

Preprint of a published article:

Carabaño, J., Sarjakoski, T. and J. Westerholm, 2015. Efficient
Implementation of a Fast Viewshed Algorithm on SIMD Architectures. In: 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. IEEE, 199–202, ISBN: 978-1-4799-8491-6, DOI:
10.1109/PDP.2015.62

Efficient implementation of a fast viewshed algorithm
on SIMD architectures

Jesús Carabaño Bravo
Åbo Akademi University, Dept. of IT

Joukahainengatan 3-5, 20520 Åbo,
Finland

Jesus.CarabanoBravo@abo.fi

Tapani Sarjakoski
Finnish Geodetic Institute, Dept. of

Geoinformatics and Cartography
P.O.B 15, 02431 Masala, Finland

Tapani.Sarjakoski@fgi.fi

Jan Westerholm
Åbo Akademi University, Dept. of IT

Joukahainengatan 3-5, 20520 Åbo
Finland

Jan.Westerholm@abo.fi

Abstract— Viewshed refers to the land area that is visible to
an observer placed in a point of a terrain. Due to the advances in
remote sensing technologies the volume of data is today beyond
the capability of traditional GIS tools and therefore new and fast
algorithms become essential. In this paper we present an efficient
implementation of the XDRAW algorithm [5] to quickly compute
viewsheds on very large digital elevation models. We redesign the
algorithm to make it IO-efficient and compatible with modern
SIMD architectures. Our implementation is able to compute
viewsheds on digital elevation models at the rate of 109 points per
second on an Intel quad-core CPU with AVX2 technology, which
makes the algorithm suitable for real-time applications.

Keywords— viewshed; gis; simd; parallel; real-time

I. INTRODUCTION
A viewshed, also known as visibility map, is the subarea of

a terrain that is visible to an observer placed on a particular
point of the terrain at a specific altitude. The digital
representation of a terrain is called Digital Elevation Model
(DEM). Computing the visibility map of a DEM is a common
task for any Geographical Information System (GIS) and a key
process in many spatial analysis problems. Some applications
of visibility maps include finding the minimal set of observers
that fully covers a region [4, 10], evaluating the impact of a
new construction on the view of a landscape [12] or computing
optimal hidden paths [15].

The extraordinary advances in remote sensing technologies
during the last years have lead to an imperative need for fast

computational methods. Today, technologies like LIDAR
produce ever-increasing high resolution DEMs that enable
research impossible only a decade ago. This, however, also
brings new challenges given that the volume of data has
already surpassed the limits of traditional GIS tools. For
instance, 1-meter resolution data sets for regions the size of
European countries or USA states are in the order of terabytes
[3], which clearly exceed the capability of former algorithms.

Most algorithmic methods for computing viewsheds were
already proposed several years ago [6, 16] and most present
researches are about optimizing them. We see two principal
lines of research in this scope. The first studies the so-called
I/O-efficient algorithms, focusing on the design of external
memory algorithms and the use of cache-aware and cache-
oblivious techniques [1, 8, 17]. The second line of research
targets on porting, redesigning and creating new viewshed
algorithms that run efficiently on parallel computers. Shared-
memory multi-core computers and modern accelerators are the
top technologies in this respect [13, 14, 19].

In this work we cover both lines of research by redesigning
the XDRAW algorithm [5] to make it IO-efficient and
compatible with modern SIMD architectures (e.g. SSE4.2,
AVX2, GPUs and AVX-512 from Xeon Phi). In section II we
describe XDRAW and compare it to other approaches. In section
III we detail the three key improvements to the original
algorithm: blocking, Morton order and code regularization with
multiple code paths. Finally we report results from our
implementation in section IV and our conclusions in section V.

O" P1" P2" P3" P4"

LOS"OP4"

LOS"OP2"
LOS"OP3"

Visible"point"
Non5visible"point"

LOS"OP
1"

Temporary"highest"LOS"
LOS"to"non5visible"point"

N"

S"

E"W"

NW
" NE"

SE
"SW

"
 a) b)
Figure 1. (a) Viewshed problem in one dimension. Each discrete one-dimensional point at the bottom stores an elevation. (b) Top view of a two-dimensional case.

The observer in the center throws lines-of-sight (LOS) to all other points in the Digital elevation Model (DEM).

II. XDRAW ALGORITHM
XDRAW is commonly attributed to [5] but similar

approaches were already known, used and reported [16]. It has
been further studied for instance in [6]. XDRAW builds the
output visibility map following an iterative expansion from the
observer toward the cardinal and ordinal directions (Fig. 2a).
The simplest way to understand this behavior is to look at a
one-dimensional example. In Fig. 1a the visibility of each new
point directly depends on whether its elevation is above or
below the highest line-of-sight (LOS) discovered up to the
position of the point. More formally, any point Px is visible if
the LOS OPx from the observer O is higher than the highest
accumulated LOS. A LOS is higher than another when its slope
is greater than the other slope.

Notice that the described process only works if all points lie
in the same vertical plane. For the two-dimensional case (Fig.
1b) all LOSs except the ones in the eight compass directions
need to be walked individually. XDRAW, however, avoids this
restriction by transforming the two-dimensional problem to a
one-dimensional case. To do so the highest LOS affecting a
point is approximated from the two LOSs accumulated until its
closest preceding neighbors (as indicated by the thin short lines
in Fig. 2b). In this way the processing of each element depends
solely on previous computations and this leads to a
computational complexity of O(1) per data element.

N"

S"

E"W"

NW
" NE"

SE
"SW

"

L1"

L2"

L3"

L4"

N"

S"

E"W"

NW
" NE"

SE
"SW

"
 a) b)

Figure 2. (a) Flow Map and (b) Dependency Map in XDRAW.

A. High Level Description
XDRAW can be summarized by the following steps:

1. Choose the position and height of the observer O.

2. Initialize the maximum slope MSo accumulated at O to
the lowest floating-point value (-3.40282e+38).

3. Move to the next layer Ln. Every layer Ln is composed
by the DEM points with distance n to the observer in
the vertical, horizontal or both axis (Fig. 2a).

4. For each point Px in the new layer Ln calculate its MSx
by interpolation of the maximum slopes MSa and MSb
accumulated until the nearest preceding neighbors of
the previous layer. The data dependency map (Fig. 2b)
shows the direction of the involved neighbors. The
weights applied in the interpolation are the inverses of
the distances from the neighbors to the LOS OPx.
Cardinal and ordinal directions correspond to the one-
dimensional case and do not need interpolation.

5. Compute the slope Sx of the LOS OPx for each point Px
with the equation of a straight line. Set Px to visible if
Sx is greater than MSx. In this case MSx becomes Sx,
otherwise the previous value is kept in MSx.

6. Go to 3 while more layers remain.

B. XDRAW Versus Other Approaches
There exist three groups of viewsheds methods that

possess, respectively, complexities of O(N), O(logN) and O(1)
per data element. The first group is composed by those
algorithms that walk all LOSs and interpolate between DEM
height values to obtain the real elevation crossing the LOSs.
The common example of O(N) algorithm is R3 [6] and some
IO-efficient versions of this approach are presented in [7, 19].

The second group is characterized by algorithms that accept
the gridded values as close enough approximations to the real
elevations lying in the trajectory of the LOSs. With this change
now multiple LOSs traverse same gridded points and several
strategies can be utilized to avoid repeated access. As a result
the complexity is reduced to O(logN) in exchange of some loss
of accuracy. Examples are the SWEEP-LINE method [11] and
some IO-efficient versions of it [3, 8].

The last group comprises those algorithms that, like
XDRAW, reduce the two-dimensional problems to the one-
dimensional case (Fig. 1). This effectively decreases the
complexity to O(1) but at the expense of even more loss of
accuracy than the second set of algorithms. Other examples of
algorithms from this group are R2 [6], REFERENCE-PLANE [18],
BACKTRACK [9] and CENTRIFUGAL-SWEEP [3].

Finally, note that no algorithm is unconditionally better
than any others. They all present very different tradeoffs
between speed and accuracy and only the final application and
input data will determine the suitability of the methods. In this
paper our main goal is performance and hence we do not
distrust the accuracy of XDRAW. This is because fast algorithms
are essential in real-time application for instance, where the
execution of more accurate methods would be too slow and
hence useless. On the other hand, applications with high
requirements of accuracy should be evaluated thoroughly first
before using a fast approximate approach like XDRAW.

III. IMPROVEMENTS AND REDESING
We made three major changes to XDRAW. First we applied

a blocking scheme to avoid uncoalesced accesses to memory.
Secondly we orchestrated the processing of blocks with the
space-filling z-curve to reduce the thrashing of memory.
Finally we regularized the code with multiple execution paths
so that instructions are compatible with the SIMD model. In
addition we process different sectors in different threads to
exploit the available cores of modern multiple-core processor.

1) Blocking

Blocking, also called tiling, is a cache-aware technique that
pursues a better utilization of cache memories. This technique
solves the situation where XDRAW was issuing uncoalesced
accesses to memory. The problem appears when the
propagation of the algorithm advances perpendicularly to the

memory layout and memory elements have to be gathered in
multiple memory transfers. In our improved implementation
full blocks of data are loaded in a coalesced fashion whichever
direction the propagation goes into and this ensures an efficient
utilization of the memory resources. Besides, this technique
reduces the memory requirements of the algorithm, which
before required three times the size of the input data (input,
output and slope buffers) and now just requires three times the
block size per used thread. For the cases where the propagation
is perpendicular to the memory layout it is still necessary to
transpose the block. Nevertheless, this operation is significantly
more efficient now that the block is loaded into cache.

2) Z-Order

Formally known as Morton encoding [2], this space-filling
curve maps multidimensional data into one dimension while
keeping its order and locality. Following this order when
processing data can automatically lead to an efficient
utilization of cache memories. This is commonly called cache-
obliviousness because the effect is achieved automatically and
independently of the cache configuration. This technique can
also help to reduce the trashing of disk pages from main
memory and improve the disk IO performance since modern
operating systems always use the main memory as a large
software cache for the data stored in disk.

N" NE"

E"

Gh
os
t&/
&H
al
o&
po

in
ts
&

Ghost&/&Halo&points&

 a) b)

Figure 3. (a) Traversing order of the blocks in both NE sectors when using z-
order filling curves. (b) Zoom inside a block from the NE-E sector, its data
dependencies and ghost cells required from previously processed blocks.

In our implementation we apply the z-curve to orchestrate
the traversal order in which blocks are processed. During the
propagation of XDRAW each new layer reutilizes results
computed in the previous layer. These data elements face the
risk of being thrashed when following depth-first or bread-first
traversal orders in very large DEMs. After applying this
improvement new blocks are likely to be issued soon after their
previous neighbors have been computed and this reduces the
thrashing of memory. The ordering starts from the observer and
grows independently for each sectors as indicated in Fig. 3a.

3) Code Paths

In XDRAW all points in a layer experience a similar
condition, but depending on their relative position to the
observer some points might require accessing more neighbors,
performing interpolation or computing some arithmetic
operations in different order. For instance, while a point in the
north direction will only access the neighbor in its south, a
point in the northeast-east sector will access two preceding
points (Fig. 2b). These dissimilarities end up producing a
heavily branched code with heterogeneous instructions and
dynamic memory accesses, which go against the SIMD model.

Avoiding the aforementioned obstacle requires the code to
clearly expose the parallelism. In our implementation we set up
different code paths for each of the possible cases. This helps
to avoid branches within the inner loops and creates more
compacted and static codes. Consequently the compiler can
both issue SIMD instructions and produce more efficient code.
After this change blocks like the one showed in Fig. 4b will be
only processed by their own code path, which is specially
optimized for their specific case.

IV. BENCHMARKING
For this work we employed an Intel(R) Core(TM) i7-4770K @

3.50GHz processor. It is a quad-core CPU with multithreading
and AVX2 technology. The machine also included 32GB of
main memory and a pair of Samsung 840 PRO SSD flash-disks
in RAID0 mode. The operating system was Ubuntu 14.04 LTS.
Both algorithms, the reference and our efficient version, were

 Figure 4. Viewshed on data set of a city with 1-feet resolution. The observer was set in a roof of the top-right corner of the DEM.

compiled using GCC 4.9.1 with the following options: Ofast,
m64, march=native, mtune=native. All the vectorized code
(AVX2 instructions) was automatically generated by GCC.

The data sets used in this work were both synthetic and real
data (Fig. 4). Using synthetic data is adequate because we are
not measuring the accuracy of the method but its performance.
XDRAW is an algorithm whose running time solely depends on
the size of the input terrain hence any data configuration serves
our purpose. The upper limit of the data size was imposed by
the largest sample that the original XDRAW could run in our
testing machine due to its memory requirements. On the other
hand our efficient version is able to run any data size that fits
on disk thanks to the blocking technique.

Results from our experimentation are presented in Table 1.
Our efficient XDRAW was up to 50 times faster than the
reference method for the largest tested data set. The given
speedups result from the combination of the multiple
improvements discussed in section 3. Table 2 lists the
individual contribution of said enhancements. The speedup
achieved through SIMD execution is reported within the Code
Paths column since this technique is the main enabler for
SIMD execution. Blocking becomes an important change, not
only because it eliminates the uncoalesced accesses to memory
but also because of the reduction on the memory requirements.

TABLE I. Rereference vs. efficient XDRAW.

Input&Size
(elevation*points)

512&x&
512

1024&x&
1024

2048&x&
2048

4096&x&
4096

8192&x&
8192

16384&x&
16384

32768&x&
32768

Reference&Xdraw&
(seconds)

0,006 0,024 0,138 0,667 2,965 12,073 49,113

Efficient&Xdraw&
(seconds)

0,004 0,006 0,013 0,03 0,088 0,312 0,98

Speedup
&(naïve*/*efficient)

1,5 4 10,62 22,23 33,69 38,696 50,115

TABLE II. Individual speedups of the different improvements.

Technique Blocking Z*Order Code0Paths Threads)(4)cores)
Speedup 4,111 1,147 2,819 3,769

V. CONCLUSIONS
In this paper we present an efficient implementation of

XDRAW, a fast algorithm for the computation of viewsheds [5].
We apply several changes to the algorithm in order to make it
IO-efficient and compatible with SIMD architectures. We add
a blocking scheme that eliminates the uncolaesced accesses to
memory; we reorder the computation with the space-filling z-
curve to reduce the memory thrashing effect and we set up
different code paths that clearly expose the inherent fine-grain
parallelism of the algorithm and enable the use of advanced
SIMD instructions. In addition we distribute the computation
of the sectors of the DEM to different threads.

Our improved XDRAW is 50 times faster than the reference
algorithm and is able to process 109 elevation points per second
on a quad-core desktop processor with AVX2 technology. This
makes our method a useful tool when processing viewsheds on
high-resolution geographical data. For example it allows
solving optimization problems like finding minimum sets of
observers in reasonable times. It is moreover suitable for

situations where real-time responses are desirable, like in real-
time visualization. On the other hand, XDRAW presents the
drawback of being less accurate than other viewshed methods
and it might be a compromise to use our approach in
applications with critical requirements of accuracy.

ACKNOWLEDGMENT
We thank Academy of Finland for supporting this work and

the Quick-GC project with grants 259995 and 259557.

REFERENCES
[1] A. Aggarwal and J. Vitter, “The input/output complexity of sorting and

related problems,” Communications of the ACM, vol. 31, no. 9, pp.
1116–1127, Aug. 1988.

[2] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, “Space-
filling curves and their use in the design of geometric data structures,”
Theor. Comput. Sci., vol. 181, no. 1, pp. 3–15, Jul. 1997.

[3] J. Fishman, H. Haverkort, and L. Toma, “Improved visibility
computation on massive grid terrains,” in Proceedings of the 17th ACM
SIGSPATIAL GIS’09, 2009, p. 121.

[4] W. Franklin, “Siting observers on terrain,” Adv. Spat. Data Handl., pp.
109–120, 2002.

[5] W. Franklin and C. Ray, “Higher isn’t necessarily better: Visibility
algorithms and experiments,” Adv. GIS Res. sixth International
Symposium of Spatial Data Handling, vol. 2, pp. 1–22, 1994.

[6] W. Franklin, C. Ray, and S. Mehta, “Geometric algorithms for siting of
air defense missile batteries,” Research Project for Battle 2756, 1994.

[7] H. Haverkort, L. Toma, and B. P. Wei, “On IO-efficient viewshed
algorithms and their accuracy,” in Proceedings of the 21st ACM
SIGSPATIAL GIS’13, 2013, pp. 24–33.

[8] H. Haverkort, L. Toma, and Y. Zhuang, “Computing visibility on
terrains in external memory,” J. Exp. Algorithmics, vol. 13, no. 1, p. 1.5,
Feb. 2009.

[9] D. Izraelevitz, “A Fast Algorithm for Approximate Viewshed
Computation,” Photogramm. Eng. Remote Sens., vol. 69, no. 7, pp. 767–
774, Jul. 2003.

[10] Y.-H. Kim, S. Rana, and S. Wise, “Exploring multiple viewshed analysis
using terrain features and optimisation techniques,” Comput. Geosci.,
vol. 30, no. 9–10, pp. 1019–1032, Nov. 2004.

[11] M. Van Kreveld, “Variations on Sweep Algorithms: efficient computatin
of extended viewsheds and class intervals,” Proc. 7th Int. Symp. Spat.
Data Handl., pp. 1–14, 1996.

[12] M. Llobera, “Extending GIS-based visual analysis: the concept of
visualscapes,” Int. J. Geogr. Inf. Sci., vol. 17, no. 1, pp. 25–48, Jan.
2003.

[13] A. Osterman, L. Benedičič, and P. Ritoša, “An IO-efficient parallel
implementation of an R2 viewshed algorithm for large terrain maps on a
CUDA GPU,” Int. J. Geogr. Inf. Sci., June 2014, pp. 1–24, May 2014.

[14] X. Shi, V. Kindratenko, and C. Yang, Modern Accelerator Technologies
for Geographic Information Science. Boston, MA: Springer US, 2013.

[15] J. L. D. Stucky, “On applying viewshed analysis for determining least-
cost paths on Digital Elevation Models,” Int. J. Geogr. Inf. Sci., vol. 12,
no. 8, pp. 891–905, Dec. 1998.

[16] Y. Teng and L. Davis, “Visibility analysis on digital terrain models and
its parallel implementation,” University of Maryland, Center for
Automation Research, Computer Vision Laboratory, 1992.

[17] L. Toma, “Viewsheds on terrains in external memory,” In Newslett.
ACM SIGSPATIAL Special, vol. 4, no. 2, pp. 13–17, Jul. 2012.

[18] J. Wang, G. Robinson, and K. White, “Generating viewsheds without
using sightlines,” Photogramm. Eng. Remote Sensing, vol. 66, no. 1, pp.
87–90, 2000.

[19] Y. Zhao, A. Padmanabhan, and S. Wang, “A parallel computing
approach to viewshed analysis of large terrain data using graphics
processing units,” Int. J. Geogr. Inf. Sci., vol. 27, no. 2, pp. 363–384,
Feb. 2013.

