Glu		Tyr	Asn	Ser	Thr		Arg	Val	Val			
Ser	Val	195 Leu	Thr	Val	Leu		200 Gln	Asp	Trp	Leu	Asn	205 Gly	Lys	Glu	Tyr			
Lvs	210 Cys	Lvs	Val	Ser	Asn	215 Lvs	Ala	Leu	Pro	Ala	220 Pro	Ile	Glu	Lvs	Thr			
225	_	-			230	-				235				-	240			
Ile	Ser	Lys	Ala	Lys 245	Gly	Gln	Pro	Arg	Glu 250	Pro	Gln	Val	Tyr	Thr 255	Leu			
Pro	Pro	Ser	Arg 260	Asp	Glu	Leu	Thr	Lys 265	Asn	Gln	Val	Ser	Leu 270	Thr	Cys			
Leu	Val	Lys 275	Gly	Phe	Tyr	Pro	Ser 280	Asp	Ile	Ala	Val	Glu 285	Trp	Glu	Ser			
Asn	Gly 290	Gln	Pro	Glu	Asn	Asn 295	Tyr	Lys	Ala	Thr	Pro 300	Pro	Val	Leu	Asp			
Ser 305	Asp	Gly	Ser	Phe	Phe 310	Leu	Tyr	Ser	ГЛа	Leu 315	Thr	Val	Asp	Lys	Ser 320			
Arg	Trp	Gln	Gln	Gly 325	Asn	Val	Phe	Ser	Cys 330	Ser	Val	Met	His	Glu 335	Ala			
Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser 345	Leu	Ser	Leu	Ser	Pro 350	Gly	Lys			
<21: <21: <21: <22: <22: <22: <22: <22:	0> SE 1> LE 2> TY 3> OF 0> FE 1> NF 1> NF 10> FE 1> NF 1-> NF	ENGTH (PE: RGANI EATUF CHER EATUF CHER EATUF	H: 14 DNA SM: SE: INFO SE: INFO SE: INFO SE: CEY: CEY:	Art: DRMA' miscorMA' CDS	rion c_fea rion	: Syr ature : R-3	nthe		polyr	nucle	eotic	de						
< 400	0> SE	EQUEN	ICE :	35														
atg	cag Gln															48		
Met 1					ata	agt.	qqc	tac								96		
1 ctc	ctg Leu							Tyr 25	Ser	Met	Tnr	Pro	30	Thr	пец			

_															
									gag Glu						192
	ln								gac Asp						240
									agg Arg 90						288
									aca Thr						336
									ggc Gly						384
				_	_			_	cca Pro			_		_	432
T									atg Met						480
									cgc Arg 170						528
		_		_					gat Asp	_		 	_		576
									ctg Leu						624
									aac Asn						672
T						_			gaa Glu		_	 			720
									cac His 250						768
									gtc Val						816
									acc Thr						864
_	_	 _		_		_	_		gag Glu	_	_				912
V									aag Lys						960
	_		_	_		_		_	agc Ser 330	_		_	_		1008
									aag Lys						1056
									atc Ile						1104

		gaa Glu														1152
		aac Asn														1200
		atc Ile														1248
		gcc Ala														1296
	_	aag Lys 435				_	_	_			_	_			-	1344
		tgc Cys														1392
		ctc Leu							tga							1422
<211 <212 <213 <220	L> LE 2> TY 3> OF 0> FE	EQ II ENGTH YPE: RGANI EATUH THER	H: 4" PRT ISM: RE:	73 Art:			_		oolyr	pepti	ide					
< 400)> SI	EQUE	ICE :	36												
Met 1	Gln	Arg	Gly	Ala 5	Ala	Leu	Cys	Leu	Arg 10	Leu	Trp	Leu	Cys	Leu 15	Gly	
Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu	
7 an																
ASII	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45	Ser	Leu	Ser	
							40		Ī		-	45				
Ile	Ser 50	35	Arg	Gly	Gln	His 55	40 Pro	Leu	Glu	Trp	Ala 60	45 Trp	Pro	Gly	Ala	
Ile Gln 65	Ser 50 Glu	35 Cys	Arg Pro	Gly Ala	Gln Thr 70	His 55 Gly	40 Pro Asp	Leu Lys	Glu Asp	Trp Ser 75	Ala 60 Glu	45 Trp Asp	Pro Thr	Gly Gly	Ala Val 80	
Ile Gln 65 Val	Ser 50 Glu Arg	35 Cys Ala	Arg Pro Cys	Gly Ala Glu 85	Gln Thr 70 Gly	His 55 Gly Thr	40 Pro Asp Asp	Leu Lys Ala	Glu Asp Arg	Trp Ser 75 Pro	Ala 60 Glu Tyr	45 Trp Asp Cys	Pro Thr Lys	Gly Gly Val 95	Ala Val 80 Leu	
Ile Gln 65 Val Leu	Ser 50 Glu Arg Leu	35 Cys Ala Asp	Arg Pro Cys Glu 100	Gly Ala Glu 85 Val	Gln Thr 70 Gly	His 55 Gly Thr	40 Pro Asp Asp	Leu Lys Ala Asp 105	Glu Asp Arg 90 Thr	Trp Ser 75 Pro	Ala 60 Glu Tyr Ser	45 Trp Asp Cys Tyr	Pro Thr Lys Val	Gly Gly Val 95 Cys	Ala Val 80 Leu Tyr	
Ile Gln 65 Val Leu	Ser 50 Glu Arg Leu	35 Cys Ala Asp His	Arg Pro Cys Glu 100 Ile	Gly Ala Glu 85 Val	Gln Thr 70 Gly His	His 55 Gly Thr Ala	40 Pro Asp Asp Asn Ile 120	Leu Lys Ala Asp 105 Glu	Glu Asp Arg 90 Thr	Trp Ser 75 Pro Gly Thr	Ala 60 Glu Tyr Ser	45 Trp Asp Cys Tyr Ala 125	Pro Thr Lys Val 110	Gly Val 95 Cys Ser	Ala Val 80 Leu Tyr	
Ile Gln 65 Val Leu Tyr	Ser 50 Glu Arg Leu Lys Val	35 Cys Ala Asp His	Arg Pro Cys Glu 100 Ile Val	Gly Ala Glu 85 Val Lys Arg	Gln Thr 70 Gly His Ala Asp	His 55 Gly Thr Ala Arg	40 Pro Asp Asp Asn Ile 120 Glu	Leu Lys Ala Asp 105 Glu	Glu Asp Arg 90 Thr Gly	Trp Ser 75 Pro Gly Thr	Ala 60 Glu Tyr Ser Thr	45 Trp Asp Cys Tyr Ala 125 Asn	Pro Thr Lys Val 110 Ala	Gly Val 95 Cys Ser	Ala Val 80 Leu Tyr Ser Asp	
Ile Gln 65 Val Leu Tyr Tyr Thr 145	Ser 50 Glu Arg Leu Lys Val 130 Leu	35 Cys Ala Asp His Tyr 115 Phe	Arg Pro Cys Glu 100 Ile Val	Gly Ala Glu 85 Val Lys Arg	Gln Thr 70 Gly His Ala Asp Arg 150	His 55 Gly Thr Ala Arg Phe 135 Lys	40 Pro Asp Asp Asn Ile 120 Glu Asp	Leu Lys Ala Asp 105 Glu Gln	Glu Asp Arg 90 Thr Gly Pro	Trp Ser 75 Pro Gly Thr Phe Trp 155	Ala 60 Glu Tyr Ser Thr Ile 140 Val	45 Trp Asp Cys Tyr Ala 125 Asn	Pro Thr Lys Val 110 Ala Lys	Gly Val 95 Cys Ser Pro	Ala Val 80 Leu Tyr Ser Asp Val 160	
Ile Gln 65 Val Leu Tyr Tyr Ser	Ser 50 Glu Arg Leu Lys Val 130 Leu Ile	35 Cys Ala Asp His Tyr 115 Phe	Arg Pro Cys Glu 100 Ile Val Val	Gly Ala Glu 85 Val Lys Arg Asn Leu 165	Gln Thr 70 Gly His Ala Asp Arg 150 Asn	His 55 Gly Thr Ala Arg Phe 135 Lys	40 Pro Asp Asp Asn Ile 120 Glu Asp	Leu Lys Ala Asp 105 Glu Gln Ala	Glu Asp Arg 90 Thr Gly Pro Met Arg 170	Trp Ser 75 Pro Gly Thr Phe Trp 155 Ser	Ala 60 Glu Tyr Ser Thr Ile 140 Val	45 Trp Asp Cys Tyr Ala 125 Asn Pro	Pro Thr Lys Val 110 Ala Lys Cys Ser	Gly Gly Val 95 Cys Ser Pro Leu Val 175	Ala Val 80 Leu Tyr Ser Asp Val 160 Leu	
Ile Gln 65 Val Leu Tyr Tyr Thr 145 Ser Trp	Ser 50 Glu Arg Leu Lys Val 130 Leu Ile	35 Cys Ala Asp His Tyr 115 Phe Leu	Arg Pro Cys Glu 100 Ile Val Gly Gly Gly 180	Gly Ala Glu 85 Val Lys Arg Asn Leu 165 Gln	Gln Thr 70 Gly His Ala Asp Arg 150 Asn Glu	His 55 Gly Thr Ala Arg Phe 135 Lys Val	40 Pro Asp Asp Asn Ile 120 Glu Asp Thr	Leu Lys Ala Asp 105 Glu Gln Ala Leu Trp 185	Glu Asp Arg 90 Thr Gly Pro Met Arg 170 Asp	Trp Ser 75 Pro Gly Thr Phe Trp 155 Ser Asp	Ala 60 Glu Tyr Ser Thr Ile 140 Val Gln	45 Trp Asp Cys Tyr Ala 125 Asn Pro Ser Arg	Pro Thr Lys Val 110 Ala Lys Cys Ser Gly 190	Gly Val 95 Cys Ser Pro Leu Val 175 Met	Ala Val 80 Leu Tyr Ser Asp Val 160 Leu Leu	

	210					215					220						
Thr 225	Gly	Asn	Glu	Leu	Ala 230	Asp	Pro	Ile	Glu	Gly 235	Arg	Gly	Gly	Gly	Gly 240		
Gly	Asp	Pro	Lys	Ser 245	CAa	Asp	Lys	Pro	His 250	Thr	CAa	Pro	Leu	Сув 255	Pro		
Ala	Pro	Glu	Leu 260	Leu	Gly	Gly	Pro	Ser 265	Val	Phe	Leu	Phe	Pro 270	Pro	Lys		
Pro	Lys	Asp 275	Thr	Leu	Met	Ile	Ser 280	Arg	Thr	Pro	Glu	Val 285	Thr	CÀa	Val		
Val	Val 290	Asp	Val	Ser	His	Glu 295	Asp	Pro	Glu	Val	300 Lys	Phe	Asn	Trp	Tyr		
Val 305	Asp	Gly	Val	Glu	Val 310	His	Asn	Ala	Lys	Thr 315	Lys	Pro	Arg	Glu	Glu 320		
Gln	Tyr	Asn	Ser	Thr 325	Tyr	Arg	Val	Val	Ser 330	Val	Leu	Thr	Val	Leu 335	His		
Gln	Asp	Trp	Leu 340	Asn	Gly	ГÀв	Glu	Tyr 345	Lys	Сла	ГÀз	Val	Ser 350	Asn	Lys		
Ala	Leu	Pro 355	Ala	Pro	Ile	Glu	Lys 360	Thr	Ile	Ser	ГÀз	Ala 365	Lys	Gly	Gln		
Pro	Arg 370	Glu	Pro	Gln	Val	Tyr 375	Thr	Leu	Pro	Pro	Ser 380	Arg	Asp	Glu	Leu		
Thr 385	Lys	Asn	Gln	Val	Ser 390	Leu	Thr	Сув	Leu	Val 395	Lys	Gly	Phe	Tyr	Pro 400		
Ser	Asp	Ile	Ala	Val 405	Glu	Trp	Glu	Ser	Asn 410	Gly	Gln	Pro	Glu	Asn 415	Asn		
Tyr	Lys	Ala	Thr	Pro	Pro	Val	Leu	Asp 425	Ser	Asp	Gly	Ser	Phe 430	Phe	Leu		
Tyr	Ser	Lys 435		Thr	Val	Asp	Lys 440		Arg	Trp	Gln	Gln 445		Asn	Val		
Phe	Ser 450		Ser	Val	Met	His 455		Ala	Leu	His	Asn 460		Tyr	Thr	Gln		
Lys 465		Leu	Ser	Leu	Ser 470		Gly	Lys									
<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <223	0 > FE 3 > OT 0 > FE L > NA 3 > OT 0 > FE L > NA	ENGTH (PE: RGAN: EATUR EATUR EATUR THER EATUR AME/I	H: 14 DNA ISM: RE: INF(RE: KEY: INF(RE: KEY: KEY:	Art: DRMA' miso DRMA' CDS	ific: TION C_fea TION	: Syr ature : R-3	- nthei		polyr	nucle	eotic	de					
< 400)> SE	EQUEI	ICE :	37													
					gcg Ala											48	
					gtg Val											96	
					tca Ser											144	
atc	tcc		agg	gga	cag	cac		ctc	gag	tgg	gct		cca	gga	gct	192	

								_	con	tinı	ıed		
Ile Ser Cy 50	ys Arg G	ly Gln	His 55	Pro	Leu	Glu	Trp	Ala 60	Trp	Pro	Gly	Ala	
cag gag go Gln Glu Al 65				-	_	_	_		_	_			240
gtg cga ga Val Arg As	ap Cya G												288
ctg ctg ca Leu Leu Hi			_	Asn	_			_		_	_		336
ac aag ta Tyr Lys Ty 11			Arg					_	-	_	-		384
ac gtg tt Tyr Val Ph 130					_					_		_	432
acg ctc tt Thr Leu Le 145													480
cc atc co Ser Ile Pr	ro Gly L												528
igg cca ga Irp Pro As				Val									576
gtg tcc ac /al Ser Th	-		His	-	_	_		_	_	_			624
acc tgg gg Thr Trp Gl 210													672
aca ggg ga Thr Gly As 225													720
ot tgt ga Ser Cys As	ab raa b												768
tg ggg gg Leu Gly Gl				Leu									816
ctc atg at Leu Met II 27			Pro										864
agc cac ga Ser His Gl 290													912
gag gtg ca Glu Val Hi 305	_	_		_	_				_			_	960
acg tac co Thr Tyr Ai	rg Val V												1008
aat ggc aa Asn Gly Ly				Lys									1056
ccc atc ga Pro Ile Gl 35	-		Ser		-			_		_	_		1104

												con	tin	ued			
	gtg Val 370															1152	
	agc Ser															1200	
	gag Glu															1248	
	ccc Pro															1296	
	gtg Val															1344	
	atg Met 450															1392	
	tct Ser				tga											1410	
<213 <213 <223	0 > SI 1 > LI 2 > TY 3 > OF 0 > FI 3 > OT	ENGTH YPE: RGANI EATUR	H: 46 PRT ISM: RE:	69 Art:					ooly	pept:	ide						
< 40	O> SI	EQUE	ICE :	38													
Met 1	Gln	Arg	Gly	Ala 5	Ala	Leu	Сув	Leu	Arg 10	Leu	Trp	Leu	Сув	Leu 15	Gly		
Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu		
Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45	Ser	Leu	Ser		
Ile	Ser 50	Cys	Arg	Gly	Gln	His 55	Pro	Leu	Glu	Trp	Ala 60	Trp	Pro	Gly	Ala		
Gln 65	Glu	Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75	Glu	Asp	Thr	Gly	Val 80		
Val	Arg	Asp	Cys	Glu 85	Gly	Thr	Asp	Ala	Arg 90	Pro	Tyr	СЛв	Lys	Val 95	Leu		
Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105	Thr	Gly	Ser	Tyr	Val 110	СЛа	Tyr		
Tyr	ГÀв	Tyr 115	Ile	ГÀЗ	Ala	Arg	Ile 120	Glu	Gly	Thr	Thr	Ala 125	Ala	Ser	Ser		
Tyr	Val 130	Phe	Val	Arg	Asp	Phe 135	Glu	Gln	Pro	Phe	Ile 140	Asn	Lys	Pro	Asp		
Thr 145	Leu	Leu	Val	Asn	Arg 150	_	Asp	Ala	Met	Trp 155	Val	Pro	Сув	Leu	Val 160		
Ser	Ile	Pro	Gly	Leu 165	Asn	Val	Thr	Leu	Arg 170	Ser	Gln	Ser	Ser	Val 175	Leu		
Trp	Pro	Asp	Gly 180	Gln	Glu	Val	Val	Trp 185		Asp	Arg	Arg	Gly 190	Met	Leu		
Val	Ser	Thr 195	Pro	Leu	Leu	His	Asp 200	Ala	Leu	Tyr	Leu	Gln 205	Сув	Glu	Thr		
Thr	Trp 210	Gly	Asp	Gln	Asp	Phe 215	Leu	Ser	Asn	Pro	Phe 220	Leu	Val	His	Ile		

Thr Gly Asp Pro	Ile Glu 230	Gly Arg	Gly	Gly	Gly 235	Gly	Gly	Asp	Pro	Lys 240	
Ser Cys Asp Lys	Pro His 245	Thr Cys	Pro	Leu 250	Cys	Pro	Ala	Pro	Glu 255	Leu	
Leu Gly Gly Pro	Ser Val	Phe Leu	Phe 265	Pro	Pro	Lys	Pro	Lys 270	Asp	Thr	
Leu Met Ile Ser 275	Arg Thr	Pro Glu 280	Val	Thr	Cys	Val	Val 285	Val	Asp	Val	
Ser His Glu Asp 290	Pro Glu	Val Lys 295	Phe	Asn	Trp	Tyr 300	Val	Asp	Gly	Val	
Glu Val His Asn 305	Ala Lys 310	Thr Lys	Pro	Arg	Glu 315	Glu	Gln	Tyr	Asn	Ser 320	
Thr Tyr Arg Val	Val Ser 325	Val Leu	Thr	Val 330	Leu	His	Gln	Asp	Trp 335	Leu	
Asn Gly Lys Glu 340	Tyr Lys	Càa Tàa	Val 345	Ser	Asn	Lys	Ala	Leu 350	Pro	Ala	
Pro Ile Glu Lys 355	Thr Ile	Ser Lys 360	Ala	Lys	Gly	Gln	Pro 365	Arg	Glu	Pro	
Gln Val Tyr Thr 370	Leu Pro	Pro Ser 375	Arg	Asp	Glu	Leu 380	Thr	Lys	Asn	Gln	
Val Ser Leu Thr 385	Cys Leu 390	Val Lys	Gly	Phe	Tyr 395	Pro	Ser	Asp	Ile	Ala 400	
Val Glu Trp Glu	Ser Asn 405	Gly Gln	Pro	Glu 410	Asn	Asn	Tyr	Lys	Ala 415	Thr	
Pro Pro Val Leu 420	Asp Ser	Asp Gly	Ser 425	Phe	Phe	Leu	Tyr	Ser 430	Lys	Leu	
Thr Val Asp Lys 435	Ser Arg	Trp Gln 440	Gln	Gly	Asn	Val	Phe 445	Ser	CÀa	Ser	
Val Met His Glu 450		His Asn 455	His	Tyr	Thr	Gln 460	ГЛа	Ser	Leu	Ser	
Leu Ser Pro Gly 465	ГÀа										
<pre><210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <223> OTHER INF <220> FEATURE: <221> NAME/KEY: <222> OTHER INF <220> FEATURE: <221> NAME/KEY: <222> LOCATION:</pre>	Artifici ORMATION: misc_fea ORMATION: CDS (1)(14	Synthet ture R-3 E		oolyr	nucle	eotic	de				
<pre><400> SEQUENCE: atg cag cgg ggc</pre>	gcc gcg										48
Met Gln Arg Gly 1	5	_		10		_		-	15	-	
ctc ctg gac ggc Leu Leu Asp Gly 20											96
aac atc acg gag Asn Ile Thr Glu 35											44
atc tcc tgc agg Ile Ser Cys Arg											92

													COII	CIII	aca		
		50					55					60					
(gga Gly										240
							aca Thr										288
	_	_			_		gcc Ala		_			_		_	_		336
							cgc Arg										384
							ttt Phe 135										432
							aag Lys										480
							gtc Val										528
							gtg Val										576
							cac His										624
				_	_	_	ttc Phe 215						_				672
2							ggt Gly										720
							cca Pro										768
							ttc Phe										816
							gtc Val										864
							ttc Phe 295										912
1							ccg Pro										960
							acc Thr										1008
							gtc Val										1056
							gcc Ala										1104
	tac	acc	ctg	ccc	сса	tcc	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	agc	1152

-continued	
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 370 375 380	
ctg acc tgc cta gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 385 390 395 400	1200
tgg gag agc aat ggg cag ccg gag aac aac tac aag gcc acg cct ccc Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Ala Thr Pro Pro 405 410 415	1248
gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc gtg Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 420 425 430	1296
gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg atg Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 435 440 445	1344
cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg tct His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 450 455 460	1392
ccg ggt aaa tga Pro Gly Lys 465	1404
<210> SEQ ID NO 40 <211> LENGTH: 467 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 40	
Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu Trp Leu Cys Leu Gly	
Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met Thr Pro Pro Thr Leu	
20 25 30 Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr Gly Asp Ser Leu Ser	
35 40 45 Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp Ala Trp Pro Gly Ala	
50 55 60	
Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser Glu Asp Thr Gly Val 65 70 75 80	
Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro Tyr Cys Lys Val Leu 85 90 95	
Leu Leu His Glu Val His Ala Asn Asp Thr Gly Ser Tyr Val Cys Tyr 100 105 110	
Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr Thr Ala Ala Ser Ser 115 120 125	
Tyr Val Phe Val Arg Asp Phe Glu Gln Pro Phe Ile Asn Lys Pro Asp 130 135 140	
Thr Leu Leu Val Asn Arg Lys Asp Ala Met Trp Val Pro Cys Leu Val 145 150 155 160	
Ser Ile Pro Gly Leu Asn Val Thr Leu Arg Ser Gln Ser Ser Val Leu 165 170 175	
Trp Pro Asp Gly Gln Glu Val Val Trp Asp Asp Arg Arg Gly Met Leu 180 185 190	
Val Ser Thr Pro Leu Leu His Asp Ala Leu Tyr Leu Gln Cys Glu Thr 195 200 205	
Thr Trp Gly Asp Gln Asp Phe Leu Ser Asn Pro Phe Leu Val His Ala 210 215 220	

													0011	CIII	aca						
	Asp 225	Pro	Ile	Glu	Gly	Arg 230	Gly	Gly	Gly	Gly	Gly 235	Asp	Pro	Lys	Ser	Cys 240					
2	4sp	Lys	Pro	His	Thr 245	Сув	Pro	Leu	Cys	Pro 250	Ala	Pro	Glu	Leu	Leu 255	Gly					
(ly	Pro	Ser	Val 260	Phe	Leu	Phe	Pro	Pro 265	Lys	Pro	Lys	Asp	Thr 270	Leu	Met					
	le	Ser	Arg 275	Thr	Pro	Glu	Val	Thr 280	Cys	Val	Val	Val	Asp 285	Val	Ser	His					
(Asp 290	Pro	Glu	Val	Lys	Phe 295	Asn	Trp	Tyr	Val	300	Gly	Val	Glu	Val					
	His 805	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln 315	Tyr	Asn	Ser	Thr	Tyr 320					
7	Arg	Val	Val	Ser	Val 325	Leu	Thr	Val	Leu	His 330	Gln	Asp	Trp	Leu	Asn 335	Gly					
I	ıys	Glu	Tyr	Lys 340	Cys	Lys	Val	Ser	Asn 345	Lys	Ala	Leu	Pro	Ala 350	Pro	Ile					
(lu	Lys	Thr 355	Ile	Ser	Lys	Ala	Lys 360	Gly	Gln	Pro	Arg	Glu 365	Pro	Gln	Val					
7	_	Thr 370	Leu	Pro	Pro	Ser	Arg 375	Asp	Glu	Leu	Thr	380	Asn	Gln	Val	Ser					
	eu 885	Thr	Сув	Leu	Val	390	Gly	Phe	Tyr	Pro	Ser 395	Asp	Ile	Ala	Val	Glu 400					
7	rp.	Glu	Ser	Asn	Gly 405	Gln	Pro	Glu	Asn	Asn 410	Tyr	ГÀа	Ala	Thr	Pro 415	Pro					
7	/al	Leu	Asp	Ser 420	Asp	Gly	Ser	Phe	Phe 425	Leu	Tyr	Ser	Lys	Leu 430	Thr	Val					
1	\ap	Lys	Ser 435	Arg	Trp	Gln	Gln	Gly 440	Asn	Val	Phe	Ser	Сув 445	Ser	Val	Met					
I		Glu 450	Ala	Leu	His	Asn	His 455	Tyr	Thr	Gln	Lys	Ser 460	Leu	Ser	Leu	Ser					
	ro 165	Gly	Lys																		
	211 212 213 220 223 221 221 223 221	> LE > T) > OF > FE > OI > FE > OI > FE > NA	EATUI CHER EATUI AME/I CHER EATUI AME/I	H: 1: DNA ISM: RE: INF RE: KEY: INF RE: KEY: KEY:	Art ORMA mis ORMA CDS	ific: TION c_fea TION	: Syn ature : R-1	nthe		ро1уі	nucle	eoti:	de								
			EQUEI																		
1						gcg Ala											48	3			
						gtg Val											96	;			
						tca Ser											144	Į.			
	le					cag Gln											192	:			

												0011	CIII	aca		
_	gag Glu			_			_	_	_	_		_	_			240
	cga Arg															288
	ctg Leu															336
	aag Lys															384
	gtg Val 130			_	_			_					_		_	432
	ctc Leu															480
	atc Ile					_	_	_	_	_		_	_		_	528
	cca Pro															576
	tcc Ser	_		_	_		_	_	_		_	_	_			624
	tgg Trp 210															672
-	ggt Gly	_						_				_	_			720
	aca Thr															768
	ttc Phe															816
	cct Pro		_		-				-		_		_	_		864
	gtc Val 290															912
	aca Thr															960
	gtc Val															1008
_	tgc Cys	_	_				_			_						1056
	tcc Ser															1104
	cca Pro															1152

	-cont	inued
370	375 380	
	tat ccc agc gac atc gcc gtg gag t Tyr Pro Ser Asp Ile Ala Val Glu T 390 395	
	aac aac tac aag gcc acg cct ccc g Asn Asn Tyr Lys Ala Thr Pro Pro V 410	
	ttc ctc tac agc aag ctc acc gtg g Phe Leu Tyr Ser Lys Leu Thr Val A 425	
	aac gtc ttc tca tgc tcc gtg atg c Asn Val Phe Ser Cys Ser Val Met H 440 445	
	acg cag aag agc ctc tcc ctg tct c Thr Gln Lys Ser Leu Ser Leu Ser F 455 460	
tga		1395
<210> SEQ ID NO 42 <211> LENGTH: 464 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORME	ificial sequence TION: Synthetic polypeptide	
<400> SEQUENCE: 42		
Met Gln Arg Gly Ala 1 5	Ala Leu Cys Leu Arg Leu Trp Leu C 10	Cys Leu Gly 15
Leu Leu Asp Gly Leu 20	Val Ser Gly Tyr Ser Met Thr Pro P 25 3	Pro Thr Leu 30
Asn Ile Thr Glu Glu 35	Ser His Val Ile Asp Thr Gly Asp S 40 45	Ger Leu Ser
Ile Ser Cys Arg Gly 50	Gln His Pro Leu Glu Trp Ala Trp F 55 60	Pro Gly Ala
Gln Glu Ala Pro Ala 65	Thr Gly Asp Lys Asp Ser Glu Asp T	Thr Gly Val 80
Val Arg Asp Cys Glu 85	Gly Thr Asp Ala Arg Pro Tyr Cys L 90	Lys Val Leu 95
Leu Leu His Glu Val 100	His Ala Asn Asp Thr Gly Ser Tyr V	Val Cys Tyr 110
Tyr Lys Tyr Ile Lys 115	Ala Arg Ile Glu Gly Thr Thr Ala A	Ala Ser Ser
Tyr Val Phe Val Arg 130	Asp Phe Glu Gln Pro Phe Ile Asn L 135 140	Lys Pro Asp
Thr Leu Leu Val Asr 145	Arg Lys Asp Ala Met Trp Val Pro C	Cys Leu Val 160
Ser Ile Pro Gly Leu 165	Asn Val Thr Leu Arg Ser Gln Ser S 170	Ser Val Leu 175
Trp Pro Asp Gly Glr 180	Glu Val Val Trp Asp Asp Arg Arg 185	Gly Met Leu 190
Val Ser Thr Pro Leu 195	Leu His Asp Ala Leu Tyr Leu Gln C	Cys Glu Thr
Thr Trp Gly Asp Glr 210	Asp Phe Leu Ser Asn Pro Phe Ala A	Asp Pro Ile
Glu Gly Arg Gly Gly 225	Gly Gly Gly Asp Pro Lys Ser Cys A 230 235	Asp Lys Pro 240

His	Thr	Cys	Pro	Leu 245	Cys	Pro	Ala	Pro	Glu 250	Leu	Leu	Gly	Gly	Pro 255	Ser	
Val	Phe	Leu	Phe 260	Pro	Pro			Lys 265		Thr	Leu	Met	Ile 270	Ser	Arg	
Thr	Pro	Glu 275	Val		CAa		Val 280		_	Val		His 285	Glu	Asp	Pro	
Glu	Val 290		Phe	Asn	Trp	Tyr 295			Gly	Val	Glu 300	Val	His	Asn	Ala	
Lys 305		ГХа	Pro	Arg	Glu 310		Gln			Ser 315	Thr	Tyr	Arg	Val	Val 320	
Ser	Val	Leu	Thr	Val 325	Leu	His	Gln	Asp	Trp 330	Leu		Gly		Glu 335	Tyr	
Lys	Cya	Lys	Val			Lys		Leu 345		Ala					Thr	
Ile	Ser	Lys 355				Gln			Glu	Pro	Gln	Val 365		Thr	Leu	
Pro		Ser	_	Asp	Glu	Leu		Lys	Asn	Gln			Leu	Thr	CÀa	
				Phe	Tyr	375 Pro				Ala	380 Val	Glu	Trp	Glu		
385 Asn		Gln	Pro		390 Asn		Tyr		Ala	395 Thr	Pro	Pro	Val		400 Asp	
Ser	Asp	Gly	Ser	405 Phe	Phe		Tyr		410 Lys	Leu	Thr	Val	Asp	415 Lys	Ser	
Arg	Trp	Gln	420 Gln	Gly	Asn	Val	Phe	425 Ser		Ser	Val	Met	430 His	Glu	Ala	
Leu	His	435 Asn	His		Thr		440 Lys	Ser	Leu	Ser	Leu	445 Ser	Pro	Gly	Lys	
	450					455					460			-	-	
<21 <21 <21 <22	1 > LI 2 > T 3 > OI 0 > FI	EATUI	H: 1' DNA ISM: RE:	719 Art:	ific:		_		1	1		a_				
<22 <22	0> FI 1> NA	EATUI AME/I	RE: KEY:	mis	c_fea	ature	=	LIC F	ЮТУГ	nucle	SOCI	ae				
<22 <22	0> FI 1> NA	EATUI AME/I	RE: KEY:	CDS	TION		3 G									
		ocat. Equei			(1	719)										
										ctg Leu						48
										atg Met						96
										acc Thr						144
										tgg Trp						192
										agc Ser 75						240
gtg	cga	gac	tgc	gag	ggc	aca	gac	gcc	agg	ccc	tac	tgc	aag	gtg	ttg	288

						COII	CIII	aca		
Val Arg Asp	p Cys Glu 85	u Gly Thr	Asp Ala	Arg Pr 90	o Tyr	CÀa	ГÀа	Val 95	Leu	
ctg ctg cac Leu Leu His				Thr Gl						336
tac aag tac Tyr Lys Tyr 11!	r Ile Lys									384
tac gtg tto Tyr Val Pho 130			Glu Glr							432
acg ctc tto Thr Leu Leu 145					p Val					480
tcc atc ccc Ser Ile Pro		u Asn Val								528
tgg cca gad Trp Pro Asp				Asp As						576
gtg tcc acq Val Ser Thi 19!	r Pro Leu									624
acc tgg gga Thr Trp Gly 210						_				672
aca ggc aad Thr Gly Asi 225		_	_	_	u Pro		_	_	-	720
gag ctg ctg Glu Leu Leu		y Glu Lys								768
gag ttt aad Glu Phe Ası				Trp As						816
gca gag cgg Ala Glu Arg 279	g Gly Lys									864
aca gaa cto Thr Glu Leo 290	u Ser Ser	r Ile Leu 295	Thr Ile	His As	n Val 300	Ser	Gln	His	Asp	912
ctg ggc tcg Leu Gly Ser 305	r Tyr Val	l Cys Lys 310	Āla Asr	Asn Gl 31	y Ile 5	Gln	Arg	Phe	Arg 320	960
gag agc acc Glu Ser Thi		l Ile Val								1008
ggt ggt ggt Gly Gly Gly				Азр Ьу						1056
ctg tgc cca Leu Cys Pro 35!	o Āla Pro	-			-	_				1104
ccc cca aaa Pro Pro Lys 370			Leu Met			Thr				1152
aca tgc gtg Thr Cys Val 385					p Pro					1200

-continued	
aac tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 405 410 415	1248
cgg gag gag cag tac aac agc acg tac cgt gtg gtc agc gtc ctc acc Arg Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 420 425 430	1296
gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag gtc Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 435 440 445	1344
tcc aac aaa gcc ctc cca gcc ccc atc gag aaa acc atc tcc aaa gcc Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 450 455 460	1392
aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc cca tcc cggLys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg465470	1440
gat gag ctg acc aag aac cag gtc agc ctg acc tgc cta gtc aaa ggc Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 485 490 495	1488
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 500 505 510	1536
gag aac aac tac aag gcc acg cct ccc gtg ctg gac tcc gac ggc tcc Glu Asn Asn Tyr Lys Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 515 520 525	1584
Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 530 535 540	1632
ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac aac cac Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 545 550 560	1680
tac acg cag aag agc ctc tcc ctg tct ccg ggt aaa tga Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 570	1719
<pre><210> SEQ ID NO 44 <211> LENGTH: 572 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide</pre>	
<400> SEQUENCE: 44	
Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu Trp Leu Cys Leu Gly 1 5 10 15 Leu Leu Arg Cly Leu Yel Cer Cly Tyr Cer Met Thr Dre Dre Thr Leu	
Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met Thr Pro Pro Thr Leu 20 25 30	
Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr Gly Asp Ser Leu Ser 35 40 45	
Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp Ala Trp Pro Gly Ala 50 55 60	
Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser Glu Asp Thr Gly Val 65 70 75 80	
Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro Tyr Cys Lys Val Leu 85 90 95	
Leu Leu His Glu Val His Ala Asn Asp Thr Gly Ser Tyr Val Cys Tyr	
Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr Thr Ala Ala Ser Ser 115 120 125	

Tyr Val Phe Val Arg Asp Phe Glu Gln Pro Phe Ile Asn Lys Pro Asp

												0011	C III	aca	
	130					135					140				
Thr 145	Leu	Leu	Val	Asn	Arg 150	ГÀа	Asp	Ala	Met	Trp 155	Val	Pro	Cys	Leu	Val 160
Ser	Ile	Pro	Gly	Leu 165	Asn	Val	Thr	Leu	Arg 170	Ser	Gln	Ser	Ser	Val 175	Leu
Trp	Pro	Asp	Gly 180	Gln	Glu	Val	Val	Trp 185	Asp	Asp	Arg	Arg	Gly 190	Met	Leu
Val	Ser	Thr 195	Pro	Leu	Leu	His	Asp 200	Ala	Leu	Tyr	Leu	Gln 205	Cys	Glu	Thr
Thr	Trp 210	Gly	Asp	Gln	Asp	Phe 215	Leu	Ser	Asn	Pro	Phe 220	Leu	Val	His	Ile
Thr 225	Gly	Asn	Glu	Leu	Tyr 230	Asp	Ile	Gln	Leu	Leu 235	Pro	Arg	Lys	Ser	Leu 240
Glu	Leu	Leu	Val	Gly 245	Glu	ГÀз	Leu	Val	Leu 250	Asn	CAa	Thr	Val	Trp 255	Ala
Glu	Phe	Asn	Ser 260	Gly	Val	Thr	Phe	Asp 265	Trp	Asp	Tyr	Pro	Gly 270	Lys	Gln
Ala	Glu	Arg 275	Gly	ГЛа	Trp	Val	Pro 280	Glu	Arg	Arg	Ser	Gln 285	Gln	Thr	His
Thr	Glu 290	Leu	Ser	Ser	Ile	Leu 295	Thr	Ile	His	Asn	Val 300	Ser	Gln	His	Asp
Leu 305	Gly	Ser	Tyr	Val	Cys 310	Lys	Ala	Asn	Asn	Gly 315	Ile	Gln	Arg	Phe	Arg 320
Glu	Ser	Thr	Glu	Val 325	Ile	Val	His	Glu	Asp 330	Pro	Ile	Glu	Gly	Arg 335	Gly
Gly	Gly	Gly	Gly 340	Asp	Pro	Lys	Ser	Cys 345	Asp	Lys	Pro	His	Thr 350	Cys	Pro
Leu	Cys	Pro 355	Ala	Pro	Glu	Leu	Leu 360	Gly	Gly	Pro	Ser	Val 365	Phe	Leu	Phe
Pro	Pro 370	Lys	Pro	Lys	Asp	Thr 375	Leu	Met	Ile	Ser	Arg 380	Thr	Pro	Glu	Val
Thr 385	Cys	Val	Val	Val	390	Val	Ser	His	Glu	Asp 395	Pro	Glu	Val	Lys	Phe 400
Asn	Trp	Tyr	Val	Asp 405	Gly	Val	Glu	Val	His 410	Asn	Ala	Lys	Thr	Lys 415	Pro
Arg	Glu	Glu	Gln 420	Tyr	Asn	Ser	Thr	Tyr 425	Arg	Val	Val	Ser	Val 430	Leu	Thr
Val	Leu	His 435	Gln	Asp	Trp	Leu	Asn 440	Gly	ГÀа	Glu	Tyr	Lys 445	СЛа	ГÀз	Val
Ser	Asn 450	Lys	Ala	Leu	Pro	Ala 455	Pro	Ile	Glu	Lys	Thr 460	Ile	Ser	Lys	Ala
Lys 465	Gly	Gln	Pro	Arg	Glu 470	Pro	Gln	Val	Tyr	Thr 475	Leu	Pro	Pro	Ser	Arg 480
Asp	Glu	Leu	Thr	Lys 485	Asn	Gln	Val	Ser	Leu 490	Thr	CAa	Leu	Val	Lys 495	Gly
Phe	Tyr	Pro	Ser 500	Asp	Ile	Ala	Val	Glu 505	Trp	Glu	Ser	Asn	Gly 510	Gln	Pro
Glu	Asn	Asn 515	Tyr	ГÀа	Ala	Thr	Pro 520	Pro	Val	Leu	Asp	Ser 525	Asp	Gly	Ser
Phe	Phe 530	Leu	Tyr	Ser	ГЛа	Leu 535	Thr	Val	Asp	Lys	Ser 540	Arg	Trp	Gln	Gln
Gly 545	Asn	Val	Phe	Ser	Сув 550	Ser	Val	Met	His	Glu 555	Ala	Leu	His	Asn	His 560

Tyr Thr Gln Lys	Ser Leu Ser Leu 565	ı Ser Pro Gly Lys 570	
<220> FEATURE:	Artificial sequ ORMATION: Synthe misc_feature ORMATION: R-3 H	uence etic polynucleotide	
<400> SEQUENCE:	45		
		c ctg cga ctg tgg c s Leu Arg Leu Trp L 10	
		tac tee atg ace e Tyr Ser Met Thr F 25	
		e atc gac acc ggt g I lle Asp Thr Gly A 4	
		c ctc gag tgg gct t Leu Glu Trp Ala T 60	
		c aag gac agc gag g b Lys Asp Ser Glu A 75	
		e gee agg eee tae t Ala Arg Pro Tyr C 90	
		gac aca ggc agc t Asp Thr Gly Ser T 105	
		c gag ggc acc acg g e Glu Gly Thr Thr A) 1	
		c gaa ggt cgt ggt g e Glu Gly Arg Gly G 140	
		c cac aca tgc cca c His Thr Cys Pro L 155	
		a gtc ttc ctc ttc c r Val Phe Leu Phe F 170	
		g acc cct gag gtc a g Thr Pro Glu Val T 185	
		gag gtc aag ttc a Glu Val Lys Phe A O	
		c aag aca aag ccg c a Lys Thr Lys Pro A 220	
		c agc gtc ctc acc g l Ser Val Leu Thr V 235	

Asp	tgg Trp															768
	cca Pro															816
	gaa Glu															864
	aac Asn 290															912
	atc Ile															960
	gcc Ala															1008
	aag Lys															1056
	tgc Cys			_			_	_					_	_	_	1104
_	ctc Leu 370		_		_			tga								1131
<21	0> SE	ENGTI	I: 3													
<213 <22	2 > 1 : 3 > OF 0 > FF 3 > OT	RGAN: EATUI	RE:						oolyg	pept:	ide					
<213 <220 <223	3 > OF 0 > FF	RGAN: EATUI THER	ISM: RE: INFO	ORMA!					oolyg	pept:	ide					
<213 <220 <223 <400	3 > OF 0 > FF 3 > OT	RGAN: EATUI THER EQUEI	ISM: RE: INFO	ORMA'	rion	: Syı	nthet	ic p		_		Leu	Cys	Leu 15	Gly	
<21: <22: <22: <40: Met 1	3 > OF D > FF 3 > OT D > SF	RGANI EATUR THER EQUE EQUE Arg	ISM: RE: INFO NCE: Gly	ORMAS 46 Ala 5	TION Ala	: Syı Leu	nthet Cys	ic p	Arg 10	Leu	Trp		-	15	_	
<21: <22: <22: <400 Met 1 Leu	3 > OF D > FF 3 > OT D > SF Gln	RGANI EATUE THER EQUEI Arg	ISM: RE: INFO NCE: Gly Gly 20	ORMA' 46 Ala 5 Leu	FION Ala Val	: Syr Leu Ser	Cys Gly	Leu Tyr 25	Arg 10 Ser	Leu Met	Trp Thr	Pro	Pro 30	15 Thr	Leu	
<21: <22: <22: <40: Met 1 Leu	3> OF D> FF 3> OT D> SF Gln Leu	RGAN: EATUR THER EQUER Arg Asp Thr 35	ISM: RE: INFO NCE: Gly Gly 20 Glu	Afa Ala 5 Leu Glu	TION Ala Val Ser	: Syn Leu Ser His	Cys Gly Val 40	Leu Tyr 25	Arg 10 Ser Asp	Leu Met Thr	Trp Thr Gly	Pro Asp 45	Pro 30 Ser	15 Thr Leu	Leu	
<21: <22: <22: <400 Met 1 Leu Asn	3 > OF D > FF 3 > OT D > SF Gln Leu Ile	RGAN: EATUR THER EQUEN Arg Asp Thr 35	ISM: RE: INFO NCE: Gly Gly 20 Glu Arg	Ala 5 Leu Glu	FION Ala Val Ser	E Syr Leu Ser His His 55	Cys Gly Val 40 Pro	Leu Tyr 25 Ile Leu	Arg 10 Ser Asp Glu	Leu Met Thr	Trp Thr Gly Ala	Pro Asp 45 Trp	Pro 30 Ser	15 Thr Leu Gly	Leu Ser Ala	
<21: <22: <22: <400 Met 1 Leu Asn Ile Gln 65	Ser	RGAN: EATUI THER EQUEI Arg Asp Thr 35 Cys	ISM: RE: INFC Gly Gly 20 Glu Arg	Ala Glu Gly Ala	Ala Val Ser Gln Thr 70	E. Syn Leu Ser His 55 Gly	Cys Gly Val 40 Pro	Leu Tyr 25 Ile Leu	Arg 10 Ser Asp Glu	Leu Met Thr Trp Ser 75	Trp Thr Gly Ala 60	Pro Asp 45 Trp Asp	Pro 30 Ser Pro	Thr Leu Gly	Leu Ser Ala Val	
<21: <22: <22: <400 Met 1 Leu Asn Ile Gln 65	33> OF FF	RGAN: FATUR FHER Arg Asp Thr 35 Cys Ala	ISM: RE: INFC Gly Gly 20 Glu Arg Pro	DRMA: 46 Ala 5 Leu Glu Gly Ala Glu 85	Val Ser Gln Thr 70 Gly	Leu Ser His 55 Gly	Cys Gly Val 40 Pro Asp	Leu Tyr 25 Ile Leu Lys	Arg 10 Ser Asp Glu Asp	Leu Met Thr Trp Ser 75	Trp Thr Gly Ala 60 Glu Tyr	Pro Asp 45 Trp Asp	Pro 30 Ser Pro Thr	Thr Leu Gly Gly Val 95	Leu Ser Ala Val 80 Leu	
<21: <220<<222 400<br Met 1 Leu Asn Ile Gln 65 Val	33> OF FF	RGAN: EATUU THER EQUEN Arg Asp Thr 35 Cys Ala Asp	ISM: RE: INFC Gly Gly 20 Glu Arg Pro Cys Glu 100	Ala 5 Leu Glu Gly Ala Glu 85 Val	Val Ser Gln Thr 70 Gly	Leu Ser His 55 Gly Thr	Cys Gly Val 40 Pro Asp Asp	Leu Tyr 25 Ile Leu Lys Ala Asp 105	Arg 10 Ser Asp Glu Asp Arg 90	Leu Met Thr Trp Ser 75 Pro	Trp Thr Gly Ala 60 Glu Tyr	Pro Asp 45 Trp Asp Cys	Pro 30 Ser Pro Thr Lys Val	Thr Leu Gly Gly Val 95 Cys	Leu Ser Ala Val 80 Leu	
<21: <222 22</400 Met 1 Leu Asn Ile Gln 65 Val Leu Tyr</td <td>33> OF FF FF</td> <td>RGAN: EATUUITHER Arg Asp Asp Cys Ala Asp His</td> <td>ISM: RE: INFC RCE: Gly Gly 20 Glu Arg Pro Cys Glu 100 Ile</td> <td>ORMA: 46 Ala 5 Leu Glu Gly Ala Glu 85 Val</td> <td>TION Ala Val Ser Gln Thr 70 Gly His</td> <td>E. Synther Leu Ser His 55 Gly Thr Ala Arg</td> <td>Cys Gly Val 40 Pro Asp Asp Asn Ile</td> <td>Leu Tyr 25 Ile Leu Lys Ala Asp 105 Glu</td> <td>Arg 10 Ser Asp Glu Asp Thr Gly</td> <td>Leu Met Thr Trp Ser 75 Pro Gly</td> <td>Trp Thr Gly Ala 60 Glu Tyr Ser</td> <td>Pro Asp 45 Trp Asp Cys Tyr Ala 125</td> <td>Pro 30 Ser Pro Thr Lys Val 110</td> <td>Thr Leu Gly Gly Val 95 Cys Ser</td> <td>Leu Ser Ala Val 80 Leu Tyr</td> <td></td>	33> OF FF	RGAN: EATUUITHER Arg Asp Asp Cys Ala Asp His	ISM: RE: INFC RCE: Gly Gly 20 Glu Arg Pro Cys Glu 100 Ile	ORMA: 46 Ala 5 Leu Glu Gly Ala Glu 85 Val	TION Ala Val Ser Gln Thr 70 Gly His	E. Synther Leu Ser His 55 Gly Thr Ala Arg	Cys Gly Val 40 Pro Asp Asp Asn Ile	Leu Tyr 25 Ile Leu Lys Ala Asp 105 Glu	Arg 10 Ser Asp Glu Asp Thr Gly	Leu Met Thr Trp Ser 75 Pro Gly	Trp Thr Gly Ala 60 Glu Tyr Ser	Pro Asp 45 Trp Asp Cys Tyr Ala 125	Pro 30 Ser Pro Thr Lys Val 110	Thr Leu Gly Gly Val 95 Cys Ser	Leu Ser Ala Val 80 Leu Tyr	
<21: <22: <400 Met 1 Leu Asn Ile Gln 65 Val Leu Tyr	33> OF D)> FF 33> OT Gln Leu Ile Ser 50 Glu Arg Leu Lys	RGAN: EATUUFHER Arg Asp Thr 35 Cys Ala Asp His	ISM: RE: INFC Gly Gly 20 Glu Arg Pro Cys Glu 100 Ile	DRMA' 46 Ala 5 Leu Glu Gly Ala Glu 85 Val Lys Arg	Ala Val Ser Gln Thr 70 Gly His Ala	Leu Ser His 55 Gly Thr Ala Arg	Cys Gly Val 40 Pro Asp Asp Asn Ile 120 Ile	Leu Tyr 25 Ile Leu Lys Ala Asp 105 Glu Glu	Arg 10 Ser Asp Glu Asp Thr Gly Gly	Leu Met Thr Trp Ser 75 Pro Gly Thr	Trp Thr Gly Ala 60 Glu Tyr Ser Thr Gly 140	Pro Asp 45 Trp Asp Cys Tyr Ala 125 Gly	Pro 30 Ser Pro Thr Lys Val 110 Ala	Thr Leu Gly Gly Val 95 Cys Ser Gly	Leu Ser Ala Val 80 Leu Tyr Ser Gly	

		Thr	Leu 180	Met	Ile	Ser	Arg	Thr 185	Pro	Glu	Val	Thr	Cys 190	Val	Val	
Val	Asp	Val 195		His	Glu	Asp	Pro 200		Val	Lys	Phe	Asn 205	Trp	Tyr	Val	
Asp	Gly 210		Glu	Val	His	Asn 215	Ala	Lys	Thr	Lys	Pro 220	Arg	Glu	Glu	Gln	
Tyr 225	Asn	Ser	Thr	Tyr	Arg 230	Val	Val	Ser	Val	Leu 235	Thr	Val	Leu	His	Gln 240	
Asp	Trp	Leu	Asn	Gly 245	-	Glu	Tyr	Lys	Сув 250	Lys	Val	Ser	Asn	Lys 255	Ala	
Leu	Pro	Ala	Pro 260	Ile	Glu	Lys	Thr	Ile 265	Ser	Lys	Ala	ГЛа	Gly 270	Gln	Pro	
Arg	Glu	Pro 275	Gln	Val	Tyr	Thr	Leu 280	Pro	Pro	Ser	Arg	Asp 285	Glu	Leu	Thr	
ГÀв	Asn 290		Val	Ser	Leu	Thr 295		Leu	Val	Lys	Gly 300	Phe	Tyr	Pro	Ser	
Asp 305	Ile	Ala	Val	Glu	Trp 310	Glu	Ser	Asn	Gly	Gln 315	Pro	Glu	Asn	Asn	Tyr 320	
Lys	Ala	Thr	Pro	Pro 325	Val	Leu	Asp	Ser	Asp 330	Gly	Ser	Phe	Phe	Leu 335	Tyr	
Ser	Lys	Leu	Thr 340	Val	Asp	Lys	Ser	Arg 345	Trp	Gln	Gln	Gly	Asn 350	Val	Phe	
Ser	Cys	Ser 355	Val	Met	His	Glu	Ala 360	Leu	His	Asn	His	Tyr 365	Thr	Gln	Lys	
Ser	Leu 370	Ser	Leu	Ser	Pro	Gly 375	Lys									
	. CI	30 TT														
<210 <211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <223 <220	> LE > T) > OF > FE > OT > FE > OT > FE > NA	ENGTH (PE: RGANI EATUR CHER EATUR CHER EATUR	H: 14 DNA ISM: SE: INFO SE: CEY: INFO SE: CEY:	Art: DRMA: misc DRMA: CDS	rion: c_fea rion:	: Syr :ture : R-3	nthet		oolyr	nucle	eotio	de				
<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <223 <220 <221	> LE > TY > OF > FE > OT > NF > OT > FE > NF > LC	ENGTH (PE: RGANI EATUR CHER CHER EATUR EATUR AME / R	H: 14 DNA ISM: RE: INFO RE: IN	Art: DRMAT misc DRMAT CDS (1)	rion: c_fea rion:	: Syr :ture : R-3	nthet		oolyr	nucle	eotic	de				
<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <223 <220 <221 <222	> LE > TY > OF > FE > OT > NF > OT > LC > SE Cag	ENGTH (PE: (GAN) EATUR (HER EATUR (HER EATUR (AME / IR (CAT) (CAT) (CG)	H: 14 DNA ISM: RE: INFO RE: IN	Art: DRMAT misc DRMAT CDS (1) 47	rion: c_fea rion: (14	: Syriture : R-3	tgc	ctg	cga	ctg	tgg	ctc	_	_		48
<211 <212 <213 <220 <223 <220 <221 <223 <220 <221 <222 <400 atg Met	> LE > TY > OF > FF > OT > FF > OT > FF > NA > OT > FF > NA > LC > SF	ENGTH (PE: (PE: (PE: (PE: (PE: (PE: (PE: (PE:	H: 14 DNA ISM: RE: INFC RE: (EY: INFC RE: GON: GON:	Art: DRMA: misc DRMA: CDS (1) 47 gec Ala 5 ctg	rion: c_fea rion: (14 gcg Ala	E Syr ture R-3 143) ctg Leu	tgc Cys	ctg Leu tac	cga Arg 10	ctg Leu atg	tgg Trp	ctc Leu ccc	ccd	Leu 15 acc	Gly ttg	48
<211 <212 <213 <220 <223 <220 <221 <222 <400 atg Met 1 ctc	> LE > TY > OF FF > OI > FF > NA > OF > NE > LC > SF cag Gln ctg Leu atc	ENGTH (PE: CGAN) EATUH HER EATUH ME/I PHER CATU CGG Arg Gac Asp	H: 14 DNA ISM: RE: INFC RE: INFC RE: INFC RE: INFC RE: INFC RE: GON: GGly GGly 20 gag	Art: DRMA: miscorrection misco	rion: c_fea	ture: R-3 443) ctg Leu agt Ser	tgc Cys ggc Gly	ctg Leu tac Tyr 25 aga	cga Arg 10 tcc Ser	ctg Leu atg Met ttt	tgg Trp acc Thr	ctc Leu ccc Pro	Cys ccg Pro 30 cca	Leu 15 acc Thr	Gly ttg Leu atc	
<211 <212 <213 <220 <221 <222 <221 <222 <400 atg Met 1 ctc Leu aac Asn	> LE STY	ENGTH (PE: RGAN1) RGAN1) RHER EATUH RHER CATUH RHER CATUH RHER CATUH RHE/I RHER ATH RHE	H: 14 DNA ISM: ISM: ISM: ISM: ISM: ISM: ISM: ISM:	Art: DRMA: miss miss CDS (1) 47 gcc Ala 5 ctg Leu gag Glu acg	gcg Ala gtg Val	etguses systems system	tgc Cys ggc Gly gtc Val 40 gtc	ctg Leu tac Tyr 25 aga Arg	cga Arg 10 tcc Ser gac Asp	ctg Leu atg Met ttt Phe	tgg Trp acc Thr gag Glu gac	ctc Leu ccc Pro cag Gln 45 gcc	Cys ccg Pro 30 cca Pro	Leu 15 acc Thr ttc Phe	Gly ttg Leu atc Ile	96
<211 <212 <213 <220 <221 <222 <221 <222 <400 atg Met 1 ctc Leu aac Asn	> LE STY	ENGTH (PE: (PE: (PE: (PE: (PE: (PE: (PE: (PE:	H: 14 DNA GN: CSM: CSM: CSM: CSM: CSM: CSM: CSM: CSM	Art: Art: misc CDS (1) 47 gcc Ala 5 ctg Leu gag Glu acg Thr	c_feasing(14 gcg Ala gtg Val tca Ser ctc Leu atc	ture R-3 ctg Leu agt Ser cac His	tgc Cys ggc Gly gtc Val 40 gtc Val	ctg Leu tac Tyr 25 aga Arg	cga Arg 10 tcc Ser gac Asp agg Arg	ctg Leu atg Met ttt Phe aag Lys	tgg Trp acc Thr gag Glu gac Asp 60 acg	ctc Leu ccc Pro cag Gln 45 gcc Ala	Cys ccg Pro 30 cca Pro atg Met	Leu 15 acc Thr ttc Phe tgg Trp	fly ttg Leu atc Ile gtg Val	96 144

		atg Met				_		_	_		-	_	_		_	336
		gag Glu 115														384
		cac His														432
	_	tcg Ser	_		_	_	-			_	_	-	_		-	480
		tgg Trp	_						_			_		_		528
		aag Lys														576
_	_	acc Thr 195			_			_		_					-	624
_	_	cac His	_	_		_			_	_	_					672
_	-	ttt Phe			_			_					-			720
		cgt Arg														768
		tgc Cys		_	_		_		_		_			_		816
_		ctc Leu 275						_	-			_				864
		gag Glu														912
	Val	aag Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu					960
_		aag Lys	_				_			_	_		_		_	1008
_	_	ctc Leu		_	_		_	_		_			_			1056
		aag Lys 355														1104
		aaa Lys	_			_		_	_		_				_	1152
		tcc Ser														1200
		aaa Lys														1248

												con	tin	ued		
				405					410					415		
					aac Asn											1296
	_				ttc Phe			_	_				_	_	_	1344
		cag	_		aac Asn	_			_			_			_	1392
					acg Thr 470											1440
tga																1443
<211 <212 <213 <220 <223	L> LI 2> T: 3> OI 0> FI 3> O:	EATUF CHER	H: 48 PRT ISM: RE: INFO	BO Art: DRMA'	ific: TION		_		polyp	pept:	ide					
		EQUEN Arg			Ala	Leu	Cys	Leu	Arg 10	Leu	Trp	Leu	Сув	Leu 15	Gly	
	Leu	Asp	Gly 20		Val	Ser	Gly	Tyr 25		Met	Thr	Pro	Pro 30		Leu	
Asn	Ile	Thr		Glu	Ser	His	Val 40		Asp	Phe	Glu	Gln 45		Phe	Ile	
Asn	Lуз 50	Pro	Asp	Thr	Leu	Leu 55	Val	Asn	Arg	Lys	Asp	Ala	Met	Trp	Val	
Pro 65	Сув	Leu	Val	Ser	Ile 70	Pro	Gly	Leu	Asn	Val 75	Thr	Leu	Arg	Ser	Gln 80	
Ser	Ser	Val	Leu	Trp 85	Pro	Asp	Gly	Gln	Glu 90	Val	Val	Trp	Asp	Asp 95	Arg	
Arg	Gly	Met	Leu 100	Val	Ser	Thr	Pro	Leu 105	Leu	His	Asp	Ala	Leu 110	Tyr	Leu	
Gln	Сув	Glu 115	Thr	Thr	Trp	Gly	Asp 120	Gln	Asp	Phe	Leu	Ser 125	Asn	Pro	Phe	
Leu	Val 130	His	Ile	Thr	Gly	Asn 135	Glu	Leu	Tyr	Asp	Ile 140	Gln	Leu	Leu	Pro	
Arg 145	Lys	Ser	Leu	Glu	Leu 150	Leu	Val	Gly	Glu	Lув 155	Leu	Val	Leu	Asn	Cys 160	
Thr	Val	Trp	Ala	Glu 165	Phe	Asn	Ser	Gly	Val 170	Thr	Phe	Asp	Trp	Asp 175	Tyr	
Pro	Gly	Lys	Gln 180	Ala	Glu	Arg	Gly	Lys 185	Trp	Val	Pro	Glu	Arg 190	Arg	Ser	
Gln	Gln	Thr 195	His	Thr	Glu	Leu	Ser 200	Ser	Ile	Leu	Thr	Ile 205	His	Asn	Val	
Ser	Gln 210	His	Asp	Leu	Gly	Ser 215	Tyr	Val	Сув	Lys	Ala 220	Asn	Asn	Gly	Ile	
Gln 225	Arg	Phe	Arg	Glu	Ser 230	Thr	Glu	Val	Ile	Val 235	His	Glu	Asp	Pro	Ile 240	
Glu	Gly	Arg	Gly	Gly 245	Gly	Gly	Gly	Asp	Pro 250	Lys	Ser	Cys	Asp	Lys 255	Pro	
His	Thr	Cys	Pro	Leu	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	

2	60				265					270			
Val Phe Leu F 275	he Pro	Pro	ГЛа	Pro 280	Lys	Asp	Thr	Leu	Met 285	Ile	Ser	Arg	
Thr Pro Glu V 290	al Thr	CAa	Val 295	Val	Val	Asp	Val	Ser 300	His	Glu	Asp	Pro	
Glu Val Lys E 305	he Asn	Trp 310	Tyr	Val	Asp	Gly	Val 315	Glu	Val	His	Asn	Ala 320	
Lys Thr Lys E	ro Arg 325	Glu	Glu	Gln	Tyr	Asn 330	Ser	Thr	Tyr	Arg	Val 335	Val	
Ser Val Leu 1	hr Val 40	Leu	His	Gln	Asp 345	Trp	Leu	Asn	Gly	150 150	Glu	Tyr	
Lys Cys Lys V 355	al Ser	Asn	Lys	Ala 360	Leu	Pro	Ala	Pro	Ile 365	Glu	Lys	Thr	
Ile Ser Lys A	la Lys	Gly	Gln 375	Pro	Arg	Glu	Pro	Gln 380	Val	Tyr	Thr	Leu	
Pro Pro Ser A 385	rg Asp	Glu 390	Leu	Thr	Lys	Asn	Gln 395	Val	Ser	Leu	Thr	Cys 400	
Leu Val Lys G	ly Phe 405	Tyr	Pro	Ser	Asp	Ile 410	Ala	Val	Glu	Trp	Glu 415	Ser	
Asn Gly Gln F	ro Glu 20	Asn	Asn	Tyr	Lys 425	Ala	Thr	Pro	Pro	Val 430	Leu	Asp	
Ser Asp Gly S 435	er Phe	Phe	Leu	Tyr 440	Ser	Lys	Leu	Thr	Val 445	Asp	Lys	Ser	
Arg Trp Gln 0 450	ln Gly	Asn	Val 455	Phe	Ser	Сув	Ser	Val 460	Met	His	Glu	Ala	
Leu His Asn F 465	is Tyr	Thr 470	Gln	Lys	Ser	Leu	Ser 475	Leu	Ser	Pro	Gly	Lys 480	
<pre><210> SEQ ID <211> LENGTH: <212> TYPE: I <213> ORGANIS <220> FEATURE <223> OTHER I <220> FEATURE <221> NAME/KE <221> OTHER I <220> FEATURE <222> FEATURE <221> NAME/KE <222> LOCATION</pre>	1197 NA M: Art : NFORMA : Y: mis NFORMA : Y: CDS N: (1)	TION: c_fea	: Syr ature : R-3	- nthet		polyr	nucle	eotic	de				
<400> SEQUENC		~~~	a+~	+	a+ ~	96.5	atr	+~~	at-	+	a+ ~	~~~	4.0
atg cag cgg c Met Gln Arg c													48
ctc ctg gac g Leu Leu Asp C													96
aac atc acg o Asn Ile Thr o 35													144
aac aag cct o Asn Lys Pro <i>F</i> 50			Leu										192
50			55					00					
ccc tgt ctg c Pro Cys Leu V			ccc					acg					240

													con	tin	ued		
_					85					90					95		
			_				_		_	ctg Leu		_	_	_		_	336
	_	_						-	_	gac Asp							384
	_									tat Tyr	_		_	_	_		432
A										gag Glu							480
										tct Ser 170							528
	_		_	_		_		-		ctg Leu			_		_		576
							_	_		ctc Leu	_						624
										agc Ser							672
L										gag Glu							720
	_	_				_			_	acg Thr 250		_		-	_	_	768
										aat Asn							816
										ccc Pro							864
										cag Gln							912
S										gtc Val							960
										gtg Val 330							1008
										cct Pro							1056
										acc Thr							1104
										gtg Val							1152
A										ctg Leu					tga		1197

<211 <212 <213 <220	0 > SE L > LE 2 > TY 3 > OF 0 > FE 3 > OT	ENGTH (PE : RGAN) EATUR	H: 39 PRT [SM: RE:	98 Art:			_		oolyp	pept:	ide				
< 400)> SE	EQUE	ICE:	50											
Met 1	Gln	Arg	Gly	Ala 5	Ala	Leu	Cys	Leu	Arg 10	Leu	Trp	Leu	Cys	Leu 15	Gly
Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu
Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Arg	Asp	Phe	Glu	Gln 45	Pro	Phe	Ile
Asn	Lys 50	Pro	Asp	Thr	Leu	Leu 55	Val	Asn	Arg	Lys	Asp 60	Ala	Met	Trp	Val
Pro 65	Сув	Leu	Val	Ser	Ile 70	Pro	Gly	Leu	Asn	Val 75	Thr	Leu	Arg	Ser	Gln 80
Ser	Ser	Val	Leu	Trp 85	Pro	Asp	Gly	Gln	Glu 90	Val	Val	Trp	Asp	Asp 95	Arg
Arg	Gly	Met	Leu 100	Val	Ser	Thr	Pro	Leu 105	Leu	His	Asp	Ala	Leu 110	Tyr	Leu
Gln	Сув	Glu 115	Thr	Thr	Trp	Gly	Asp 120	Gln	Asp	Phe	Leu	Ser 125	Asn	Pro	Phe
Leu	Val 130	His	Ile	Thr	Gly	Asn 135	Glu	Leu	Tyr	Asp	Ile 140	Gln	Leu	Leu	Pro
Arg 145	Lys	Ser	Leu	Glu	Leu 150	Leu	Val	Gly	Glu	Lys 155	Asp	Pro	Ile	Glu	Gly 160
Arg	Gly	Gly	Gly	Gly 165	Gly	Asp	Pro	Lys	Ser 170	Сув	Asp	Lys	Pro	His 175	Thr
СЛа	Pro	Leu	180 Cys	Pro	Ala	Pro	Glu	Leu 185	Leu	Gly	Gly	Pro	Ser 190	Val	Phe
Leu	Phe	Pro 195	Pro	ГÀа	Pro	ГÀа	Asp 200	Thr	Leu	Met	Ile	Ser 205	Arg	Thr	Pro
Glu	Val 210	Thr	Cys	Val	Val	Val 215	Asp	Val	Ser	His	Glu 220	Asp	Pro	Glu	Val
Lys 225	Phe	Asn	Trp	Tyr	Val 230	Asp	Gly	Val	Glu	Val 235	His	Asn	Ala	Lys	Thr 240
Lys	Pro	_			Gln	-				-	_			Ser 255	
Leu	Thr	Val	Leu 260	His	Gln	Asp	Trp	Leu 265	Asn	Gly	Lys	Glu	Tyr 270	Lys	CÀa
Lys	Val	Ser 275	Asn	Lys	Ala	Leu	Pro 280	Ala	Pro	Ile	Glu	Lys 285	Thr	Ile	Ser
ГÀа	Ala 290	Lys	Gly	Gln	Pro	Arg 295	Glu	Pro	Gln	Val	Tyr 300	Thr	Leu	Pro	Pro
Ser 305	Arg	Asp	Glu	Leu	Thr 310	Lys	Asn	Gln	Val	Ser 315	Leu	Thr	Сув	Leu	Val 320
Lys	Gly	Phe	Tyr	Pro 325	Ser	Asp	Ile	Ala	Val 330	Glu	Trp	Glu	Ser	Asn 335	Gly
Gln	Pro	Glu	Asn 340	Asn	Tyr	Lys	Ala	Thr 345	Pro	Pro	Val	Leu	Asp 350	Ser	Asp
Gly	Ser	Phe 355	Phe	Leu	Tyr	Ser	360 Lys	Leu	Thr	Val	Asp	Lys 365	Ser	Arg	Trp
Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His

								COII	CIII	aeu		
370			375				380					
Asn His 7	yr Thr	Gln Lys 390	Ser Leu	Ser	Leu	Ser 395	Pro	Gly	ГЛа			
<pre><210> SE(<211> LEN <212> TYI <213> ORC <220> FEZ <223> OTH <220> FEZ <221> NAN <223> OTH <221> NAN <222> LOC</pre>	GTH: 114 PE: DNA PANISM: A TURE: HER INFOI ATURE: ME/KEY: 1 HER INFOI ATURE: HER INFOI ATURE: ME/KEY: (4)	46 Artifici RMATION: misc_fea RMATION: CDS	: Synthe iture : R-3 K		oolyr	nucle	⊖oti∢	de				
<400> SEÇ	QUENCE: !	51										
atg cag o Met Gln A	Arg Gly A											48
ctc ctg c Leu Leu A												96
aac atc a Asn Ile 1												144
aac aag o Asn Lys I 50												192
ccc tgt o Pro Cys I 65												240
agc tcg o	al Leu '											288
cgg ggc a Arg Gly N												336
cag tgc g Gln Cys C												384
ctg gtg c Leu Val F 130												432
ggt ggt g Gly Gly 0 145												480
cca ctg t Pro Leu (ys Pro											528
ttc ccc c												576
gtc aca t Val Thr (624
ttc aac t Phe Asn 1 210								_	_		_	672
ccg cgg c												720

-continued

225	230					235					240	
acc gtc ctg cac cag Thr Val Leu His Gln 245	Asp											768
gtc tcc aac aaa gcc Val Ser Asn Lys Ala 260			-									816
gcc aaa ggg cag ccc Ala Lys Gly Gln Pro 275	_	_		_				_				864
cgg gat gag ctg acc Arg Asp Glu Leu Thr 290												912
ggc ttc tat ccc agc Gly Phe Tyr Pro Ser 305												960
ccg gag aac aac tac Pro Glu Asn Asn Tyr 325	Lys											1008
tcc ttc ttc ctc tac Ser Phe Phe Leu Tyr 340	_	_				_	_	_			_	1056
cag ggg aac gtc ttc												1104
Gln Gly Asn Val Phe 355												1146
Gln Gly Asn Val Phe	_			_		_	-		tga			1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys	Ser ifici	Leu 375	Ser	Leu	Ser	Pro	Gly 380	Lys	tga			1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE:	Ser ifici	Leu 375	Ser	Leu	Ser	Pro	Gly 380	Lys	tga			1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA	Ser ifici TION:	Leu 375 ial :	Ser seque	Leu ence	Ser polyn	Pro	Gly 380	Lys de	J	Leu 15	Gly	1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala	Ser ifici TION:	Leu 375 ial : : Syr	Ser seque nthet	Leu ence cic p	Ser polyn Arg 10	Pro nucle	Gly 380	Lys de Leu	Сув	15		1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1 5 Leu Leu Asp Gly Leu	ifici TION: Ala	Leu 375 iial : Syn Leu	Ser seque Cys	Leu Tyr 25	Ser Polyn Arg 10 Ser	Pro Pro Leu	Gly 380 Trp	Lys de Leu Pro	Cys Pro 30	15 Thr	Leu	1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1 5 Leu Leu Asp Gly Leu 20 Asn Ile Thr Glu Glu	ifici TION: Ala Val	Leu 375 ial: Syn Leu Ser	Ser sequenthet Cys Gly Val 40	Leu Tyr 25 Arg	Arg 10 Ser	Pro Leu Met	Gly 380 Trp Thr	Lys de Leu Pro Gln 45	Cys Pro 30	15 Thr Phe	Leu	1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1	Ser iffici TION: Ala Val Ser Leu	Leu 375 Leu Ser His Leu 55	Ser seque Cys Gly Val 40 Val	Leu Tyr 25 Arg	Arg 10 Ser Asp	Pro nucla Leu Met Phe Lys	Gly 380 Trp Thr Glu Asp 60	Lys de Leu Pro Gln 45 Ala	Cys Pro 30 Pro Met	15 Thr Phe Trp	Leu Ile Val	1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1 5 Leu Leu Asp Gly Leu 20 Asn Ile Thr Glu Glu 35 Asn Lys Pro Asp Thr 50 Pro Cys Leu Val Ser	Ser iffici TION: Ala Val Ser Leu Ile 70	Leu 375 Leu Ser His Leu 55	Ser seque Cys Gly Val 40 Val Gly	Leu Tyr 25 Arg Asn Leu	Arg 10 Ser Asp Arg	Pro Pro Pro Val 75	Gly 380 Trp Thr Glu Asp 60	Leu Pro Gln 45 Ala	Cys Pro 30 Pro Met	Thr Phe Trp Ser	Leu Ile Val Gln 80	1146
Gln Gly Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1 5 Leu Leu Asp Gly Leu 20 Asn Ile Thr Glu Glu 35 Asn Lys Pro Asp Thr 50 Pro Cys Leu Val Ser 65 Ser Ser Val Leu Trp	iffici TION: Ala Val Ser Leu Ile 70 Pro	Leu 375 Leu Ser His 55 Pro Asp	Ser seque Cys Gly Val 40 Val Gly Gly	Leu Tyr 25 Arg Asn Leu Gln	Arg 10 Ser Asp Arg Glu 90	Pro Leu Met Phe Lys Val 75	Gly 380 Trp Thr Glu Asp 60 Thr	Lys de Leu Pro Gln 45 Ala Leu Trp	Cys Pro 30 Pro Met Arg	Thr Phe Trp Ser Asp	Leu Ile Val Gln 80	1146
GIN GIV Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1 5 Leu Leu Asp Gly Leu 20 Asn Ile Thr Glu Glu 35 Asn Lys Pro Asp Thr 50 Pro Cys Leu Val Ser 65 Ser Ser Val Leu Trp 85 Arg Gly Met Leu Val	Ser iffici TION: Ala Val Ser Leu Ile 70 Pro	Leu 375 Leu Ser His Leu 55 Pro Asp	Ser sequenthet Cys Gly Val 40 Val Gly Gly Pro	Leu Tyr 25 Arg Asn Leu Gln Leu Lou Lou	Arg 10 Ser Asp Arg Asn Glu 90 Leu	Pro Pro Leu Met Phe Lys Val 75 Val His	Gly 380 Trp Thr Glu Asp Only Asp	Leu Pro Gln 45 Ala Leu Trp Ala	Cys Pro 30 Pro Met Arg Asp Leu 110	Thr Phe Trp Ser Asp 95 Tyr	Leu Ile Val Gln 80 Arg	1146
GIN GIV Asn Val Phe 355 cac tac acg cag aag His Tyr Thr Gln Lys 370 <210> SEQ ID NO 52 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Art <220> FEATURE: <223> OTHER INFORMA <400> SEQUENCE: 52 Met Gln Arg Gly Ala 1 5 Leu Leu Asp Gly Leu 20 Asn Ile Thr Glu Glu 35 Asn Lys Pro Asp Thr 50 Pro Cys Leu Val Ser 65 Ser Ser Val Leu Trp 85 Arg Gly Met Leu Val 100 Gln Cys Glu Thr Thr	ser iffici TION: Ala Val Ser Leu Ile 70 Pro Ser Trp	Leu 375 Leu Ser His Deu Asp Thr Gly	Ser seque Cys Gly Val 40 Val Gly Pro	Leu Tyr 25 Arg Asn Leu Gln Leu 105 Gln	Arg 10 Ser Asp Asn Glu 90 Leu	Pro Pro Pro Leu Met Phe Lys Val 75 Val His	Gly 380 Trp Thr Glu Asp 60 Thr Val Asp	Leu Pro Gln 45 Ala Leu Trp Ala Ser 125	Cys Pro 30 Pro Met Arg Asp Leu 110 Asn	Thr Phe Trp Ser Asp 95 Tyr Pro	Leu Ile Val Gln 80 Arg Leu	1146

Pro Leu Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu

				165					170					175		
Phe I	Pro	Pro	Lys 180	Pro	Lys	Asp	Thr	Leu 185	Met	Ile	Ser	Arg	Thr 190	Pro	Glu	
Val 1		Cys 195	Val	Val	Val	Asp	Val 200	Ser	His	Glu	Asp	Pro 205	Glu	Val	Lys	
Phe A	Asn 210	Trp	Tyr	Val	Asp	Gly 215	Val	Glu	Val	His	Asn 220	Ala	Lys	Thr	Lys	
Pro <i>P</i> 225	Arg	Glu	Glu	Gln	Tyr 230	Asn	Ser	Thr	Tyr	Arg 235	Val	Val	Ser	Val	Leu 240	
Thr \	/al	Leu	His	Gln 245	Asp	Trp	Leu	Asn	Gly 250	Lys	Glu	Tyr	Lys	Cys 255	Lys	
Val S	Ser	Asn	Lys 260	Ala	Leu	Pro	Ala	Pro 265	Ile	Glu	Lys	Thr	Ile 270	Ser	ГÀа	
Ala I	_	Gly 275	Gln	Pro	Arg	Glu	Pro 280	Gln	Val	Tyr	Thr	Leu 285	Pro	Pro	Ser	
Arg A	Asp	Glu	Leu	Thr	ГÀа	Asn 295	Gln	Val	Ser	Leu	Thr 300	Сув	Leu	Val	Lys	
Gly I	Phe	Tyr	Pro	Ser	Asp 310	Ile	Ala	Val	Glu	Trp 315	Glu	Ser	Asn	Gly	Gln 320	
Pro (lu	Asn	Asn	Tyr 325	ГÀа	Ala	Thr	Pro	Pro 330	Val	Leu	Asp	Ser	335	Gly	
Ser I	Phe	Phe	Leu 340	Tyr	Ser	Lys	Leu	Thr 345	Val	Asp	Lys	Ser	Arg 350	Trp	Gln	
Gln (_	Asn 355	Val	Phe	Ser	Cys	Ser 360	Val	Met	His	Glu	Ala 365	Leu	His	Asn	
His T	Tyr 370	Thr	Gln	Lys	Ser	Leu 375	Ser	Leu	Ser	Pro	Gly 380	rys				
<pre><210; <211; <212; <213; <220; <221; <222; <221; <222; <400; <400;</pre>	> LE > TY > OR > FE > OI > FE > NA > OT > LC	ENGTH PE: RGANI PATUR PHER PATUR PHER PATUR AME/R	H: 1: DNA SM: SE: INFO SE: INFO SE: CEY: CEY: CEY: CEY:	Art: DRMA' miso DRMA' CDS (1)	rion c_fea rion	: Syr iture : R-3	- nthet		polyi	nucle	eotio	de				
atg o	cag	cgg	ggc	gcc												48
1			•	5			•		10		-		•	15	-	0.5
ctc (Leu I	_	_		_		_				_			_		_	96
aac a Asn l	[le															144
aac a Asn I																192
ccc t Pro (65																240
agc t Ser S																288

										COII	CIII	aca		
			85					90				95		
								ctg Leu						336
								gac Asp						384
								cgt Arg						432
								tgc Cys						480
								ctc Leu 170						528
								gag Glu						576
_		_	_	_			_	aag Lys					_	624
					_	_		aag Lys	_	 		_		672
								ctc Leu						720
								aag Lys 250						768
								aaa Lys						816
								tcc Ser						864
								aaa Lys						912
								cag Gln						960
_	_			_	_		_	ggc Gly 330					_	1008
								cag Gln						1056
								aac Asn						1104
		ctg Leu	_			tga								1128

<210> SEQ ID NO 54 <211> LENGTH: 375 <212> TYPE: PRT <213> ORGANISM: Artificial sequence

<220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide														
<400>	SEQUE	NCE:	54											
Met G	ln Arg	Gly	Ala 5	Ala	Leu	Cha	Leu	Arg 10	Leu	Trp	Leu	Cha	Leu 15	Gly
Leu Le	eu Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu
Asn I	le Thr 35	Glu	Glu	Ser	His	Val 40	Arg	Asp	Phe	Glu	Gln 45	Pro	Phe	Ile
Asn Ly	ys Pro O	Asp	Thr	Leu	Leu 55	Val	Asn	Arg	Lys	Asp	Ala	Met	Trp	Val
Pro Cy 65	ys Leu	Val	Ser	Ile 70	Pro	Gly	Leu	Asn	Val 75	Thr	Leu	Arg	Ser	Gln 80
Ser Se	er Val	Leu	Trp 85	Pro	Asp	Gly	Gln	Glu 90	Val	Val	Trp	Asp	Asp 95	Arg
Arg G	ly Met	Leu 100	Val	Ser	Thr	Pro	Leu 105	Leu	His	Asp	Ala	Leu 110	Tyr	Leu
Gln C	ys Glu 115	Thr	Thr	Trp	Gly	Asp 120	Gln	Asp	Phe	Leu	Ser 125	Asn	Pro	Phe
	al His 30	Ala	Asp	Pro	Ile 135	Glu	Gly	Arg	Gly	Gly 140	Gly	Gly	Gly	Asp
Pro Ly 145	ys Ser	Cys	Asp	Lys 150	Pro	His	Thr	Cys	Pro 155	Leu	Cys	Pro	Ala	Pro 160
Glu Le	eu Leu	Gly	Gly 165	Pro	Ser	Val	Phe	Leu 170	Phe	Pro	Pro	Lys	Pro 175	Lys
Asp Tl	nr Leu	Met 180	Ile	Ser	Arg	Thr	Pro 185	Glu	Val	Thr	CAa	Val 190	Val	Val
Asp Va	al Ser 195	His	Glu	Asp	Pro	Glu 200	Val	Lys	Phe	Asn	Trp 205	Tyr	Val	Asp
_	al Glu 10	Val	His	Asn	Ala 215	ГÀа	Thr	ГЛа	Pro	Arg 220	Glu	Glu	Gln	Tyr
Asn Se 225	∍r Thr	Tyr	Arg	Val 230	Val	Ser	Val	Leu	Thr 235	Val	Leu	His	Gln	Asp 240
Trp Le	eu Asn	Gly	Lys 245	Glu	Tyr	ГÀв	Cya	Lув 250	Val	Ser	Asn	Lys	Ala 255	Leu
Pro A	la Pro	Ile 260	Glu	ГÀа	Thr	Ile	Ser 265	Lys	Ala	ГЛа	Gly	Gln 270	Pro	Arg
Glu P	ro Gln 275	Val	Tyr	Thr	Leu	Pro 280	Pro	Ser	Arg	Asp	Glu 285	Leu	Thr	Lys
	ln Val 90	Ser	Leu	Thr	Сув 295	Leu	Val	Lys	Gly	Phe 300	Tyr	Pro	Ser	Asp
Ile A	la Val	Glu	Trp	Glu 310	Ser	Asn	Gly	Gln	Pro 315	Glu	Asn	Asn	Tyr	Lys 320
Ala Tì	nr Pro	Pro	Val 325	Leu	Asp	Ser	Asp	Gly 330	Ser	Phe	Phe	Leu	Tyr 335	Ser
Lys L	eu Thr	Val 340	Asp	Lys	Ser	Arg	Trp 345	Gln	Gln	Gly	Asn	Val 350	Phe	Ser
Cys Se	er Val 355	Met	His	Glu	Ala	Leu 360	His	Asn	His	Tyr	Thr 365	Gln	Lys	Ser
	er Leu 70	Ser	Pro	Gly	Lys 375									

<212><213><220><223><220><221><221><221><223><220><221><223><220><221><220><221><220><221><221><220><221><221	LENGTI TYPE: ORGAN: FEATUI OTHER FEATUI OTHER FEATUI NAME/I LOCAT:	DNA ISM: RE: INFO RE: INFO RE: KEY: INFO RE: KEY:	Art: DRMAT misc DRMAT CDS (1)	rion c_fea rion	: Syr ature : R-3	- nthet		polyr	nucle	eotic	de					
_	ag cgg ln Arg		_		_	_	_	_	_			_	_		48	
	tg gac eu Asp														96	
	tc acg le Thr 35														144	
	ag cct ys Pro 0														192	
	gt ctg ys Leu														240	
	cg gtg er Val														288	
	gc atg ly Met														336	
	gc gag ys Glu 115														384	
Ala A	at ccc sp Pro 30														432	
	ac aaa sp Lys														480	
	ga ccg ly Pro														528	
	tc tcc le Ser														576	
	aa gac lu Asp 195														624	
Val H	at aat is Asn 10														672	
	gt gtg rg Val														720	
	ag gag ys Glu														768	
atc ga	ag aaa	acc	atc	tcc	aaa	gcc	aaa	ggg	cag	ccc	cga	gaa	cca	cag	816	

	_												con				
Ile	; G	3lu	Lys	Thr 260	Ile	Ser	Lys	Ala	Lys 265	Gly	Gln	Pro	Arg	Glu 270	Pro	Gln	
	-			_		cca Pro			_		_		_		_	_	864
	· L					gtc Val											912
	ı T					ggg Gly 310											960
						gac Asp											1008
						tgg Trp											1056
						cac His											1104
	r P	_	ggt Gly	aaa Lys	tga												1119
<21 <21 <21		> TY															
<21 <21 <21 <22 <22	L2 > L3 > 20 > 23 >	> OR > FE > OI	GANI ATUF HER	SM: RE: INFO	ORMA!	ific:				polyŋ	pept:	ide					
<21 <21 <21 <22 <22 <40	L2 > L3 > 20 > 23 >	> OR > FE > OI > SE	GANI ATUF HER QUEN	SM: RE: INFO	ORMA'		: Syı	nthe	tic p		_		Leu	Суз	Leu 15	Gly	
<21 <21 <22 <22 <40 Met 1	L2 > L3 > 20 > 23 > 00 >	> OR > FE > OT > SE	GANI ATUF HER QUEN	ISM: RE: INFO ICE: Gly	ORMAS 56 Ala 5	rion	: Syi	nthei Cys	tic p Leu	Arg 10	Leu	Trp		-	15	_	
<21 <21 <22 <22 <40 Met 1 Leu	12 > 13 > 20 > 23 > 00 >	> OR > FE > OT > SE Gln	EGANI EATUF COUEN Arg Asp	ISM: RE: INFO NCE: Gly Gly 20	DRMA' 56 Ala 5 Leu	rion Ala	: Syn Leu Ser	Cys Gly	Leu Tyr 25	Arg 10 Ser	Leu Met	Trp Thr	Pro	Pro 30	15 Thr	Leu	
<21 <21 <21 <22 <22 <40 Met 1 Leu Asn	L2 > L3 > 20 > 223 > D0 > G	> OR > FE > OT > SE Gln	EGANI EATUF THER EQUEN Arg Asp Thr	SM: RE: INFO NCE: Gly Gly 20	56 Ala 5 Leu Glu	TION Ala Val	: Syn Leu Ser His	Cys Gly Val 40	Leu Tyr 25 Arg	Arg 10 Ser Asp	Leu Met Phe	Trp Thr Glu	Pro Gln 45	Pro 30 Pro	15 Thr Phe	Leu Ile	
<21 <21 <22 <22 <40 Met 1 Leu Asn	12 > 13 > 20 > 220 > 223	> OR > FE > OI > SE SIn Leu Lle	EGANI EATUF CHER CQUEN Arg Asp Thr 35	SM: RE: INFO ICE: Gly Gly 20 Glu Asp	DRMA: 56 Ala 5 Leu Glu Thr	TION Ala Val Ser	E Syn Leu Ser His Leu 55	Cys Gly Val 40	Leu Tyr 25 Arg	Arg 10 Ser Asp	Leu Met Phe Lys	Trp Thr Glu Asp 60	Pro Gln 45 Ala	Pro 30 Pro Met	15 Thr Phe Trp	Leu Ile Val	
<21 <21 <21 <22 <22 <40 Met 1 Leu Asn Pro 65	L2 > L3 > 20 > 20 > C	> OR > FE > OT > SE SI Leu Lle	EGANJ EATUR CHER CQUEN Arg Asp Thr 35 Pro	ISM: RE: INFO ICE: Gly 20 Glu Asp	DRMA: 56 Ala 5 Leu Glu Thr	TION Ala Val Ser Leu Ile	: Syn Leu Ser His Leu 55	Cys Gly Val 40 Val	Leu Tyr 25 Arg Asn	Arg 10 Ser Asp Arg	Leu Met Phe Lys Val 75	Trp Thr Glu Asp 60 Thr	Pro Gln 45 Ala Leu	Pro 30 Pro Met	Thr Phe Trp Ser	Leu Ile Val Gln 80	
<21 <21 <21 <22 <22 <40 Met 1 Leu Asn Pro 65 Ser	L2> L3> 220> 23> D0> Gu L Ln I	> OR > FE > OT > SE SEIN Leu Lys 500	Arg Asp Thr	ISM: RE: INFO JCE: Gly Gly 20 Glu Asp Val	56 Ala 5 Leu Glu Thr Ser Trp 85	Ala Val Ser Leu Ile 70	Leu Ser His Leu 55 Pro	Cys Gly Val 40 Val Gly Gly	Leu Tyr 25 Arg Asn Leu Gln	Arg 10 Ser Asp Arg Glu 90	Leu Met Phe Lys Val 75	Trp Thr Glu Asp 60 Thr	Pro Gln 45 Ala Leu Trp	Pro 30 Pro Met Arg	Thr Phe Trp Ser Asp	Leu Ile Val Gln 80 Arg	
<21 < 21 < 22 < 22 < 40 Met 1 Leu Asn Pro 65 Ser Arg	12>> C	> OR > FE > OT > SE SEIN Leu Lys SO Cys	RGANI RATUR HER CQUEN Arg Asp Thr 35 Pro Leu Val	ISM: RE: INFC INFC INCE: Gly 20 Glu Asp Val Leu Leu 100	DRMA: 56 Ala 5 Leu Glu Thr Ser Trp 85 Val	Ala Val Ser Leu Ile 70 Pro	Leu Ser His Leu 55 Pro Asp	Cys Gly Val 40 Val Gly Gly Pro	Leu Tyr 25 Arg Asn Leu Gln Leu 105	Arg 10 Ser Asp Arg Asn Glu 90 Leu	Leu Met Phe Lys Val 75 Val	Trp Thr Glu Asp 60 Thr Val	Pro Gln 45 Ala Leu Trp Ala	Pro 30 Pro Met Arg Asp	Thr Phe Trp Ser Asp 95 Tyr	Leu Ile Val Gln 80 Arg	
<pre><21 <21 <21 <22 <40 Met 1 Leu Asn Pro 65 Ser Arg Gln</pre>	12>> 20> 20> 20> 20> 20> 20> 20> 20> 20>	> OR > FE > OT > SE SEIN Leu Ile Lys Ser Ser	CGANJ LATUR CHER CQUEN Arg Asp Thr 35 Pro Leu Val Met	ISM: RE: INFO OFFI Gly Gly 20 Glu Asp Val Leu 100 Thr	DRMA: 56 Ala 5 Leu Glu Thr Ser Trp 85 Val	Ala Val Ser Leu Ile 70 Pro Ser	Leu Ser His Leu 55 Pro Asp Thr	Cys Gly Val 40 Val Gly Pro Asp 120	Leu Tyr 25 Arg Asn Leu Gln Leu 105 Gln	Arg 10 Ser Asp Arg Leu Asp	Leu Met Phe Lys Val 75 Val His	Trp Thr Glu Asp 60 Thr Val Asp	Pro Gln 45 Ala Leu Trp Ala Ser 125	Pro 30 Pro Met Arg Asp Leu 110	Thr Phe Trp Ser Asp 95 Tyr Pro	Leu Ile Val Gln 80 Arg Leu	
<pre><21 <21 <21 <21 <22 <40 Met 1 Leu Asn Asn Pro 65 Ser Arg Gln Ala</pre>	12>> 12>> 20> 223> 223> 223> 223> 223> 223> 22	> OR > FE > OI > SE GIN Leu Lle Vya Ger Ger Giya Lap	Asp Asp Thr 35 Pro Leu Val Met Glu 115 Pro	ISM: RE: INFC RE: Gly Gly 20 Glu Asp Val Leu Lou Thr Ile	DRMA' 56 Ala 5 Leu Glu Thr Ser Trp 85 Val Thr	TION Ala Val Ser Leu Ile 70 Pro Ser Trp	Leu Ser His Leu 55 Pro Asp Thr Gly Arg 135	Cys Gly Val 40 Val Gly Pro Asp 120 Gly	Leu Tyr 25 Arg Asn Leu Gln Leu 105 Gln Gly	Arg 10 Ser Asp Arg Asn Glu 90 Leu Asp	Leu Met Phe Lys Val 75 Val His	Trp Thr Glu Asp 60 Thr Val Asp Leu Gly 140	Pro Gln 45 Ala Leu Trp Ala Ser 125 Asp	Pro 30 Pro Met Arg Asp Leu 110 Asn	15 Thr Phe Trp Ser Asp 95 Tyr Pro	Leu Ile Val Gln 80 Arg Leu Phe	
<pre><21 <21 <21 <22 <40 Met 1 Leu Asn Pro 65 Ser Arg Gln Ala Cys 145 Gly</pre>	L2> L3> 20> 20> C3> C4 L1 L1 L5 C5 C5 S6 G7 G7	OR O	CGANJ LATUR CHER CQUEN Arg Asp Thr 35 Pro Leu Val Met Glu 115 Pro Lys	ISM: RE: INFO OFFI Gly Gly 20 Glu Asp Val Leu 100 Thr Ile Pro Ser	DRMA: 56 Ala 5 Leu Glu Thr Ser Trp 85 Val Thr Glu His	Ala Val Ser Leu Ile 70 Pro Ser Trp Gly Thr 150 Phe	Leu Ser His Leu 55 Pro Asp Thr Gly Arg 135 Cys Leu	Cys Gly Val 40 Val Gly Pro Asp 120 Gly Pro	Leu Tyr 25 Arg Asn Leu Gln Leu 105 Gln Gly Leu Pro	Arg 10 Ser Asp Arg Asn Glu 90 Leu Asp Gly Cys	Leu Met Phe Lys Val 75 Val His Phe Gly Pro 155 Lys	Trp Thr Glu Asp 60 Thr Val Asp Leu Gly 140 Ala Pro	Pro Gln 45 Ala Leu Trp Ala Ser 125 Asp Pro Lys	Pro 30 Pro Met Arg Asp Leu 110 Asn Pro Glu	15 Thr Phe Trp Ser Asp 95 Tyr Pro Lys Leu Thr 175	Leu Ile Val Gln 80 Arg Leu Phe Ser Leu 160 Leu	
<pre><21 <21 <21 <21 <22 <40 Met 1 Leu Asn Pro 65 Ser Arg Gln Ala Cys 145 Gly Met</pre>	12 > 12 > 12 > 12 > 12 > 12 > 12 > 12 >	SOR SEED TO SE	Asp Asp Thr 35 Pro Leu Val Met Gluss Pro Lys Pro Ser	ISM: RE: INFC RE: INFC Gly Gly 20 Glu Asp Val Leu Lou 100 Thr Ile Pro Ser Arg 180	DRMA: 56 Ala 5 Leu Glu Thr Ser Trp 85 Val Thr Glu His Val 165 Thr	TION Ala Val Ser Leu Ile 70 Pro Ser Trp Gly Thr 150	Leu Ser His Leu 55 Pro Asp Thr Gly Arg 135 Cys Leu Glu	Cys Gly Val 40 Val Gly Pro Gly Pro Cly Pro Val	Leu Tyr 25 Arg Asn Leu Gln Leu 105 Gln Gly Leu Pro	Arg 10 Ser Asp Arg Asn Glu 90 Leu Asp Cys Pro 170 Cys	Leu Met Phe Lys Val 75 Val His Phe Gly Pro 155 Lys Val	Trp Thr Glu Asp 60 Thr Val Asp Leu Gly 140 Ala Pro Val	Pro Gln 45 Ala Leu Trp Ala Ser 125 Asp Pro Lys Val	Pro 30 Pro Met Arg Asp Leu 110 Asn Pro Glu Asp	Thr Phe Trp Ser Asp 95 Tyr Pro Lys Leu Thr 175 Val	Leu Ile Val Gln 80 Arg Leu Phe Ser Leu 160 Leu Ser	

Val	His 210	Asn	Ala	Lys	Thr	Lys 215	Pro	Arg	Glu	Glu	Gln 220	Tyr	Asn	Ser	Thr	
Tyr 225	Arg	Val	Val	Ser	Val 230	Leu	Thr	Val	Leu	His 235	Gln	Asp	Trp	Leu	Asn 240	
Gly	Lys	Glu	Tyr	Lys 245	Cys	Lys	Val	Ser	Asn 250	Lys	Ala	Leu	Pro	Ala 255	Pro	
Ile	Glu	Lys	Thr 260	Ile	Ser	Lys	Ala	Lys 265	Gly	Gln	Pro	Arg	Glu 270	Pro	Gln	
Val	Tyr	Thr 275	Leu	Pro	Pro	Ser	Arg 280	Asp	Glu	Leu	Thr	Lys 285	Asn	Gln	Val	
Ser	Leu 290	Thr	Cya	Leu	Val	Lys 295	Gly	Phe	Tyr	Pro	Ser 300	Asp	Ile	Ala	Val	
Glu 305	Trp	Glu	Ser	Asn	Gly 310	Gln	Pro	Glu	Asn	Asn 315	Tyr	Lys	Ala	Thr	Pro 320	
Pro	Val	Leu	Asp	Ser 325	Asp	Gly	Ser	Phe	Phe 330	Leu	Tyr	Ser	Lys	Leu 335	Thr	
Val	Asp	Lys	Ser 340	Arg	Trp	Gln	Gln	Gly 345	Asn	Val	Phe	Ser	Сув 350	Ser	Val	
Met	His	Glu 355	Ala	Leu	His	Asn	His 360	Tyr	Thr	Gln	Lys	Ser 365	Leu	Ser	Leu	
Ser	Pro 370	Gly	Lys													
<223 <220 <221 <223 <220 <221 <222	3 > OT 0 > FE 1 > NF 3 > OT 0 > FE 1 > NF 2 > LO	EATUR CHER EATUR AME/K CHER EATUR AME/K	INFO CEY: INFO CEY: CEY:	misc DRMAT CDS (1)	c_fea FION:	iture : R-3	:	ic p	oolyr	nucle	eotic	le				
<223 <220 <223 <223 <222 <400 atg	3 > OI) > FE 1 > N# 3 > OI) > FE 1 > N# 2 > LO) > SE	THER EATUR THER CHER EATUR AME / R CATI	INFO	misc DRMAT CDS (1).	c_fea TION: (11	ture: R-3	tgc	ctg	cga	ctg	tgg	ctc				48
<223 <220 <223 <223 <222 <400 atg	3 > OI) > FE 1 > N# 3 > OI) > FE 1 > N# 2 > LO) > SE	THER EATUF AME / R THER EATUF AME / R OCATI	INFO	misc DRMAT CDS (1).	c_fea TION: (11	ture: R-3	tgc	ctg	cga	ctg	tgg	ctc				48
<223 <220 <221 <223 <222 <400 atg Met 1 ctc	3 > 01) > FE L > N# 3 > 01) > FE L > N# 2 > L0) > SE cag Gln	THER EATUR THER CHER EATUR AME / R CATI	INFO	misc DRMAT CDS (1). 57 gcc Ala 5	c_fearion: (11 gcg Ala	ture: R-3	tgc Cys	ctg Leu tac	cga Arg 10	ctg Leu atg	tgg Trp	ctc Leu ccc	ccd	Leu 15 acc	Gly	48
<223 <220 <221 <223 <220 <222 <400 atg Met 1 ctc Leu	3 > OT) > FE 1 > N# 3 > OT) > FE 1 > N# 2 > LO	THER EATUF AME/F EATUF AME/F OCATI COUEN COGG Arg	INFO EE: CEY: INFO EE: CON: GEC: GGly GGly 20 gag	misc ORMAT CDS (1). 57 gcc Ala 5 ctg Leu	c_fea TION: (11 gcg Ala gtg Val	ture: R-3 L61) ctg Leu agt Ser	tgc Cys ggc Gly	ctg Leu tac Tyr 25 aac	cga Arg 10 tcc Ser	ctg Leu atg Met	tgg Trp acc Thr	ctc Leu ccc Pro	Cys ccg Pro 30	Leu 15 acc Thr	Gly ttg Leu ctg	
<223 <220 <221 <223 <220 <221 <222 <400 atg Met 1 ctc Leu aac Asn	s> OI) > FF > NF > OI > NF > OI > NF > OI > NF > LO Cag Gln ctg Leu atc Ile	CHER CATUR CHER CHER CATUR CATUR CQUEN CGG ATG CGG ASP CAGG CTT	INFO RE: CEY: INFO CE: CON: GCE: ggc Gly ggc Gly 20 gag Glu aag	misc RMAT CDS (1). 57 gcc Ala 5 ctg Leu gag Glu	gcg Ala gtg Val tca Ser	ctg Leu agt Ser cac His	tgc Cys ggc Gly gtc Val 40 ctg	ctg Leu tac Tyr 25 aac Asn	cga Arg 10 tcc Ser gag Glu	ctg Leu atg Met ctc Leu	tgg Trp acc Thr tat Tyr	ctc Leu ccc Pro gac Asp 45 aag	ccg Pro 30 atc Ile	Leu 15 acc Thr cag Gln	Gly ttg Leu ctg Leu	96
<223 <220 <221 <223 <220 <220 <400 atg Met 1 ctc Leu aac Asn ttg Leu aac	3> OTO SECOND SE	CHER EATURE MME/ROCATI COCATI	INFO EE: GEY: INFO GE: GY: GON: GCE: ggc Gly ggc Gly 20 gag Glu aag Lys	misco RMATI CDS (1) 57 gcc Ala 5 ctg Leu gag Glu tcg Ser	gcg Ala gtg Val tca Ser ctg Leu	ctg Leu agt Ser cac His gag Glu 55	tgc Cys ggc Gly gtc Val 40 ctg Leu	ctg Leu tac Tyr 25 aac Asn ctg Leu	cga Arg 10 tcc Ser gag Glu gta Val	ctg Leu atg Met ctc Leu ggg Gly	tgg Trp acc Thr tat Tyr gag Glu 60 gtc	ctc Leu ccc Pro gac Asp 45 aag Lys	ccg Pro 30 atc Ile ctg Leu	Leu 15 acc Thr cag Gln gtc Val	ttg Leu ctg Leu ctg Leu	96 144
<223 <220 <221 <222 <400 atg Met 1 ctc Leu aac Asn ttg Leu aac Asn 65	3> OID SECOND SE	CHER EATUR MME/K FATUR ALATUR ALATUR AME/K OCATI CQUEN CQG Arg Arg Arg Arg Arg Arg Arg Arg Arg	INFO EE: CEY: INFO EE: CEY: CON: CCE: GGly Ggc Ggly Ggly 20 gag Gglu aag Lys gtg Val	misc RMAT CDS (1). 57 gcc Ala 5 ctg Leu tcg Ser tgg Trp	gcg Ala gtg Val tca Ser ctg Leu gct Ala 70 cag	ctg Leu agt Ser cac His gag Glu 55 gag Glu gca	tgc Cys ggc Gly gtc Val 40 ctg Leu ttt Phe	ctg Leu tac Tyr 25 aac Asn ctg Leu aac Asn	cga Arg 10 tcc Ser gag Glu gta Val tca Ser	ctg Leu atg Met ctc Leu 999 Gly 75 aag	tgg Trp acc Thr tat Tyr gag Glu 60 gtc Val	ctc Leu ccc Pro gac Asp 45 aag Lys acc Thr	Cys ccg Pro 30 atc Ile ctg Leu ttt Phe	Leu 15 acc Thr cag Gln gtc Val gac Asp	ttg Leu ctg Leu ctg Leu tgg Trp 80	96 144 192
<223 <220 <221 <222 <400 atg Met 1 ctc Leu aac Asn ttg Leu aac Asn cgc	3> OID SECOND SE	CCA	INFO EE: CEY: INFO EE: CEY: CON: GEY: GEY: GOY	miscor mi	gcg Ala gtg Val tca Ser ctg Leu gct Ala 70 cag Gln cac	ctg Leu agt Ser cac His gag Glu 55 gag Glu	tgc Cys ggc Gly gtc Val 40 ctg Leu ttt Phe	ctg Leu tac Tyr 25 aac Asn ctg Leu aac Asn	cga Arg 10 tcc Ser gag Glu gta Val tca Ser ggt Gly 90 tcc	ctg Leu atg Met ctc Leu ggg Gly 75 aag Lys	tgg Trp acc Thr tat Tyr gag Glu 60 Val tgg Trp	ctc Leu ccc Pro gac Asp 45 aag Lys acc Thr	Cys ccg Pro 30 atc Ile ctg Leu ttt Phe ccc Pro acc	Leu 15 acc Thr cag Gln gtc Val gac Asp gag Glu 95 atc	Gly ttg Leu ctg Leu ttgg Trp 80 cga Arg	96 144 192 240

												con	LIN	uea			
Asn	Val	Ser 115	Gln	His	Asp	Leu	Gly 120	Ser	Tyr	Val	CAa	Lys 125	Ala	Asn	Asn		
						gag Glu 135										432	
						ggt Gly										480	
						ctg Leu										528	
						ccc Pro										576	
						aca Thr										624	
						aac Asn 215										672	
						cgg Arg										720	
						gtc Val										768	
		_	_	_	_	tcc Ser			_			-				816	
						aaa Lys										864	
						gat Asp 295										912	
						ttc Phe										960	
						gag Glu										1008	
						ttc Phe										1056	
						gly ggg										1104	
						tac Tyr 375										1152	
ggt Gly 385	aaa Lys	tga														1161	
)> SI L> LI																

<210> SEQ ID NO 58
<211> LENGTH: 386
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polypeptide

-continued

< 400)> SI	EQUEI	ICE :	58											
Met 1	Gln	Arg	Gly	Ala 5	Ala	Leu	СЛа	Leu	Arg 10	Leu	Trp	Leu	СЛв	Leu 15	Gly
Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu
Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Asn	Glu	Leu	Tyr	Asp 45	Ile	Gln	Leu
Leu	Pro 50	Arg	Lys	Ser	Leu	Glu 55	Leu	Leu	Val	Gly	Glu 60	Lys	Leu	Val	Leu
Asn 65	Cys	Thr	Val	Trp	Ala 70	Glu	Phe	Asn	Ser	Gly 75	Val	Thr	Phe	Asp	Trp 80
Asp	Tyr	Pro	Gly	Lys 85	Gln	Ala	Glu	Arg	Gly 90	Lys	Trp	Val	Pro	Glu 95	Arg
Arg	Ser	Gln	Gln 100	Thr	His	Thr	Glu	Leu 105	Ser	Ser	Ile	Leu	Thr 110	Ile	His
Asn	Val	Ser 115	Gln	His	Asp	Leu	Gly 120	Ser	Tyr	Val	CÀa	Lys 125	Ala	Asn	Asn
Gly	Ile 130	Gln	Arg	Phe	Arg	Glu 135	Ser	Thr	Glu	Val	Ile 140	Val	His	Glu	Asp
Pro 145	Ile	Glu	Gly	Arg	Gly 150	Gly	Gly	Gly	Gly	Asp 155	Pro	Lys	Ser	Cys	Asp 160
Lys	Pro	His	Thr	Сув 165	Pro	Leu	Cys	Pro	Ala 170	Pro	Glu	Leu	Leu	Gly 175	Gly
Pro	Ser	Val	Phe 180	Leu	Phe	Pro	Pro	Lys 185	Pro	Lys	Asp	Thr	Leu 190	Met	Ile
Ser	Arg	Thr 195	Pro	Glu	Val	Thr	Cys 200	Val	Val	Val	Asp	Val 205	Ser	His	Glu
Asp	Pro 210	Glu	Val	Lys	Phe	Asn 215	Trp	Tyr	Val	Asp	Gly 220	Val	Glu	Val	His
Asn 225	Ala	ГЛа	Thr	ГЛа	Pro 230	Arg	Glu	Glu	Gln	Tyr 235	Asn	Ser	Thr	Tyr	Arg 240
Val	Val	Ser	Val	Leu 245	Thr	Val	Leu	His	Gln 250	Asp	Trp	Leu	Asn	Gly 255	Lys
Glu	Tyr	ГЛа	Сув 260	ГЛа	Val	Ser	Asn	Lys 265	Ala	Leu	Pro	Ala	Pro 270	Ile	Glu
Lys	Thr	Ile 275	Ser	ГЛа	Ala	Lys	Gly 280	Gln	Pro	Arg	Glu	Pro 285	Gln	Val	Tyr
Thr	Leu 290	Pro	Pro	Ser	Arg	Asp 295	Glu	Leu	Thr	Lys	Asn 300	Gln	Val	Ser	Leu
Thr 305	Cys	Leu	Val	Lys	Gly 310	Phe	Tyr	Pro	Ser	Asp 315	Ile	Ala	Val	Glu	Trp 320
Glu	Ser	Asn	Gly	Gln 325	Pro	Glu	Asn	Asn	Tyr 330	Lys	Ala	Thr	Pro	Pro 335	Val
Leu	Asp	Ser	Asp 340	Gly	Ser	Phe	Phe	Leu 345	Tyr	Ser	Lys	Leu	Thr 350	Val	Asp
Lys	Ser	Arg 355	Trp	Gln	Gln	Gly	Asn 360	Val	Phe	Ser	Сув	Ser 365	Val	Met	His
Glu	Ala 370	Leu	His	Asn	His	Tyr 375	Thr	Gln	Lys	Ser	Leu 380	Ser	Leu	Ser	Pro
Gly 385	ГÀа														

<210> SEQ ID NO 59

```
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: VEGFR-2 D1 reverse primer
<400> SEQUENCE: 59
gctggatctt gaacatagac ataaatg
                                                                       27
<210> SEQ ID NO 60
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D1-2 reverse primer #1
<400> SEQUENCE: 60
ctaggatccc ctacaacgac aactatg
                                                                       27
<210> SEQ ID NO 61
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D1-2 reverse primer #2
<400> SEQUENCE: 61
ctaggatcca catcataaat cctatac
                                                                       27
<210> SEQ ID NO 62
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D1-2 reverse primer #3
<400> SEQUENCE: 62
gcatggtctc ggatcatgag aagacggact cagaac
                                                                       36
<210> SEQ ID NO 63
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D1-2 reverse primer #4
<400> SEQUENCE: 63
ctaggatect ttteteeaac agatag
                                                                       26
<210> SEQ ID NO 64
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D2 forward primer
<400> SEQUENCE: 64
                                                                       29
agegetageg tteaagatta cagatetee
<210> SEQ ID NO 65
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D2-3 reverse primer
<400> SEQUENCE: 65
atgtgtgagg ttttgcacaa g
                                                                       21
<210> SEQ ID NO 66
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D2 reverse primer #1
<400> SEQUENCE: 66
ctaggatece ctacaacgae aactatg
                                                                       27
<210> SEQ ID NO 67
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: VEGFR-2 D2 reverse primer #2
<400> SEQUENCE: 67
                                                                       27
ctaggatcca catcataaat cctatac
<210> SEQ ID NO 68
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D2 reverse primer #3
<400> SEQUENCE: 68
gcatggtctc ggatcatgag aagacggact cagaac
                                                                       36
<210> SEQ ID NO 69
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D2 reverse primer #4
```

```
<400> SEQUENCE: 69
ctaggatect tttetecaae agatag
                                                                        26
<210> SEQ ID NO 70
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D3 forward primer
<400> SEQUENCE: 70
agcgctagct ataggattta tgatgtg
                                                                        2.7
<210> SEQ ID NO 71
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D3 reverse primer
<400> SEQUENCE: 71
atgtgtgagg ttttgcacaa g
                                                                        21
<210> SEQ ID NO 72
<211> LENGTH: 30
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D1-3 reverse primer 1
<400> SEQUENCE: 72
gcggatcctt gcctagtgtt tctcttgatc
                                                                        30
<210> SEQ ID NO 73
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-2 D1-3 reverse primer 2
<400> SEQUENCE: 73
ccagtcacct gctccggatc ttcatggacc ctgacaaatg
                                                                        40
<210> SEQ ID NO 74
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-3 D1-2 reverse primer 1
<400> SEQUENCE: 74
                                                                        25
tcaggatccg cgagctcgtt gcctg
```

```
<210> SEQ ID NO 75
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-3 D1-2 reverse primer 2
<400> SEQUENCE: 75
                                                                       27
tacaggatcc cctgtgatgt gcaccag
<210> SEQ ID NO 76
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223 > OTHER INFORMATION: VEGFR-3 D1-2 reverse primer 3
<400> SEQUENCE: 76
tcaggatccg cgtgcaccag gaagg
                                                                        25
<210> SEQ ID NO 77
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-3 D1-2 reverse primer 4
<400> SEQUENCE: 77
                                                                        26
tcaggatccg cgaaggggtt ggaaag
<210> SEO ID NO 78
<211> LENGTH: 60
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-3 Delta D1 primer 1
<400> SEQUENCE: 78
ccttgaacat cacggaggag tcacacgtca gagactttga gcagccattc atcaacaagc
                                                                        60
<210> SEQ ID NO 79
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: VEGFR-3 Delta D1 primer 2
<400> SEQUENCE: 79
agctgctggt aggggagaag gatcctgaac tgcaccgtgt gg
                                                                        42
<210> SEQ ID NO 80
<211> LENGTH: 990
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
```

-continued

<pre><220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: VEGF-A <220> FEATURE: <221> NAME/KEY: CDS</pre>																
<222	2 > L(CAT:	ION:	(57)) (6	529)										
< 400	O> SI	EQUEI	NCE:	80												
cagt	tgtg	ctg (gegge	cccg	gc go	cgag	ccgg	c cc(ggee	cegg	teg	ggeet	tee (gaaa	cc atg Met 1	59
														ctc Leu		107
			_	_			_	_	_		_	_	_	gga Gly		155
														cag Gln		203
														gag Glu		251
														ctg Leu 80		299
_	-			_	-		_			_		_		ccc Pro		347
														cac His		395
														tgt Cys		443
_	-		_		-	-	_	_		_			_	gly aaa		491
														acg Thr 160		539
	_		-				-	_	-	_	_			cag Gln		587
											ccg Pro					629
tgaç	gccg	ggc a	aggaç	ggaa	gg ag	gcct	ccct	agg	ggtti	cgg	gaad	ccaga	atc 1	tctca	accagg	689
aaaq	gacto	gat a	acaga	aacg	at co	gata	cagaa	a acc	cacgo	ctgc	cgc	cacca	aca (ccat	caccat	749
cgad	cagaa	aca 🤅	gteet	taa	tc ca	agaa	accto	g aaa	atgaa	agga	agaç	ggaga	act (ctgc	gcagag	809
cact	tttg	ggt (cegga	aggg	cg ag	gact	ccgg	gga	aagca	attc	ccg	ggcg	ggt g	gacc	cagcac	869
ggt	ccct	ett (ggaat	tgg	at to	egec	attt	att	ttt	cttg	ctg	ctaaa	atc a	accga	agcccg	929
gaaq	gatta	aga 🤅	gagtt	tta	tt to	ctgg	gatto	c ctç	gtaga	acac	acco	gegge	ccg (ccag	cacact	989
g																990

<210> SEQ ID NO 81 <211> LENGTH: 191 <212> TYPE: PRT

<213> ORGANISM:	Homo sapiens			
<400> SEQUENCE:	81			
Met Asn Phe Leu 1	Leu Ser Trp Val H	is Trp Ser 10	Leu Ala Leu Leu Leu 15	
Tyr Leu His His 20	Ala Lys Trp Ser G		Pro Met Ala Glu Gly 30	
Gly Gly Gln Asn 35	His His Glu Val Va 40	al Lys Phe	Met Asp Val Tyr Gln 45	
Arg Ser Tyr Cys 50	His Pro Ile Glu Tl 55		Asp Ile Phe Gln Glu 60	
Tyr Pro Asp Glu 65	Ile Glu Tyr Ile Pl 70	he Lys Pro 75	Ser Cys Val Pro Leu 80	
Met Arg Cys Gly	Gly Cya Cya Asn As 85	sp Glu Gly 90	Leu Glu Cys Val Pro 95	
Thr Glu Glu Ser 100		ln Ile Met 05	Arg Ile Lys Pro His 110	
Gln Gly Gln His 115	Ile Gly Glu Met Se	er Phe Leu	Gln His Asn Lys Cys 125	
Glu Cys Arg Pro 130	Lys Lys Asp Arg A	-	Glu Asn Pro Cys Gly 140	
Pro Cys Ser Glu 145	Arg Arg Lys His Le	eu Phe Val 155	Gln Asp Pro Gln Thr 160	
Cys Lys Cys Ser	Cys Lys Asn Thr As	sp Ser Arg 170	Cys Lys Ala Arg Gln 175	
Leu Glu Leu Asn 180	Glu Arg Thr Cys A:	rg Cys Asp 85	Lys Pro Arg Arg 190	
<pre><210> SEQ ID NO <211> LENGTH: 1: <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> OTHER INFO <220> FEATURE: <221> NAME/KEY: <221> NAME/KEY: <222> LOCATION:</pre>	997 Homo sapiens misc_feature ORMATION: VEGF-C			
<400> SEQUENCE:	82			
cccgccccgc ctct	ccaaaa agctacaccg	acgcggaccg	eggeggegte etecetegee	60
ctcgcttcac ctcg	eggget eegaatgegg (ggagctcgga	tgtccggttt cctgtgaggc	120
ttttacctga cacc	egeege ettteeeegg (cactggctgg	gagggcgccc tgcaaagttg	180
ggaacgcgga gccc	eggaee egeteeegee q	geeteegget	cgcccagggg gggtcgccgg	240
gaggagcccg gggg	agaggg accaggaggg (geeegeggee	tegeaggge geeegegeee	300
ccacccctgc cccc	gecage ggaeeggtee (cccacccccg	gteetteeae e atg cac Met His 1	357
			ctc gcc gct gcg ctg Leu Ala Ala Ala Leu 15	405
		la Ala Ala	gcc gcc ttc gag tcc Ala Ala Phe Glu Ser 30	453
			ggc gag gcc acg gct Gly Glu Ala Thr Ala 50	501

	gca Ala													549
	gaa Glu													597
	cag Gln													645
	aac Asn 100			_					_	_	_			693
	aca Thr													741
	atg Met													789
	aca Thr													837
	ggt Gly													885
	tac Tyr 180													933
	ccc Pro													981
_	atg Met		_	_	_	_		_					_	1029
	tcc Ser						Cys							1077
_	ccc Pro			_					_	_	_	_	_	1125
	gaa Glu 260													1173
	ttc Phe													1221
	cag Gln													1269
	aaa Lys						Gln							1317
	ttc Phe													1365
	cag Gln 340													1413
	gga Gly													1461

-continued	
355 360 365 370	
tta aaa gga aag aag ttc cac cac caa aca tgc agc tgt tac aga cgg Leu Lys Gly Lys Lys Phe His His Gln Thr Cys Ser Cys Tyr Arg Arg 375 380 385	1509
cca tgt acg aac cgc cag aag gct tgt gag cca gga ttt tca tat agt Pro Cys Thr Asn Arg Gln Lys Ala Cys Glu Pro Gly Phe Ser Tyr Ser 390 395 400	1557
gaa gaa gtg tgt cgt tgt gtc cct tca tat tgg aaa aga cca caa atg Glu Glu Val Cys Arg Cys Val Pro Ser Tyr Trp Lys Arg Pro Gln Met 405 410 415	1605
agc taagattgta ctgttttcca gttcatcgat tttctattat ggaaaactgt Ser	1658
gttgccacag tagaactgtc tgtgaacaga gagacccttg tgggtccatg ctaacaaaga	1718
caaaagtotg totttootga accatgtgga taactttaca gaaatggact ggagotcato	1778
tgcaaaaggc ctcttgtaaa gactggtttt ctgccaatga ccaaacagcc aagattttcc	1838
tcttgtgatt tctttaaaag aatgactata taatttattt ccactaaaaa tattgtttct	1898
gcattcattt ttatagcaac aacaattggt aaaactcact gtgatcaata tttttatatc	1958
atgcaaaata tgtttaaaat aaaatgaaaa ttgtattat	1997
<210> SEQ ID NO 83 <211> LENGTH: 419 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 83	
Met His Leu Leu Gly Phe Phe Ser Val Ala Cys Ser Leu Leu Ala Ala 1 10 15	
Ala Leu Leu Pro Gly Pro Arg Glu Ala Pro Ala Ala Ala Ala Phe 20 25 30	
Glu Ser Gly Leu Asp Leu Ser Asp Ala Glu Pro Asp Ala Gly Glu Ala 35 40 45	
Thr Ala Tyr Ala Ser Lys Asp Leu Glu Glu Gln Leu Arg Ser Val Ser 50 55 60	
Ser Val Asp Glu Leu Met Thr Val Leu Tyr Pro Glu Tyr Trp Lys Met 65 70 75 80	
Tyr Lys Cys Gln Leu Arg Lys Gly Gly Trp Gln His Asn Arg Glu Gln 85 90 95	
Ala Asn Leu Asn Ser Arg Thr Glu Glu Thr Ile Lys Phe Ala Ala Ala	
His Tyr Asn Thr Glu Ile Leu Lys Ser Ile Asp Asn Glu Trp Arg Lys	
Thr Gln Cys Met Pro Arg Glu Val Cys Ile Asp Val Gly Lys Glu Phe 130 135 140	
Gly Val Ala Thr Asn Thr Phe Phe Lys Pro Pro Cys Val Ser Val Tyr	
145 150 155 160	
Arg Cys Gly Gly Cys Cys Asn Ser Glu Gly Leu Gln Cys Met Asn Thr 165 170 175	
Ser Thr Ser Tyr Leu Ser Lys Thr Leu Phe Glu Ile Thr Val Pro Leu 180 185 190	
Ser Gln Gly Pro Lys Pro Val Thr Ile Ser Phe Ala Asn His Thr Ser 195 200 205	
Cys Arg Cys Met Ser Lys Leu Asp Val Tyr Arg Gln Val His Ser Ile 210 215 220	

Ile Arg Arg Ser Leu Pro Ala Thr Leu Pro Gln Cys Gln Ala Ala Asn 225 230 235 240	
Lys Thr Cys Pro Thr Asn Tyr Met Trp Asn Asn His Ile Cys Arg Cys 245 250 255	
Leu Ala Gln Glu Asp Phe Met Phe Ser Ser Asp Ala Gly Asp Asp Ser	
Thr Asp Gly Phe His Asp Ile Cys Gly Pro Asn Lys Glu Leu Asp Glu 275 280 285	
Glu Thr Cys Gln Cys Val Cys Arg Ala Gly Leu Arg Pro Ala Ser Cys 290 295 300	
Gly Pro His Lys Glu Leu Asp Arg Asn Ser Cys Gln Cys Val Cys Lys 305 310 315 320	
Asn Lys Leu Phe Pro Ser Gln Cys Gly Ala Asn Arg Glu Phe Asp Glu 325 330 335	
Asn Thr Cys Gln Cys Val Cys Lys Arg Thr Cys Pro Arg Asn Gln Pro	
Leu Asn Pro Gly Lys Cys Ala Cys Glu Cys Thr Glu Ser Pro Gln Lys	
Cys Leu Leu Lys Gly Lys Lys Phe His His Gln Thr Cys Ser Cys Tyr	
370 375 380 Arg Arg Pro Cys Thr Asn Arg Gln Lys Ala Cys Glu Pro Gly Phe Ser	
385 390 395 400 Tyr Ser Glu Glu Val Cys Arg Cys Val Pro Ser Tyr Trp Lys Arg Pro	
405 410 415 Gln Met Ser	
<pre><210> SEQ ID NO 84 <211> LENGTH: 1645 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: PIGF <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (322)(768)</pre>	
<400> SEQUENCE: 84	
gggattcggg ccgcccagct acgggaggac ctggagtggc actgggcgcc cgacggacca	60
teccegggae cegeetgeee eteggegeee egeeeegeeg ggeegeteee egtegggtte cecageeaa geettaceta egggeteetg acteegeaag getteeagaa gatgetegaa	180
ccaccggccg gggcctcggg gcagcagtga gggaggcgtc cagcccccca ctcagctctt	240
ctcctcctgt gccaggggct ccccggggga tgagcatggt ggttttccct cggagccccc	300
tggctcggga cgtctgagaa g atg ccg gtc atg agg ctg ttc cct tgc ttc Met Pro Val Met Arg Leu Phe Pro Cys Phe 1 5 10	351
ctg cag ctc ctg gcc ggg ctg gcg ctg cct gct gtg ccc ccc	399
tgg gcc ttg tct gct ggg aac ggc tcg tca gag gtg gaa gtg gta ccc Trp Ala Leu Ser Ala Gly Asn Gly Ser Ser Glu Val Glu Val Val Pro 30 35 40	447
ttc cag gaa gtg tgg ggc cgc agc tac tgc cgg gcg ctg gag agg ctg Phe Gln Glu Val Trp Gly Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu 45 50 55	495
gtg gac gtc gtg tcc gag tac ccc agc gag gtg gag cac atg ttc agc	543

-continued

-continued	
Val Asp Val Val Ser Glu Tyr Pro Ser Glu Val Glu His Met Phe Ser	
cca tcc tgt gtc tcc ctg ctg cgc tgc acc ggc tgc tgc ggc gat gag Pro Ser Cys Val Ser Leu Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu 75 80 85 90	591
aat ctg cac tgt gtg ccg gtg gag acg gcc aat gtc acc atg cag ctc 6 Asn Leu His Cys Val Pro Val Glu Thr Ala Asn Val Thr Met Gln Leu 95 100	539
cta aag atc cgt tct ggg gac cgg ccc tcc tac gtg gag ctg acg ttc 6 Leu Lys Ile Arg Ser Gly Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe 110 115 120	587
tot cag cac gtt cgc tgc gaa tgc cgg cct ctg cgg gag aag atg aag 7 Ser Gln His Val Arg Cys Glu Cys Arg Pro Leu Arg Glu Lys Met Lys 125 130 135	735
ccg gaa agg tgc ggc gat gct gtt ccc cgg agg taacccaccc cttggaggag 7 Pro Glu Arg Cys Gly Asp Ala Val Pro Arg Arg 140 145	788
	348
	908
	968
agagagaagc cagccacaga cccctgggag cttccgcttt gaaagaagca agacacgtgg 10	028
cctcgtgagg ggcaagctag gccccagagg ccctggaggt ctccaggggc ctgcagaagg 10	088
aaagaagggg gccctgctac ctgttcttgg gcctcaggct ctgcacagac aagcagccct 11	L48
tgctttcgga gctcctgtcc aaagtaggga tgcggattct gctggggccg ccacggcctg 12	208
gtggtgggaa ggccggcagc gggcggaggg gattcagcca cttccccctc ttcttctgaa 12	268
gatcagaaca ttcagctctg gagaacagtg gttgcctggg ggcttttgcc actccttgtc 13	328
ccccgtgatc tcccctcaca ctttgccatt tgcttgtact gggacattgt tctttccggc 13	388
	148
	508
	568
	528
ttctagtgtg gaaacgc 16	545
<210> SEQ ID NO 85 <211> LENGTH: 149 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 85	
Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly 1 5 10 15	
Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser Ala Gly 20 25 30	
Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly 35 40 45	
Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu 50 55 60	
Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu 65 70 75 80	

Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro 85 90 95

-continued	
Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly 100 105 110	
Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys 115 120 125	
Glu Cys Arg Pro Leu Arg Glu Lys Met Lys Pro Glu Arg Cys Gly Asp 130 135 140	
Ala Val Pro Arg Arg 145	
<pre><210> SEQ ID NO 86 <211> LENGTH: 2029 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: VEGF-D <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (411)(1472)</pre>	
<400> SEQUENCE: 86	
gttgggttcc agctttctgt agctgtaagc attggtggcc acaccacctc cttacaaagc	60
aactagaacc tgcggcatac attggagaga tttttttaat tttctggaca tgaagtaaat	120
ttagagtget ttetaattte aggtagaaga catgteeace ttetgattat ttttggagaa	180
cattttgatt tttttcatct ctctctcccc acccctaaga ttgtgcaaaa aaagcgtacc	240
ttgcctaatt gaaataattt cattggattt tgatcagaac tgattatttg gttttctgtg	360
tgaagttttg aggtttcaaa ctttccttct ggagaatgcc ttttgaaaca attttctcta gctgcctgat gtcaactgct tagtaatcag tggatattga aatattcaaa atg tac	416
Met Tyr 1	
aga gag tgg gta gtg gtg aat gtt ttc atg atg ttg tac gtc cag ctg Arg Glu Trp Val Val Val Asn Val Phe Met Met Leu Tyr Val Gln Leu 5 10 15	464
gtg cag ggc tcc agt aat gaa cat gga cca gtg aag cga tca tct cag Val Gln Gly Ser Ser Asn Glu His Gly Pro Val Lys Arg Ser Ser Gln 20 25 30	512
tcc aca ttg gaa cga tct gaa cag cag atc agg gct gct tct agt ttg Ser Thr Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser Ser Leu 35 40 45 50	560
gag gaa cta ctt cga att act cac tct gag gac tgg aag ctg tgg aga Glu Glu Leu Leu Arg Ile Thr His Ser Glu Asp Trp Lys Leu Trp Arg 55 60 65	608
tgc agg ctg agg ctc aaa agt ttt acc agt atg gac tct cgc tca gca Cys Arg Leu Arg Leu Lys Ser Phe Thr Ser Met Asp Ser Arg Ser Ala 70 75 80	656
tcc cat cgg tcc act agg ttt gcg gca act ttc tat gac att gaa aca Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile Glu Thr 85 90 95	704
cta aaa gtt ata gat gaa gaa tgg caa aga act cag tgc agc cct aga Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr Gln Cys Ser Pro Arg 100 105 110	752
gaa acg tgc gtg gag gtg gcc agt gag ctg ggg aag agt acc aac aca Glu Thr Cys Val Glu Val Ala Ser Glu Leu Gly Lys Ser Thr Asn Thr 115 120 125 130	800
ttc ttc aag ccc cct tgt gtg aac gtg ttc cga tgt ggt ggc tgt tgc Phe Phe Lys Pro Pro Cys Val Asn Val Phe Arg Cys Gly Gly Cys Cys 135 140 145	848
aat gaa gag agc ctt atc tgt atg aac acc agc acc tcg tac att tcc	896

-continued	
Asn Glu Glu Ser Leu Ile Cys Met Asn Thr Ser Thr Ser Tyr Ile Ser 150 155 160	
aaa cag ctc ttt gag ata tca gtg cct ttg aca tca gta cct gaa tta Lys Gln Leu Phe Glu Ile Ser Val Pro Leu Thr Ser Val Pro Glu Leu 165 170 175	944
gtg cct gtt aaa gtt gcc aat cat aca ggt tgt aag tgc ttg cca aca Val Pro Val Lys Val Ala Asn His Thr Gly Cys Lys Cys Leu Pro Thr 180 185 190	992
gcc ccc cgc cat cca tac tca att atc aga aga tcc atc cag atc cct Ala Pro Arg His Pro Tyr Ser Ile Ile Arg Arg Ser Ile Gln Ile Pro 195 200 205 210	1040
gaa gaa gat cgc tgt tcc cat tcc aag aaa ctc tgt cct att gac atg Glu Glu Asp Arg Cys Ser His Ser Lys Lys Leu Cys Pro Ile Asp Met 215 220 225	1088
cta tgg gat agc aac aaa tgt aaa tgt gtt ttg cag gag gaa aat cca Leu Trp Asp Ser Asn Lys Cys Lys Cys Val Leu Gln Glu Glu Asn Pro 230 235 240	1136
ctt gct gga aca gaa gac cac tot cat ctc cag gaa cca gct ctc tgt Leu Ala Gly Thr Glu Asp His Ser His Leu Gln Glu Pro Ala Leu Cys 245 250 255	1184
ggg cca cac atg atg ttt gac gaa gat cgt tgc gag tgt gtc tgt aaa Gly Pro His Met Met Phe Asp Glu Asp Arg Cys Glu Cys Val Cys Lys 260 265 270	1232
aca cca tgt ccc aaa gat cta atc cag cac ccc aaa aac tgc agt tgc Thr Pro Cys Pro Lys Asp Leu Ile Gln His Pro Lys Asn Cys Ser Cys 275 280 285 290	1280
ttt gag tgc aaa gaa agt ctg gag acc tgc tgc cag aag cac aag cta Phe Glu Cys Lys Glu Ser Leu Glu Thr Cys Cys Gln Lys His Lys Leu 295 300 305	1328
ttt cac cca gac acc tgc agc tgt gag gac aga tgc ccc ttt cat acc Phe His Pro Asp Thr Cys Ser Cys Glu Asp Arg Cys Pro Phe His Thr 310 315 320	1376
aga cca tgt gca agt ggc aaa aca gca tgt gca aag cat tgc cgc ttt Arg Pro Cys Ala Ser Gly Lys Thr Ala Cys Ala Lys His Cys Arg Phe 325 330 335	1424
cca aag gag aaa agg gct gcc cag ggg ccc cac agc cga aag aat cct Pro Lys Glu Lys Arg Ala Ala Gln Gly Pro His Ser Arg Lys Asn Pro 340 345 350	1472
tgattcagcg ttccaagttc cccatccctg tcatttttaa cagcatgctg ctttgccaag	1532
ttgctgtcac tgtttttttc ccaggtgtta aaaaaaaaat ccattttaca cagcaccaca	1592
gtgaatccag accaaccttc cattcacacc agctaaggag tccctggttc attgatggat	1652
gtcttctagc tgcagatgcc tctgcgcacc aaggaatgga gaggaggga cccatgtaat	1712
cottitigtit agittigtit tigtititig gigaatgaga aaggigtgot ggicatggaa	1772 1832
tggcaggtgt catatgactg attactcaga gcagatgagg aaaactgtag tctctgagtc ctttgctaat cgcaactctt gtgaattatt ctgattcttt tttatgcaga atttgattcg	1892
tatgatcagt actgactttc tgattactgt ccagcttata gtcttccagt ttaatgaact	1952
accatctgat gtttcatatt taagtgtatt taaagaaaaat aaacaccatt attcaagcca	2012
aaaaaaaaaa aaaaaaa	2029

<210> SEQ ID NO 87 <211> LENGTH: 354 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

-continued

Met Tyr Arg Glu Trp Val Val Val Asn Val Phe Met Met Leu Tyr Val 10 Gln Leu Val Gln Gly Ser Ser Asn Glu His Gly Pro Val Lys Arg Ser 25 Ser Gln Ser Thr Leu Glu Arg Ser Glu Gln Gln Ile Arg Ala Ala Ser Ser Leu Glu Glu Leu Leu Arg Ile Thr His Ser Glu Asp Trp Lys Leu Trp Arg Cys Arg Leu Arg Leu Lys Ser Phe Thr Ser Met Asp Ser Arg Ser Ala Ser His Arg Ser Thr Arg Phe Ala Ala Thr Phe Tyr Asp Ile Glu Thr Leu Lys Val Ile Asp Glu Glu Trp Gln Arg Thr Gln Cys Ser Pro Arg Glu Thr Cys Val Glu Val Ala Ser Glu Leu Gly Lys Ser Thr 120 Asn Thr Phe Phe Lys Pro Pro Cys Val Asn Val Phe Arg Cys Gly Gly Cys Cys Asn Glu Glu Ser Leu Ile Cys Met Asn Thr Ser Thr Ser Tyr Ile Ser Lys Gln Leu Phe Glu Ile Ser Val Pro Leu Thr Ser Val Pro Glu Leu Val Pro Val Lys Val Ala Asn His Thr Gly Cys Lys Cys Leu Pro Thr Ala Pro Arg His Pro Tyr Ser Ile Ile Arg Arg Ser Ile Gln 195 200 205 Ile Pro Glu Glu Asp Arg Cys Ser His Ser Lys Lys Leu Cys Pro Ile 210 215 220 Asp Met Leu Trp Asp Ser Asn Lys Cys Lys Cys Val Leu Gln Glu Glu 230 Asn Pro Leu Ala Gly Thr Glu Asp His Ser His Leu Gln Glu Pro Ala 250 Leu Cys Gly Pro His Met Met Phe Asp Glu Asp Arg Cys Glu Cys Val 265 Cys Lys Thr Pro Cys Pro Lys Asp Leu Ile Gln His Pro Lys Asn Cys Ser Cys Phe Glu Cys Lys Glu Ser Leu Glu Thr Cys Cys Gln Lys His 295 Lys Leu Phe His Pro Asp Thr Cys Ser Cys Glu Asp Arg Cys Pro Phe His Thr Arg Pro Cys Ala Ser Gly Lys Thr Ala Cys Ala Lys His Cys Arg Phe Pro Lys Glu Lys Arg Ala Ala Gln Gly Pro His Ser Arg Lys Asn Pro <210> SEQ ID NO 88 <211> LENGTH: 1830 <212> TYPE: DNA <213 > ORGANISM: ORF Virus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: VEGF-E <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (312)..(755)

<400> SEQUENCE: 88	
eggecaegeg geegegaact gegegetege gegegtggeg acegegetga egegeegegt	60
geeegegage eggeaeggee tegeggaggg eggeaegeeg eegtggaege tgetgetgge	120
ggtggccgcg gtggcggtgc tcggcgtggt ggcaatttcg ctgctgcgcc gcgcgctaag	180
aatacggttt agatactcaa agtctatcca gacacttaga gtgtaacttt gagtaaaaaa	240
tgtaaatact aacgccaaaa tttcgatagt tgttaagcaa tatataacat ttttaaaacg	300
tcatcaccag c atg aag tta aca gct acg tta caa gtt gtt gtt gca ttg Met Lys Leu Thr Ala Thr Leu Gln Val Val Val Ala Leu 1 5 10	350
tta ata tgt atg tat aat ttg cca gaa tgc gtg tct cag agt aat gat Leu Ile Cys Met Tyr Asn Leu Pro Glu Cys Val Ser Gln Ser Asn Asp 15 20 25	398
tea cet cet tea ace aat gae tgg atg egt aca eta gae aaa agt ggt Ser Pro Pro Ser Thr Asn Asp Trp Met Arg Thr Leu Asp Lys Ser Gly 30 35 40 45	446
tgt aaa cct aga gat act gtt gtt tat ttg gga gaa gaa tat cca gaa Cys Lys Pro Arg Asp Thr Val Val Tyr Leu Gly Glu Glu Tyr Pro Glu 50 55 60	494
agc act aac cta caa tat aat ccc cgg tgc gta act gtt aaa cga tgc Ser Thr Asn Leu Gln Tyr Asn Pro Arg Cys Val Thr Val Lys Arg Cys 65 70 75	542
agt ggt tgc tgt aac ggt gac ggt caa ata tgt aca gcg gtt gaa aca Ser Gly Cys Cys Asn Gly Asp Gly Gln Ile Cys Thr Ala Val Glu Thr 80 85 90	590
aga aat aca act gta aca gtt tca gta acc ggc gtg tct agt tcg tct Arg Asn Thr Thr Val Thr Val Ser Val Thr Gly Val Ser Ser Ser Ser 95	638
ggt act aat agt ggt gta tct act aac ctt caa aga ata agt gtt aca Gly Thr Asn Ser Gly Val Ser Thr Asn Leu Gln Arg Ile Ser Val Thr 110 115 120 125	686
gaa cac aca aag tgc gat tgt att ggt aga aca acg aca aca cct acg Glu His Thr Lys Cys Asp Cys Ile Gly Arg Thr Thr Thr Thr Pro Thr 130 135 140	734
acc act agg gaa cct aga cga taactaataa caaaaaatgt ttatttttgt Thr Thr Arg Glu Pro Arg Arg 145	785
aaatacttaa ttattacaca ctttacaata atctcaaaaa taaattgcgt gcccggacgg	845
ctgcagctgg tgacgctgct gtgtcacaca ctgcgtattc gattcaagtt cactaacgcc	905
actaaactag ttgtgcgtgt ccgagtgtta accgtacgtc aaactaacat cttacctgtc	965
cgtgacaaga actaaaactt gaaccacata tttttaaagt atatttaaca aaatcactca	1025
cactcacaca atcataaaca ccacaaccac aaccaaacac gcatgagaat taatattctt	1085
acttatccgt aacactctat gctgtacatc aacgcatcag agcagtctga gtctgactaa	1145
tggcggcaaa cgggaacgca ggcgcgacat aatcactgag aatctccgca gcaaccgctc	1205
aaggacatet etagegetaa eggetgtttg teatteeece gtgtgtteat eteacaegae	1265
attgtgaccg tcgcaaagca cacattcaaa gtgccgcatg tggaagaatt caccgtcgag	1325
acacacacca taattaaaca agatcagtgo ataagagaga ttagcattot acagcacacc	1385
acgtgcgaat acggacctcg taattgttta gactagaaca cctctggtct aaacaacatg	1445
tecgatetta gaacagagtt tatgaegeat atgtaactgt gttetttatg tagaagttat	1505
cttttatgtc actcccttgt cttagatgag ttatacatga catgatgtat gtgtcgcccg	1565

-continued	
eggeggegeg gggegetegg eggegggget getgegegeg gegggeeege ggtggeggeg	1625
getggegegg egetgeggee gegggegege ggeggggtag eggeeegeee geeegggege	1685
ccgccgcagc ccttgccccg gaccaggcgc cacggagcaa agtgaaaaag gaccgcctag	1745
cagtogagac cotocogoog cagoogogac accocacaco ogoottocac cogocagaog	1805
ccaacaccac agccaacaag catgc	1830
<210> SEQ ID NO 89 <211> LENGTH: 148 <212> TYPE: PRT <213> ORGANISM: ORF Virus	
<400> SEQUENCE: 89	
Met Lys Leu Thr Ala Thr Leu Gln Val Val Val Ala Leu Leu Ile Cys 1 5 10 15	
Met Tyr Asn Leu Pro Glu Cys Val Ser Gln Ser Asn Asp Ser Pro Pro 20 25 30	
Ser Thr Asn Asp Trp Met Arg Thr Leu Asp Lys Ser Gly Cys Lys Pro	
35 40 45 Arg Asp Thr Val Val Tyr Leu Gly Glu Glu Tyr Pro Glu Ser Thr Asn	
50 55 60	
Leu Gln Tyr Asn Pro Arg Cys Val Thr Val Lys Arg Cys Ser Gly Cys 65 70 75 80	
Cys Asn Gly Asp Gly Gln Ile Cys Thr Ala Val Glu Thr Arg Asn Thr 85 90 95	
Thr Val Thr Val Ser Val Thr Gly Val Ser Ser Ser Ser Gly Thr Asn 100 105 110	
Ser Gly Val Ser Thr Asn Leu Gln Arg Ile Ser Val Thr Glu His Thr 115 120 125	
Lys Cys Asp Cys Ile Gly Arg Thr Thr Thr Thr Pro Thr Thr Thr Arg 130 135 140	
Glu Pro Arg Arg 145	
<pre><210> SEQ ID NO 90 <211> LENGTH: 815 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: 232 amino acid isoform of VEGF-A <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (69)(767)</pre>	
<400> SEQUENCE: 90	
gaattegaat teeagtgtge tggeggeege gegegageeg egeeggeeee ggtegggeet	60
ccgaaacc atg aac ttt ctg ctg tct tgg gtg cat tgg agc ctc gcc ttg Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu	110
1 5 10	150
ctg ctc tac ctc cac cat gcc aag tgg tcc cag gct gca ccc atg gca Leu Leu Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala 15 20 25 30	158
gaa gga ggg cag aat cat cac gaa gtg gtg aag ttc atg gat gtc Glu Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val 35 40 45	206
tat dag ogd ago tad tgo dat dda ato gag aco dtg gtg gad ato tto	254
Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe 50 55 60	

													tcc Ser			302
													ctg Leu			350
													cgg Arg			398
				_					_	_			cag Gln			446
													gaa Glu 140			494
													aag Lys			542
													tgt Cys			590
		_							_			_	tca Ser			638
													tgt Cys			686
													tta Leu 220			734
	act Thr									tga	gcc	ggga	tgg a	aggaa	aggagc	787
ctc	cctca	agg g	gttt	cggg:	aa co	cagat	ccc									815
<21:	0> SI 1> LI 2> TY 3> OF	ENGTI	H: 23	32	o saj	oiens	3									
	D> SI				-											
		-			Ser	Trp	Val	His	Trp 10	Ser	Leu	Ala	Leu	Leu 15	Leu	
Tyr	Leu	His	His 20	Ala	Lys	Trp	Ser	Gln 25	Ala	Ala	Pro	Met	Ala 30	Glu	Gly	
Gly	Gly	Gln 35	Asn	His	His	Glu	Val 40	Val	Lys	Phe	Met	Asp 45	Val	Tyr	Gln	
Arg	Ser 50	Tyr	Cys	His	Pro	Ile 55	Glu	Thr	Leu	Val	Asp 60	Ile	Phe	Gln	Glu	
Tyr 65	Pro	Asp	Glu	Ile	Glu 70	Tyr	Ile	Phe	Lys	Pro 75	Ser	CÀa	Val	Pro	Leu 80	
Met	Arg	Cha	Gly	Gly 85	CAa	CAa	Asn	Asp	Glu 90	Gly	Leu	Glu	Càa	Val 95	Pro	
Thr	Glu	Glu	Ser 100	Asn	Ile	Thr	Met	Gln 105	Ile	Met	Arg	Ile	Lys 110	Pro	His	
Gln	Gly	Gln 115	His	Ile	Gly	Glu	Met 120	Ser	Phe	Leu	Gln	His 125	Asn	Lys	Cys	

Clu Cye Arg Pro Lye Lye Amp Arg Ala Arg Glin Glu Lye Lye Ser Val 136 Arg Gly Lye Gly Lye Gly Gln Lye Arg Lye Arg Lye Lye Ser Arg Tyr 145 Lye Ser Trp Ser Val Tyr Val Gly Ala Arg Cye Cye Leu Met Pro Trp 165 Lye Ser Trp Ser Val Tyr Val Gly Ala Arg Cye Cye Leu Met Pro Trp 175 Ser Leu Pro Gly Pro His Pro Cye Gly Pro Cye Ser Glu Arg Arg Lye 180 His Leu Phe Val Gln Amp Pro Gln Thr Cye Lye Cye Ser Cye Lye Amn 180 Thr Amp Ser Arg Cye Lye Ala Arg Gln Leu Glu Leu Amn Glu Arg Thr 210 Cye Arg Cye Amp Lye Pro Arg Arg 225 Cye Arg Cye Amp Lye Pro Arg Arg 225 Cye Arg Cye Amp Lye Pro Arg Arg 222
145
Ser Leu Pro Glp Pro His Pro Cys Gly Pro Cys Ser Glu Arg Arg Lys 180
His Leu Phe Val Gln Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn 195 Thr Asp Ser Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr 210 225 Cys Arg Cys Asp Lys Pro Arg Arg 225 2210 SEQ ID NO 92 2211
The Asp Ser Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr 210 Cys Arg Cys Asp Lys Pro Arg Arg 225 Cys Arg Cys Asp Lys Pro Arg Arg 225 c210 SEQ ID NO 92 c2113 LENGTH: 399 c2123 TYPE: DNA c2213 PRETURE: c2215 NAME/KEY: misc.feature c223 OTHER INFORMATION: D1701 VEGF c222 NAME/KEY: cos c222 LOCATION: (1)(399) c400> SEQUENCE: 92 atg aag ttt ctc gtc ggc ata ctg gta gct gtg tgc ttg cac cag tat Met Lys Phe Leu Val Gly Ile Leu Val Ala Val Cys Leu His Gln Tyr 1
210
2210 SEQ ID NO 92
2211> LENGTH: 399
atg aag ttt ctc gtc ggc ata ctg gta gct gtg tgc ttg cac cag tat Met Lys Phe Leu Val Gly Ile Leu Val Ala Val Cys Leu His Gln Tyr 1
Met Lys Phe Leu Val Gly Ile Leu Val Ala Val Cys Leu His Gln Tyr 1
Leu Leu Asn Ala Asp Ser Thr Lys Thr Trp Ser Glu Val Phe Glu Asn 30 agc ggg tgc aag cca agg ccg atg gtc ttt cga gta cac gac gag cac l44 Ser Gly Cys Lys Pro Arg Pro Met Val Phe Arg Val His Asp Glu His 35 40 40 45 45 45 45 45 45 45 45 45 45 45 45 45
Ser Gly Cys Lys Pro Arg Pro Met Val Phe Arg Val His Asp Glu His 45 ccg gag cta act tct cag cgg ttc aac ccg ccg tgt gtc acg ttg atg 192 Pro Glu Leu Thr Ser Gln Arg Phe Asn Pro Pro Cys Val Thr Leu Met 50 cga tgc ggc ggg tgc tgc aac gac gag agc tta gaa tgc gtc ccc acg Arg Cys Gly Gly Cys Cys Asn Asp Glu Ser Leu Glu Cys Val Pro Thr 75 gaa gag gca aac gta acg atg caa ctc atg gga gcg tcg gtc tcc ggt glu Glu Ala Asn Val Thr Met Gln Leu Met Gly Ala Ser Val Ser Gly 95 ggt aac ggg atg caa cat ctg agc ttc gta gag cat aag aaa tgc gat Gly Asn Gly Met Gln His Leu Ser Phe Val Glu His Lys Lys Cys Asp 100 tgt aaa cca cca ctc acg acc acg cca ccg acg acc aca agg ccg cc
Pro Glu Leu Thr Ser Gln Arg Phe Asn Pro Pro Cys Val Thr Leu Met
Arg Cys Gly Gly Cys Cys Asn Asp Glu Ser Leu Glu Cys Val Pro Thr 80 gaa gag gca aac gta acg atg caa ctc atg gga gcg tcg gtc tcc ggt 288 Glu Glu Ala Asn Val Thr Met Gln Leu Met Gly Ala Ser Val Ser Gly 90 ggt aac ggg atg caa cat ctg agc ttc gta gag cat aag aaa tgc gat 336 Gly Asn Gly Met Gln His Leu Ser Phe Val Glu His Lys Lys Cys Asp 100 tgt aaa cca cca ctc acg acc acg cca ccg acg acc aca agg ccg cc
Glu Glu Ala Asn Val Thr Met Gln Leu Met Gly Ala Ser Val Ser Gly 85 ggt aac ggg atg caa cat ctg agc ttc gta gag cat aag aaa tgc gat 336 Gly Asn Gly Met Gln His Leu Ser Phe Val Glu His Lys Lys Cys Asp 100 tgt aaa cca cca ctc acg acc acg cca ccg acg acc aca agg ccg cc
Gly Asn Gly Met Gln His Leu Ser Phe Val Glu His Lys Lys Cys Asp 100 105 110 384 tgt aaa cca cca ctc acg acc acg cca ccg acg acc aca agg ccg cc
Cys Lys Pro Pro Leu Thr Thr Thr Pro Pro Thr Thr Thr Arg Pro Pro 115 aga aga cgc cgc tag Arg Arg Arg Arg 130 <210> SEQ ID NO 93 <211> LENGTH: 132 <212> TYPE: PRT <213> ORGANISM: ORF virus
Arg Arg Arg arg 130 <210> SEQ ID NO 93 <211> LENGTH: 132 <212> TYPE: PRT <213> ORGANISM: ORF virus
<211> LENGTH: 132 <212> TYPE: PRT <213> ORGANISM: ORF virus
<400> SEQUENCE: 93

-continued

Met Lys Phe Leu Val Gly Ile Leu Val Ala Val Cys Leu His Gln Tyr 10 Leu Leu Asn Ala Asp Ser Thr Lys Thr Trp Ser Glu Val Phe Glu Asn 25 Ser Gly Cys Lys Pro Arg Pro Met Val Phe Arg Val His Asp Glu His 40 Pro Glu Leu Thr Ser Gln Arg Phe Asn Pro Pro Cys Val Thr Leu Met 55 Arg Cys Gly Gly Cys Cys Asn Asp Glu Ser Leu Glu Cys Val Pro Thr Glu Glu Ala Asn Val Thr Met Gln Leu Met Gly Ala Ser Val Ser Gly Gly Asn Gly Met Gln His Leu Ser Phe Val Glu His Lys Lys Cys Asp Cys Lys Pro Pro Leu Thr Thr Thr Pro Pro Thr Thr Thr Arg Pro Pro 120 Arg Arg Arg Arg 130 <210> SEQ ID NO 94 <211> LENGTH: 570 <212> TYPE: DNA <213 > ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223 > OTHER INFORMATION: VEGF-B Isoform 1 <400> SEQUENCE: 94 accatgagee etetgeteeg eegeetgetg etegeegeac teetgeaget ggeeceegee 60 caggecectg teteccagee tgatgeceet ggecaccaga ggaaagtggt gteatggata 120 180 gatgtgtata ctcgcgctac ctgccagccc cgggaggtgg tggtgccctt gactgtggag ctcatqqqca ccqtqqccaa acaqctqqtq cccaqctqcq tqactqtqca qcqctqtqqt 240 ggctgctqcc ctgacqatqq cctgqaqtqt qtqcccactq qqcaqcacca agtccgqatq 300 360 cagateetea tgateeggta eeegageagt cagetggggg agatgteeet ggaagaacae agccagtgtg aatgcagacc taaaaaaaag gacagtgctg tgaagccaga cagccccagg 420 cccctctgcc cacgctgcac ccagcaccac cagcgccctg acccccggac ctgccgctgc 480 cgctgccgac gccgcagctt cctccgttgc caagggcggg gcttagagct caacccagac 540 acctgcaggt gccggaagct gcgaaggtga 570 <210> SEQ ID NO 95 <211> LENGTH: 188 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: VEGF-B Isoform 1 <220> FEATURE: <221> NAME/KEY: mat_peptide <222> LOCATION: (22)..(188) <400> SEQUENCE: 95 Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln -1 1

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln

```
Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln \,
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro Arg
                            115
Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg
Cys Arg Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu Leu
Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg
<210> SEQ ID NO 96
<211> LENGTH: 624
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223 > OTHER INFORMATION: VEGF-B Isoform 2
<400> SEQUENCE: 96
atgagecete tgeteegeeg cetgetgete geegeactee tgeagetgge eeeegeecag
                                                                       60
qcccctqtct cccaqcctqa tqcccctqqc caccaqaqqa aaqtqqtqtc atqqataqat
                                                                      120
gtgtatactc gcgctacctg ccagccccgg gaggtggtgg tgcccttgac tgtggagctc
                                                                      180
atgggcaccg tggccaaaca gctggtgccc agctgcgtga ctgtgcagcg ctgtggtggc
                                                                      240
                                                                      300
tgctgccctg acqatgqcct ggaqtqtqtq cccactgqqc aqcaccaaqt ccgqatqcaq
atcctcatga tccggtaccc gagcagtcag ctgggggaga tgtccctgga agaacacagc
                                                                      360
cagtgtgaat gcagacctaa aaaaaaggac agtgctgtga agccagacag ggctgccact
                                                                      420
ccccaccacc gtccccagcc ccgttctgtt ccgggctggg actctgcccc cggagcaccc
                                                                      480
tecceagetg acateaceea teccaeteea geeceaggee eetetgeeea egetgeacee
                                                                      540
agcaccacca gegecetgae ecceggaeet geegeegeeg etgeegaege egeagettee
                                                                      600
teegttgeea agggegggge ttag
                                                                      624
<210> SEQ ID NO 97
<211> LENGTH: 207
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: VEGF-B Isoform 2
<220> FEATURE:
<221> NAME/KEY: mat_peptide
<222> LOCATION: (22)..(207)
<400> SEQUENCE: 97
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
```

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln -5 -1 1 5 10	
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln 15 20 25	
Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val	
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 45 50 55	
Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln	
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly	
80 85 90 Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys	
95 100 105 Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His Arg	
110 115 120 Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala Pro	
125 130 135	
Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser Ala 140 145 150 155	
His Ala Ala Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala Ala 160 165 170	
Ala Ala Asp Ala Ala Ala Ser Ser Val Ala Lys Gly Gly Ala 175 180 185	
<211> LENGTH: 2305 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: PDGF-A <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (404)(991) <223> OTHER INFORMATION: PDGF-A	
<400> SEQUENCE: 98	
ttettgggge tgatgteege aaatatgeag aattacegge egggtegete etgaageeag	60
cgcggggagc gagcgcggcg gcggccagca ccggggaacgc accgaggaag aagcccagcc	120
geggegegea etecetgttt etecteetee tggetggege tgeetgeete teegeactea	240
ctgctcgccg ggcgccgtcc gccagctccg tgctccccgc gccaccctcc tccgggccgc	300
getecetaag ggatggtaet gaatttegee gecacaggag aceggetgga gegeeegeee	360
cgcgcctcgc ctctcctccg agcagccagc gcctcgggac gcg atg agg acc ttg Met Arg Thr Leu 1	415
gct tgc ctg ctc ctc ggc tgc gga tac ctc gcc cat gtt ctg gcc Ala Cys Leu Leu Leu Gly Cys Gly Tyr Leu Ala His Val Leu Ala 5 10 15 20	463
gag gaa gcc gag atc ccc cgc gag gtg atc gag agg ctg gcc cgc agt Glu Glu Ala Glu Ile Pro Arg Glu Val Ile Glu Arg Leu Ala Arg Ser 25 30 35	511
cag atc cac agc atc cgg gac ctc cag cga ctc ctg gag ata gac tcc Gln Ile His Ser Ile Arg Asp Leu Gln Arg Leu Leu Glu Ile Asp Ser 40 45 50	559

the organization of the company of t	-concinued	
His Pala Thr Lyö His Val Pro Glu Lyö Arg Pro Los Pro 11e Arg Arg 70 70 70 70 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	Val Gly Ser Glu Asp Ser Leu Asp Thr Ser Leu Arg Ala His Gly Val	607
Lyè Arg Ser lle Glu Glu Ala Val Po Ala Val Cye Lyë Thr Arg Thr 95 90 100 gtc att tac gag att cot cgg agt cag gtc gac coc acg toc gcc aac Val Ile Tyr Glu Ile Pro Arg Ser Glu Val Amp Pro Thr Ser Ala Amm 108 107 108 1129 170 170 1129 170 170 170 170 170 170 170 170 170 170	His Ala Thr Lys His Val Pro Glu Lys Arg Pro Leu Pro Ile Arg Arg	655
Val Ile Tyr Glu Ile Pro Arg Ser Gln Val Amp Pro Thr Ser Ala Am 105 ttc ctg atc tgg coc cog tgc gtg gag gtg aan cgc tgc acc ggc tgc 799 Phe Leu Ile Trp Pro Pro Cys Val Glu Val Lye Arg Cyr Thr Gly Cyr 100 tgc aac acc ag agc agt gtc aag tgc cag cec tcc cgc gtc cac cac cgc 847 tgc aac acc ag agc agt gtc aag tgc gaa tac gtc agc acc tcc cgc gtc cac cac cgc 847 Cys Amr Thr Ser Ser Val Lye Cye Gln Pro Ser Arg Val His His His Arg 895 135 140 agc gtc aag gtg gcc aag gtg gaa tac gtc agg ag ag ccc aac at ta 895 ser Val Lye Val Ala In ye Val Glu Tyr Val Arg Lye Iye Pro Lye Leu 150 150 155 160 160 150 195 161 170 175 162 175 180 163 170 175 165 176 180 165 178 180 167 187 190 168 187 199 167 187 187 178 180 191 187 187 191	Lys Arg Ser Ile Glu Glu Ala Val Pro Ala Val Cys Lys Thr Arg Thr	703
tgc aac acg agc agt gtc aag tgc cag ccc tcc cgc gtc cac cac cgc Cys Ann Thr Ser Ser Val Lys Cys Gln Pro Ser Arg Val His His Arg 180 agc gtc aag gtg gcc aag gtg gta tac gtc agg aag aag acc aaa tta 895 Ser Val Lys Val Ala Lye Val Glu Tyr Val Arg Lys Lys Pro Lys Leu 180 aaa gaa gtc ag gtg ggc aag gtt gaa tac gtc agg aag aag acc aaa tta 895 Ser Val Lys Val Ala Lye Val Glu Tyr Val Arg Lys Lys Pro Lys Leu 180 aaa gaa gtc cag gtg agg tta gag gag cat tta gaag tag gcc tgc gcg 180 aaa gaa gtc cag gtg agg tta gag gag cat tta gaag tag gcc gtg gcg 180 acc aca agc ctg aat ccg gat tat cgg gaa gas gac acg gat gtg agg 180 acc aca agc ctg aat ccg gat tat cgg gaa gas gac acg gat gtg agg 180 acc aca agc ctg aat ccg gat tat cgg gaa gas gac acg gat gtg agg 180 Thr Thr Ser Leu Ann Pro Anp Tyr Arg Glu Glu Anp Thr Anp Val Arg 185 180 tgaggatgag ccgcaaccct ttcctgggac atggatgac attggttgat acattcctga 181 tgtgtccaga accatcggg agaacaaaga gacagtgac attgtttaa tgtgaacacc 181 tgtgtccaga accatcggg agaacaaaga gacagtgac attgtttaa tgtgaacacc 181 tgtgtccaga accatcggg agaacaaaga gacagtgac attgtttaa tgtgaacacc 181 acctactatg tacggtggt tattgccagt gtgagggcc cttgtgaaga gtctcagcag 1831 gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat 18291 atctaaactc gatgastgg agggtcgccc cgtgggatgg aagtgaaga gcctgcttt 1811 gggaacgact ccagagaggt gctacaggtg cttttttgcc gaggatgcag agcctgcttt 1831 accgaacact tctgcagggg tctacaggtg cttttttgcc gaggatgcag agcatgctt 1831 acagaaacct tcctgaagag cttaagtggt tttttttctt ttttttttt tttttttttt	Val Ile Tyr Glu Ile Pro Arg Ser Gln Val Asp Pro Thr Ser Ala Asn	751
cya kan Thr Ser Ser Val Lye Cya Clin Pro Ser Arg Val His His Arg 135 ago gic aag gig goc aag gig gaa tac gic agg aag aag aag aca aaa tta Ser Val Lye Val Ala Lye Val Clin Tyr Val Arg 155 aaa gaa gic cag gig agg tta gag gaa tac gic agg aag aag cac aaa tta 150 aaa gaa gic cag gig agg tta gag gad cat tig gag igc goc igc gog 165 aaa gaa gic cag gig agg tta gag gad cat tig gag igc goc igc gog 165 acc aca agc cig aat cog gat tat egg gaa gag gac acg gat gig agg Thr Thr Ser Leu Ahm Pro Amp Tyr Arg Giu Alu Amp Thr Amp Val Arg 180 tgaggatgag cogcagecet tteetiggac atggatgiac atggegigt acattectga 185 tgaggatgag cogcagecet teetiggac atggatgiac atggegigt acattectga 186 tgaggatgag cogcagecet teetiggac atggatgiac atggegigt acattectga 187 tgaggatgag accatcogg agaaccaaga gacagtgoac attigittaa tigtacatca 187 aggaaggat tigtagacatc gigtagagat taagaagat ectititaa tigtacatca 187 aaggaaggaa gaagaaaaac aaaaccacaa atgacaaaaa caaaacggac teacaaaaat 189 tattaaaatc gatgagatg gigagaggat tagaagaga gaggagagaga gaggagagaga	Phe Leu Ile Trp Pro Pro Cys Val Glu Val Lys Arg Cys Thr Gly Cys	799
ser Val Lys Val Ala Lys Val Ala Lys Val Glu Tyr Val Arg Lys Lys Lys Pro Lys Leu 150 aaa gaa gtc cag gtg agg tta gag gag cat ttg gag tgc gcc tgc gcg Lys Glu Val Glu Val Arg Leu Glu Glu Hib Leu Glu Cys Ala Cys Ala 165 aca aca aag ctg aat ccg gat tat cgg gaa gag gac actg gat gtg agg Pol 185 acc aca aag ctg aat ccg gat tat cgg gaa gag gac actg gat gtg agg Pol 185 acc aca aag ctg aat ccg gat tat cgg gaa gag gac actg gat gtg agg Pol 185 tagaggatgag ccgcagccct ttcctgggac atggatgtac atgggdgtt acattcctga 1051 acctactatg tacggtgctt tattgccagt gtgcggtctt tgttctcctc cgtgaaaaac 1111 tgtgtccgag aacactcggg agaacaaaga gacagtgcac atttgtttaa tgtgacatca 1171 aagcaagtat tgtagcactc ggtgaagcag taagaagct ccttgtcaaa aagagagag 1231 gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat 1291 atctaaactc gatgagatg gtgagtgccc cgtgggatgg aagtgcagag gtctcagcag 1351 actggaattc tgtccgggtg gtcacaggtg ttttttgcc gaggatgcag agcctgctt 1411 gggaacgact ccagaggggt gctggtggg tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaacgac ccacagcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacac tcctgaagag tttttttttt ttttttttt tgtttttttt tttttt	Cys Asn Thr Ser Ser Val Lys Cys Gln Pro Ser Arg Val His His Arg	847
Lyo Glu Val Gln Val Arg Leu Glu Glu His Leu Glu Cye Ala Cye Ala 175 180 acc aca age ctg aat ceg gat tat egg gaa gag gac acg gat gtg agg Thr Thr Ser Leu Asn Pro Asp Tyr Arg Glu Glu Asp Thr Asp Val Arg 195 195 195 195 tgaggatgag cegeagecet tteetegggae atggatgtae atggetgtt catteetega 1051 acctactatg tacggtgett tattgecagt gtgeggtett tgtteteete egtgaaaaac 1111 tgtgtecgag accacteggg agaacaaaga gacagtgeae attgtttaa tgtgacatca 1171 aagcaagtat tgtagcacte ggtgaagcag taagaaget cettgtaaa aagaagaga 1231 gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggae tecacaaaaat 1291 atctaaacte gatgagatg agggtegee egtgggatgg agggteaga gtetcageag 1351 actggatte tgteegggtg gtcacaggtg etttttege gaggatgeag ageetgett 1411 gggaacgact ccagagggg tgtgggge tetgeaggge egegagaag caggaatgt 1471 ttggaacgact ecagagagg tttagaaaca acacetee getgtgatat ttaageeat 1531 acagaaacgat tetttagaaace acacetee getgtgatat ttattetttt 1591 tttttttttttttttttttttttttttttttttt	Ser Val Lys Val Ala Lys Val Glu Tyr Val Arg Lys Lys Pro Lys Leu	895
The Thr Ser Leu Asm Pro Asp Tyr Arg Glu Glu Gap Thr Asp Val Arg 195 tgaggatgag ccgcagccct ttcctgggac atggatgtac atggcgtgtt teattcctga 1051 acctactatg tacggtgctt tattgccagt gtgcggtctt tgttctcctc cgtgaaaaac 1111 tgtgtccgag aacactcggg agaacaaaga gacagtgcac atttgttaa tgtgacatca 1171 aagcaagtat tgtagcactc ggtgaagcag taagaagct ccttgtcaaa aagagagaga 1231 gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat 1291 atctaaactc gatgagatgg agggtcgccc cgtgggatgg aagtgcagag gtctcaagcag 1351 actggatttc tgtccgggtg gtcacaggtg ctttttgcc gaggatgcag agcctgcttt 1411 gggaacgact ccagaggggt gctggtggc tctgcaggag ccgcaggaag caggaatgcc 1471 ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagccat 1531 acagaaacct tcctgagagc cttaagtggt ttttttttt gtttttgtt tgttttttt 1591 ttttttgttt ttttttttt ttttttttt tttttttt	Lys Glu Val Gln Val Arg Leu Glu Glu His Leu Glu Cys Ala Cys Ala	943
acctactatg tacggtgett tattgecagt gtgcggtctt tgttetecte cgtgaaaaac 1111 tgtgtecgag aacacteggg agaacaaaga gacagtgeac atttgttaa tgtgacatca 1171 aagcaagtat tgtagcacte ggtgaagcag taagaagctt cettgteaaa aagagagaa 1231 gagagagagag agagaaaac aaaaccacaa atgacaaaaa caaaacggac teacaaaaat 1291 atctaaacte gatgagatgg agggtegee cgtgggatgg aagtgeagag gteteagcag 1351 actggattte tgtecgggtg gtecaaggtg etttttgee gaggatgeag agcetgettt 1411 gggaacgact ccagaggggg getggtggge tetgeaggge cegcaggaag caggaatge 1471 ttggaaaceg ccacgegaac tttagaaacc acaceteete getgtagtat ttaageceat 1531 acagaaacet teetgagage ettaagtggt tttttttt gttttgtt tgtttttt 1591 ttttttgttt ttttttttt ttttttttt tacaccataa agtgattatt aagetteett 1651 ttactetttg getagettt ttttttttt ttttttttt tttttttaat tateteettgg 1711 atgacattta caccgataac acacaggetg etgtaactg caggacagtg egacggtatt 1771 tttectagca agatgeaaac taatgagatg tattaaaata aacatggtat acetacetat 1831 gcateattte etaaatgtt etggettigt gttteteeet taccetgett tatttgtaa 1891 tttaagecat tttgaaagaa ctatgegtca accaategta egecgeteet geggacactg 1951 ccccagagee egittgtgge tgagtgacaa ettgteece geagtgeaca cetagaatge 2011 tggtgecegtg gtggeggtea etecetetge tgecagtgtt tgggeggaca ceaaattett 2131 tatttttggt aagatattg getttaceet tattaacaga aatggtgtg tgggtggttgt 2191 tttttttgtaa aggtgaagtt tgtatgttta ectaatatta ectgttttgt atacetgaga 2251	Thr Thr Ser Leu Asn Pro Asp Tyr Arg Glu Glu Asp Thr Asp Val Arg	991
tgtgtccgag aacactcggg agaacaaaga gacagtgcac atttgtttaa tgtgacatca 1171 aagcaagtat tgtagcactc ggtgaagcag taagaagctt cettgtcaaa aagagagaga 1231 gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat 1291 atctaaactc gatgagatgg agggtcgccc cgtgggatgg aagtgcagag gtctcagcag 1351 actgaattc tgtccgggtg gtcacaggtg cttttttgcc gaggatgcaga ggcctgcttt 1411 gggaacgact ccagaggggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaaccg ccacgcgaac tttagaaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacct tcctgagagc cttaagtggt ttttttttt gtttttgtt tgttttttt 1591 ttttttgttt ttttttttt ttttttttt tttttttt	tgaggatgag ccgcagccct ttcctgggac atggatgtac atggcgtgtt acattcctga	1051
aagcaagtat tgtagcactc ggtgaagcag taagaagctt cettgtcaaa aagagaagag 1231 gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat 1291 atctaaactc gatgagatgg agggtcgccc cgtgggatgg aagtgcagag gtctcagcag 1351 actggatttc tgtccgggtg gtcacaggtg cttttttgcc gaggatgcag agcctgcttt 1411 gggaacgact ccagaggggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacct tcctgagage cttaagtggt ttttttttt gtttttgttt tgttttttt 1591 ttttttgttt ttttttttt ttttttttt tacaccataa agtgattatt aagctcctt 1651 ttactctttg gctagctttt ttttttttt ttttttttt ttttttttat tattctcttgg 1711 atgacattta caccgataac acacaggctg ctgtaactgt caggacagtg cgacggtatt 1771 tttcctagca agatgcaaac taatgagatg tattaaaata acatggtat acctacctat 1831 gcatcatttc ctaaatgttt ctggctttgt gtttctccct taccctgctt tatttgttaa 1891 tttaagccat tttgaaagaa ctatgcgtca accaatcgta cgccgtcct gcggacactg 1951 ccccagagcc cgtttgtggc tgagtgacaa cttgttcccc gcagtgcaca cctagaatgc 2011 tggttccca cgcggcacgt gagatgcatt gccgcttctg tctgttgtt tggttgtccc 2071 tggtgccgtg gtggcggtca ctccctctcg tgccagtgtt tggacagaac ccaaatctt 2131 tatttttggt aagatattgt tgtatgttta cctaatatta cctgttttgt atacctgaag 2251	acctactatg tacggtgctt tattgccagt gtgcggtctt tgttctcctc cgtgaaaaac	1111
gagagagaga gagagaaaa aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat 1291 atctaaactc gatgagatgg agggtcgccc cgtgggatgg aagtgcagag gtctcagcag 1351 actggatttc tgtccgggtg gtcacaggtg cttttttgcc gaggatgcag agcctgcttt 1411 gggaacgac ccagaggggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaaccg ccacgcgaac tttagaaaac acacctcctc gctgtagtat ttaagccat 1531 acaagaaacct tcctgagagc cttaagtggt ttttttttt gttttgtt tgttttttt 1591 ttttttgttt ttttttttt ttttttttt tacaccataa agtgattat aagcttcctt 1651 ttactctttg gctagctttt tttttttt ttttttttt tttttttt tttttt	tgtgtccgag aacactcggg agaacaaaga gacagtgcac atttgtttaa tgtgacatca	1171
atctaaactc gatgagatgg agggtcgccc cgtgggatgg aagtgcagag gtctcagcag 1351 actggatttc tgtccgggtg gtcacaggtg cttttttgcc gaggatgcag agcctgcttt 1411 gggaaccgac ccagaggggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacct tcctgagagc cttaagtggt ttttttttt gtttttgtt tgttttttt 1591 ttttttgttt ttttttttt ttttttttt tacaccataa agtgattat aagcttcctt 1651 ttactctttg gctagctttt ttttttttt ttttttttt ttttttttt ttttt	aagcaagtat tgtagcactc ggtgaagcag taagaagctt ccttgtcaaa aagagagaga	1231
actggatttc tgtccgggtg gtcacaggtg cttttttgcc gaggatgcag agcctgcttt 1411 gggaacgact ccagaggggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacct tcctgagagc cttaagtggt ttttttttt gtttttgttt tgttttttt 1591 ttttttgttt ttttttttt ttttttttt tacaccataa agtgattatt aagcttcctt 1651 ttactctttg gctagctttt ttttttttt ttttttttt ttttttttt ttttt	gagagagaga gagagaaaac aaaaccacaa atgacaaaaa caaaacggac tcacaaaaat	1291
gggaacgact ccagagggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc 1471 ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacct tcctgagagc cttaagtggt ttttttttt gtttttgttt tgttttttt 1591 ttttttgttt tttttttt tttttttt tacaccataa agtgattatt aagcttcctt 1651 ttactctttg gctagctttt ttttttttt ttttttttt tttttttt tttttt	atctaaactc gatgagatgg agggtcgccc cgtgggatgg aagtgcagag gtctcagcag	1351
ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat 1531 acagaaacct tcctgagagc cttaagtggt ttttttttt gtttttttt 1591 ttttttgttt ttttttttt ttttttttt tacaccataa agtgattatt aagcttcctt 1651 ttactctttg gctagctttt ttttttttt ttttttttt ttttttttt ttttt	actggatttc tgtccgggtg gtcacaggtg cttttttgcc gaggatgcag agcctgcttt	1411
acagaaacct tootgagago ottaagtggt tittittitt gittitgitt tigtittitti 1591 tittitgitt tittittitt tittittitt tacaccataa agtgattati aagottoott 1651 ttactottig gotagottit tittittitt tittittitt tittittitt tittit	gggaacgact ccagaggggt gctggtgggc tctgcagggc ccgcaggaag caggaatgtc	1471
ttttttgttt tttttttt tttttttt tacaccataa agtgattatt aagetteett 1651 ttactetttg getagetttt ttttttttt ttttttttt tttttttaat tatetettgg 1711 atgacattta caccgataac acacaggetg etgtaactgt eaggacagtg egaeggtatt 1771 ttteetagea agatgeaaac taatgagatg tattaaaata aacatggtat acetacetat 1831 geateattte etaaatgttt etggetttgt gttteteeet taccetgett tatttgttaa 1891 tttaageeat tttgaaagaa etatgegtea aceaategta egeegteeet geggeacetg 1951 eeceagagee egtttgtgge tgagtgacaa ettgtteeee geagtgeaca eetagaatge 2011 tgtgtteeea egeggeacgt gagatgeatt geegettetg tetgtgttgt tggtgtgeee 2071 tggtgeegtg gtggeggtea eteeetetge tgeeagtgtt tggacagaac eeaaattett 2131 tatttttggt aagatattgt getttacetg tattaacaga aatgtgtgtg tgtggtttgt 2191 tttttttgtaa aggtgaagtt tgtatgtta eetaatatta eetgttttgt atacetgaga 2251	ttggaaaccg ccacgcgaac tttagaaacc acacctcctc gctgtagtat ttaagcccat	1531
ttactettig getagettit tittittit tittittit tittittaat tatetetigg 1711 atgacattia caecgataac acacaggetg etgtaactgi eaggacagtg egaeggtatt 1771 titteetagea agatgeaaac taatgagatg tattaaaata aacatggtat acetacetat 1831 geatcattie etaaatgiti etggettigi gitteeteeet taecetgeti tattigitaa 1891 tittaageeat titgaaagaa etaatgegtea aceaategta egeegteeet geggeacetg 1951 ceecagagee egittigigge tigagtgacaa etigtieeee geagtgeaca eetagaatge 2011 tigtigtieeea egeggeacegt gagatgeati geegettetig tetgtigtig tiggigtigeee 2071 tiggigeegig gitggeggtea eteeetetige tigeeagtgit tiggacagaac eeaaattett 2131 tattittiggi aagatatigi gettiaeetig tattaacaga aatgigtigii tigtigtitigt 2191 tittittigtaa aggigaagti tigtatgitta eetaatatta eetigtittigi atacetgaga 2251	acagaaacct teetgagage ettaagtggt tttttttttt gtttttgttt tgtttttttt	1591
atgacattta caccgataac acacaggctg ctgtaactgt caggacagtg cgacggtatt 1771 tttcctagca agatgcaaac taatgagatg tattaaaata aacatggtat acctacctat 1831 gcatcatttc ctaaatgttt ctggctttgt gtttctccct taccctgctt tatttgttaa 1891 tttaagccat tttgaaagaa ctatgcgtca accaatcgta cgccgtccct gcggcacctg 1951 ccccagagcc cgtttgtggc tgagtgacaa cttgttcccc gcagtgcaca cctagaatgc 2011 tgtgttccca cgcggcacgt gagatgcatt gccgcttctg tctgtgttgt tggtgtgccc 2071 tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 tttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	ttttttgttt ttttttttt ttttttttt tacaccataa agtgattatt aagcttcctt	1651
tttcctagca agatgcaaac taatgagatg tattaaaata aacatggtat acctacctat 1831 gcatcatttc ctaaatgttt ctggctttgt gtttctccct taccctgctt tatttgttaa 1891 tttaagccat tttgaaagaa ctatgcgtca accaatcgta cgccgtccct gcggcacctg 1951 ccccagagcc cgtttgtggc tgagtgacaa cttgttcccc gcagtgcaca cctagaatgc 2011 tgtgttccca cgcggcacgt gagatgcatt gccgcttctg tctgtgttgt tggtgtgccc 2071 tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	ttactctttg gctagctttt ttttttttt ttttttttt tttttttt tttttt	1711
gcatcattte ctaaatgttt ctggctttgt gtttetecet taccetgett tatttgttaa 1891 tttaagccat tttgaaagaa ctatgcgtca accaatcgta cgccgtccct gcggcacctg 1951 ccccagagce cgtttgtggc tgagtgacaa cttgttecce gcagtgcaca cctagaatgc 2011 tgtgttecca cgcggcacgt gagatgcatt gccgcttctg tetgtgttgt tggtgtgece 2071 tggtgccgtg gtggcggtca etccctctge tgccagtgtt tggacagaac ccaaattett 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	atgacattta caccgataac acacaggetg ctgtaactgt caggacagtg cgacggtatt	1771
tttaagccat tttgaaagaa ctatgcgtca accaatcgta cgccgtccct gcggcacctg 1951 ccccagagcc cgtttgtggc tgagtgacaa cttgttcccc gcagtgcaca cctagaatgc 2011 tgtgttccca cgcggcacgt gagatgcatt gccgcttctg tctgtgttgt tggtgtgccc 2071 tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	tttcctagca agatgcaaac taatgagatg tattaaaata aacatggtat acctacctat	1831
ccccagagcc cgtttgtggc tgagtgacaa cttgttcccc gcagtgcaca cctagaatgc 2011 tgtgttccca cgcggcacgt gagatgcatt gccgcttctg tctgtgttgt tggtgtgccc 2071 tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	gcatcatttc ctaaatgttt ctggctttgt gtttctccct taccctgctt tatttgttaa	
tgtgttccca cgcggcacgt gagatgcatt gccgcttctg tctgtgttgt tggtgtgccc 2071 tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	tttaagccat tttgaaagaa ctatgcgtca accaatcgta cgccgtccct gcggcacctg	1951
tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt 2131 tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	ccccagagcc cgtttgtggc tgagtgacaa cttgttcccc gcagtgcaca cctagaatgc	2011
tatttttggt aagatattgt gctttacctg tattaacaga aatgtgtgtg tgtggtttgt 2191 ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	tgtgttccca cgcggcacgt gagatgcatt gccgcttctg tctgtgttgt tggtgtgccc	
ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga 2251	tggtgccgtg gtggcggtca ctccctctgc tgccagtgtt tggacagaac ccaaattctt	
		2191
	ttttttgtaa aggtgaagtt tgtatgttta cctaatatta cctgttttgt atacctgaga	2251
gcctgctatg ttcttctttt gttgatccaa aattaaaaaa aaaataccac caac 2305	gcctgctatg ttcttctttt gttgatccaa aattaaaaaa aaaataccac caac	2305

```
<210> SEO ID NO 99
<211> LENGTH: 196
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 99
Met Arg Thr Leu Ala Cys Leu Leu Leu Gly Cys Gly Tyr Leu Ala
                                   10
His Val Leu Ala Glu Glu Ala Glu Ile Pro Arg Glu Val Ile Glu Arg
                              25
Leu Ala Arg Ser Gln Ile His Ser Ile Arg Asp Leu Gln Arg Leu Leu
Glu Ile Asp Ser Val Gly Ser Glu Asp Ser Leu Asp Thr Ser Leu Arg
Ala His Gly Val His Ala Thr Lys His Val Pro Glu Lys Arg Pro Leu
Pro Ile Arg Arg Lys Arg Ser Ile Glu Glu Ala Val Pro Ala Val Cys
Lys Thr Arg Thr Val Ile Tyr Glu Ile Pro Arg Ser Gln Val Asp Pro
Thr Ser Ala Asn Phe Leu Ile Trp Pro Pro Cys Val Glu Val Lys Arg
Cys Thr Gly Cys Cys Asn Thr Ser Ser Val Lys Cys Gln Pro Ser Arg
Val His His Arg Ser Val Lys Val Ala Lys Val Glu Tyr Val Arg Lys
Lys Pro Lys Leu Lys Glu Val Gln Val Arg Leu Glu Glu His Leu Glu
Cys Ala Cys Ala Thr Thr Ser Leu Asn Pro Asp Tyr Arg Glu Glu Asp
                                185
Thr Asp Val Arg
       195
<210> SEQ ID NO 100
<211> LENGTH: 2137
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: PDGF-B
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (983)..(1705)
<400> SEQUENCE: 100
ccctgcctgc ctccctgcgc acccgcagcc tcccccgctg cctccctagg gctcccctcc
ggccgccagc gcccattttt cattccctag atagagatac tttgcgcgca cacacataca
tacgcgcgca aaaaggaaaa aaaaaaaaaa aagcccaccc tccagcctcg ctgcaaagag
aaaaccggag cagccgcagc tcgcagctcg cagcccgcag cccgcagagg acgcccagag
eggegagegg gegggeagae ggaeegaegg actegegeeg egteeacetg teggeeggge
ccagcogagc gogcagcggg cacgcogcgc gogcggagca gocgtgcccg ccgcccgggc
ccgccgccag ggcgcacacg ctcccgcccc cctacccggc ccgggcggga gtttgcacct
ctccctgccc gggtgctcga gctgccgttg caaagccaac tttggaaaaa gttttttggg
ggagacttgg gccttgaggt gcccagctcc gcgctttccg attttggggg cctttccaga
                                                                     540
```

aaat	gttg	gca a	aaaa	agcta	aa go	ceggo	eggge	c aga	aggaa	aaac	gcci	gtag	gee (ggcga	agtgaa	600
gaco	gaaco	cat o	cgact	gcc	gt gt	tcct	tttc	c cto	cttg	gagg	ttg	gagt	ccc (ctggg	gegeee	660
ccad	cacgo	get a	agaco	gcct	eg go	ctggt	tcgo	gad	cgcaq	gaaa	aaa	ggcc	gtg g	gatgo	ctgcac	720
teg	ggata	gg g	gatco	gcc	ca go	gtago	egged	c teg	ggaco	ccag	gtc	etge	gcc (caggt	cctcc	780
ccto	geee	ccc a	agega	acgga	ag co	gggg	geege	9 999	gegge	egge	gcc	9999	gca t	geg	ggtgag	840
ccg	egget	gc a	agago	gaat	ga go	egaat	gato	g gc	cgcg	gacc	cga	geega	agc o	ccaco	cccct	900
ccc	cagco	ccc (ccaco	cctg	ge eg	gegg	gggcg	g gcg	geget	cga	tcta	acgc	gtt (gggg	gccccg	960
cggg	ggee	ggg (cccg	gagt	eg go										g tot 1 Ser 10	1012
					cgt Arg											1060
					atg Met											1108
					ctg Leu											1156
					atg Met											1204
					aga Arg 80											1252
					gag Glu											1300
					gac Asp											1348
					cag Gln											1396
					acc Thr											1444
aag Lys 155	atc Ile	gag Glu	att Ile	gtg Val	cgg Arg 160	aag Lys	aag Lys	cca Pro	atc Ile	ttt Phe 165	aag Lys	aag Lys	gcc Ala	acg Thr	gtg Val 170	1492
					ctg Leu											1540
					agc Ser											1588
					gtg Val											1636
					cgg Arg											1684
					gga Gly 240		tagg	gggca	atc (ggcag	ggaga	ag to	gtgtç	gggca	a	1735

						- (cont	- 1III	uea		
gggttattta a	atatggta	tt tgctg	tattg	cccccat	ggg	gcct	tgga	ıgt a	agata	aatatt	1795
gtttccctcg t	cegtetg	tc tcgat	gcctg	attcgga	acgg	ccaa	tggt	gc o	etecc	ccacc	1855
cctccacgtg t	ccgtcca	cc cttcc	atcag	cgggtct	cct	ccca	gege	gcc t	ccgg	gctctt	1915
gcccagcagc t	caagaag	aa aaaga	aggac	tgaact	ccat	cgcc	atct	tc t	tccc	cttaac	1975
tccaagaact t	gggataa	ga gtgtg	agaga	gactgat	ggg	gtcg	ctct	tt ç	99999	gaaacg	2035
ggttccttcc	cctgcacc	tg gcctg	ggcca	cacctga	agcg	ctgt	ggad	tg t	ccts	gaggag	2095
ccctgaggac (eteteage	at agcct	gcctg	atccct	gaac	CC					2137
<210> SEQ II <211> LENGTH <212> TYPE: <213> ORGANI	H: 241 PRT ISM: Hom	o sapien	s								
<400> SEQUE	ICE: 101										
Met Asn Arg 1	Cys Trp 5	Ala Leu	Phe I	Leu Ser 10	Leu	CAa	Cya	Tyr	Leu 15	Arg	
Leu Val Ser	Ala Glu 20	Gly Asp		Ile Pro 25	Glu	Glu	Leu	Tyr 30	Glu	Met	
Leu Ser Asp 35	His Ser	Ile Arg	Ser E	Phe Asp	Asp	Leu	Gln 45	Arg	Leu	Leu	
His Gly Asp 50	Pro Gly	Glu Glu 55	Asp (Gly Ala	Glu	Leu 60	Asp	Leu	Asn	Met	
Thr Arg Ser 65	His Ser	Gly Gly 70	Glu I	Leu Glu	Ser 75	Leu	Ala	Arg	Gly	Arg 80	
Arg Ser Leu	Gly Ser 85	Leu Thr	Ile A	Ala Glu 90	Pro	Ala	Met	Ile	Ala 95	Glu	
Cys Lys Thr	Arg Thr 100	Glu Val		Glu Ile 105	Ser	Arg	Arg	Leu 110	Ile	Asp	
Arg Thr Asn 115	Ala Asn	Phe Leu	Val 7	Trp Pro	Pro	CÀa	Val 125	Glu	Val	Gln	
Arg Cys Ser 130	Gly Cys	Cys Asn 135	Asn A	Arg Asn	Val	Gln 140	Cys	Arg	Pro	Thr	
Gln Val Gln 145	Leu Arg	Pro Val 150	Gln V	/al Arg	Lys 155	Ile	Glu	Ile	Val	Arg 160	
Lys Lys Pro	Ile Phe 165	ra ra	Ala T	Thr Val 170	Thr	Leu	Glu	Asp	His 175	Leu	
Ala Cys Lys	Cys Glu 180	Thr Val		Ala Ala 185	Arg	Pro	Val	Thr 190	Arg	Ser	
Pro Gly Gly 195	Ser Gln	Glu Gln	Arg A	Ala Lys	Thr	Pro	Gln 205	Thr	Arg	Val	
Thr Ile Arg 210	Thr Val	Arg Val 215	Arg A	Arg Pro	Pro	Lys 220	Gly	Lys	His	Arg	
Lys Phe Lys 225	His Thr	His Asp 230	Lys 1	Thr Ala	Leu 235	Lys	Glu	Thr	Leu	Gly 240	
Ala											
<210 > SEQ II <211 > LENGTH <212 > TYPE: <213 > ORGANI <220 > FEATUH <221 > NAME/H <223 > OTHER <220 > FEATUH <221 > NAME/H	H: 2108 DNA ISM: Hom RE: CEY: mis INFORMA	c_feature TION: PD	∋ GF-C								

```
<222> LOCATION: (2002)..(2002)
<223> OTHER INFORMATION: n = a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (2065)..(2065)
<223> OTHER INFORMATION: n = a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2070)..(2070)
<223> OTHER INFORMATION: n = a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2089)..(2089)
<223> OTHER INFORMATION: n = a, c, g, or t
<400> SEOUENCE: 102
coccegorgt agtgagetet caccecagte agecaaatga geetettegg getteteetg
                                                                      60
gtgacatctg ccctggccgg ccagagacga gggactcagg cggaatccaa cctgagtagt
                                                                     120
aaattccagt tttccagcaa caaggaacag aacggagtac aagatcctca gcatgagaga
                                                                     180
attattactg tgtctactaa tggaagtatt cacagcccaa ggtttcctca tacttatcca
                                                                     240
agaaatacgg tcttggtatg gagattagta gcagtagagg aaaatgtatg gatacaactt
                                                                     300
acgtttgatg aaagatttgg gcttgaagac ccagaagatg acatatgcaa gtatgatttt
gtagaagttg aggaacccag tgatggaact atattagggc gctggtgtgg ttctggtact
                                                                     420
gtaccaggaa aacagatttc taaaggaaat caaattagga taagatttgt atctgatgaa
tattttcctt ctgaaccagg gttctgcatc cactacaaca ttgtcatgcc acaattcaca
gaagetgtga gteetteagt getaceeeet teagetttge caetggaeet gettaataat
                                                                     600
gctataactg cctttagtac cttggaagac cttattcgat atcttgaacc agagagatgg
                                                                     660
caqttqqact taqaaqatct atataqqcca acttqqcaac ttcttqqcaa qqcttttqtt
                                                                     720
                                                                     780
tttggaagaa aatccagagt ggtggatctg aaccttctaa cagaggaggt aagattatac
agctgcacac ctcgtaactt ctcagtgtcc ataagggaag aactaaagag aaccgatacc
                                                                     840
attttctggc caggttgtct cctggttaaa cgctgtggtg ggaactgtgc ctgttgtctc
                                                                     900
cacaattgca atgaatgtca atgtgtccca agcaaagtta ctaaaaaata ccacgaggtc
                                                                     960
                                                                    1020
cttcagttga gaccaaagac cggtgtcagg ggattgcaca aatcactcac cgacgtggcc
ctggagcacc atgaggagtg tgactgtgtg tgcagaggga gcacaggagg atagccgcat
                                                                    1080
caccaccage agetettgee cagagetgtg cagtgeagtg getgatteta ttagagaacg
                                                                    1140
tatgcgttat ctccatcctt aatctcagtt gtttgcttca aggacctttc atcttcagga
                                                                    1200
tttacagtgc attctgaaag aggagacatc aaacagaatt aggagttgtg caacagctct
                                                                    1260
tttgagagga ggcctaaagg acaggagaaa aggtcttcaa tcgtggaaag aaaattaaat
                                                                    1320
gttgtattaa atagatcacc agctagtttc agagttacca tgtacgtatt ccactagctg
                                                                    1380
ggttctgtat ttcagttctt tcgatacggc ttagggtaat gtcagtacag gaaaaaaact
                                                                    1440
gtgcaagtga gcacctgatt ccgttgcctt gcttaactct aaagctccat gtcctgggcc
                                                                    1500
taaaatcgta taaaatctgg attttttttt tttttttgc tcatattcac atatgtaaac
                                                                    1560
cagaacattc tatgtactac aaacctggtt tttaaaaaagg aactatgttg ctatgaatta
                                                                    1620
aacttgtgtc rtgctgatag gacagactgg atttttcata tttcttatta aaatttctgc
                                                                    1680
catttagaag aagagaacta cattcatggt ttggaagaga taaacctgaa aagaagagtg
gccttatctt cactttatcg ataagtcagt ttatttgttt cattgtgtac atttttatat
totoottttg acattataac tgttggottt totaatottg ttaaatatat otatttttac
                                                                    1860
```

-continued

											-	con	tin	ued		
caaa	aggta	att t	aata	attci	t tt	ttat	gaca	a act	taga	atca	acta	attti	ta	gctt	ggtaaa	1920
tttt	tcta	aaa d	cacaa	attgi	t at	cage	cagaç	g gaa	acaaa	agat	ggat	tataa	aaa	atatt	gttgc	1980
cct	ggaca	aaa a	aatao	catgi	ta tr	ntcca	atcc	gga	aatg	gtgc	taga	agtt	gga	ttaaa	acctgc	2040
attt	taaa	aaa a	accto	gaati	g gg	gaan	ggaar	ı ttç	ggtaa	aggt	tgg	ccaa	anc	ttttt	tgaaa	2100
ataa	attaa	a														2108
<211 <212 <213 <220 <221)> FE L> NA	ENGTI (PE : RGAN: EATUI AME / I	H: 34 PRT [SM: RE: KEY:	Homo	o sap C_FE# FION	ATURE	2									
< 400)> SI	EQUEI	ICE :	103												
Met 1	Ser	Leu	Phe	Gly 5	Leu	Leu	Leu	Val	Thr 10	Ser	Ala	Leu	Ala	Gly 15	Gln	
Arg	Arg	Gly	Thr 20	Gln	Ala	Glu	Ser	Asn 25	Leu	Ser	Ser	ГÀз	Phe 30	Gln	Phe	
Ser	Ser	Asn 35	Lys	Glu	Gln	Asn	Gly 40	Val	Gln	Asp	Pro	Gln 45	His	Glu	Arg	
Ile	Ile 50	Thr	Val	Ser	Thr	Asn 55	Gly	Ser	Ile	His	Ser 60	Pro	Arg	Phe	Pro	
His 65	Thr	Tyr	Pro	Arg	Asn 70	Thr	Val	Leu	Val	Trp 75	Arg	Leu	Val	Ala	Val 80	
Glu	Glu	Asn	Val	Trp 85	Ile	Gln	Leu	Thr	Phe 90	Asp	Glu	Arg	Phe	Gly 95	Leu	
Glu	Asp	Pro	Glu 100	Asp	Asp	Ile	Cya	Lys 105	Tyr	Asp	Phe	Val	Glu 110	Val	Glu	
Glu	Pro	Ser 115	Asp	Gly	Thr	Ile	Leu 120	Gly	Arg	Trp	Сув	Gly 125	Ser	Gly	Thr	
Val	Pro 130	Gly	Lys	Gln	Ile	Ser 135	Lys	Gly	Asn	Gln	Ile 140	Arg	Ile	Arg	Phe	
Val 145	Ser	Asp	Glu	Tyr	Phe 150	Pro	Ser	Glu	Pro	Gly 155	Phe	CÀa	Ile	His	Tyr 160	
Asn	Ile	Val	Met	Pro 165	Gln	Phe	Thr	Glu	Ala 170	Val	Ser	Pro	Ser	Val 175	Leu	
Pro	Pro	Ser	Ala 180	Leu	Pro	Leu	Asp	Leu 185	Leu	Asn	Asn	Ala	Ile 190	Thr	Ala	
Phe	Ser	Thr 195	Leu	Glu	Asp	Leu	Ile 200	Arg	Tyr	Leu	Glu	Pro 205	Glu	Arg	Trp	
Gln	Leu 210	Asp	Leu	Glu	Asp	Leu 215	Tyr	Arg	Pro	Thr	Trp 220	Gln	Leu	Leu	Gly	
Lys 225	Ala	Phe	Val	Phe	Gly 230	Arg	Lys	Ser	Arg	Val 235	Val	Asp	Leu	Asn	Leu 240	
Leu	Thr	Glu	Glu	Val 245	Arg	Leu	Tyr	Ser	Суз 250	Thr	Pro	Arg	Asn	Phe 255	Ser	
Val	Ser	Ile	Arg 260	Glu	Glu	Leu	Lys	Arg 265	Thr	Asp	Thr	Ile	Phe 270	Trp	Pro	
Gly	Сув	Leu 275	Leu	Val	Lys	Arg	Сув 280	Gly	Gly	Asn	CÀa	Ala 285	Cys	Cys	Leu	
His	Asn 290	Cys	Asn	Glu	CÀa	Gln 295	Cys	Val	Pro	Ser	300 Lys	Val	Thr	Lys	Lys	

Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Val Arg Gly Leu

				-conti	nued	
305	3:	10	315		320	
His Lys Se:	r Leu Thr As 325	sp Val Ala	Leu Glu His 330	His Glu Gl	u Cya Aap 335	
Cys Val Cy:	s Arg Gly So 340	_	Gly 345			
<220> FEAT	TH: 2253 : DNA NISM: Homo :	Teature				
<400> SEQUI	ENCE: 104					
cgctcggaaa	gttcagcatg	caggaagttt	ggggagagct	cggcgattag	g cacagegace	60
cgggccagcg	cagggcgagc	gcaggcggcg	agagcgcagg	gcggcgcggc	: gtcggtcccg	120
ggagcagaac	ccggcttttt	cttggagcga	cgctgtctct	agtcgctgat	cccaaatgca	180
ccggctcatc	tttgtctaca	ctctaatctg	cgcaaacttt	tgcagctgtc	: gggacacttc	240
tgcaaccccg	cagagegeat	ccatcaaagc	tttgcgcaac	gccaacctca	ı ggcgagatga	300
gagcaatcac	ctcacagact	tgtaccgaag	agatgagacc	atccaggtga	aaggaaacgg	360
ctacgtgcag	agtcctagat	tcccgaacag	ctaccccagg	aacctgctcc	: tgacatggcg	420
gcttcactct	caggagaata	cacggataca	gctagtgttt	gacaatcagt	ttggattaga	480
ggaagcagaa	aatgatatct	gtaggtatga	ttttgtggaa	gttgaagata	ı tatccgaaac	540
cagtaccatt	attagaggac	gatggtgtgg	acacaaggaa	gttcctccaa	ı ggataaaatc	600
aagaacgaac	caaattaaaa	tcacattcaa	gtccgatgac	tactttgtgg	g ctaaacctgg	660
attcaagatt	tattattctt	tgctggaaga	tttccaaccc	gcagcagctt	cagagaccaa	720
ctgggaatct	gtcacaagct	ctatttcagg	ggtatcctat	aactctccat	cagtaacgga	780
teccaetetg	attgcggatg	ctctggacaa	aaaaattgca	gaatttgata	ı cagtggaaga	840
tetgeteaag	tacttcaatc	cagagtcatg	gcaagaagat	cttgagaata	ı tgtatctgga	900
cacccctcgg	tatcgaggca	ggtcatacca	tgaccggaag	tcaaaagttg	, acctggatag	960
gctcaatgat	gatgccaagc	gttacagttg	cactcccagg	aattactcgg	, tcaatataag	1020
					tgcagcgctg	1080
					attcagggaa	1140
					agaggagggg	
					gatgcgattg:	
				_	: taagcctgaa	
					: aaccaaactt	1380
					tgctttgtta	
_					ı taggattgca	
					attcatgtct	1560
					: agagettaca	1620
					. agugeetucu . aatatatgaa	
						1740
acacycett	ayadaatttä	yyayataaat	ccatttttää	accurgaaac	: acaaaacaat	1/40

tttgaatctt gctctcttaa agaaagcatc ttgtatatta aaaatcaaaa gatgaggctt 1800

-continued	
tettacatat acatettagt tgattattaa aaaaggaaaa aggttteeag agaaaaggee	1860
aatacctaag cattttttcc atgagaagca ctgcatactt acctatgtgg actgtaataa	1920
cctgtctcca aaaccatgcc ataataatat aagtgcttta gaaattaaat cattgtgttt	1980
tttatgcatt ttgctgaggc atccttattc atttaacacc tatctcaaaa acttactt	2040
aaggtttttt attatagtcc tacaaaagac aatgtataag ctgtaacaga attttgaatt	2100
gtttttcttt gcaaaacccc tccacaaaag caaatccttt caagaatggc atgggcattc	2160
tgtatgaacc tttccagatg gtgttcagtg aaagatgtgg gtagttgaga acttaaaaag	2220
tgaacattga aacatcgacg taactggaaa ccg	2253
<210> SEQ ID NO 105 <211> LENGTH: 116 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: PDGF-D	
<400> SEQUENCE: 105	
Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu Leu Thr Glu Glu Val 1 10 15	
Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser Val Ser Ile Arg Glu 20 25 30	
Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro Gly Cys Leu Leu Val	
Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu His Asn Cys Asn Glu 50 55 60	
Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys Tyr His Glu Val Leu 65 70 75 80	
Gln Leu Arg Pro Lys Thr Gly Val Arg Gly Leu His Lys Ser Leu Thr 85 90 95	
Asp Val Ala Leu Glu His His Glu Glu Cys Asp Cys Val Cys Arg Gly 100 105 110	
Ser Thr Gly Gly 115	
<210> SEQ ID NO 106 <211> LENGTH: 456 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: hVEGFA109	
<400> SEQUENCE: 106	
atggagacag acacacteet getatgggta etgetgetet gggtteeagg tteeaetggt	60
gacgcggccc aggatcctgg gcagaatcat cacgaagtgg tgaaattcat ggatgtctat	120
cagegeaget actgecatee gategagaea etggtggaea tettecagga ataccetgat	180
gagatcgagt acatetteaa gecateetge gtgeeeetga tgagatgtgg gggttgetge	240
aatgacgaag ggctggagtg cgttcccacc gaggagtcca acatcaccat gcagattatg	300
agaattaaac ctcaccaagg gcagcacatc ggagagatga gctttctcca gcataacaaa	360
tgtgaatgta gaccaaagaa agatttggtc ttcgaacaaa aactcatctc agaagaggat	420
ctgaatagcg ccgtcgacca tcatcatcat catcat	456

-continued

```
<210> SEQ ID NO 107
<211> LENGTH: 152
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<221> NAME/KEY: MISC FEATURE
<223> OTHER INFORMATION: hVEGFA109
<400> SEQUENCE: 107
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro
                                   10
Gly Ser Thr Gly Asp Ala Ala Gln Asp Pro Gly Gln Asn His His Glu
Val Val Lys Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile
Glu Thr Leu Val Asp Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr
Ile Phe Lys Pro Ser Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys
Asn Asp Glu Gly Leu Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr
Met Gln Ile Met Arg Ile Lys Pro His Gln Gly Gln His Ile Gly Glu
Met Ser Phe Leu Gln His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp
Leu Val Phe Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala
Val Asp His His His His His
<210> SEQ ID NO 108
<211> LENGTH: 504
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: hVEGFC109
<400> SEQUENCE: 108
atggagacag acacacteet getatgggta etgetgetet gggtteeagg tteeaetggt
                                                                      60
gacgcggccc agccggccag gcgcgccgta cgaagcttgg taccgagctc ggatccagca
                                                                     120
cattataata cagagatett gaaaagtatt gataatgagt ggagaaagae teaatgeatg
                                                                     180
ccacgggagg tgtgtataga tgtggggaag gagtttggag tcgcgacaaa caccttcttt
                                                                     240
aaacctccat gtgtgtccgt ctacagatgt gggggttgct gcaatagtga ggggctgcag
                                                                     300
tgcatgaaca ccagcacgag ctacctcagc aagacgttat ttgaaattac agtgcctctc
                                                                     360
totcaaggoo ccaaaccagt aacaatcagt tttgccaatc acacttootg ccgatgcatg
                                                                      420
tctaagctgg atttggtctt cgaacaaaaa ctcatctcag aagaggatct gaatagcgcc
                                                                      480
gtcgaccatc atcatcatca tcat
                                                                     504
<210> SEQ ID NO 109
<211> LENGTH: 168
<212> TYPE: PRT
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223 > OTHER INFORMATION: hVEGFC109
```

<400> SEQUENCE: 109

-continued

```
Gly Ser Thr Gly Asp Ala Ala Gln Pro Ala Arg Arg Ala Val Arg Ser
                               25
Leu Val Pro Ser Ser Asp Pro Ala His Tyr Asn Thr Glu Ile Leu Lys
                           40
Ser Ile Asp Asn Glu Trp Arg Lys Thr Gln Cys Met Pro Arg Glu Val
Cys Ile Asp Val Gly Lys Glu Phe Gly Val Ala Thr Asn Thr Phe Phe
Lys Pro Pro Cys Val Ser Val Tyr Arg Cys Gly Gly Cys Cys Asn Ser
Glu Gly Leu Gln Cys Met Asn Thr Ser Thr Ser Tyr Leu Ser Lys Thr
           100
                                105
Leu Phe Glu Ile Thr Val Pro Leu Ser Gln Gly Pro Lys Pro Val Thr
Ile Ser Phe Ala Asn His Thr Ser Cys Arg Cys Met Ser Lys Leu Asp
                       135
Leu Val Phe Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser Ala
Val Asp His His His His His
<210> SEQ ID NO 110
<211> LENGTH: 87
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223 > OTHER INFORMATION: VHD motif
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2)..(23)
<223> OTHER INFORMATION: Xaa = any or unknown amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (24)..(25)
<223> OTHER INFORMATION: Xaa = any amino acid or unknown amino acid or
     nothing
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (27)..(27)
<223> OTHER INFORMATION: Xaa = Proline, Serine or Arginine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (30)..(32)
<223> OTHER INFORMATION: Xaa = any or unknown amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (35)..(35)
<223> OTHER INFORMATION: Xaa = Guanine, Serine, Threonine or Alanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (39)..(44)
<223> OTHER INFORMATION: Xaa = any or unknown amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (46)..(77)
<223> OTHER INFORMATION: Xaa = any or unknown amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (78)..(86)
<223> OTHER INFORMATION: Xaa = any amino acid or unknown amino acid or
     nothing
<400> SEQUENCE: 110
```

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro

```
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro Xaa Cys Val Xaa Xaa Xaa
                             25
Arg Cys Xaa Gly Cys Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa
                         40
70
Xaa Xaa Xaa Xaa Xaa Cys
              85
<210> SEQ ID NO 111
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223 > OTHER INFORMATION: PDGF motif
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa = Proline or Serine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (5)..(7)
<223> OTHER INFORMATION: Xaa = any or unknown amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa = Arginine, Serine, Threonine or Alanine
<400> SEQUENCE: 111
Pro Xaa Cys Val Xaa Xaa Xaa Arg Cys Xaa Gly Cys Cys
              5
<210> SEO ID NO 112
<211> LENGTH: 2772
<212> TYPE: DNA
<213 > ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(2772)
<400> SEQUENCE: 112
atg gag agg ggg ctg ccg ctc ctc tgc gcc gtg ctc gcc ctc gtc ctc Met Glu Arg Gly Leu Pro Leu Leu Cys Ala Val Leu Ala Leu Val Leu
                                                                  48
                                 10
gcc ccg gcc ggc gct ttt cgc aac gat gaa tgt ggc gat act ata aaa
                                                                  96
Ala Pro Ala Gly Ala Phe Arg Asn Asp Glu Cys Gly Asp Thr Ile Lys
           20
                             25
att gaa agc ccc ggg tac ctt aca tct cct ggt tat cct cat tct tat
                                                                 144
Ile Glu Ser Pro Gly Tyr Leu Thr Ser Pro Gly Tyr Pro His Ser Tyr
       35
                          40
                                                                 192
cac cca agt gaa aaa tgc gaa tgg ctg att cag gct ccg gac cca tac
His Pro Ser Glu Lys Cys Glu Trp Leu Ile Gln Ala Pro Asp Pro Tyr
                     55
cag aga att atg atc aac ttc aac cct cac ttc gat ttg gag gac aga
                                                                 240
Gln Arg Ile Met Ile Asn Phe Asn Pro His Phe Asp Leu Glu Asp Arg
gac tgc aag tat gac tac gtg gaa gtc ttc gat gga gaa aat gaa aat
                                                                 288
Asp Cys Lys Tyr Asp Tyr Val Glu Val Phe Asp Gly Glu Asn Glu Asn
```

												0011	O 1111	aoa		
									aag Lys							336
									aaa Lys		_		_		_	384
									tat Tyr							432
									cct Pro							480
									agc Ser 170							528
_				_	_				atc Ile	_	_		_	_		576
									gly ggg							624
									cct Pro							672
									ggt Gly							720
									gac Asp 250							768
									cag Gln							816
		_	_	_	_	_		_	gaa Glu			_				864
-	_			_			_		agc Ser					_		912
									ggg ggg							960
		_				_	_	_	ttg Leu 330			_	_		_	1008
_	-	-			_		-		tca Ser		-		_	_		1056
									gtt Val							1104
									cct Pro							1152
				_	_		_	_	gta Val					_		1200
									act Thr 410							1248

											0011	CIII	aca			
_	_		_	_	ggt Gly	_	_			_			_		1296	
	_	_		_	 tct Ser					_		_			1344	
					aga Arg 455										1392	
_		_	_		 tgg Trp	_				_					1440	
					ata Ile	_	_				_				1488	
					ggg ggg										1536	
	_		_		 tac Tyr	_				_	_		_	_	1584	
					cgc Arg 535										1632	
		_			 ctg Leu					-			_	_	1680	
					gag Glu										1728	
					tgt Cys										1776	
					ttg Leu		_	-	_	-	-	_	_	_	1824	
					ggt Gly 615										1872	
					aag Lys										1920	
					ggt Gly										1968	
					tgg Trp										2016	
					aag Lys										2064	
					tcc Ser 695										2112	
					cct Pro										2160	
					cac His										2208	

		-continued	
7	25	30 735	
		ag gag tac gat cag ctg lu Glu Tyr Asp Gln Leu 750	
		ac tgg aag gaa ggg cgt is Trp Lys Glu Gly Arg 765	
		ag gtg att ttc gag ggc ln Val Ile Phe Glu Gly 780	
		ct gtg gat gac att agt la Val Asp Asp Ile Ser 795	
Asn Asn His Ile S	er Gln Glu Asp Cys A	ca aaa cca gca gac ctg la Lys Pro Ala Asp Leu 10 815	
		aa aca ggg agc acg cca lu Thr Gly Ser Thr Pro 830	
		ac atc tcc agg aag cca sn Ile Ser Arg Lys Pro 845	
		tc atc acc atc ata gcc eu Ile Thr Ile Ile Ala 860	
		tc tgt ggg gtc gtg ctg al Cys Gly Val Val Leu 875	
Cys Ala Cys Trp H	is Asn Gly Met Ser (aa aga aac ttg tct gcc lu Arg Asn Leu Ser Ala 90 895	
		gt gtg aag ttg aaa aaa ly Val Lys Leu Lys Lys 910	
	ag agt act tat tcg o ln Ser Thr Tyr Ser (920		2772
<210> SEQ ID NO 1 <211> LENGTH: 923 <212> TYPE: PRT <213> ORGANISM: H			
<400> SEQUENCE: 1	13		
1 5		la Val Leu Ala Leu Val 0 15	
Ala Pro Ala Gly A 20	la Phe Arg Asn Asp (25	lu Cys Gly Asp Thr Ile 30	Tys
35	40	ro Gly Tyr Pro His Ser 45	
His Pro Ser Glu L 50	ys Cys Glu Trp Leu 1 55	le Gln Ala Pro Asp Pro 60	Tyr
Gln Arg Ile Met I 65	le Asn Phe Asn Pro I 70	is Phe Asp Leu Glu Asp 75	Arg 80
8	5	he Asp Gly Glu Asn Glu 0 95	
Gly His Phe Arg G 100	ly Lys Phe Cys Gly I 105	ys Ile Ala Pro Pro Pro 110	Val

Val	Ser	Ser 115	Gly	Pro	Phe	Leu	Phe 120	Ile	Lys	Phe	Val	Ser 125	Asp	Tyr	Glu
Thr	His 130	Gly	Ala	Gly	Phe	Ser 135	Ile	Arg	Tyr	Glu	Ile 140	Phe	ГÀа	Arg	Gly
Pro 145	Glu	Cys	Ser	Gln	Asn 150	Tyr	Thr	Thr	Pro	Ser 155	Gly	Val	Ile	Lys	Ser 160
Pro	Gly	Phe	Pro	Glu 165	Lys	Tyr	Pro	Asn	Ser 170	Leu	Glu	CAa	Thr	Tyr 175	Ile
Val	Phe	Ala	Pro 180	Lys	Met	Ser	Glu	Ile 185	Ile	Leu	Glu	Phe	Glu 190	Ser	Phe
Asp	Leu	Glu 195	Pro	Asp	Ser	Asn	Pro 200	Pro	Gly	Gly	Met	Phe 205	Cya	Arg	Tyr
Asp	Arg 210	Leu	Glu	Ile	Trp	Asp 215	Gly	Phe	Pro	Asp	Val 220	Gly	Pro	His	Ile
Gly 225	Arg	Tyr	Cys	Gly	Gln 230	Lys	Thr	Pro	Gly	Arg 235	Ile	Arg	Ser	Ser	Ser 240
Gly	Ile	Leu	Ser	Met 245	Val	Phe	Tyr	Thr	Asp 250	Ser	Ala	Ile	Ala	Lys 255	Glu
Gly	Phe	Ser	Ala 260	Asn	Tyr	Ser	Val	Leu 265	Gln	Ser	Ser	Val	Ser 270	Glu	Asp
Phe	Lys	Сув 275	Met	Glu	Ala	Leu	Gly 280	Met	Glu	Ser	Gly	Glu 285	Ile	His	Ser
Asp	Gln 290	Ile	Thr	Ala	Ser	Ser 295	Gln	Tyr	Ser	Thr	Asn 300	Trp	Ser	Ala	Glu
Arg 305	Ser	Arg	Leu	Asn	Tyr 310	Pro	Glu	Asn	Gly	Trp 315	Thr	Pro	Gly	Glu	Asp 320
Ser	Tyr	Arg	Glu	Trp 325	Ile	Gln	Val	Asp	Leu 330	Gly	Leu	Leu	Arg	Phe 335	Val
Thr	Ala	Val	Gly 340	Thr	Gln	Gly	Ala	Ile 345	Ser	Lys	Glu	Thr	150 350	ГÀа	Lys
Tyr	Tyr	Val 355	Lys	Thr	Tyr	Lys	Ile 360	Asp	Val	Ser	Ser	Asn 365	Gly	Glu	Asp
Trp	Ile 370	Thr	Ile	Lys	Glu	Gly 375	Asn	Lys	Pro	Val	Leu 380	Phe	Gln	Gly	Asn
Thr 385	Asn	Pro	Thr	Asp	Val 390	Val	Val	Ala	Val	Phe 395	Pro	Lys	Pro	Leu	Ile 400
Thr	Arg	Phe	Val	Arg 405	Ile	Lys	Pro	Ala	Thr 410	Trp	Glu	Thr	Gly	Ile 415	Ser
Met	Arg	Phe	Glu 420	Val	Tyr	Gly	CAa	Lys 425	Ile	Thr	Asp	Tyr	Pro 430	СЛв	Ser
Gly	Met	Leu 435	Gly	Met	Val	Ser	Gly 440	Leu	Ile	Ser	Asp	Ser 445	Gln	Ile	Thr
Ser	Ser 450	Asn	Gln	Gly	Asp	Arg 455	Asn	Trp	Met	Pro	Glu 460	Asn	Ile	Arg	Leu
Val 465	Thr	Ser	Arg	Ser	Gly 470	Trp	Ala	Leu	Pro	Pro 475	Ala	Pro	His	Ser	Tyr 480
Ile	Asn	Glu	Trp	Leu 485	Gln	Ile	Asp	Leu	Gly 490	Glu	Glu	Lys	Ile	Val 495	Arg
Gly	Ile	Ile	Ile 500	Gln	Gly	Gly	Lys	His 505	Arg	Glu	Asn	ГÀа	Val 510	Phe	Met
Arg	ГЛа	Phe 515	Lys	Ile	Gly	Tyr	Ser 520	Asn	Asn	Gly	Ser	Asp 525	Trp	Lys	Met
Ile	Met	Asp	Asp	Ser	Lys	Arg	Lys	Ala	Lys	Ser	Phe	Glu	Gly	Asn	Asn

	530					535					540				
Asn 545	Tyr	Asp	Thr	Pro	Glu 550	Leu	Arg	Thr	Phe	Pro 555	Ala	Leu	Ser	Thr	Arg 560
Phe	Ile	Arg	Ile	Tyr 565	Pro	Glu	Arg	Ala	Thr 570	His	Gly	Gly	Leu	Gly 575	Leu
Arg	Met	Glu	Leu 580	Leu	Gly	Cys	Glu	Val 585	Glu	Ala	Pro	Thr	Ala 590	Gly	Pro
Thr	Thr	Pro 595	Asn	Gly	Asn	Leu	Val 600	Asp	Glu	Cys	Asp	Asp 605	Asp	Gln	Ala
Asn	Cys 610	His	Ser	Gly	Thr	Gly 615	Asp	Asp	Phe	Gln	Leu 620	Thr	Gly	Gly	Thr
Thr 625	Val	Leu	Ala	Thr	Glu 630	Lys	Pro	Thr	Val	Ile 635	Asp	Ser	Thr	Ile	Gln 640
Ser	Glu	Phe	Pro	Thr 645	Tyr	Gly	Phe	Asn	Сув 650	Glu	Phe	Gly	Trp	Gly 655	Ser
His	ГÀз	Thr	Phe 660	CÀa	His	Trp	Glu	His 665	Asp	Asn	His	Val	Gln 670	Leu	Lys
Trp	Ser	Val 675	Leu	Thr	Ser	Lys	Thr 680	Gly	Pro	Ile	Gln	Asp 685	His	Thr	Gly
Asp	Gly 690	Asn	Phe	Ile	Tyr	Ser 695	Gln	Ala	Asp	Glu	Asn 700	Gln	ГЛа	Gly	ГЛа
Val 705	Ala	Arg	Leu	Val	Ser 710	Pro	Val	Val	Tyr	Ser 715	Gln	Asn	Ser	Ala	His 720
Cys	Met	Thr	Phe	Trp 725	Tyr	His	Met	Ser	Gly 730	Ser	His	Val	Gly	Thr 735	Leu
Arg	Val	ГЛа	Leu 740	Arg	Tyr	Gln	ГЛа	Pro 745	Glu	Glu	Tyr	Asp	Gln 750	Leu	Val
Trp	Met	Ala 755	Ile	Gly	His	Gln	Gly 760	Asp	His	Trp	ГÀа	Glu 765	Gly	Arg	Val
Leu	Leu 770	His	Lys	Ser	Leu	Lys 775	Leu	Tyr	Gln	Val	Ile 780	Phe	Glu	Gly	Glu
Ile 785	Gly	Lys	Gly	Asn	Leu 790	Gly	Gly	Ile	Ala	Val 795	Asp	Asp	Ile	Ser	Ile 800
Asn	Asn	His	Ile	Ser 805	Gln	Glu	Asp	Cys	Ala 810	Lys	Pro	Ala	Asp	Leu 815	Asp
Lys	ГÀа	Asn	Pro 820	Glu	Ile	Lys	Ile	Asp 825	Glu	Thr	Gly	Ser	Thr 830	Pro	Gly
Tyr	Glu	Gly 835	Glu	Gly	Glu	Gly	Asp 840	Lys	Asn	Ile	Ser	Arg 845	Lys	Pro	Gly
Asn	Val 850	Leu	ГÀЗ	Thr	Leu	Glu 855	Pro	Ile	Leu	Ile	Thr 860	Ile	Ile	Ala	Met
Ser 865	Ala	Leu	Gly	Val	Leu 870	Leu	Gly	Ala	Val	Сув 875	Gly	Val	Val	Leu	Tyr 880
Cys	Ala	СЛа	Trp	His 885	Asn	Gly	Met	Ser	Glu 890	Arg	Asn	Leu	Ser	Ala 895	Leu
Glu	Asn	Tyr	Asn 900	Phe	Glu	Leu	Val	Asp 905	Gly	Val	Lys	Leu	Lys 910	Lys	Asp
Lys	Leu	Asn 915	Thr	Gln	Ser	Thr	Tyr 920	Ser	Glu	Ala					

<210> SEQ ID NO 114 <211> LENGTH: 2781 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

												0011	0 111			
<220> <221> <222>	NAN	1Ε/K	EY:		(2	781)										
<400>	SEÇ	QUEN	CE:	114												
atg ga Met As 1																48
aga ca Arg Hi		ln		_				_		_	_			_	_	96
aat to Asn Se	er I															144
tac cc Tyr Pr 50	0 8															192
aac ca Asn Gl 65																240
cac ga His As		-	_		_						_		_	_	_	288
tcc gc Ser Al																336
atc at Ile Il	.е S		_	-		_				_				_		384
gcc cg Ala Ar 13	g	_		_				_	_					_		432
ggc to Gly Se 145																480
gaa to Glu Se																528
ttt ac Phe Th		lle														576
atc tt Ile Ph	ne A	•	_			_		_	_					_	-	624
aag ta Lys Ty 21	r A															672
ctg at Leu Il 225			_		_							_		_		720
tcg ac Ser Th																768
aag ga Lys As		ly				_			_	_						816
gag aa Glu As	n I															864
gct aa	ıt ç	gaa	cag	atc	agt	gcc	tca	tct	acc	tac	tct	gat	999	agg	tgg	912

		-continued	
Ala Asn Glu Gln Ile 290	Ser Ala Ser Ser Thr Tyr 295	Ser Asp Gly Arg Trp 300	
Thr Pro Gln Gln Ser	cgg ctc cat ggt gat gac Arg Leu His Gly Asp Asp 310 315		960
	aag gag tat ctc cag gtg Lys Glu Tyr Leu Gln Val 330		1008
	atc gca aca cag gga gcg Ile Ala Thr Gln Gly Ala 345		1056
	gtc aaa tcc tac aag ctg Val Lys Ser Tyr Lys Leu 360		1104
	gtg tac cgg cat ggc aaa Val Tyr Arg His Gly Lys 375		1152
Gln Ala Asn Asn Asp	gca act gag gtg gtt ctg Ala Thr Glu Val Val Leu 390 395		1200
	ttt gtt aga atc cgc cct Phe Val Arg Ile Arg Pro 410		1248
	ctg gag ctc ttc ggc tgc Leu Glu Leu Phe Gly Cys 425		1296
	ctg ggg atg ctc tca ggc Leu Gly Met Leu Ser Gly 440		1344
	tcc acc cag gaa tac ctc Ser Thr Gln Glu Tyr Leu 455		1392
Ala Arg Leu Val Ser	agc cgc tcg ggc tgg ttc Ser Arg Ser Gly Trp Phe 470 475		1440
	gag tgg ctt cag gta gat Glu Trp Leu Gln Val Asp 490		1488
	atc atc cag gga gcc cgc Ile Ile Gln Gly Ala Arg 505		1536
	aga gca ttt gtg cgc aag Arg Ala Phe Val Arg Lys 520		1584
	gac tgg gaa tac att cag Asp Trp Glu Tyr Ile Gln 535		1632
Gln Pro Lys Leu Phe 545	gaa ggg aac atg cac tat Glu Gly Asn Met His Tyr 550 555	Asp Thr Pro Asp Ile 560	1680
	att ccg gca cag tat gtg Ile Pro Ala Gln Tyr Val 570		1728
	ggg att ggg atg cgg ctg Gly Ile Gly Met Arg Leu 585		1776
	aag ccc acg gta aaa acg Lys Pro Thr Val Lys Thr 600		1824

													a			 	
								ccc Pro							1872		
	_				_	_		gat Asp	_		_	_	_		1920		
								ttc Phe 650							1968		
								cgg Arg							2016		
								gat Asp							2064		
								cag Gln							2112		
								gtg Val							2160		
								ctg Leu 730							2208		
_	_		_	_	_	_	 _	atc Ile	_		-	_			2256		
								ccc Pro							2304		
								aaa Lys							2352		
								gat Asp							2400		
								gac Asp 810							2448		
								gat Asp							2496		
								tct Ser							2544		
	_	_	_		_		_	gat Asp							2592		
								ctg Leu							2640		
	_			_		_		tcg Ser 890		_	_		_	_	2688		
								gag Glu							2736		
								tgc Cys					tga		2781		

<211 <212	L> LE 2> TY	EQ II ENGTH (PE: RGAN)	H: 92 PRT	26	o sar	oiens	3								
		EQUEN			- ~-1										
Met 1	Asp	Met	Phe	Pro 5	Leu	Thr	Trp	Val	Phe 10	Leu	Ala	Leu	Tyr	Phe 15	Ser
Arg	His	Gln	Val 20	Arg	Gly	Gln	Pro	Asp 25	Pro	Pro	CÀa	Gly	Gly 30	Arg	Leu
Asn	Ser	Lys 35	Asp	Ala	Gly	Tyr	Ile 40	Thr	Ser	Pro	Gly	Tyr 45	Pro	Gln	Asp
Tyr	Pro 50	Ser	His	Gln	Asn	Сув 55	Glu	Trp	Ile	Val	Tyr 60	Ala	Pro	Glu	Pro
Asn 65	Gln	Lys	Ile	Val	Leu 70	Asn	Phe	Asn	Pro	His 75	Phe	Glu	Ile	Glu	80 Lys
His	Asp	Cys	Lys	Tyr 85	Asp	Phe	Ile	Glu	Ile 90	Arg	Asp	Gly	Asp	Ser 95	Glu
Ser	Ala	Aap	Leu 100	Leu	Gly	ГÀа	His	Сув 105	Gly	Asn	Ile	Ala	Pro 110	Pro	Thr
Ile	Ile	Ser 115	Ser	Gly	Ser	Met	Leu 120	Tyr	Ile	Lys	Phe	Thr 125	Ser	Asp	Tyr
Ala	Arg 130	Gln	Gly	Ala	Gly	Phe 135	Ser	Leu	Arg	Tyr	Glu 140	Ile	Phe	ГÀа	Thr
Gly 145	Ser	Glu	Asp	Cys	Ser 150	Lys	Asn	Phe	Thr	Ser 155	Pro	Asn	Gly	Thr	Ile 160
Glu	Ser	Pro	Gly	Phe 165	Pro	Glu	Lys	Tyr	Pro 170	His	Asn	Leu	Asp	Суs 175	Thr
Phe	Thr	Ile	Leu 180	Ala	Lys	Pro	Lys	Met 185	Glu	Ile	Ile	Leu	Gln 190	Phe	Leu
Ile	Phe	Asp 195	Leu	Glu	His	Asp	Pro 200	Leu	Gln	Val	Gly	Glu 205	Gly	Asp	CÀa
Lys	Tyr 210	Asp	Trp	Leu	Asp	Ile 215	Trp	Asp	Gly	Ile	Pro 220	His	Val	Gly	Pro
Leu 225	Ile	Gly	Lys	Tyr	Сув 230	Gly	Thr	Lys	Thr	Pro 235	Ser	Glu	Leu	Arg	Ser 240
Ser	Thr	Gly	Ile	Leu 245	Ser	Leu	Thr	Phe	His 250	Thr	Asp	Met	Ala	Val 255	Ala
ГÀв	Asp	Gly	Phe 260	Ser	Ala	Arg	Tyr	Tyr 265	Leu	Val	His	Gln	Glu 270	Pro	Leu
Glu	Asn	Phe 275	Gln	Сув	Asn	Val	Pro 280	Leu	Gly	Met	Glu	Ser 285	Gly	Arg	Ile
Ala	Asn 290	Glu	Gln	Ile	Ser	Ala 295	Ser	Ser	Thr	Tyr	Ser 300	Asp	Gly	Arg	Trp
Thr 305	Pro	Gln	Gln	Ser	Arg 310	Leu	His	Gly	Asp	Asp 315	Asn	Gly	Trp	Thr	Pro 320
Asn	Leu	Asp	Ser	Asn 325	Lys	Glu	Tyr	Leu	Gln 330	Val	Asp	Leu	Arg	Phe 335	Leu
Thr	Met	Leu	Thr 340	Ala	Ile	Ala	Thr	Gln 345	Gly	Ala	Ile	Ser	Arg 350	Glu	Thr
Gln	Asn	Gly 355	Tyr	Tyr	Val	Lys	Ser 360	Tyr	Lys	Leu	Glu	Val 365	Ser	Thr	Asn
Gly	Glu	Asp	Trp	Met	Val	Tyr	Arg	His	Gly	Lys	Asn	His	Lys	Val	Phe

												0011	C III	aca	
	370					375					380				
Gln 385	Ala	Asn	Asn	Asp	Ala 390	Thr	Glu	Val	Val	Leu 395	Asn	ГЛа	Leu	His	Ala 400
Pro	Leu	Leu	Thr	Arg 405	Phe	Val	Arg	Ile	Arg 410	Pro	Gln	Thr	Trp	His 415	Ser
Gly	Ile	Ala	Leu 420	Arg	Leu	Glu	Leu	Phe 425	Gly	Càa	Arg	Val	Thr 430	Asp	Ala
Pro	Cys	Ser 435	Asn	Met	Leu	Gly	Met 440	Leu	Ser	Gly	Leu	Ile 445	Ala	Asp	Ser
Gln	Ile 450	Ser	Ala	Ser	Ser	Thr 455	Gln	Glu	Tyr	Leu	Trp 460	Ser	Pro	Ser	Ala
Ala 465	Arg	Leu	Val	Ser	Ser 470	Arg	Ser	Gly	Trp	Phe 475	Pro	Arg	Ile	Pro	Gln 480
Ala	Gln	Pro	Gly	Glu 485	Glu	Trp	Leu	Gln	Val 490	Asp	Leu	Gly	Thr	Pro 495	Lys
Thr	Val	Lys	Gly 500	Val	Ile	Ile	Gln	Gly 505	Ala	Arg	Gly	Gly	Asp 510	Ser	Ile
Thr	Ala	Val 515	Glu	Ala	Arg	Ala	Phe 520	Val	Arg	Lys	Phe	Lys 525	Val	Ser	Tyr
Ser	Leu 530	Asn	Gly	ГЛа	Asp	Trp 535	Glu	Tyr	Ile	Gln	Asp 540	Pro	Arg	Thr	Gln
Gln 545	Pro	ГЛа	Leu	Phe	Glu 550	Gly	Asn	Met	His	Tyr 555	Asp	Thr	Pro	Asp	Ile 560
Arg	Arg	Phe	Asp	Pro 565	Ile	Pro	Ala	Gln	Tyr 570	Val	Arg	Val	Tyr	Pro 575	Glu
Arg	Trp	Ser	Pro 580	Ala	Gly	Ile	Gly	Met 585	Arg	Leu	Glu	Val	Leu 590	Gly	Cys
Asp	Trp	Thr 595	Asp	Ser	Lys	Pro	Thr 600	Val	Lys	Thr	Leu	Gly 605	Pro	Thr	Val
ГÀа	Ser 610	Glu	Glu	Thr	Thr	Thr 615	Pro	Tyr	Pro	Thr	Glu 620	Glu	Glu	Ala	Thr
Glu 625	Cya	Gly	Glu	Asn	630 GÀa	Ser	Phe	Glu	Asp	Asp 635	ГЛа	Asp	Leu	Gln	Leu 640
Pro	Ser	Gly	Phe	Asn 645	CAa	Asn	Phe	Asp	Phe 650	Leu	Glu	Glu	Pro	Сув 655	Gly
Trp	Met	Tyr	Asp 660	His	Ala	Lys	Trp	Leu 665	Arg	Thr	Thr	Trp	Ala 670	Ser	Ser
Ser	Ser	Pro 675	Asn	Asp	Arg	Thr	Phe 680	Pro	Asp	Asp	Arg	Asn 685	Phe	Leu	Arg
Leu	Gln 690	Ser	Asp	Ser	Gln	Arg 695	Glu	Gly	Gln	Tyr	Ala 700	Arg	Leu	Ile	Ser
Pro 705	Pro	Val	His	Leu	Pro 710	Arg	Ser	Pro	Val	Суs 715	Met	Glu	Phe	Gln	Tyr 720
Gln	Ala	Thr	Gly	Gly 725	Arg	Gly	Val	Ala	Leu 730	Gln	Val	Val	Arg	Glu 735	Ala
Ser	Gln	Glu	Ser 740	ГÀЗ	Leu	Leu	Trp	Val 745	Ile	Arg	Glu	Asp	Gln 750	Gly	Gly
Glu	Trp	Lys 755	His	Gly	Arg	Ile	Ile 760	Leu	Pro	Ser	Tyr	Asp 765	Met	Glu	Tyr
Gln	Ile 770	Val	Phe	Glu	Gly	Val 775	Ile	Gly	Lys	Gly	Arg 780	Ser	Gly	Glu	Ile
Ala 785	Ile	Asp	Asp	Ile	Arg 790	Ile	Ser	Thr	Asp	Val 795	Pro	Leu	Glu	Asn	800 CÀa

Met Glu Pro Ile Ser Ala Phe Ala Val Asp Ile Pro Glu Ile His Glu	
805 810 815	
Arg Glu Gly Tyr Glu Asp Glu Ile Asp Asp Glu Tyr Glu Val Asp Trp 820 825 830	
Ser Asn Ser Ser Ser Ala Thr Ser Gly Ser Gly Ala Pro Ser Thr Asp 835 840 845	
Lys Glu Lys Ser Trp Leu Tyr Thr Leu Asp Pro Ile Leu Ile Thr Ile 850 855 860	
Ile Ala Met Ser Ser Leu Gly Val Leu Leu Gly Ala Thr Cys Ala Gly 865 870 875 880	
Leu Leu Leu Tyr Cys Thr Cys Ser Tyr Ser Gly Leu Ser Ser Arg Ser 885 890 895	
Cys Thr Thr Leu Glu Asn Tyr Asn Phe Glu Leu Tyr Asp Gly Leu Lys 900 905 910	
His Lys Val Lys Met Asn His Gln Lys Cys Cys Ser Glu Ala 915 920 925	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (129)(3398) <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (4476)(4476) <223> OTHER INFORMATION: n is a, c, g, or t <220> FEATURE:	
<pre><221> NAME/KEY: misc_feature <222> LOCATION: (4499) (4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116</pre>	
<222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t	60
<222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116	60 120
<222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg	
<pre><222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg cacgctcttt actccatgtg tgggacattc attgcggaat aacatcggag gagaagtttc ccagagct atg ggg act tcc cat ccg gcg ttc ctg gtc tta ggc tgt ctt</pre>	120
<pre><222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg cacgctcttt actccatgtg tgggacattc attgcggaat aacatcggag gagaagtttc ccagagct atg ggg act tcc cat ccg gcg ttc ctg gtc tta ggc tgt ctt</pre>	120 170
<pre><222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg cacgctcttt actccatgtg tgggacattc attgcggaat aacatcggag gagaagtttc ccagagct atg ggg act tcc cat ccg gcg ttc ctg gtc tta ggc tgt ctt</pre>	120 170 218
<pre><222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg cacgctcttt actccatgtg tgggacattc attgcggaat aacatcggag gagaagtttc ccagagct atg ggg act tcc cat ccg gcg ttc ctg gtc tta ggc tgt ctt</pre>	120 170 218 266
<pre><222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg cacgctcttt actccatgtg tgggacattc attgcggaat aacatcggag gagaagtttc ccagagct atg ggg act tcc cat ccg gcg ttc ctg gtc tta ggc tgt ctt</pre>	120 170 218 266
<pre><222> LOCATION: (4499)(4499) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 116 ttggagctac agggagagaa acagaggagg agactgcaag agatcattgg aggccgtggg cacgctcttt actccatgtg tgggacattc attgcggaat aacatcggag gagaagttc ccagagct atg ggg act tcc cat ccg gcg ttc ctg gtc tta ggc tgt ctt</pre>	120 170 218 266 314

_	ttt Phe	_				_	_	_			_			_	554
_	gat Asp		_				_	_			_				602
	acc Thr 160														650
_	cag Gln								_				_		698
_	acc Thr	_			_	_		_					_		746
	tta Leu														794
	gtg Val														842
	aat Asn 240			_	_							 _			890
	aaa Lys														938
	ıgtg Val														986
	tac Tyr														1034
	aaa Lys														1082
	acc Thr 320														1130
	gtt Val														1178
	aac Asn		_				~							~	1226
	gaa Glu														1274
	gct Ala														1322
_	gat Asp 400	_		_	_				_	_			_		1370
	tcc Ser														1418
	acg Thr														1466

												COII	CIII	aca		
				435					440					445		
	atg Met															1514
	att Ile															1562
	gac Asp 480															1610
	acc Thr															1658
	cga Arg															1706
	gct Ala															1754
	gtc Val															1802
	agg Arg 560															1850
	gac Asp	_	_	_	_			_		_					_	1898
-	gga Gly						_	_							_	1946
	gtt Val															1994
	gtt Val															2042
	gct Ala 640															2090
	aac Asn															2138
	atc Ile															2186
	aag Lys															2234
	gag Glu	_	_				_			_	_	_	_			2282
_	tat Tyr 720	_					_				_		_	-	_	2330
	cag Gln															2378
gtt	tct	aaa	tat	tcc	gac	atc	cag	aga	tca	ctc	tat	gat	cgt	cca	gcc	2426

Val Ser Lys Tyr Ser Asp Ile Gln Arg Ser Leu Tyr Asp Arg Pro Ala 755 760 765	
tca tat aag aag aaa tct atg tta gac tca gaa gtc aaa aac ctc ctt Ser Tyr Lys Lys Lys Ser Met Leu Asp Ser Glu Val Lys Asn Leu Leu 770 780	2474
tca gat gat aac tca gaa ggc ctt act tta ttg gat ttg ttg agc ttc Ser Asp Asp Asn Ser Glu Gly Leu Thr Leu Leu Asp Leu Leu Ser Phe 785 790 795	2522
acc tat caa gtt gcc cga gga atg gag ttt ttg gct tca aaa aat tgt Thr Tyr Gln Val Ala Arg Gly Met Glu Phe Leu Ala Ser Lys Asn Cys 800 805	2570
gtc cac cgt gat ctg gct gct cgc aac gtt ctc ctg gca caa gga aaa Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Leu Ala Gln Gly Lys 815 820 825 830	2618
att gtg aag atc tgt gac ttt ggc ctg gcc aga gac atc atg cat gat Ile Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Met His Asp 835 840 845	2666
tog aac tat gtg tog aaa ggc agt acc ttt ctg ccc gtg aag tgg atg Ser Asn Tyr Val Ser Lys Gly Ser Thr Phe Leu Pro Val Lys Trp Met 850 855 860	2714
gct cct gag agc atc ttt gac aac ctc tac acc aca ctg agt gat gtc Ala Pro Glu Ser Ile Phe Asp Asn Leu Tyr Thr Thr Leu Ser Asp Val 865 870 875	2762
tgg tct tat ggc att ctg ctc tgg gag atc ttt tcc ctt ggt ggc acc Trp Ser Tyr Gly Ile Leu Leu Trp Glu Ile Phe Ser Leu Gly Gly Thr 880 885 890	2810
cet tac eee gge atg atg gtg gat tet act tte tac aat aag ate aag Pro Tyr Pro Gly Met Met Val Asp Ser Thr Phe Tyr Asn Lys Ile Lys 895 900 905 910	2858
agt ggg tac cgg atg gcc aag cct gac cac gct acc agt gaa gtc tac Ser Gly Tyr Arg Met Ala Lys Pro Asp His Ala Thr Ser Glu Val Tyr 915 920 925	2906
gag atc atg gtg aaa tgc tgg aac agt gag ccg gag aag aga ccc tcc Glu Ile Met Val Lys Cys Trp Asn Ser Glu Pro Glu Lys Arg Pro Ser 930 935 940	2954
ttt tac cac ctg agt gag att gtg gag aat ctg ctg cct gga caa tat Phe Tyr His Leu Ser Glu Ile Val Glu Asn Leu Leu Pro Gly Gln Tyr 945 950 955	3002
aaa aag agt tat gaa aaa att cac ctg gac ttc ctg aag agt gac cat Lys Lys Ser Tyr Glu Lys Ile His Leu Asp Phe Leu Lys Ser Asp His 960 965 970	3050
cct gct gtg gca cgc atg cgt gtg gac tca gac aat gca tac att ggt Pro Ala Val Ala Arg Met Arg Val Asp Ser Asp Asn Ala Tyr Ile Gly 975 980 985 990	3098
gtc acc tac aaa aac gag gaa gac aag ctg aag gac tgg gag ggt ggt Val Thr Tyr Lys Asn Glu Glu Asp Lys Leu Lys Asp Trp Glu Gly Gly 995 1000 1005	3146
ctg gat gag cag aga ctg agc gct gac agt ggc tac atc att cct Leu Asp Glu Gln Arg Leu Ser Ala Asp Ser Gly Tyr Ile Ile Pro 1010 1015 1020	3191
ctg cct gac att gac cct gtc cct gag gag gag gac ctg ggc aag Leu Pro Asp Ile Asp Pro Val Pro Glu Glu Glu Asp Leu Gly Lys 1025 1030 1035	3236
agg aac aga cac agc tcg cag acc tct gaa gag agt gcc att gag Arg Asn Arg His Ser Ser Gln Thr Ser Glu Glu Ser Ala Ile Glu 1040 1045 1050	3281
acg ggt tee age agt tee ace tte ate aag aga gag gae gag ace Thr Gly Ser Ser Ser Thr Phe Ile Lys Arg Glu Asp Glu Thr 1055 1060 1065	3326

att gaa gac atc gac atg atg gac gac atc ggc ata gac tct tca Ile Glu Asp Ile Asp Met Met Asp Asp Ile Gly Ile Asp Ser Ser 1070 1075 1080	3371
gac ctg gtg gaa gac agc ttc ctg taa ctggcggatt cgaggggttc Asp Leu Val Glu Asp Ser Phe Leu 1085	3418
cttccacttc tggggccacc tctggatccc gttcagaaaa ccactttatt gcaatgcgga	3478
ggttgagagg aggacttggt tgatgtttaa agagaagttc ccagccaagg gcctcgggga	3538
gcctttctaa atatgaatga atgggatatt ttgaaatgaa ctttgtcagt gttgcctctt	3598
gcaatgcctc agtagcatct cagtggtgtg tgaagtttgg agatagatgg ataagggaat	3658
aataggccac agaaggtgaa ctttctgctt caaggacatt ggtgagagtc caacagacac	3718
aatttatact gcgacagaac ttcagcattg taattatgta aataactcta accacggctg	3778
tgtttagatt gtattaacta tcttctttgg acttctgaag agaccactca atccatccat	3838
gtacttccct cttgaaacct gatgtcagct gctgttgaac tttttaaaga agtgcatgaa	3898
aaaccatttt tgaccttaaa aggtactggt actatagcat tttgctatct tttttagtgt	3958
taaagagata aagaataata attaaccaac cttgtttaat agatttgggt catttagaag	4018
cctgacaact cattttcata ttgtaatcta tgtttataat actactactg ttatcagtaa	4078
tgctaaatgt gtaataatgt aacatgattt ccctccacac aaagcacaat ttaaaaacaa	4138
tccttactaa gtaggtgatg agtttgacag tttttgacat ttatattaaa taacatgttt	4198
ctctataaag tatggtaata gctttagtga attaaattta gttgagcata gagaacaaag	4258
taaaagtagt gttgtccagg aagtcagaat ttttaactgt actgaatagg ttccccaatc	4318
catcgtatta aaaaacaatt aactgccctc tgaaataatg ggattagaaa caaacaaaac	4378
tettaagtee taaaagttet eaatgtagag geataaaeet gtgetgaaca taaettetea	4438
tgtatattac ccaatggaaa atataatgat cagcgcanaa agactggatt tgcagaagtt	4498
ntttttttt tttcttcttg cctgatgaaa gctttggcga ccccaatata tgtattttt	4558
gaatetatga acetgaaaag ggtcacaaag gatgcccaga catcageete ettettteae	4618
cccttacccc aaagagaaag agtttgaaac tcgagaccat aaagatattc tttagtggag	4678
gctggaagtg cattagcctg atcctcagtt ctcaaatgtg tgtggcagcc aggtagacta	4738
gtacctgggt ttccatcctt gagattctga agtatgaagt ctgagggaaa ccagagtctg	4798
tatttttcta aactccctgg ctgttctgat cggccaggtt tcggaaacac tgacttaggt	4858
ttcaggaagt tgccatggga aacaaataat ttgaactttg gaacagggtt cttaagttgg	4918
tgcgtccttc ggatgataaa tttaggaacc gaagtccaat cactgtaaat tacggtagat	4978
cgatcgttaa cgctggaatt aaattgaaag gtcagaatcg actccgactc tttcgatttc	5038
aaaccaaaac tgtccaaaag gttttcattt ctacgatgaa gggtgacata ccccctctaa	5098
cttgaaaggg gcagagggca gaagagcgga gggtgaggta tggggcggtt cctttccgta	5158
catgttttta atacgttaag tcacaaggtt cagagacaca ttggtcgagt cacaaaacca	5218
ccttttttgt aaaattcaaa atgactatta aactccaatc taccctccta cttaacagtg	5278
tagataggtg tgacagtttg tccaaccaca cccaagtaac cgtaagaaac gttatgacga	5338
attaacgact atggtatact tactttgtac ccgacactaa tgacgttagt gacacgatag	5398
cogtotacta ogaaacotto taogtottog ttattattto atgaactgat ggatgaccac	5458
attagagtta cgttcggggt tgaaagaata ggttgaaaaa gtatcattca cgcttctgac	5518
teggtetaac eggttaattt ttettttgga etgateeaag acateteggt taatetgaac	5578

tttatgcaa	a caca	aagatc	ttagt	gtcga	gtt	cgta	.aga	caaa	atago	ga 🤅	gtgag	gaggga	5638
acatgtcgg	a ataa	aacaac	cacga	aacgt	aaa	acta	taa	cgac	cacto	gg a	aacgt	actgt	5698
agtactccg	g ccta	ctttga	agagt	caggt	. cgt	caaa	.ggt	cago	gattg	jtt 1	tacga	ıgggtg	5758
gacttaaac	a tata	ctgacg	taaaca	accca	cac	cacac	aca	aaaç	gtegt	tt a	aaggt	ctaaa	5818
caaaggaaa	a ccgg	aggacg	tttcaç	gaggt	ctt	cttt	taa	acgo	gttag	jaa a	aggat	gaaag	5878
ataaaaata	c tact	gttagt	ttcgg	ccgga	cto	etttg	tga	taaa	acact	ga a	aaaat	ttgct	5938
aatcactac	a ggaa	ttttac	accaga	acggt	taç	gacat	gtt	ttac	cago	jat a	aaaaa	cactt	5998
ctccctgta	t tcta	ttttac	tacaat	atgt	agt	tata	cat	atat	acat	aa a	agata	tatct	6058
gaacctctt	a tgac	ggtttt	gtaaat	tactg	, ttc	gaca	tag	tgad	ggaa	igc a	aaata	itaaaa	6118
aaattgaca	c tatt	aggggt	gtccgt	gtaa	ttç	gacaa	.cgt	gaaa	actt	ac a	aggtt	ttaaa	6178
tataaaatc	t ttat	tatttt	tcttt	ctatg	, aat	gtac	aag	ggtt	ttgt	ta (ccaca	ccact	6238
tacacactc	t tttt	gattga	actato	cccag	ato	ggtta	tgt	ttta	acata	at q	gctta	ıcgggg	6298
acaagtaca	a aaac	aaaatt	ttgcad	cattt	act	tcta	.gaa	atat	aaag	jtt a	attta	ectata	6358
tattaaatt	t cctt	aag											6375
<210> SEQ <211> LEN <212> TYP <213> ORG <400> SEQ	GTH: 1 E: PRT ANISM:	089 Homo s	sapiens	5									
Met Gly T	hr Ser	His Pr	o Ala	Phe	Leu	Val 10	Leu	Gly	Cys	Leu	Leu 15	Thr	
Gly Leu S	er Leu 20	Ile Le	eu Cys	Gln	Leu 25	Ser	Leu	Pro	Ser	Ile 30	Leu	Pro	
Asn Glu A		Lys Va	al Val	Gln 40	Leu	Asn	Ser	Ser	Phe 45	Ser	Leu	Arg	
Cys Phe G 50	ly Glu	Ser Gl	u Val	Ser	Trp	Gln	Tyr	Pro 60	Met	Ser	Glu	Glu	
Glu Ser S 65	er Asp	Val Gl 70		Arg	Asn	Glu	Glu 75	Asn	Asn	Ser	Gly	Leu 80	
Phe Val T	hr Val	Leu Gl 85	u Val	Ser	Ser	Ala 90	Ser	Ala	Ala	His	Thr 95	Gly	
Leu Tyr T	nr Cys 100	Tyr Ty	r Asn	His	Thr 105	Gln	Thr	Glu	Glu	Asn 110	Glu	Leu	
Glu Gly A	rg His 15	Ile Ty	r Ile	Tyr 120	Val	Pro	Asp	Pro	Asp 125	Val	Ala	Phe	
Val Pro L 130	eu Gly	Met Th	nr Asp 135	Tyr	Leu	Val	Ile	Val 140	Glu	Asp	Asp	Asp	
Ser Ala I 145	le Ile	Pro Cy 15		Thr	Thr	Asp	Pro 155	Glu	Thr	Pro	Val	Thr 160	
Leu His A	sn Ser	Glu Gl 165	y Val	Val	Pro	Ala 170	Ser	Tyr	Asp	Ser	Arg 175	Gln	
Gly Phe A	sn Gly 180	Thr Ph	ne Thr	Val	Gly 185	Pro	Tyr	Ile	CÀa	Glu 190	Ala	Thr	
Val Lys G 1	ly Lys 95	Lys Ph	ne Gln	Thr 200	Ile	Pro	Phe	Asn	Val 205	Tyr	Ala	Leu	
				200									

												0011	CIII	aca	
Tyr 225	Lys	Ser	Gly	Glu	Thr 230	Ile	Val	Val	Thr	Сув 235	Ala	Val	Phe	Asn	Asn 240
Glu	Val	Val	Asp	Leu 245	Gln	Trp	Thr	Tyr	Pro 250	Gly	Glu	Val	Lys	Gly 255	Lys
Gly	Ile	Thr	Met 260	Leu	Glu	Glu	Ile	Lys 265	Val	Pro	Ser	Ile	Lys 270	Leu	Val
Tyr	Thr	Leu 275	Thr	Val	Pro	Glu	Ala 280	Thr	Val	Lys	Asp	Ser 285	Gly	Asp	Tyr
Glu	Cys 290	Ala	Ala	Arg	Gln	Ala 295	Thr	Arg	Glu	Val	300 Tàs	Glu	Met	Lys	Lys
Val 305	Thr	Ile	Ser	Val	His 310	Glu	Lys	Gly	Phe	Ile 315	Glu	Ile	Lys	Pro	Thr 320
Phe	Ser	Gln	Leu	Glu 325	Ala	Val	Asn	Leu	His 330	Glu	Val	Lys	His	Phe 335	Val
Val	Glu	Val	Arg 340	Ala	Tyr	Pro	Pro	Pro 345	Arg	Ile	Ser	Trp	Leu 350	Lys	Asn
Asn	Leu	Thr 355	Leu	Ile	Glu	Asn	Leu 360	Thr	Glu	Ile	Thr	Thr 365	Asp	Val	Glu
Lys	Ile 370	Gln	Glu	Ile	Arg	Tyr 375	Arg	Ser	Lys	Leu	380	Leu	Ile	Arg	Ala
185 385	Glu	Glu	Asp	Ser	Gly 390	His	Tyr	Thr	Ile	Val 395	Ala	Gln	Asn	Glu	Asp 400
Ala	Val	Lys	Ser	Tyr 405	Thr	Phe	Glu	Leu	Leu 410	Thr	Gln	Val	Pro	Ser 415	Ser
Ile	Leu	Asp	Leu 420	Val	Asp	Asp	His	His 425	Gly	Ser	Thr	Gly	Gly 430	Gln	Thr
Val	Arg	Cys 435	Thr	Ala	Glu	Gly	Thr 440	Pro	Leu	Pro	Asp	Ile 445	Glu	Trp	Met
Ile	Cys 450	ГЛа	Asp	Ile	ГÀа	Lys 455	CÀa	Asn	Asn	Glu	Thr 460	Ser	Trp	Thr	Ile
Leu 465	Ala	Asn	Asn	Val	Ser 470	Asn	Ile	Ile	Thr	Glu 475	Ile	His	Ser	Arg	Asp 480
Arg	Ser	Thr	Val	Glu 485	Gly	Arg	Val	Thr	Phe 490	Ala	ГÀв	Val	Glu	Glu 495	Thr
Ile	Ala	Val	Arg 500	CAa	Leu	Ala	Lys	Asn 505	Leu	Leu	Gly	Ala	Glu 510	Asn	Arg
Glu	Leu	Lys 515	Leu	Val	Ala	Pro	Thr 520	Leu	Arg	Ser	Glu	Leu 525	Thr	Val	Ala
Ala	Ala 530	Val	Leu	Val	Leu	Leu 535	Val	Ile	Val	Ile	Ile 540	Ser	Leu	Ile	Val
Leu 545	Val	Val	Ile	Trp	Lys 550	Gln	Lys	Pro	Arg	Tyr 555	Glu	Ile	Arg	Trp	Arg 560
Val	Ile	Glu	Ser	Ile 565	Ser	Pro	Asp	Gly	His 570	Glu	Tyr	Ile	Tyr	Val 575	Asp
Pro	Met	Gln	Leu 580	Pro	Tyr	Asp	Ser	Arg 585	Trp	Glu	Phe	Pro	Arg 590	Asp	Gly
Leu	Val	Leu 595	Gly	Arg	Val	Leu	Gly 600	Ser	Gly	Ala	Phe	Gly 605	Lys	Val	Val
Glu	Gly 610	Thr	Ala	Tyr	Gly	Leu 615	Ser	Arg	Ser	Gln	Pro 620	Val	Met	Lys	Val
Ala 625	Val	Lys	Met	Leu	Lys	Pro	Thr	Ala	Arg	Ser 635	Ser	Glu	Lys	Gln	Ala 640
Leu	Met	Ser	Glu	Leu	Lys	Ile	Met	Thr	His	Leu	Gly	Pro	His	Leu	Asn

				645					650					655	
Ile	Val	Asn	Leu 660	Leu	Gly	Ala	Cys	Thr 665	Lys	Ser	Gly	Pro	Ile 670	Tyr	Ile
Ile	Thr	Glu 675	Tyr	CAa	Phe	Tyr	Gly 680	Asp	Leu	Val	Asn	Tyr 685	Leu	His	ГЛа
Asn	Arg 690	Asp	Ser	Phe	Leu	Ser 695	His	His	Pro	Glu	Lys 700	Pro	Lys	Lys	Glu
Leu 705	Asp	Ile	Phe	Gly	Leu 710	Asn	Pro	Ala	Asp	Glu 715	Ser	Thr	Arg	Ser	Tyr 720
Val	Ile	Leu	Ser	Phe 725	Glu	Asn	Asn	Gly	Asp 730	Tyr	Met	Asp	Met	Lys 735	Gln
Ala	Asp	Thr	Thr 740	Gln	Tyr	Val	Pro	Met 745	Leu	Glu	Arg	Lys	Glu 750	Val	Ser
Lys	Tyr	Ser 755	Asp	Ile	Gln	Arg	Ser 760	Leu	Tyr	Asp	Arg	Pro 765	Ala	Ser	Tyr
Lys	Lys 770	Lys	Ser	Met	Leu	Asp 775	Ser	Glu	Val	Lys	Asn 780	Leu	Leu	Ser	Asp
Asp 785	Asn	Ser	Glu	Gly	Leu 790	Thr	Leu	Leu	Asp	Leu 795	Leu	Ser	Phe	Thr	Tyr 800
Gln	Val	Ala	Arg	Gly 805	Met	Glu	Phe	Leu	Ala 810	Ser	Lys	Asn	Cys	Val 815	His
Arg	Asp	Leu	Ala 820	Ala	Arg	Asn	Val	Leu 825	Leu	Ala	Gln	Gly	830	Ile	Val
ГÀа	Ile	Cys 835	Asp	Phe	Gly	Leu	Ala 840	Arg	Asp	Ile	Met	His 845	Asp	Ser	Asn
Tyr	Val 850	Ser	ГÀа	Gly	Ser	Thr 855	Phe	Leu	Pro	Val	860	Trp	Met	Ala	Pro
Glu 865	Ser	Ile	Phe	Asp	Asn 870	Leu	Tyr	Thr	Thr	Leu 875	Ser	Asp	Val	Trp	Ser 880
Tyr	Gly	Ile	Leu	Leu 885	Trp	Glu	Ile	Phe	Ser 890	Leu	Gly	Gly	Thr	Pro 895	Tyr
Pro	Gly	Met	Met 900	Val	Asp	Ser	Thr	Phe 905	Tyr	Asn	Lys	Ile	Lys 910	Ser	Gly
Tyr	Arg	Met 915	Ala	ГÀа	Pro	Asp	His 920	Ala	Thr	Ser	Glu	Val 925	Tyr	Glu	Ile
Met	Val 930	Lys	Cha	Trp	Asn	Ser 935	Glu	Pro	Glu	Lys	Arg 940	Pro	Ser	Phe	Tyr
His 945	Leu	Ser	Glu	Ile	Val 950	Glu	Asn	Leu	Leu	Pro 955	Gly	Gln	Tyr	Lys	Lys 960
Ser	Tyr	Glu	ГÀЗ	Ile 965	His	Leu	Asp	Phe	Leu 970	Lys	Ser	Asp	His	Pro 975	Ala
Val	Ala	Arg	Met 980	Arg	Val	Asp	Ser	Asp 985	Asn	Ala	Tyr	Ile	Gly 990	Val	Thr
Tyr	Lys	Asn 995	Glu	Glu	Asp	ГÀЗ	Leu 1000		a Asp	o Trj	o Gli	1 Gly		ly Le	eu Asp
Glu	Gln 1010		g Let	ı Se:	r Ala	a Ası 101		∍r G	∟у ту	yr I		le 1 020	Pro I	Leu I	Pro
Asp	Ile 1025	_	Pro	o Vai	l Pro	Glu 103		lu G	Lu As	ap L		ly 1 035	Lys <i>I</i>	Arg <i>l</i>	Asn
Arg	His 1040		r Sei	r Glı	n Thi	r Sei 104		lu G	Lu Se	er A		le (050	Glu T	Thr (Gly
Ser	Ser 1059		r Sei	r Th:	r Phe	∋ Ile 100	_	ys Ai	rg GI	lu A		lu '	Thr 1	Ile (Glu

Asp	Ile 1070) Met	. Met	. Asl	Asp 107		Le G	ly II	Le As		er 5	Ser A	Asp I	Leu	
Val	Glu 1085		Sei	r Phe	e Let	1										
<213 <213 <213 <220 <223 <223	D> SE L> LE 2> TY 3> OF D> FE L> NA C2> LO	ENGTH (PE: (GAN) EATUH AME/H OCAT)	H: 54 DNA ISM: RE: REY:	Homo CDS (18												
tgti	ctcc	ctg a	agcct	tcaç	gg ag	geet	gcaco	c agt	cctç	gcct	gtc	ettet	ac t	cago	ctgtta	60
CCC	actct	gg g	gacca	agcag	gt ct	ttct	gata	a act	ggga	agag	ggca	agtaa	agg a	aggad	cttcct	120
gga	99999	gtg a	actgt	ccaç	ga go	ctg	gaact	gtg	gecea	acac	caga	agco	cat o	cagca	agcaag	180
gaca	acc a N	/let /				ly A			cca q Pro <i>P</i>	Ala I						228
	ctg Leu															276
	ggc Gly															324
	agc Ser															372
	cgg Arg															420
	acc Thr 80															468
	gga Gly															516
-	gag Glu										_					564
	ctc Leu															612
	gag Glu					_	_	_		_		_	_			660
	ctg Leu 160															708
	caa Gln															756
	acc Thr															804
	aga Arg		_						_				_		-	852

		_	_	_	 gag Glu				_	_				900
					ttc Phe 245									948
					gtg Val									996
					cac His									1044
				_	gtg Val	_	 _			_		_	_	1092
					acc Thr									1140
_					cta Leu 325		_		_			_		1188
	_	_	_		gag Glu	_		_			_	_		1236
					ctg Leu									1284
					tcg Ser									1332
					gca Ala									1380
			_	_	 gtc Val 405	_			_		_			1428
					gag Glu									1476
					cgt Arg									1524
					gac Asp									1572
					agt Ser									1620
					gag Glu 485									1668
					gat Asp									1716
					gac Asp									1764
					gtg Val									1812

												2011		u		
			530					535					540			
					tcc Ser						_			_	_	1860
					atc Ile											1908
					atc Ile 580											1956
					ccg Pro											2004
					gly ggg											2052
					acg Thr											2100
	_	_	_	_	gag Glu	_		_		_	_		_	_		2148
_	_				ccc Pro 660		_		-	_		_	_		_	2196
					ccc Pro											2244
	_	_		_	tac Tyr	_		_						_	-	2292
					cgc Arg											2340
					ctc Leu											2388
					tac Tyr 740											2436
					gac Asp											2484
					atg Met											2532
					cga Arg											2580
					gtg Val											2628
					aag Lys 820											2676
					gaa Glu											2724
ctg	gct	cga	gac	atc	atg	cgg	gac	tcg	aat	tac	atc	tcc	aaa	ggc	agc	2772

Leu Ala Arg Asp Ile Met Arg Asp Ser Asn Tyr Ile Ser Lys Gly Ser 850 855 860	
acc ttt ttg cct tta aag tgg atg gct ccg gag agc atc ttc aac agc Thr Phe Leu Pro Leu Lys Trp Met Ala Pro Glu Ser Ile Phe Asn Ser 865 870 875	2820
ctc tac acc acc ctg agc gac gtg tgg tcc ttc ggg atc ctg ctc tgg Leu Tyr Thr Thr Leu Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Trp 880 885 890	2868
gag atc ttc acc ttg ggt ggc acc cct tac cca gag ctg ccc atg aac Glu Ile Phe Thr Leu Gly Gly Thr Pro Tyr Pro Glu Leu Pro Met Asn 895 900 905 910	2916
gag cag ttc tac aat gcc atc aaa cgg ggt tac cgc atg gcc cag cct Glu Gln Phe Tyr Asn Ala Ile Lys Arg Gly Tyr Arg Met Ala Gln Pro 915 920 925	2964
gcc cat gcc tcc gac gag atc tat gag atc atg cag aag tgc tgg gaa Ala His Ala Ser Asp Glu Ile Tyr Glu Ile Met Gln Lys Cys Trp Glu 930 935 940	3012
gag aag ttt gag att cgg ccc ccc ttc tcc cag ctg gtg ctg ctt ctc Glu Lys Phe Glu Ile Arg Pro Pro Phe Ser Gln Leu Val Leu Leu Leu 945 950 955	3060
gag aga ctg ttg ggc gaa ggt tac aaa aag aag tac cag cag gtg gat Glu Arg Leu Leu Gly Glu Gly Tyr Lys Lys Lys Tyr Gln Gln Val Asp 960 965 970	3108
gag gag ttt ctg agg agt gac cac cca gcc atc ctt cgg tcc cag gcc Glu Glu Phe Leu Arg Ser Asp His Pro Ala Ile Leu Arg Ser Gln Ala 975 980 985 990	3156
cgc ttg cct ggg ttc cat ggc ctc cga tct ccc ctg gac acc agc tcc Arg Leu Pro Gly Phe His Gly Leu Arg Ser Pro Leu Asp Thr Ser Ser 995 1000 1005	3204
gtc ctc tat act gcc gtg cag ccc aat gag ggt gac aac gac tat Val Leu Tyr Thr Ala Val Gln Pro Asn Glu Gly Asp Asn Asp Tyr 1010 1015 1020	3249
atc atc ccc ctg cct gac ccc aaa cct gag gtt gct gac gag ggc Ile Ile Pro Leu Pro Asp Pro Lys Pro Glu Val Ala Asp Glu Gly 1025 1030 1035	3294
cca ctg gag ggt tcc ccc agc cta gcc agc tcc acc ctg aat gaa Pro Leu Glu Gly Ser Pro Ser Leu Ala Ser Ser Thr Leu Asn Glu 1040 1045 1050	3339
gtc aac acc tcc tca acc atc tcc tgt gac agc ccc ctg gag ccc Val Asn Thr Ser Ser Thr Ile Ser Cys Asp Ser Pro Leu Glu Pro 1055 1060 1065	3384
cag gac gaa cca gag cca gag ccc cag ctt gag ctc cag gtg gag Gln Asp Glu Pro Glu Pro Glu Pro Gln Leu Glu Leu Gln Val Glu 1070 1075 1080	3429
ccg gag ccg gag ctg gaa cag ttg ccg gat tcg ggg tgc cct gcg Pro Glu Pro Glu Leu Glu Gln Leu Pro Asp Ser Gly Cys Pro Ala 1085 1090 1095	3474
cct cgg gcg gaa gca gag gat agc ttc ctg tag ggggctggcc Pro Arg Ala Glu Ala Glu Asp Ser Phe Leu 1100 1105	3517
cctaccetge cctgcctgaa gctcccccge tgccagcace cagcatetee tggcctggcc	3577
tggccgggct tcctgtcagc caggctgccc ttatcagctg tccccttctg gaagctttct	3637
gctcctgacg tgttgtgccc caaaccctgg ggctggctta ggaggcaaga aaactgcagg	3697
ggccgtgacc agccctctgc ctccagggag gccaactgac tctgagccag ggttccccca	3757
gggaactcag ttttcccata tgtaagatgg gaaagttagg cttgatgacc cagaatctag	3817
gattetetee etggetgaca ggtggggaga eegaateeet eeetgggaag attettggag	3877

-continued

3937

ctctctcctc gcacttttat	ccacccagga	gctagggaag	agaccctagc ctc	cctggct 3997
gctggctgag ctagggccta	gccttgagca	gtgttgcctc	atccagaaga aag	ccagtct 4057
cctccctatg atgccagtcc	ctgcgttccc	tggcccgagc	tggtctgggg cca	ttaggca 4117
gcctaattaa tgctggaggc	tgagccaagt	acaggacacc	cccagcctgc ago	ccttgcc 4177
cagggcactt ggagcacacg	cagccatagc	aagtgcctgt	gtccctgtcc ttc	aggccca 4237
tcagtcctgg ggctttttct	ttatcaccct	cagtcttaat	ccatccacca gag	tctagaa 4297
ggccagacgg gccccgcatc	tgtgatgaga	atgtaaatgt	gccagtgtgg agt	ggccacg 4357
tgtgtgtgcc agatatggcc	ctggctctgc	attggacctg	ctatgaggct ttg	gaggaat 4417
ccctcaccct ctctgggcct	cagtttcccc	ttcaaaaaat	gaataagtcg gac	ttattaa 4477
ctctgagtgc cttgccagca	ctaacattct	agagtatcca	ggtggttgca cat	ttgtcca 4537
gatgaagcaa ggccatatac	cctaaacttc	catcctgggg	gtcagctggg ctc	ctgggag 4597
attccagatc acacatcaca	ctctggggac	tcaggaacca	tgccccttcc cca	ggcccc 4657
agcaagtctc aagaacacag	ctgcacaggc	cttgacttag	agtgacagcc ggt	gtcctgg 4717
aaagccccca gcagctgccc	cagggacatg	ggaagaccac	gggacctctt tca	ctaccca 4777
cgatgacctc cgggggtatc	ctgggcaaaa	gggacaaaga	gggcaaatga gat	cacctcc 4837
tgcagcccac cactccagca	cctgtgccga	ggtctgcgtc	gaagacagaa tgg	acagtga 4897
ggacagttat gtcttgtaaa	agacaagaag	cttcagatgg	gtaccccaag aag	gatgtga 4957
gaggtgggcg ctttggaggt	ttgcccctca	cccaccagct	gccccatccc tga	ggcagcg 5017
ctccatgggg gtatggtttt	gtcactgccc	agacctagca	gtgacatctc att	gtcccca 5077
gcccagtggg cattggaggt	gccaggggag	tcagggttgt	agccaagacg ccc	ccgcacg 5137
gggagggttg ggaagggggt	gcaggaagct	caacccctct	gggcaccaac cct	gcattgc 5197
aggttggcac cttacttccc	tgggatccca	gagttggtcc	aaggagggag agt	gggttct 5257
caatacggta ccaaagatat	aatcacctag	gtttacaaat	atttttagga ctc	acgttaa 5317
ctcacattta tacagcagaa	atgctatttt	gtatgctgtt	aagtttttct atc	tgtgtac 5377
tttttttaa gggaaagatt	ttaatattaa	acctggtgct	tctcactcac	5427
<210> SEQ ID NO 119 <211> LENGTH: 1106 <212> TYPE: PRT <213> ORGANISM: Homo	sapiens			
<400> SEQUENCE: 119				
Met Arg Leu Pro Gly A 1 5	la Met Pro	Ala Leu Ala 10	Leu Lys Gly Gl 15	
Leu Leu Leu Ser Leu L 20		Leu Glu Pro 25	Gln Ile Ser Gl 30	n Gly
Leu Val Val Thr Pro P 35	ro Gly Pro 40	Glu Leu Val	Leu Asn Val Se 45	r Ser
Thr Phe Val Leu Thr C	ys Ser Gly 55	Ser Ala Pro	Val Val Trp Gl 60	u Arg
Met Ser Gln Glu Pro P 65 7		Met Ala Lys 75	Ala Gln Asp Gl	y Thr 80
Phe Ser Ser Val Leu T. 85	hr Leu Thr	Asn Leu Thr 90	Gly Leu Asp Th	
Glu Tyr Phe Cys Thr H	is Asn Asp	Ser Arg Gly	Leu Glu Thr As	p Glu

ttactgaggt ggtaaattaa ctttttctg ttcagccagc tacccctcaa ggaatcatag

			100					105					110		
Arg	Lys	Arg 115	Leu	Tyr	Ile	Phe	Val 120	Pro	Asp	Pro	Thr	Val 125	Gly	Phe	Leu
Pro	Asn 130	Asp	Ala	Glu	Glu	Leu 135	Phe	Ile	Phe	Leu	Thr 140	Glu	Ile	Thr	Glu
Ile 145	Thr	Ile	Pro	CAa	Arg 150	Val	Thr	Asp	Pro	Gln 155	Leu	Val	Val	Thr	Leu 160
His	Glu	Lys	ГЛа	Gly 165	Asp	Val	Ala	Leu	Pro 170	Val	Pro	Tyr	Asp	His 175	Gln
Arg	Gly	Phe	Ser 180	Gly	Ile	Phe	Glu	Asp 185	Arg	Ser	Tyr	Ile	Cys 190	Lys	Thr
Thr	Ile	Gly 195	Asp	Arg	Glu	Val	Asp 200	Ser	Asp	Ala	Tyr	Tyr 205	Val	Tyr	Arg
Leu	Gln 210	Val	Ser	Ser	Ile	Asn 215	Val	Ser	Val	Asn	Ala 220	Val	Gln	Thr	Val
Val 225	Arg	Gln	Gly	Glu	Asn 230	Ile	Thr	Leu	Met	Сув 235	Ile	Val	Ile	Gly	Asn 240
Asp	Val	Val	Asn	Phe 245	Glu	Trp	Thr	Tyr	Pro 250	Arg	ГÀз	Glu	Ser	Gly 255	Arg
Leu	Val	Glu	Pro 260	Val	Thr	Asp	Phe	Leu 265	Leu	Asp	Met	Pro	Tyr 270	His	Ile
Arg	Ser	Ile 275	Leu	His	Ile	Pro	Ser 280	Ala	Glu	Leu	Glu	Asp 285	Ser	Gly	Thr
Tyr	Thr 290	Сув	Asn	Val	Thr	Glu 295	Ser	Val	Asn	Asp	His 300	Gln	Asp	Glu	Lys
Ala 305	Ile	Asn	Ile	Thr	Val 310	Val	Glu	Ser	Gly	Tyr 315	Val	Arg	Leu	Leu	Gly 320
Glu	Val	Gly	Thr	Leu 325	Gln	Phe	Ala	Glu	Leu 330	His	Arg	Ser	Arg	Thr 335	Leu
Gln	Val	Val	Phe 340	Glu	Ala	Tyr	Pro	Pro 345	Pro	Thr	Val	Leu	Trp 350	Phe	Lys
Asp	Asn	Arg 355	Thr	Leu	Gly	Asp	Ser 360	Ser	Ala	Gly	Glu	Ile 365	Ala	Leu	Ser
Thr	Arg 370	Asn	Val	Ser	Glu	Thr 375	Arg	Tyr	Val	Ser	Glu 380	Leu	Thr	Leu	Val
Arg 385	Val	Lys	Val	Ala	Glu 390	Ala	Gly	His	Tyr	Thr 395	Met	Arg	Ala	Phe	His 400
Glu	Asp	Ala	Glu	Val 405	Gln	Leu	Ser	Phe	Gln 410	Leu	Gln	Ile	Asn	Val 415	Pro
Val	Arg	Val	Leu 420	Glu	Leu	Ser	Glu	Ser 425	His	Pro	Asp	Ser	Gly 430	Glu	Gln
Thr	Val	Arg 435	СЛа	Arg	Gly	Arg	Gly 440	Met	Pro	Gln	Pro	Asn 445	Ile	Ile	Trp
Ser	Ala 450	Сла	Arg	Asp	Leu	Lys 455	Arg	CAa	Pro	Arg	Glu 460	Leu	Pro	Pro	Thr
Leu 465	Leu	Gly	Asn	Ser	Ser 470	Glu	Glu	Glu	Ser	Gln 475	Leu	Glu	Thr	Asn	Val 480
Thr	Tyr	Trp	Glu	Glu 485	Glu	Gln	Glu	Phe	Glu 490	Val	Val	Ser	Thr	Leu 495	Arg
Leu	Gln	His	Val 500	Asp	Arg	Pro	Leu	Ser 505	Val	Arg	CÀa	Thr	Leu 510	Arg	Asn
Ala	Val	Gly 515	Gln	Asp	Thr	Gln	Glu 520	Val	Ile	Val	Val	Pro 525	His	Ser	Leu

Pro	Phe	Lys	Val	Val	Val		Ser	Ala	Ile	Leu		Leu	Val	Val	Leu
Thr	530 Ile	Ile	Ser	Leu	Ile	535 Ile	Leu	Ile	Met	Leu	540 Trp	Gln	Lys	Lys	Pro
545					550					555	Ī		-	-	560
Arg	Tyr	Glu	Ile	Arg 565	Trp	Lys	Val	Ile	Glu 570	Ser	Val	Ser	Ser	Asp 575	Gly
His	Glu	Tyr	Ile 580	Tyr	Val	Asp	Pro	Met 585	Gln	Leu	Pro	Tyr	Asp 590	Ser	Thr
Trp	Glu	Leu 595	Pro	Arg	Asp	Gln	Leu 600	Val	Leu	Gly	Arg	Thr 605	Leu	Gly	Ser
Gly	Ala 610	Phe	Gly	Gln	Val	Val 615	Glu	Ala	Thr	Ala	His 620	Gly	Leu	Ser	His
Ser 625	Gln	Ala	Thr	Met	630 Lys	Val	Ala	Val	Lys	Met 635	Leu	Lys	Ser	Thr	Ala 640
Arg	Ser	Ser	Glu	Lys 645	Gln	Ala	Leu	Met	Ser 650	Glu	Leu	Lys	Ile	Met 655	Ser
His	Leu	Gly	Pro 660	His	Leu	Asn	Val	Val 665	Asn	Leu	Leu	Gly	Ala 670	CAa	Thr
ГЛа	Gly	Gly 675	Pro	Ile	Tyr	Ile	Ile 680	Thr	Glu	Tyr	СЛа	Arg 685	Tyr	Gly	Asp
Leu	Val 690	Asp	Tyr	Leu	His	Arg 695	Asn	Lys	His	Thr	Phe 700	Leu	Gln	His	His
Ser 705	Asp	Lys	Arg	Arg	Pro 710	Pro	Ser	Ala	Glu	Leu 715	Tyr	Ser	Asn	Ala	Leu 720
Pro	Val	Gly	Leu	Pro 725	Leu	Pro	Ser	His	Val 730	Ser	Leu	Thr	Gly	Glu 735	Ser
Asp	Gly	Gly	Tyr 740	Met	Asp	Met	Ser	Lys 745	Asp	Glu	Ser	Val	Asp 750	Tyr	Val
Pro	Met	Leu 755	Asp	Met	Lys	Gly	Asp 760	Val	Lys	Tyr	Ala	Asp 765	Ile	Glu	Ser
Ser	Asn 770	Tyr	Met	Ala	Pro	Tyr 775	Aap	Asn	Tyr	Val	Pro 780	Ser	Ala	Pro	Glu
Arg 785	Thr	Cys	Arg	Ala	Thr 790	Leu	Ile	Asn	Glu	Ser 795	Pro	Val	Leu	Ser	Tyr 800
Met	Asp	Leu	Val	Gly 805	Phe	Ser	Tyr	Gln	Val 810	Ala	Asn	Gly	Met	Glu 815	Phe
Leu	Ala	Ser	Lys 820	Asn	CAa	Val	His	Arg 825	Asp	Leu	Ala	Ala	Arg 830	Asn	Val
Leu	Ile	Cys 835	Glu	Gly	Lys	Leu	Val 840	Lys	Ile	Сла	Asp	Phe 845	Gly	Leu	Ala
Arg	Asp 850	Ile	Met	Arg	Asp	Ser 855	Asn	Tyr	Ile	Ser	860 Lys	Gly	Ser	Thr	Phe
Leu 865	Pro	Leu	Lys	Trp	Met 870	Ala	Pro	Glu	Ser	Ile 875	Phe	Asn	Ser	Leu	Tyr 880
Thr	Thr	Leu	Ser	Asp 885	Val	Trp	Ser	Phe	Gly 890	Ile	Leu	Leu	Trp	Glu 895	Ile
Phe	Thr	Leu	Gly 900	Gly	Thr	Pro	Tyr	Pro 905	Glu	Leu	Pro	Met	Asn 910	Glu	Gln
Phe	Tyr	Asn 915	Ala	Ile	ГЛа	Arg	Gly 920	Tyr	Arg	Met	Ala	Gln 925	Pro	Ala	His
Ala	Ser 930	Asp	Glu	Ile	Tyr	Glu 935	Ile	Met	Gln	Lys	Cys 940	Trp	Glu	Glu	ГЛа

Phe Glu Ile Arg Pro Pro Phe Ser Gln Leu Val Leu Leu Leu Glu Arg 945 950 955 960	
Leu Leu Gly Glu Gly Tyr Lys Lys Lys Tyr Gln Gln Val Asp Glu Glu 965 970 975	
Phe Leu Arg Ser Asp His Pro Ala Ile Leu Arg Ser Gln Ala Arg Leu 980 985 990	
Pro Gly Phe His Gly Leu Arg Ser Pro Leu Asp Thr Ser Ser Val Leu 995 1000 1005	
Tyr Thr Ala Val Gln Pro Asn Glu Gly Asp Asn Asp Tyr Ile Ile 1010 1015 1020	
Pro Leu Pro Asp Pro Lys Pro Glu Val Ala Asp Glu Gly Pro Leu 1025 1030 1035	
Glu Gly Ser Pro Ser Leu Ala Ser Ser Thr Leu Asn Glu Val Asn 1040 1045 1050	
Thr Ser Ser Thr Ile Ser Cys Asp Ser Pro Leu Glu Pro Gln Asp 1055 1060 1065	
Glu Pro Glu Pro Glu Pro Gln Leu Glu Leu Gln Val Glu Pro Glu 1070 1075 1080	
Pro Glu Leu Glu Gln Leu Pro Asp Ser Gly Cys Pro Ala Pro Arg 1085 1090 1095	
Ala Glu Ala Glu Asp Ser Phe Leu 1100 1105	
<pre><213 > ORGANISM: Homo sapiens <220 > FEATURE: <221 > NAME/KEY: CDS <222 > LOCATION: (20)(4111) <400 > SEQUENCE: 120 ccacgcgcag cggccggag atg cag cgg gcc gcg ctg tgc ctg cga ctg</pre>	52
1 5 10	100
tgg ctc tgc ctg gga ctc ctg gac ggc ctg gtg agt ggc tac tcc atg Trp Leu Cys Leu Gly Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met 15 20 25	100
acc ccc ccg acc ttg aac atc acg gag gag tca cac gtc atc gac acc Thr Pro Pro Thr Leu Asn Ile Thr Glu Glu Ser His Val Ile Asp Thr 30 35 40	148
ggt gac agc ctg tcc atc tcc tgc agg gga cag cac ccc ctc gag tgg Gly Asp Ser Leu Ser Ile Ser Cys Arg Gly Gln His Pro Leu Glu Trp 45 50 55	196
gct tgg cca gga gct cag gag gcg cca gcc acc gga gac aag gac agc Ala Trp Pro Gly Ala Gln Glu Ala Pro Ala Thr Gly Asp Lys Asp Ser 60 65 70 75	244
gag gac acg ggg gtg gtg cga gac tgc gag ggc aca gac gcc agg ccc Glu Asp Thr Gly Val Val Arg Asp Cys Glu Gly Thr Asp Ala Arg Pro 80 85 90	292
tac tgc aag gtg ttg ctg cac gag gta cat gcc aac gac aca ggc Tyr Cys Lys Val Leu Leu His Glu Val His Ala Asn Asp Thr Gly 95 100 105	340
age tac gtc tgc tac tac aag tac atc aag gca cgc atc gag ggc acc Ser Tyr Val Cys Tyr Tyr Lys Tyr Ile Lys Ala Arg Ile Glu Gly Thr 110 115 120	388
acg gcc gcc agc tcc tac gtg ttc gtg aga gac ttt gag cag cca ttc Thr Ala Ala Ser Ser Tyr Val Phe Val Arg Asp Phe Glu Gln Pro Phe 125 130 135	436

	aac Asn															484
	ccc Pro															532
	agc Ser															580
	cgg Arg		_				_		_	_		_	_	_		628
_	cag Gln 205	_						_	_	_						676
	ctg Leu										_		_	_	_	724
	agg Arg															772
_	acc Thr			_						_			_		_	820
	cca Pro															868
	cag Gln 285															916
-	agc Ser	_		_	_		_			_	_	_				964
	cag Gln															1012
	atc Ile															1060
	gac Asp		_		_	_			_	_	-				_	1108
	gag Glu 365															1156
	cca Pro															1204
	tac Tyr															1252
	agc Ser															1300
	gcc Ala				_			_	_		_	_	_	-		1348
	tgc Cys															1396

												con	tını	ued			
	445					450					455						
									ttt Phe							1444	
		_	_		_		_		cag Gln 485	_	_	_				1492	
									atc Ile							1540	
									act Thr							1588	
									aag Lys							1636	
									ttc Phe							1684	
									tcc Ser 565							1732	
									gac Asp							1780	
									acg Thr							1828	
									gtg Val							1876	
									cct Pro							1924	
									ccc Pro 645							1972	
									cat His							2020	
									gcc Ala							2068	
									gac Asp							2116	
									atc Ile							2164	
									gac Asp 725							2212	
									gag Glu							2260	
									gtc Val							2308	
gcc	gtg	gaa	ggc	tcc	gag	gat	aag	ggc	agc	atg	gag	atc	gtg	atc	ctt	2356	

-concinued	
La Val Glu Gly Ser Glu Asp Lys Gly Ser Met Glu Ile Val Ile Leu 765 770 775	
ce ggt acc ggc gtc atc gct gtc ttc ttc tgg gtc ctc ctc ctc c	2404
te tte tgt aac atg agg agg eeg gee eac gea gae ate aag aeg gge Le Phe Cys Asn Met Arg Arg Pro Ala His Ala Asp Ile Lys Thr Gly 800 805 810	2452
ac ctg tcc atc atc atg gac ccc ggg gag gtg cct ctg gag gag caa /r Leu Ser Ile Ile Met Asp Pro Gly Glu Val Pro Leu Glu Glu Gln 815 820 825	2500
ge gaa tae etg tee tae gat gee age eag tgg gaa tte eec ega gag ys Glu Tyr Leu Ser Tyr Asp Ala Ser Gln Trp Glu Phe Pro Arg Glu 830 835 840	2548
gg ctg cac ctg ggg aga gtg ctc ggc tac ggc gcc ttc ggg aag gtg cg Leu His Leu Gly Arg Val Leu Gly Tyr Gly Ala Phe Gly Lys Val 845 850 855	2596
ng gaa goo too got tto ggo ato cao aag ggo ago ago tgt gao aco al Glu Ala Ser Ala Phe Gly Ile His Lys Gly Ser Ser Cys Asp Thr 50 865 870 875	2644
ng goc gtg aaa atg ctg aaa gag ggc goc acg goc agc gag cac cgc al Ala Val Lys Met Leu Lys Glu Gly Ala Thr Ala Ser Glu His Arg 880 885 890	2692
eg ctg atg teg gag ete aag ate ete att eae ate gge aae eae ete La Leu Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly Asn His Leu 895 900 905	2740
ac gtg gtc aac ctc ctc ggg gcg tgc acc aag ccg cag ggc ccc ctc sn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gln Gly Pro Leu 910 915 920	2788
ggtg atc gtg gag ttc tgc aag tac ggc aac ctc tcc aac ttc ctg et Val Ile Val Glu Phe Cys Lys Tyr Gly Asn Leu Ser Asn Phe Leu 925 930 935	2836
ge gee aag egg gae gee tte age eee tge geg gag aag tet eee gag eg Ala Lys Arg Asp Ala Phe Ser Pro Cys Ala Glu Lys Ser Pro Glu 40 945 950 955	2884
ag cgc gga cgc ttc cgc gcc atg gtg gag ctc gcc agg ctg gat cgg In Arg Gly Arg Phe Arg Ala Met Val Glu Leu Ala Arg Leu Asp Arg 960 965 970	2932
gg cgg ccg ggg agc agc gac agg gtc ctc ttc gcg cgg ttc tcg aag cg Arg Pro Gly Ser Ser Asp Arg Val Leu Phe Ala Arg Phe Ser Lys 975 980 985	2980
cc gag ggc gga gcg agg cgg gct tct cca gac caa gaa gct gag gac nr Glu Gly Gly Ala Arg Arg Ala Ser Pro Asp Gln Glu Ala Glu Asp 990 995 1000	3028
g tgg ctg agc ccg ctg acc atg gaa gat ctt gtc tgc tac agc eu Trp Leu Ser Pro Leu Thr Met Glu Asp Leu Val Cys Tyr Ser 1005 1010 1015	3073
cc cag gtg gcc aga ggg atg gag ttc ctg gct tcc cga aag tgc ne Gln Val Ala Arg Gly Met Glu Phe Leu Ala Ser Arg Lys Cys 1020 1025 1030	3118
cc cac aga gac ctg gct gct cgg aac att ctg ctg tcg gaa agc Le His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Ser 1035 1040 1045	3163
ac gtg gtg aag atc tgt gac ttt ggc ctt gcc cgg gac atc tac 3p Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr 1050 1055 1060	3208
aa gac cct gac tac gtc cgc aag ggc agt gcc cgg ctg ccc ctg /s Asp Pro Asp Tyr Val Arg Lys Gly Ser Ala Arg Leu Pro Leu 1065 1070 1075	3253

											-001	ILTI	iue	ı	
aag tg Lys Tr 10															3298
cag ag Gln Se															3343
tct ct Ser Le															3388
ttc tg Phe Cy 11															3433
ctg go Leu Al 11															3478
gga ga Gly As															3523
ctg gg Leu Gl 11															3568
gtc to Val Cy 11															3613
ttc tc Phe Se															3658
gct ga Ala Gl 12															3703
agg ta Arg Ty 12															3748
gct ga Ala Gl 12															3793
ccc at Pro Me 12															3838
gac ag Asp Se 12	_		_		_	_	_					_			3883
agc ag Ser Ar 12															3928
cag aa Gln As 13			_				_			_					3973
egg eg Arg Ar 13															4018
aac ag Asn Se 13															4063
tgc to Cys Se 13		_		_	_						-		_		4108
taa go	cago	atco	ıg ac	aaga	accc	c cago	cactt	gg g	gggti	cag	ge eeq	ggcag	gggc		4161
gggcag	gagg	ıg ct	ggag	gcco	agg	gatggg	gaa d	ctcat	ctg	gt to	gaacto	ctgg	tgg	cacagga	4221

gtgt	cct	ett (ccct	ctct	gc aq	gacti	CCC	a gct	tagga	aaga	gca	ggac	tcc a	aggc	ccaagg	4281
ctc	ccgga	aat 1	teegt	cac	ca co	gacto	ggcca	a gg	gcaco	gctc	cag	etge	eee q	ggcc	ectece	4341
cct	gagat	tc a	agato	gtcai	t ta	agtto	cage	a tco	egeag	ggtg	ctg	gtcc	egg 9	ggcca	agcact	4401
tcca	atggg	gaa 1	tgtct	ctti	g g	cgac	ctcci	t tt	catca	acac	tgg	gtgg	tgg (cctg	gtecet	4461
gttt	teed	cac q	gagga	aatci	g to	gggt	ctgg	g agt	tcaca	acag	tgti	gga	ggt 1	taago	gcatac	4521
gaga	agcaç	gag g	gtcto	cccaa	aa c	gecet	ttc	c te	ctcaç	ggca	caca	agct	act o	ctcc	ccacga	4581
ggg	ctgg	ctg q	geet	cacco	ca co	ccct	gcaca	a gti	tgaaç	ggga	9999	gctg	tgt 1	ttcca	atctca	4641
aaga	aaggo	cat 1	ttgca	agggt	.c c1	ctt	ctgg	g cct	tgaco	caaa	cag	ccaa	cta 🤉	geee	ctgggg	4701
tgg	ccaco	cag 1	tatga	acagt	a ti	cata	cgct	g gca	aacao	caga	ggc	agcc	ege a	acaco	etgege	4761
ctg	ggtgt	tg a	agago	ccat	ee to	gcaa	gtcti	tt!	tc							4795
<213 <213 <213	L> LE 2> TY 3> OF	ENGTI YPE : RGAN	ISM:	363 Homo	o saj	piens	3									
< 400)> SI	GO EI	NCE :	121												
Met 1	Gln	Arg	Gly	Ala 5	Ala	Leu	Cys	Leu	Arg 10	Leu	Trp	Leu	СЛа	Leu 15	Gly	
Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu	
Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45	Ser	Leu	Ser	
Ile	Ser 50	Сув	Arg	Gly	Gln	His 55	Pro	Leu	Glu	Trp	Ala 60	Trp	Pro	Gly	Ala	
Gln 65	Glu	Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75	Glu	Asp	Thr	Gly	Val 80	
Val	Arg	Asp	CÀa	Glu 85	Gly	Thr	Asp	Ala	Arg 90	Pro	Tyr	CAa	Lys	Val 95	Leu	
Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105	Thr	Gly	Ser	Tyr	Val 110	CÀa	Tyr	
Tyr	Lys	Tyr 115	Ile	Lys	Ala	Arg	Ile 120	Glu	Gly	Thr	Thr	Ala 125	Ala	Ser	Ser	
Tyr	Val 130	Phe	Val	Arg	Asp	Phe 135	Glu	Gln	Pro	Phe	Ile 140	Asn	Lys	Pro	Asp	
Thr 145	Leu	Leu	Val	Asn	Arg 150	Lys	Asp	Ala	Met	Trp 155	Val	Pro	Сув	Leu	Val 160	
Ser	Ile	Pro	Gly	Leu 165	Asn	Val	Thr	Leu	Arg 170	Ser	Gln	Ser	Ser	Val 175	Leu	
Trp	Pro	Asp	Gly 180	Gln	Glu	Val	Val	Trp 185	Asp	Asp	Arg	Arg	Gly 190	Met	Leu	
Val	Ser	Thr 195	Pro	Leu	Leu	His	Asp 200	Ala	Leu	Tyr	Leu	Gln 205	Сув	Glu	Thr	
Thr	Trp 210	Gly	Asp	Gln	Asp	Phe 215	Leu	Ser	Asn	Pro	Phe 220	Leu	Val	His	Ile	
Thr 225	Gly	Asn	Glu	Leu	Tyr 230	Asp	Ile	Gln	Leu	Leu 235	Pro	Arg	Lys	Ser	Leu 240	
Glu	Leu	Leu	Val	Gly 245	Glu	ГЛа	Leu	Val	Leu 250	Asn	CÀa	Thr	Val	Trp 255	Ala	
Glu	Phe	Asn	Ser	Gly	Val	Thr	Phe	Asp	Trp	Asp	Tyr	Pro	Gly	Lys	Gln	

Ala	Glu	Arg 275	Gly	Lys	Trp	Val	Pro 280	Glu	Arg	Arg	Ser	Gln 285	Gln	Thr	His
Thr	Glu 290	Leu	Ser	Ser	Ile	Leu 295	Thr	Ile	His	Asn	Val 300	Ser	Gln	His	Asp
Leu 305	Gly	Ser	Tyr	Val	Cys 310	ГЛа	Ala	Asn	Asn	Gly 315	Ile	Gln	Arg	Phe	Arg 320
Glu	Ser	Thr	Glu	Val 325	Ile	Val	His	Glu	Asn 330	Pro	Phe	Ile	Ser	Val 335	Glu
Trp	Leu	ГЛа	Gly 340	Pro	Ile	Leu	Glu	Ala 345	Thr	Ala	Gly	Asp	Glu 350	Leu	Val
ГÀа	Leu	Pro 355	Val	rys	Leu	Ala	Ala 360	Tyr	Pro	Pro	Pro	Glu 365	Phe	Gln	Trp
Tyr	Lys 370	Asp	Gly	Lys	Ala	Leu 375	Ser	Gly	Arg	His	Ser 380	Pro	His	Ala	Leu
Val 385	Leu	Lys	Glu	Val	Thr 390	Glu	Ala	Ser	Thr	Gly 395	Thr	Tyr	Thr	Leu	Ala 400
Leu	Trp	Asn	Ser	Ala 405	Ala	Gly	Leu	Arg	Arg 410	Asn	Ile	Ser	Leu	Glu 415	Leu
Val	Val	Asn	Val 420	Pro	Pro	Gln	Ile	His 425	Glu	ГЛа	Glu	Ala	Ser 430	Ser	Pro
Ser	Ile	Tyr 435	Ser	Arg	His	Ser	Arg 440	Gln	Ala	Leu	Thr	Cys 445	Thr	Ala	Tyr
Gly	Val 450	Pro	Leu	Pro	Leu	Ser 455	Ile	Gln	Trp	His	Trp 460	Arg	Pro	Trp	Thr
Pro 465	Cys	Lys	Met	Phe	Ala 470	Gln	Arg	Ser	Leu	Arg 475	Arg	Arg	Gln	Gln	Gln 480
Asp	Leu	Met	Pro	Gln 485	CAa	Arg	Asp	Trp	Arg 490	Ala	Val	Thr	Thr	Gln 495	Asp
Ala	Val	Asn	Pro 500	Ile	Glu	Ser	Leu	Asp 505	Thr	Trp	Thr	Glu	Phe 510	Val	Glu
Gly	Lys	Asn 515	Lys	Thr	Val	Ser	Lys 520	Leu	Val	Ile	Gln	Asn 525	Ala	Asn	Val
Ser	Ala 530	Met	Tyr	Lys	CAa	Val 535	Val	Ser	Asn	Lys	Val 540	Gly	Gln	Asp	Glu
Arg 545	Leu	Ile	Tyr	Phe	Tyr 550	Val	Thr	Thr	Ile	Pro 555	Asp	Gly	Phe	Thr	Ile 560
Glu	Ser	Lys	Pro	Ser 565	Glu	Glu	Leu	Leu	Glu 570	Gly	Gln	Pro	Val	Leu 575	Leu
Ser	Cys	Gln	Ala 580	Asp	Ser	Tyr	Lys	Tyr 585	Glu	His	Leu	Arg	Trp 590	Tyr	Arg
Leu	Asn	Leu 595	Ser	Thr	Leu	His	Asp	Ala	His	Gly	Asn	Pro 605	Leu	Leu	Leu
Asp	Сув 610	Lys	Asn	Val	His	Leu 615	Phe	Ala	Thr	Pro	Leu 620	Ala	Ala	Ser	Leu
Glu 625	Glu	Val	Ala	Pro	Gly 630	Ala	Arg	His	Ala	Thr 635	Leu	Ser	Leu	Ser	Ile 640
Pro	Arg	Val	Ala	Pro 645	Glu	His	Glu	Gly	His 650	Tyr	Val	СЛа	Glu	Val 655	Gln
Asp	_	7	cor	***	7 cm	Lare	His	Cvs	His	Lvs	Lvs	Tyr	Leu	Ser	Val
	Arg	Arg	660	HIS	App	пур		665		2,5	-	1	670		

Val	Asn 690	Val	Ser	Asp	Ser	Leu 695	Glu	Met	Gln	Сув	Leu 700	Val	Ala	Gly	Ala
His 705	Ala	Pro	Ser	Ile	Val 710	Trp	Tyr	Lys	Asp	Glu 715	Arg	Leu	Leu	Glu	Glu 720
Lys	Ser	Gly	Val	Asp 725	Leu	Ala	Asp	Ser	Asn 730	Gln	Lys	Leu	Ser	Ile 735	Gln
Arg	Val	Arg	Glu 740	Glu	Asp	Ala	Gly	Arg 745	Tyr	Leu	Cys	Ser	Val 750	Cha	Asn
Ala	Lys	Gly 755	Cys	Val	Asn	Ser	Ser 760	Ala	Ser	Val	Ala	Val 765	Glu	Gly	Ser
Glu	770	Lys	Gly	Ser	Met	Glu 775	Ile	Val	Ile	Leu	Val 780	Gly	Thr	Gly	Val
Ile 785	Ala	Val	Phe	Phe	Trp 790	Val	Leu	Leu	Leu	Leu 795	Ile	Phe	Cha	Asn	Met 800
Arg	Arg	Pro	Ala	His 805	Ala	Asp	Ile	Lys	Thr 810	Gly	Tyr	Leu	Ser	Ile 815	Ile
Met	Asp	Pro	Gly 820	Glu	Val	Pro	Leu	Glu 825	Glu	Gln	Cys	Glu	Tyr 830	Leu	Ser
Tyr	Asp	Ala 835	Ser	Gln	Trp	Glu	Phe 840	Pro	Arg	Glu	Arg	Leu 845	His	Leu	Gly
Arg	Val 850	Leu	Gly	Tyr	Gly	Ala 855	Phe	Gly	Lys	Val	Val 860	Glu	Ala	Ser	Ala
Phe 865	Gly	Ile	His	Lys	Gly 870	Ser	Ser	Cys	Asp	Thr 875	Val	Ala	Val	Lys	Met 880
Leu	Lys	Glu	Gly	Ala 885	Thr	Ala	Ser	Glu	His 890	Arg	Ala	Leu	Met	Ser 895	Glu
Leu	Lys	Ile	Leu 900	Ile	His	Ile	Gly	Asn 905	His	Leu	Asn	Val	Val 910	Asn	Leu
Leu	Gly	Ala 915	CÀa	Thr	ГÀа	Pro	Gln 920	Gly	Pro	Leu	Met	Val 925	Ile	Val	Glu
Phe	930 Cys	ГÀа	Tyr	Gly	Asn	Leu 935	Ser	Asn	Phe	Leu	Arg 940	Ala	ГÀа	Arg	Asp
Ala 945	Phe	Ser	Pro	CAa	Ala 950	Glu	ГЛа	Ser	Pro	Glu 955	Gln	Arg	Gly	Arg	Phe 960
Arg	Ala	Met	Val	Glu 965	Leu	Ala	Arg	Leu	Asp 970	Arg	Arg	Arg	Pro	Gly 975	Ser
Ser	Asp	_	Val 980		Phe				Ser		Thr	Glu	Gly 990	_	Ala
_	-	995					1000)				10	05		er Pro
	Thr 1010	1		_		101	L5	-			10	020			_
-	Met 1025					103	30				10	035	-	_	
	Ala 1040	'				104	15				10	050		-	
-	Asp 1055					106	0	-	-		10	065		_	
	Arg 1070	1				107	75				10	080			
Glu	Ser 1085		Phe	e Asp	Lys	109		/r Tl	nr Th	nr Gl		er 1	Asp V	Val '	Trp
Ser	Phe	Gly	Val	l Leu	ı Lev	ı Tr) G	lu I	le Pl	ne Se	er Le	eu (Gly A	Ala	Ser

-continued

1100 1105 1110	
Pro Tyr Pro Gly Val Gln Ile Asn Glu Glu Phe Cys Gln Arg Leu 1115 1120 1125	
Arg Asp Gly Thr Arg Met Arg Ala Pro Glu Leu Ala Thr Pro Ala 1130 1135 1140	
Ile Arg Arg Ile Met Leu Asn Cys Trp Ser Gly Asp Pro Lys Ala 1145 1150 1155	
Arg Pro Ala Phe Ser Glu Leu Val Glu Ile Leu Gly Asp Leu Leu 1160 1165 1170	
Gln Gly Arg Gly Leu Gln Glu Glu Glu Glu Val Cys Met Ala Pro 1175 1180 1185	
Arg Ser Ser Gln Ser Ser Glu Glu Gly Ser Phe Ser Gln Val Ser 1190 1195 1200	
Thr Met Ala Leu His Ile Ala Gln Ala Asp Ala Glu Asp Ser Pro 1205 1210 1215	
Pro Ser Leu Gln Arg His Ser Leu Ala Ala Arg Tyr Tyr Asn Trp 1220 1225 1230	
Val Ser Phe Pro Gly Cys Leu Ala Arg Gly Ala Glu Thr Arg Gly 1235 1240 1245	
Ser Ser Arg Met Lys Thr Phe Glu Glu Phe Pro Met Thr Pro Thr 1250 1255 1260	
Thr Tyr Lys Gly Ser Val Asp Asn Gln Thr Asp Ser Gly Met Val 1265 1270 1275	
Leu Ala Ser Glu Glu Phe Glu Gln Ile Glu Ser Arg His Arg Gln 1280 1285 1290	
Glu Ser Gly Phe Ser Cys Lys Gly Pro Gly Gln Asn Val Ala Val 1295 1300 1305	
Thr Arg Ala His Pro Asp Ser Gln Gly Arg Arg Arg Pro Glu 1310 1315 1320	
Arg Gly Ala Arg Gly Gly Gln Val Phe Tyr Asn Ser Glu Tyr Gly 1325 1330 1335	
Glu Leu Ser Glu Pro Ser Glu Glu Asp His Cys Ser Pro Ser Ala 1340 1345 1350	
Arg Val Thr Phe Phe Thr Asp Asn Ser Tyr 1355 1360	
<210> SEQ ID NO 122 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer <400> SEQUENCE: 122	
tacttggcag tacatctacg tattagtcat cgc	33
<pre><210> SEQ ID NO 123 <211> LENGTH: 39 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic primer</pre>	
<400> SEQUENCE: 123	
cggagatetg tagtettgea egtaeaegta ggagetgge	39

<210> SEQ ID NO 124

<211> LENGTH: 1752 <212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

-continued

<400> SEOUENCE: 124 atgcagcggg gcgccgcgct gtgcctgcga ctgtggctct gcctgggact cctggacggc 60 ctqqtqaqtq qctactccat qaccccccq accttqaaca tcacqqaqqa qtcacacqtc 120 ategacaceg gtgacagect gtccatetee tgcaggggae ageaceceet egagtggget 180 tggccaggag ctcaggaggc gccagccacc ggagacaagg acagcgagga cacgggggtg 240 gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gettetgtta gtgaccaaca tggagtegtg tacattactg agaacaaaaa caaaactgtg 480 gtgattccat gtctcgggtc catttcaaat ctcaacgtgt cactttgtgc aagataccca 540 gaaaagagat ttgttcctga tggtaacaga atttcctggg acagcaagaa gggctttact 600 atteccaget acatgateag etatgetgge atggtettet gtgaageaaa aattaatgat 660 gaaagttacc agtctattat gtacatagtt gtcgttgtag ggtataggat ttatgatgtg 720 gttctgagtc cgtctcatgg aattgaacta tctgttggag aaaagcttgt cttaaattgt acagcaagaa ctgaactaaa tgtggggatt gacttcaact gggaataccc ttcttcgaag 840 900 catcaqcata aqaaacttqt aaaccqaqac ctaaaaaaccc aqtctqqqaq tqaqatqaaq 960 aaatttttqa qcaccttaac tataqatqqt qtaacccqqa qtqaccaaqq attqtacacc 1020 tgtgcagcat ccagtgggct gatgaccaag aagaacagca catttgtcag ggtccatgaa 1080 gateceateg aaggtegtgg tggtggtggt ggtgateeca aatettgtga caaaceteae 1140 acatqcccac tqtqcccaqc acctqaactc ctqqqqqqac cqtcaqtctt cctcttcccc ccaaaaccca aqqacaccct catqatctcc cqqacccctq aqqtcacatq cqtqqtq 1200 gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggtg 1260 1320 cataatqcca aqacaaaqcc qcqqqaqqaq caqtacaaca qcacqtaccq tqtqqtcaqc gtcctcaccg tcctgcacca ggactggctg aatggcaagg agtacaagtg caaggtctcc 1380 aacaaagccc tcccagcccc catcgagaaa accatctcca aagccaaagg gcagccccga 1440 gaaccacagg tgtacaccct gcccccatcc cgggatgagc tgaccaagaa ccaggtcagc 1500 ctgacctgcc tagtcaaagg cttctatccc agcgacatcg ccgtggagtg ggagagcaat 1560 gggcagccgg agaacaacta caaggccacg cctcccgtgc tggactccga cggctccttc 1620 ttcctctaca gcaagctcac cgtggacaag agcaggtggc agcaggggaa cgtcttctca 1680 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct 1740 ccgggtaaat ga 1752 <210> SEQ ID NO 125 <211> LENGTH: 583 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 125 Met Gln Arg Gly Ala Ala Leu Cys Leu Arg Leu Trp Leu Cys Leu Gly Leu Leu Asp Gly Leu Val Ser Gly Tyr Ser Met Thr Pro Pro Thr Leu

Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45	Ser	Leu	Ser
Ile	Ser 50	Сув	Arg	Gly	Gln	His 55	Pro	Leu	Glu	Trp	Ala 60	Trp	Pro	Gly	Ala
Gln 65	Glu	Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75	Glu	Asp	Thr	Gly	Val 80
Val	Arg	Asp	Сув	Glu 85	Gly	Thr	Asp	Ala	Arg 90	Pro	Tyr	Сув	Lys	Val 95	Leu
Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105	Thr	Gly	Ser	Tyr	Val 110	Cys	Tyr
Tyr	ГЛа	Tyr 115	Ile	rys	Ala	Arg	Ile 120	Glu	Gly	Thr	Thr	Ala 125	Ala	Ser	Ser
Tyr	Val 130	Tyr	Val	Gln	Asp	Tyr 135	Arg	Ser	Pro	Phe	Ile 140	Ala	Ser	Val	Ser
Asp 145	Gln	His	Gly	Val	Val 150	Tyr	Ile	Thr	Glu	Asn 155	ГЛа	Asn	Lys	Thr	Val 160
Val	Ile	Pro	Cha	Leu 165	Gly	Ser	Ile	Ser	Asn 170	Leu	Asn	Val	Ser	Leu 175	СЛа
Ala	Arg	Tyr	Pro 180	Glu	Lys	Arg	Phe	Val 185	Pro	Asp	Gly	Asn	Arg 190	Ile	Ser
Trp	Asp	Ser 195	Lys	Lys	Gly	Phe	Thr 200	Ile	Pro	Ser	Tyr	Met 205	Ile	Ser	Tyr
Ala	Gly 210	Met	Val	Phe	CAa	Glu 215	Ala	Lys	Ile	Asn	Asp 220	Glu	Ser	Tyr	Gln
Ser 225	Ile	Met	Tyr	Ile	Val 230	Val	Val	Val	Gly	Tyr 235	Arg	Ile	Tyr	Asp	Val 240
Val	Leu	Ser	Pro	Ser 245	His	Gly	Ile	Glu	Leu 250	Ser	Val	Gly	Glu	Lys 255	Leu
Val	Leu	Asn	Cys 260	Thr	Ala	Arg	Thr	Glu 265	Leu	Asn	Val	Gly	Ile 270	Asp	Phe
Asn	Trp	Glu 275	Tyr	Pro	Ser	Ser	Lys 280	His	Gln	His	Lys	Lys 285	Leu	Val	Asn
Arg	Asp 290	Leu	Lys	Thr	Gln	Ser 295	Gly	Ser	Glu	Met	300	ГÀа	Phe	Leu	Ser
Thr 305	Leu	Thr	Ile	Asp	Gly 310	Val	Thr	Arg	Ser	Asp 315	Gln	Gly	Leu	Tyr	Thr 320
CÀa	Ala	Ala	Ser	Ser 325	Gly	Leu	Met	Thr	330	Lys	Asn	Ser	Thr	Phe 335	Val
Arg	Val	His	Glu 340	Asp	Pro	Ile	Glu	Gly 345	Arg	Gly	Gly	Gly	Gly 350	Gly	Asp
Pro	Lys	Ser 355	CÀa	Asp	ГÀв	Pro	His 360	Thr	Cha	Pro	Leu	Сув 365	Pro	Ala	Pro
Glu	Leu 370	Leu	Gly	Gly	Pro	Ser 375	Val	Phe	Leu	Phe	Pro 380	Pro	ГÀв	Pro	Lys
385	Thr	Leu	Met	Ile	Ser 390	Arg	Thr	Pro	Glu	Val 395	Thr	CAa	Val	Val	Val 400
Asp	Val	Ser	His	Glu 405	Asp	Pro	Glu	Val	Lys 410	Phe	Asn	Trp	Tyr	Val 415	Asp
Gly	Val	Glu	Val 420	His	Asn	Ala	Lys	Thr 425	Lys	Pro	Arg	Glu	Glu 430	Gln	Tyr
Asn	Ser	Thr 435	Tyr	Arg	Val	Val	Ser 440	Val	Leu	Thr	Val	Leu 445	His	Gln	Asp

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
465 470 475 480
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys 485 490 495
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 500 505 510
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 515 520 525
Ala Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 530 535 540
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 545 550 555 560
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 565 570 575
Leu Ser Leu Ser Pro Gly Lys 580
<210> SEQ ID NO 126 <211> LENGTH: 81 <212> TYPE: DNA <213> ORGANISM: Homo sapiens
<400> SEQUENCE: 126
tacaattgag gacaagcgta tgtccacgaa gtagtttaac tggacgaggc gtgcttattt 60
gcacatcata aatcctatac c 81
<210> SEQ ID NO 127 <211> LENGTH: 1752 <212> TYPE: DNA <213> ORGANISM: Homo sapiens
<400> SEQUENCE: 127
atgcagoggg gogooggot gtgcotgoga otgtggotot gootgggaot ootggaoggo 60
ctggtgagtg gctactccat gacccccccg accttgaaca tcacggagga gtcacacgtc 120
ategacaceg gtgacageet gtecatetee tgeaggggae ageaceeect egagtggget 180
tggccaggag ctcaggaggc gccagccacc ggagacaagg acagcgagga cacgggggtg 240
tggccaggag ctcaggaggc gccagccacc ggagacaagg acagggagga cacgggggtg 240 gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gcttctgtta gtgaccaaca tggagtcgtg tacattactg agaacaaaaa caaaactgtg 480
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gcttctgtta gtgaccaaca tggagtcgtg tacattactg agaacaaaaa caaaactgtg 480 gtgattccat gtctcgggtc catttcaaat ctcaacgtgt cactttgtgc aagataccca 540
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gcttctgtta gtgaccaaca tggagtcgtg tacattactg agaacaaaaa caaaactgtg 480 gtgattccat gtctcgggtc catttcaaat ctcaacgtgt cactttgtgc aagatacca 540 gaaaagagat ttgttcctga tggtaacaga atttcctggg acagcaagaa gggctttact 600
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gcttctgtta gtgaccaaca tggagtcgtg tacattactg agaacaaaaa caaaactgtg 480 gtgattccat gtctcgggtc catttcaaat ctcaacgtgt cactttgtgc aagataccca 540 gaaaagagat ttgttcctga tggtaacaga atttcctggg acagcaagaa gggctttact 600 attcccagct acatgatcag ctatgctggc atggtcttct gtgaagcaaa aattaatgat 660
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gcttctgtta gtgaccaaca tggagtcgtg tacattactg agaacaaaaa caaaactgtg 480 gtgattccat gtctcgggtc catttcaaat ctcaacgtgt cactttgtgc aagatacca 540 gaaaagagat ttgttcctga tggtaacaga attcctggg acagcaagaa gggctttact 600 attcccagct acatgatcag ctatgctgc atggtcttct gtgaagcaaa aattaatgat 660 gaaagttacc agtctattat gtacatagtt gtcgttgtag ggtataggat ttatgatgtg 720
gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcatc 360 gagggcacca cggccgccag ctcctacgtg tacgtgcaag actacagatc tccatttatt 420 gcttctgtta gtgaccaaca tggagtcgtg tacattactg agaacaaaaa caaaactgtg 480 gtgattccat gtctcgggtc catttcaaat ctcaacgtgt cactttgtgc aagataccca 540 gaaaagagat ttgttcctga tggtaacaga atttcctggg acagcaagaa gggctttact 600 attcccagct acatgatcag ctatgctggc atggtcttct gtgaagcaaa aattaatgat 660 gaaagttacc agtctattat gtacatagtt gtcgttgtag ggtataggat ttatgatgtg 720 gttctgagtc cgtctcatgg aattgaacta tctgttggag aaaagcttgt cttaaattgt 780

-continued

tgtg	gcago	cat o	ccagt	ggg	et ga	atgad	ccaaç	g aag	gaaca	agca	catt	tgt	cag	ggtc	catgaa	1020
gato	cccat	cg a	aaggt	cgt	gg to	ggtgg	gtggt	ggt	gato	ccca	aato	ettgt	ga	caaa	cctcac	1080
acat	geed	cac t	gtg	cccaç	gc ac	ectga	aacto	ctg	99999	ggac	cgt	cagto	ctt	cctct	tecce	1140
ccaa	aaaco	cca a	aggad	cacco	et ca	atgat	ctco	c ago	gacco	cctg	aggt	caca	atg	cgtg	gtggtg	1200
gaco	gtgag	gee a	acgaa	agaco	ec to	gaggt	caaç	g tto	caact	ggt	acgt	ggad	gg	cgtg	gaggtg	1260
cata	aatgo	cca a	agaca	aaago	cc go	cggga	aggag	g caç	gtaca	aaca	gcad	cgtac	ccg	tgtg	gtcagc	1320
gtc	ctcac	ccg t	cctç	gcaco	a go	gacto	ggata	g aat	ggca	aagg	agta	acaaç	gtg	caago	gtetee	1380
aaca	aaago	ccc t	ccca	agcco	cc ca	atcga	agaaa	a acc	catct	cca	aago	ccaaa	agg	gcago	cccga	1440
gaad	ccaca	agg t	gtad	cacco	et go	cccc	catco	c cgg	ggato	gagc	tgad	ccaaç	gaa	ccag	gtcagc	1500
ctga	accto	gaa t	agto	caaaç	gg ct	tcta	atcco	ago	egaca	atcg	ccgt	ggag	gtg	ggaga	agcaat	1560
ggg	cagco	egg a	agaad	caact	a ca	aaggo	ccacç	g cct	cccç	gtgc	tgga	actco	ga	cggct	ccttc	1620
ttc	ctcta	aca (gcaaq	gctca	ac co	gtgga	acaaç	g ago	caggt	ggc	agca	aggg	gaa	cgtct	tctca	1680
tgct	ccgt	ga t	gcat	gagg	ge to	ctgca	acaac	cac	ctaca	acgc	agaa	agago	cct	ctcc	etgtet	1740
ccg	ggtaa	aat q	ga													1752
<211 <212 <213	L> LE 2> TY 3> OF	ENGTI (PE : RGAN		33 Homo	sal	piens	3									
					Δla	Len	Cvs	Len	Ara	Len	Trn	Len	Cva	Leu	Glv	
1	0111	9	017	5		Lou	C _I L	Dou	10	Dou		Lou	c, c	15	GI y	
Leu	Leu	Asp	Gly 20	Leu	Val	Ser	Gly	Tyr 25	Ser	Met	Thr	Pro	Pro 30	Thr	Leu	
Asn	Ile	Thr 35	Glu	Glu	Ser	His	Val 40	Ile	Asp	Thr	Gly	Asp 45	Ser	Leu	Ser	
Ile	Ser 50	CÀa	Arg	Gly	Gln	His 55	Pro	Leu	Glu	Trp	Ala 60	Trp	Pro	Gly	Ala	
Gln 65	Glu	Ala	Pro	Ala	Thr 70	Gly	Asp	Lys	Asp	Ser 75	Glu	Asp	Thr	Gly	Val 80	
Val	Arg	Asp	Cys	Glu 85	Gly	Thr	Asp	Ala	Arg 90	Pro	Tyr	CAa	ГÀа	Val 95	Leu	
Leu	Leu	His	Glu 100	Val	His	Ala	Asn	Asp 105	Thr	Gly	Ser	Tyr	Val 110	Cha	Tyr	
Tyr	Lys	Tyr 115	Ile	Lys	Ala	Arg	Ile 120	Glu	Gly	Thr	Thr	Ala 125	Ala	Ser	Ser	
Tyr	Val 130	Tyr	Val	Gln	Asp	Tyr 135	Arg	Ser	Pro	Phe	Ile 140	Ala	Ser	Val	Ser	
Asp 145	Gln	His	Gly	Val	Val 150	Tyr	Ile	Thr	Glu	Asn 155	Lys	Asn	Lys	Thr	Val 160	
Val	Ile	Pro	Cys	Leu 165	Gly	Ser	Ile	Ser	Asn 170	Leu	Asn	Val	Ser	Leu 175	CAa	
Ala	Arg	Tyr	Pro 180	Glu	Lys	Arg	Phe	Val 185	Pro	Asp	Gly	Asn	Arg 190	Ile	Ser	
Trp	Asp	Ser 195	Lys	Lys	Gly	Phe	Thr 200	Ile	Pro	Ser	Tyr	Met 205	Ile	Ser	Tyr	
Ala	Gly 210	Met	Val	Phe	CAa	Glu 215	Ala	Lys	Ile	Asn	Asp 220	Glu	Ser	Tyr	Gln	

Ser Ile Met Tyr Ile Val Val Val Gly Tyr Arg Ile Tyr Asp Val

389

-continued

	225					230					235					240
,	Val	Leu	Ser	Pro	Ser 245	His	Gly	Ile	Glu	Leu 250	Ser	Val	Gly	Glu	Lys 255	Leu
,	Val	Leu	Asn	Cys 260		Ala	Arg	Thr	Glu 265		Asn	Val	Gly	Ile 270	Asp	Phe
	Asn	Trp	Glu 275	Tyr	Pro	Ser	Ser	Lys 280	His	Gln	His	Lys	Lys 285	Leu	Val	Asn
	Arg	Asp 290	Leu	Lys	Thr	Gln	Ser 295		Ser	Glu	Met	300	Lys	Phe	Leu	Ser
	Thr 305	Leu	Thr	Ile	Asp	Gly 310	Val	Thr	Arg	Ser	Asp 315	Gln	Gly	Leu	Tyr	Thr 320
•	Cys	Ala	Ala	Ser	Ser 325	Gly	Leu	Met	Thr	Lys	_	Asn	Ser	Thr	Phe	Val
	Arg	Val	His	Glu 340		Pro	Ile	Glu	Gly 345		Gly	Gly	Gly	Gly 350	Gly	Asp
:	Pro	Lys	Ser 355	CAa	Asp	Lys	Pro	His 360	Thr	Cys	Pro	Leu	365 Cys	Pro	Ala	Pro
(Glu	Leu 370	Leu	Gly	Gly	Pro	Ser 375		Phe	Leu	Phe	Pro 380	Pro	Lys	Pro	Lys
	Asp 385	Thr	Leu	Met	Ile	Ser 390	Arg	Thr	Pro	Glu	Val 395	Thr	CÀa	Val	Val	Val 400
1	Asp	Val	Ser	His	Glu 405	Asp	Pro	Glu	Val	Lys 410	Phe	Asn	Trp	Tyr	Val 415	Asp
(Gly	Val	Glu	Val 420		Asn	Ala	Lys	Thr 425	Lys	Pro	Arg	Glu	Glu 430		Tyr
	Asn	Ser	Thr		Arg	Val	Val	Ser 440		Leu	Thr	Val	Leu 445		Gln	Asp
	Trp	Leu 450		Gly	Lys	Glu	Tyr 455	Lys	Cys	Lys	Val	Ser 460		Lys	Ala	Leu
			Pro	Ile	Glu	Lys			Ser	Lys			Gly	Gln	Pro	
	465 Glu	Pro	Gln	Val	-	470 Thr	Leu	Pro	Pro		475 Arg	Asp	Glu	Leu		480 Lys
	Asn	Gln	Val	Ser	485 Leu	Thr	Cys	Leu	Val	490 Lys	Gly	Phe	Tyr	Pro	495 Ser	Asp
	Ile	Ala	Val	500 Glu		Glu	Ser	Asn	505 Gly		Pro	Glu	Asn	510 Asn	Tyr	Lys
			515			Leu		520	_				525			_
		530					535		_			540			-	
	Lys 545	Leu	Thr	Val	Asp	Lув 550	Ser	Arg	Trp	Gln	Gln 555	Gly	Asn	Val	Phe	Ser 560
•	Cys	Ser	Val	Met	His 565	Glu	Ala	Leu	His	Asn 570	His	Tyr	Thr	Gln	Lys 575	Ser
:	Leu	Ser	Leu	Ser 580		Gly	Lys									

What is claimed is:

- 1. A method of inhibiting endothelial cell proliferation comprising steps of:
 - (a) screening a mammal to identify a neoplastic disorder characterized by endothelial cell proliferation, and an 65 elevated level of VEGF-C in serum or in a tissue sample from a tumor; and
- (b) administering a composition to the mammal identified according to step (a) as having a neoplastic disorder characterized by endothelial cell proliferation and the elevated level of VEGF-C, wherein said composition comprises a fusion protein comprising a first binding unit polypeptide connected to a heterologous peptide, in an amount effective to inhibit endothelial or smooth

60

- muscle cell proliferation in said mammal, wherein the amino acid sequence of the first binding unit polypeptide consists of an amino acid sequence at least 95% identical to a VEGFR-3 fragment consisting of a portion of SEQ ID NO: 6,
- wherein the amino-terminal amino acid of the VEGFR-3 fragment is selected from the group consisting of positions 1-47 of SEQ ID NO: 6,
- wherein the carboxy-terminal residue of the VEGFR-3 fragment is selected from the group consisting of positions 211 to 247 of SEQ ID NO: 6, and
- wherein the VEGFR-3 fragment and the purified fusion protein bind human VEGF-C.
- 2. A method of inhibiting endothelial cell proliferation in a mammal, comprising administering to a mammal a composition, said composition comprising a fusion protein comprising a first binding unit polypeptide connected to a heterologous peptide, in an amount effective to inhibit endothelial cell proliferation in the mammal, wherein the amino acid sequence of the first binding unit polypeptide consists of an amino acid sequence at least 95% identical to a VEGFR-3 fragment consisting of a portion of SEQ ID NO: 6,
 - wherein the amino-terminal amino acid of the VEGFR-3 fragment is selected from the group consisting of positions 1-47 of SEQ ID NO: 6,
 - wherein the carboxy-terminal residue of the VEGFR-3 fragment is selected from the group consisting of positions 211 to 247 of SEQ ID NO: 6, and
 - wherein the VEGFR-3 fragment and the purified fusion ³⁰ protein bind human VEGF-C.
- 3. The method of claim 1 or 2, wherein the heterologous peptide comprises an immunoglobulin constant domain fragment.
- **4**. The method of claim **1** or **2**, wherein the amino acid ³⁵ sequence that is at least 95% identical to the VEGFR-3 fragment is selected from the group consisting of SEQ ID NOS: 36 and 38.
- 5. The method of claim 1 or 2 wherein the fusion protein further comprises a signal peptide.

392

- **6**. The method of claim **5**, wherein the signal peptide directs secretion of the fusion protein from a cell that expresses the fusion protein.
- 7. The method of claim 1 or 2, wherein the VEGFR-3 fragment has an amino acid sequence selected from the group consisting of positions 1-226 and 1-229 of SEQ ID NO: 6.
- 8. The method of claim 1 or 2, wherein the fusion protein comprises an amino acid sequence of a VEGFR-3 fragment connected to a heterologous peptide, said VEGFR-3 fragment consisting of a portion of SEQ ID NO: 6,
 - wherein the amino-terminal residue of the VEGFR-3 fragment is selected from the group consisting of positions 1 to 47 of SEQ ID NO: 6,
 - wherein the carboxy-terminal residue of the VEGFR-3 fragment is selected from the group consisting of positions 211 to 247 of SEQ ID NO: 6, and wherein the VEGFR-3 fragment and the purified fusion protein bind human VEGF-C.
- 9. The method of claim 8, wherein the VEGFR-3 fragment 20 has a carboxy-terminal amino acid selected from the group consisting of positions 226 and 229 of SEQ ID NO: 6.
 - 10. The method of claim 1 or 2 wherein the composition comprises a binding construct comprising the fusion protein is operatively connected with a second binding unit that binds at least one growth factor selected from the group consisting of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PIGF, PDGF-A, PDGF-B, PDGF-C, and PDGF-D, wherein the second binding unit is selected from the group consisting of a polypeptide comprising a vascular endothelial growth factor receptor extracellular domain fragment, a platelet derived growth factor receptor extracellular domain fragment, and a polypeptide comprising an antigen binding fragment of an antibody that immunoreacts with the at least one of said growth factors.
 - 11. The method of claim 10, further comprising a linker connecting the first and second binding units.
 - 12. The method of claim 11, wherein the linker comprises a peptide that links the first and second polypeptides to form a single polypeptide.

* * * * *