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Random projections in reducing the dimensionality

of climate simulation data

By TEIJA SEITOLA1,2*, VISA MIKKOLA3, JOHAN SILEN1 and

HEIKKI JÄRVINEN2, 1Finnish Meteorological Institute, Helsinki, Finland; 2Department of Physics,

University of Helsinki, Finland; 3Department of Mathematics and Statistics, University of Helsinki, Finland

(Manuscript received 24 June 2014; in final form 4 September 2014)

ABSTRACT

Random projection (RP) is a dimensionality reduction method that has been earlier applied to high-dimensional

data sets, for instance, in image processing. This study presents experimental results of RP applied to simulated

global surface temperature data. Principal component analysis (PCA) is utilised to analyse how RP preserves

structures when the original data set is compressed down to 10% or 1% of its original volume. Our experiments

show that, although information is naturally lost in RP, the main spatial patterns (the principal component

loadings) and temporal signatures (spectra of the principal component scores) can nevertheless be recovered

from the randomly projected low-dimensional subspaces. Our results imply that RP could be used as a pre-

processing step before analysing the structure of high-dimensional climate data sets having many state variables,

time steps and spatial locations.

Keywords: random projection, principal component analysis, dimensionality reduction, climate simulation data,

El Niño � Southern Oscillation

1. Introduction

Climate simulation data are often high-dimensional, with

thousands of time steps and grid points representing the

state variables. High dimensionality is of course desirable,

but it also presents a problem by making post-processing

computations expensive and time-consuming. Data dimen-

sionality reduction methods are therefore attractive, since

they may enable the application of elaborate data analy-

sis methods to otherwise prohibitively high-dimensional

data sets.

Principal component analysis (PCA), also known as

empirical orthogonal function (EOF) analysis (e.g. Rinne

and Karhila, 1979; Von Storch and Zwiers, 1999), has been

widely used in climate science in order to extract the

dominant components of climate data time series. With

large data sets, this method is computationally expensive,

and rather soon becomes non-applicable unless the dimen-

sion of the original data set is significantly reduced. The use

of time averaging, such as monthly or annual means instead

of the original daily data, is an example of dimension

reduction that sometimes enables PCAs use. This, however,

significantly distorts the original information content of

the data set: all temporal variability shorter than the aver-

aging period is lost, and periods longer than the averaging

period are affected. Thus, time averaging is not necessarily

an optimal dimension reduction method.

This paper studies random projection (RP) as a dimen-

sionality reduction method. It has been successfully applied

in image processing (Bingham and Mannila, 2001; Goel

et al., 2005; Qi and Hughes, 2012) and for text data

(Bingham and Mannila, 2001). RPs fall into the theory of

compressive sampling (CS), which has emerged as a novel

paradigm in data sampling after the publications of Candès

et al. (2006) and Donoho (2006). CS relies on the idea that

most data have an inherent structure which can be viewed

as sparsity. This means that, for example, a continuous sig-

nal in time may carry much less information than suggested

by the difference between its upper and lower frequencies

(Candès and Wakin, 2008; Bryan and Leise, 2013).

The aim of this paper is to introduce RP as a dimension-

ality reduction method in climate science. We will present

the basic theory behind RP, and apply the method to cli-

mate data and show how the projected data preserve the

essential structure of the original data. This is demonstrated

by applying PCA to the original and randomly projected
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low-dimensional data sets to show that the leading principal

components of the original data set can be recovered from

the lower dimensional subspace. Section 2 presents the RP

and PCAmethods. In Section 3, we show some experimental

results of applying RP and PCA to the original and

dimensionality-reduced data sets. In addition, Section 4

demonstrates the application of the RP method to a very

high-dimensional data set that represents multiple atmo-

spheric model layers simultaneously.

2. Methods

2.1. Random projections

Random projection means that the n�d original data

matrix (X) of n d-dimensional observations is projected by

a d�k random matrix (R) (where kBd) to produce a lower

dimensional subspace P of n�k:

Pn�k ¼ Xn�dRd�k (1)

In RP we are projecting our data set onto k random

directions defined by the column vectors of R. From

these projections we can construct a lower dimensional

representation of the original data set. The computational

complexity of RP is of the order of O(knd). Due to the

simplicity of RP, involving only matrix multiplication, it

can be applied to a wide range of data sets, even those with

a very high number of dimensions. Figure 1 illustrates how

the dimensionality of the data matrix is reduced by RP.

The idea of RPs stems from the Johnson�Lindenstrauss
lemma (Johnson and Lindenstrauss, 1984):

Suppose we have an arbitrary matrix X 2 R
n�d . Given any

e > 0, there is a mapping f: R
d ! R

k, for any k � O log n

e2 ,

such that, for any two rows xi, xj 2 X, we have

ð1� eÞjjxi � xjjj
2 � jjf ðxiÞ � f ðxjÞjj

2 � ð1þ eÞjjxi � xjjj
2

(2)

In the lemma it is stated that the data points in d-

dimensional space can be embedded into a k-dimensional

subspace in such a way that the pairwise Euclidean dis-

tances between the data points are approximately preserved

with a factor of 1� e. (See, e.g., Dasgupta and Gupta (2003)

for proof of this result.)

Work has been done on finding suitable construc-

tions of such mappings f (e.g. Frankl and Maehara, 1988;

Achlioptas, 2003). In our experiments, we have employed

a commonly used mapping (R) which consists of the

vectors of normally distributed N(0,1) random numbers

and the row vectors of the random matrix are scaled to

have unit length. There are also other random distri-

butions that satisfy the lemma [eq. (2)]. For example,

Achlioptas (2003) has shown that a matrix of elements

(rij) distributed as

rij ¼
ffiffiffi
3
p
�

þ1 with probability 1
6

0 with probability 2
3

�1 with probability 1
6

8<
: (3)

satisfies the requirements of a suitable mapping.

It should also be noted that in eq. (1) we are assuming an

orthogonal projection, although the column vectors of R

are not perfectly orthogonal. Here we can rely on a theorem

of Hecht-Nielsen (1994) stating that as the dimension of the

space increases, the number of almost orthogonal vectors

increases. According to Bingham and Mannila (2001), the

mean squared error between RRT and an identity matrix is

about 1/k per matrix element. We can therefore assume that

the vectors ofR are sufficiently orthogonal for the projection

to work. It is also possible to orthogonalise the vectors of R,

but it is computationally expensive.

We should also address the question of number of

subdimensions (k) needed to get a representation of the

original data set that is accurate enough. Some estimates

can be found in the literature. Originally, Johnson and

Lindenstrauss (1984) showed that the lower bound for

k is of the order of Oðlog n=e2Þ. There has also been

some work on revealing an explicit formula for k. For

example, Frankl and Maehara (1988) came up with the

result that k ¼ 9ðe2 � 2e3=3Þ�1
log n

l m
þ 1 is sufficient to

satisfy the Johnson�Lindenstrauss theorem, while Dasgup-

ta and Gupta (2003) showed that k � 4ðe2=2� e3=3Þ�1
log n

is enough. It is notable that the estimates of k depend only

on the number of data points (observations) n, and are

independent of d.

2.2. Principal component analysis

PCA is a widely used method to extract the dominant

spatio-temporal signals from multidimensional data sets

and to reduce the dimensionality of the data. In climate

science, the principal component loadings are also known

Fig. 1. Dimensionality reduction by random projection. Origi-

nal data X is projected onto a random matrix R to have a lower

dimensional subspace P.
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as empirical orthogonal functions (e.g. Rinne and Karhila,

1979; Von Storch and Zwiers, 1999).

PCA is based on the idea of finding a basis to represent

the original data set (Shlens, 2009). The aim is to find latent

variables that explain most of the variance in the original

data set via uncorrelated linear combinations of the ori-

ginal variables (Hannachi et al., 2007). This also enables

dimensionality reduction, as most of the variance in the

data set can be explained by only a small subset of principal

components.

One of the techniques for finding the principal compo-

nents of the data matrix is singular value decomposition

(SVD). SVD is based on a theorem stating that any matrix

Xn�d can be broken down into orthogonal matrices Un�n

and Vd�d and a diagonal matrix Dn�d:

X ¼ UDVT (4)

where the columns of V are orthonormal eigenvectors of

C�XTX (C is the covariance matrix of X), the columns

of U are orthonormal eigenvectors of Z�XXT and D is a

diagonal matrix containing the square roots of the eigen-

values of C or Z in descending order. Since the column

vectors of V are the eigenvectors of C, SVD is a direct way

of computing the PCA of the original data matrix X. The

column vectors of V are also known as the PC loading

vectors, and the PC score matrix S can be calculated as

follows:

S ¼ XV ¼ UDVT V ¼ UD (5)

As already mentioned, the PC loadings are also known as

the EOFs (e.g. Rinne and Järvenoja, 1986) in which case

the data set is often represented as a function of space (l)

and time (t)

f ðl; tÞ ¼ fmðlÞ þ
Xw

i¼1

siðtÞviðlÞ þ eðw; l; tÞ (6)

where fm is a mean field, vi is the spatial function of the

ith component (i.e. the PC loading) and the si are time-

dependent coefficients associated with vi. The number of

EOFs is denoted by w. If the EOF series is truncated, that

is, the data set is projected onto a subset of PC loadings,

a residual term eðw; l; tÞ is included.
In PCA, it is generally recommended to use a mean-

centred data matrix (Varmuza and Filzmoser, 2009). If the

data matrix is not centred, then typically the PCs resulting

from the PCA are not uncorrelated with each other and the

eigenvalues do not indicate variance but rather the non-

central second moments of the PCs (Cadima and Jolliffe,

2009). In uncentred PCA, it is often the case that the first

eigenvector (PC loading) is close to the direction of the

vector of column means of the data matrix.

The computational complexity of PCA (implemented

by SVD) is of the order of Oðd2nÞ þOðd3Þ, but there are

also computationally less-expensive methods for finding

only a certain number of eigenvalues and vectors (see e.g.

Bingham and Mannila (2001) and references therein). The

aim of this study is to compare the results of normal

PCA (implemented by SVD) applied to the original and

dimensionality-reduced (RP�PCA) data sets. The compu-

tational complexity of the latter can be expressed as

O(knd)�Oðk2nÞ þOðk3Þ. Now the original dimensions

are reduced from d to k, which means computational

savings in the PCA.

PCA has its own limitations in providing interpretability

of the physical patterns. Because of spatial orthogonality

and temporal uncorrelation, the PCs do not necessarily

correspond to any physical phenomena or patterns (Demšar

et al., 2013). The constraint in PCA for the successive

components to explain the maximum remaining variance

may lead to amixing of physical phenomena in the extracted

PCs (Aires et al., 2000). There are several methods to

overcome these limitations, e.g. rotating the PC loadings.

It has also been argued that the decorrelation assumption

of PCA is not enough, and that the statistical indepen-

dence of the extracted components is needed to analyse the

dynamical complexity of physical phenomena (Aires et al.,

2000). However, in this study we are more concerned with

demonstrating the RP method with the aid of PCA, and

therefore we only utilise the normal PCA without any

rotations. The focus is more on the method than on the

physical interpretation of the data.

3. Comparison of the original and the projected

data

3.1. Data

A monthly surface temperature data set from a millennial

full-forcing Earth system model simulation (Jungclaus,

2008) was used in this experiment. The original monthly

archived simulation data set has 14 472 time steps, but we

selected for our use only 4608 time steps (the dimension n)

from the end of the data set. The simulation data set has

a resolution of 96 points in longitude and 48 points in

latitude, resulting in 4608 locations or grid points (the

dimension d). The dimensions n and d were chosen to be

of equal size so that they could be reduced with RP

equivalently. The 4608�4608 data matrix is quite large,

but it is still manageable when performing PCA on it

for comparison with the projected lower dimensional sub-

spaces. Surface temperature was chosen because it has

some well-known global patterns (e.g. El Niño � Southern

Oscillation, ENSO) that can be identified with PCA.
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3.2. Applying RP and PCA to the climate simulation

data set

RP was applied in two different ways: the original data

matrix was arranged so that (1) the time steps n were in the

rows and the spatial locations d (gridpoints) were in the

columns and (2) the locations were in the rows and the time

steps in the columns. In this way, it was possible to project

the data matrix in order to correspondingly reduce either

the spatial (case 1) or the temporal (case 2) dimension, since

with RP we can only reduce one dimension at a time. The

original data matrix was mean-centred before projection on

the lower dimensional subspace.

When the PCA of the original data matrix is calcu-

lated, the PC loading vectors give us the spatial maps

corresponding to the PC scores. The PC score vectors are the

projections of the original data matrix onto the PC loadings,

and the scores can be presented as time series. After the

dimensionality of the data matrix is reduced by RP, we have

then reduced either the temporal or the spatial dimension.

Therefore it is not possible to get the corresponding PC

scores and loadings when the other dimension has been

reduced. Using SVD to find the PCs of the dimensionality-

reduced data set Pn�k, where the spatial dimension d has

been reduced, gives us

Pn�k ¼ Un�nDn�kVT
k�k (7)

The loading vectors in V cannot be plotted on the original

grid because we are now in R
k instead of R

d [see the

Johnson�Lindenstrauss lemma; eq. (2)]. If the temporal

dimension is reduced, we have Pk�d and the score vectors

cannot be presented as time series comparable to the original

PC scores. However, in the Appendix we present a novel

method whereby the loadings (or scores) can be approxi-

mated by calculating the matrices U (or V) and D in the

lower dimensional subspace and then multiplying these with

the original data set. This method is applied in Section 4.

The number of subdimensions k needed for RP was

discussed in Section 2.1. If we follow the bound given in

Dasgupta and Gupta (2003), with an arbitrary value o�0.2

and n�4608, the Johnson�Lindenstrauss theorem gives a

limit of k�4(o2/2�o3/3)�1 log n:1947 (42% of the original

dimensions) to make the projections with an accuracy of

19o. However, our experiments will show that, with our

data set, a much smaller k still gives good results, recovering

most of the information of the original data set. In this

work, we are not looking for an exact lower bound for RPs

applied to our data set but instead we are interested in

demonstrating the method itself, keeping practical applica-

tions in mind. We therefore chose the dimensions for the

RPs to be 10% and 1% of the original dimensions (4608).

These percentages are equivalent to k:460 (hereafter

denoted as RP10%) and k:46 (RP1%).

In order to investigate the stability of the results obtained

by RPs, the original data matrix was projected onto 100

different realisations of RP matrices of the same k (where

k is 46 or 460). For the uncertainty estimation, the original

data matrix was arranged as in case 1. The PCA of each

projection was calculated, making it possible to approx-

imate the mean and the 95% confidence limits for the

amount of variance explained by the PCs (Fig. 2). These

confidence limits describe the uncertainties that arise from

different projection matrices. From Fig. 2 we can see that

the results can be somewhat different depending on what

kind of RP matrix has been used. Some differences are to
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Fig. 2. Uncertainties of random projections. Mean and 95%

confidence limits of the variance explained by the PCs (a) 1�30 and
(b) 2�30 calculated from 100 realisations of projections of RP10%

and RP1%. The explained variance of the first eigenvalue is

excluded from subfigure (b) to show more details. In RP, the

spatial dimension of the original data matrix is reduced.
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be expected, since the elements in the RP matrix are always

different, although normally distributed N(0,1). Further-

more, as the projection dimension k increases, the 95%

confidence intervals (of the same k) become narrower.

3.3. Results of PCA

3.3.1. Explained variance of PCs. The eigenvalues of

the data covariance matrix are in descending order and

indicate the significance, that is, the amount of variance, of

the principal components. An essential part of EOF studies

(e.g. Hannachi, 2007) is to analyse the eigenvalues in the

detection of the dominant signals or patterns in climate

data.

Figure 3 shows the percentage of explained variance

of the PCs with their 95% confidence limits approxi-

mated from the original and projected data sets (RP10%

and RP1%). The confidence limits are based on boot-

strapping where the original and projected data sets are

re-sampled 100 times with replacement and the PCA of

each bootstrap sample is calculated. The sampling is done

with respect to the temporal dimension and the obtained

samples are arranged in chronological order. In the case

of the projected data sets, the variances of the PCs are

obtained using one realisation of each projection (RP10%

and RP1% and cases 1 and 2 of both). We have also

re-sampled these realisations of projected data matrices

to analyse the uncertainties related to these specific pro-

jections. Notice the difference to the previous section, where

we estimated the uncertainties of RP due to regenerated

random matrices. In Fig. 3, we can see that in case 2, in

which the temporal dimension n is reduced, the 95%

confidence intervals become wider, as can be expected.

Otherwise the confidence intervals are quite narrow because

of large n.
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temporal (2) dimensions are reduced. The confidence limits are obtained by re-sampling the original and projected data sets 100 times, and

the PCA of each sample is calculated.
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Figure 3 shows that the eigenvalues (illustrated as the

percentage of the explained variance) decrease monotoni-

cally, and are quite similar in the cases of the original

and projected data sets even when the dimension has

been reduced to only 1% of the original dimensions. The

eigenvalues of PCs 1�4 seem to be separated from the rest

and also from each other, except in the case of RP1% with

reduced temporal dimension n, where the 95% confidence

limits of PCs 2 and 3, 3 and 4 as well as 4 and 5 overlap. The

confidence limits of PCs 4 and 5 of RP10% with reduced

n also overlap. PCs 1�4 explain almost 94% of the variance

of the original and projected data sets. PC1 explains the

majority (approximately 87%), PC2 4%, PC3 2% and PC4

approximately 1% of the variance. The rest of the eigenva-

lues decrease quite smoothly, which causes difficulties in

distinguishing those small eigenvalues due to signal and

those due to noise.

We saw that the eigenvalue spectra of the original and

randomly projected data sets look quite similar. However,

this only tells us that the amplitudes of the dominant

signals are similar in both the original and the projected

data sets. We also need to compare the PC loadings (i.e. the

eigenvectors of the covariance matrix) and the PC scores to

find out whether the spatio-temporal signatures have the

same features.

3.3.2. PC loadings. The PC loadings, or the spatial

patterns of the PCs of the original and dimensionality-

reduced data sets, are shown in Figs. 4 and 5. Visual

inspection shows that the original data and RP10% have

very similar spatial patterns of PCs 1�12, with some dif-

ferences however in PCs 8 and 9. RP1% PCs have mostly

similar spatial patterns with the original PCs up to com-

ponent 5, subsequent loadings of RP1% having more

deviations. It should be noted that a PC loading vector

has an arbitrary sign. To facilitate comparison, some of the

RP10% and RP1% loading vectors were multiplied by �1

if they correlated negatively with the original PC loading

vectors.

Spatial maps (especially PCs 4, 5, 6 and 11) show some

features in surface temperature patterns that can be asso-

ciated with the El Niño � Southern Oscillation (ENSO),

e.g. distinct loadings in the Tropical Pacific and northwest/

midwest North America (Trenberth and Caron, 2000).

These same patterns can be found in the original, the

RP10% and the RP1% maps and mostly in the same

components.

The correlations of PC 1�20 loadings of the original

and dimensionality-reduced (RP10% and RP1%) data sets

are shown in Fig. 6. We can see that the RP10% loadings

are strongly correlated with the original loadings until

PC12 (correlation coefficient r�0.8 and r�0.9 up to PC7)

and the RP1% loadings until PC5. PCs 1�5 already explain

94% of the variance of the data set and PCs 1�12 explain

96%. We can also see that some of the components of

RP10%/RP1% have stronger correlations with adjacent

ones of the original data set; for example, PC9 of RP10%

has a stronger correlation with PC8 than with PC9 of the

original data set. These adjacent components typically have

similar variances.

Results are in line with the findings of Qi and Hughes

(2012), where it is theoretically verified that, although RP

disperses the energy of a PC in different directions, the orig-

inal PC remains as the direction with the most energy. Due

to this, oscillations with similar variance can be assigned to

different, adjacent components, leading to some ambiguity

in the indices. Another, or supplemental explanation for

the switching of adjacent PCs is provided in Jolliffe (1989).

According to that paper, it is a well-known fact that

PCs whose variances (or eigenvalues) are nearly equal are

unstable, but their joint subspace is stable. It has been

shown that small changes in the variances in this subspace

can lead to large changes in corresponding PC loading

vectors, and this may lead to the switching of adjacent PCs.

Thus it is more important to detect the same oscillations

and patterns in the original and projected data sets, not in

having them assigned to exactly the same components.

3.3.3. PC scores. The time series of PC scores were

analysed with the Multitaper spectral analysis method

(Thomson, 1982; Mann and Lees, 1996) to find the most

powerful frequencies in these time series. The power spectra

of the original and projected PC scores are shown in Fig. 7.

Dominant features of the power spectra are the harmonic

component frequencies which are integer multiples of the

fundamental frequency. In the monthly surface tempera-

ture data set, the fundamental frequency is 1/12, which

corresponds to a period of 1 yr and the harmonics clearly

visible in the power spectra of PCs are 1/6, 1/4 and 1/3,

corresponding to periods of 1/2, 1/3 and 1/4 yr that are

related to intra-annual variations of surface temperature.

The peaks at these frequencies are very similar in corre-

sponding components of the original data, RP10% and

RP1%. The peaks at the harmonics may also indicate that

the orthogonality constraint of PCA is not suitable for

this data set. The PCs are global and may have the same

structure so that the first PC possesses the fundamental

frequency while the following ones possess its harmonic

frequencies (Aires et al., 2000).

Apart from the seasonal/harmonic frequencies, there are

distinct peaks in the PC score spectra around the period

of 3 yr. This might be related to ENSO which has a cycle

of 2�6 yr. These peaks are clearly distinguishable in PCs

6 (original), 7 (RP10% and RP1%) and 11 (original and

6 T. SEITOLA ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

el
si

nk
i]

 a
t 0

2:
22

 0
3 

O
ct

ob
er

 2
01

7 



RP1%) with some differences between the original and

dimensionality-reduced data sets. We already identified

some ENSO-related features in the spatial maps.

The correlations of the original and RP10%/RP1% PC

scores (Fig. 8) are quite similar to the correlations in the

loadings (Fig. 6). The RP10% correlations to the original
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Fig. 4. Spatial patterns of PC1�PC8 loadings. Comparison of the original, RP10% and RP1% data sets. In RP, the temporal dimension

is reduced.
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scores are strong (r�0.8) until about PC13, and PCs 6

and 7 are cross-correlated. The RP1% correlations with

the original scores are also strong until PC5, although the

correlation coefficient of PC5 is slightly less than 0.8.

4. Application of RP to a very high-dimensional

data set

To demonstrate the application of the RP method to a very

high-dimensional data set, we used a monthly temperature

data set from a millennial full-forcing Earth system model

simulation (Jungclaus, 2008) with a vertical resolution of

17 levels in the atmosphere between 1000 and 10 hPa.

Inclusion of the vertical component increased the dimen-

sion d of the data matrix to 4608�17�78336. We extracted

3600 time steps (n) from the end of the data set. The

increase of d from 4608 to 78336 makes in our case PCA

non-applicable (in a laptop computer), and thus we call the

dimension ‘very high’. Therefore the dimensionality of the

data matrix was reduced by RP to make PCA applicable.

The original data matrix is X(n�d) with n�3600 and

d�78336, referring to time step and location, respectively.

The dimensionality of the data matrix was reduced by

projecting it onto a random matrix R(d�k), where k:783

is the subspace dimension (1% of the original dimensions d)

[eq. (8)]. We then calculated the SVD of the lower dimen-

sional data P(n�k) to get the matrix URP(n�k) [eq. (9)].

The PC loadings V(d�k) were then approximated by

multiplying the transpose of the original data matrix

X(n�d) with URP(n�k) and the inverse of the diagonal

matrix DRP(k�k) which we got from the SVD of P

[eq. (10)] (see Appendix).

P ¼ XR (8)

P ¼ URPDRPVT
RP (9)

V � XT URPD�1
RP (10)

The diagonal elements of DRP(k�k) are the square roots

of the eigenvalues of the data covariance matrix indicating

the significance of the PCs. Columns of URP(n�k) multi-

plied by DRP(k�k) [see eq. (5)] are the PC scores: these

are analysed with the Multitaper spectral analysis method

(Thomson, 1982; Mann and Lees, 1996) as in Section 3. The

columns of V(d�k) are the PC loading vectors, that is,

the spatial patterns corresponding to the PC scores. The

elements of a loading vector contain the spatial patterns

of a certain PC at 17 standard pressure levels of the

atmosphere. The first 1�4608 elements correspond to level

1 (1000 hPa), elements 4609�9216 correspond to level 2

(925 hPa), and so on until 10 hPa.

Fig. 5. Spatial patterns of PC9�PC12 loadings. Comparison of the original, RP10% and RP1% data sets. In RP, the temporal

dimension is reduced.
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Fig. 6. Correlation of the original and projected (RP10% and RP1%) PC loadings. In RP, the temporal dimension is reduced.
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Figure 9 shows the percentage of the variance the PCs

explain with their 95% confidence limits. The confidence

limits were estimated by bootstrapping, as we did with the

surface temperature data set in the previous section. PCs

1�3 are clearly separated from the rest and also from each

other. PCs 4 and 5 (and maybe even PCs 6, 7 and 8 as

their own subgroup) still seem to be distinguishable from

the remaining eigenvalues which decrease quite smoothly.

PC1 explains the majority of the variance in the data set

(approximately 89%), PC2 explains 3.5%, PC3 approxi-

mately 1.5% and PCs 4 and 5 both explain approximately

0.7%. PCs 1�3 together account for 94% of the variance in

the data set. The confidence intervals are narrow because

of the relatively large sample size n.

Figure 10 shows that the dominant frequencies of

the atmospheric temperature variation are those related

to annual and intra-annual oscillations, which were also

detected in the surface temperature data set in the previous

section. There are also peaks in the PC score spectra around

the period of 3 yr which might be related to ENSO. The

most distinct ENSO-related component is PC5 and its

spatial patterns at the 1000�30 hPa levels are shown in

Figs. 11 and 12. At the lower atmospheric levels, especially

1000�925 hPa, temperature patterns related to ENSO can

be identified in the Tropical Pacific and northwest/midwest

North America. At the 850�600 hPa levels the positive

loadings near the equator decrease but again increase at

levels from 500 to 250 hPa and at the same time spread

both north- and southwards, especially in the Pacific. The

North American pattern attenuates little by little, but is still

identifiable up to 400 hPa. At the upper levels the loadings

around the tropics and subtropics become negative, mean-

ing that the oscillation in the upper atmosphere is in an

opposite phase compared to lower levels, where the pattern

is clearly positive in the same areas.

Some caution is needed in the physical interpretation of

these results. We already mentioned the limitations of PCA

in Section 2.2. It should be noted that PC5 also has a distinct

half-year peak, meaning that this component also carries

an intra-annual signal. This is most likely to be related to

the mixing problem of PCA. The ENSO representation of

the model used in the simulations should also be consid-

ered (See, e.g., Jungclaus et al., 2006; Bellenger et al., 2014).

Despite the limitations in the physical interpretation of the

results, this experiment gives an example of how a large,

multidimensional data set can be preprocessed with RP and

then analysed efficiently to find, for example, the latent

structures in the data set.

5. Summary and conclusions

The dimensionality of a simulated surface temperature data

set was reduced by RP, and PCA was utilised to compare

the structure of the original and projected data sets. Lower

dimensional subspaces of 10% and 1% of the original data

dimensions were investigated. The experiments showed that

even at 1% of the original dimensions the main spatial

and temporal patterns or principal components of the

10
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Fig. 7. Spectra of PC1�PC12 scores. (a) The original data set, (b) RP10% and (c) RP1%. In RP, the spatial dimension is reduced.
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Fig. 8. Correlation of the original and projected (RP10% and RP1%) PC scores. In RP, the spatial dimension is reduced.
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original surface temperature data set were approximately

preserved. With a subspace of 10% of the original dimen-

sions, we were able to recover the PCs explaining 96%

of the variance in the original data set and with 1% we

still could recover the PCs explaining 94% of the original

variance.
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Fig. 9. Explained variance (%) of PCs with their 95% confidence limits estimated by bootstrapping. PCs (a) 1�30 and (b) 2�30 of the

three-dimensional atmospheric temperature data set (the spatial dimension is reduced by RP) are shown. The explained variance of the first
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The findings of this work are supported by the results

presented in Qi and Hughes (2012). In their paper, it is

theoretically and experimentally shown that a normal PCA

performed on low-dimensional random subspaces recovers

the principal components of the original data set very well,

and as the number of data samples n increases the principal

components of the random subspace converge to the true

original components.

RP is computationally fast compared to other methods

for dimensionality reduction (e.g. PCA) since it involves

only matrix multiplication. It can therefore be applied to

very high-dimensional data sets. Based on our experiments,

it seems to open new possibilities in reducing the dimen-

sionality of climate data. One of the topics of our forth-

coming research is to investigate the applicability of RP

before the use of some other computationally heavy analysis

methods for multivariate climate data, for example, multi-

channel singular spectrum analysis (e.g. Ghil et al., 2002).

As mentioned, there are some estimates available for the

lowest bound for the reduced dimensions k. These esti-

mates depend on the number of observations (dimension n)

in the original data set and the desired accuracy of the

projection (controlled by error o). These estimated bounds

seem to be much higher than the ones we used with good

results. This suggests that the bounds for dimensionality

reduction with RP should be investigated in more detail in
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Fig. 11. The spatial patterns of the PC5 loadings of the atmospheric temperature data set (the spatial dimension is reduced by RP)

between 1000 and 400 hPa. The spatial patterns are approximated using the method explained in the Appendix.
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the case of climate data. We would then also need to know

what is the information content of our data set, that is, the

signals that rise above the noise in the original data set.

We also demonstrated the application of the RP method

to a very high-dimensional data set of the atmospheric temp-

erature in three dimensions. Our results imply that RP could

be used as a pre-processing step before analysing the struc-

ture of large data sets. This might allow an investigation

of the dynamics of truly high-dimensional climate data sets

of several state variables, time steps and spatial locations.
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7. Appendix

A.1. Random projection and the singular value decomposition

In this Appendix we explain the method used in Section 4.

Let’s say we have an original data Xn�d. The singular value

decomposition (SVD) of X is:

Xn�d ¼ Un�nDn�dVT
d�d (A1)

The covariance matrix of X is C�X
T
X and the columns

of V are the eigenvectors of C. Also, the columns of U
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Fig. 12. The spatial patterns of the PC5 loadings of the atmospheric temperature data set (the spatial dimension is reduced by RP)

between 300 and 30 hPa. The spatial patterns are approximated using the method explained in the Appendix.
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are the eigenvectors of Z�XXT. D is a diagonal matrix

containing the square roots of the eigenvalues of C or Z in

descending order.

Since the random projection (RP) of X is P�XR, where

Rd�k is the projection matrix, (the row vectors of R are

scaled to have unit length), we can write:

CRP ¼ ðXRÞT XR ¼ RT XT XR ¼ RT CR (A2)

ZRP ¼ XRðXRÞT ¼ XRRT XT � XXT ¼ Z (A3)

In the previous we have assumed that RRT:I, because

the row vectors of R are nearly orthonormal. It is also

possible to make the vectors of R strictly orthogonal, but

this is computationally quite expensive.

Let’s rewrite eq. (A1) as Xn�d�Un�rDr�rV
T
r�d ; where

r�rank(X). Now we can manipulate eq. (A1):

X ¼ UDVT ðVT V ¼ IÞ
XV ¼ UD ðDD�1 ¼ IÞ

U ¼ XVD�1 (A4)

or

X ¼ UDVT ðUT U ¼ IÞ
UT X ¼ DVT ðD�1D ¼ IÞ

VT ¼ D�1UT X transpose of both sides

V ¼ XT UðD�1ÞT ¼ XT UD�1 (A5)

Because Z:ZRP, we can approximate

U � URP;

D � DRP and

V � XT URPD�1
RP (A6)

In the previous we have defined URP as n�k and DRP

as a k�k matrix, where k is the rank of matrix Pn�k.

If we have a very high-dimensional data set X we

can first reduce the dimensionality of X by RP and

then approximate U (or V) and D in a lower dimensional

subspace. We can then multiply the original data matrix

with the approximated matrices U (or V) and D, finally

getting the approximations of the PC scores or loadings

depending on which dimension we have reduced in RP.
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