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Abstract— Viewshed refers to the land area that is visible to 
an observer placed in a point of a terrain. Due to the advances in 
remote sensing technologies the volume of data is today beyond 
the capability of traditional GIS tools and therefore new and fast 
algorithms become essential. In this paper we present an efficient 
implementation of the XDRAW algorithm [5] to quickly compute 
viewsheds on very large digital elevation models. We redesign the 
algorithm to make it IO-efficient and compatible with modern 
SIMD architectures. Our implementation is able to compute 
viewsheds on digital elevation models at the rate of 109 points per 
second on an Intel quad-core CPU with AVX2 technology, which 
makes the algorithm suitable for real-time applications.  
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I. INTRODUCTION 
A viewshed, also known as visibility map, is the subarea of 

a terrain that is visible to an observer placed on a particular 
point of the terrain at a specific altitude. The digital 
representation of a terrain is called Digital Elevation Model 
(DEM). Computing the visibility map of a DEM is a common 
task for any Geographical Information System (GIS) and a key 
process in many spatial analysis problems. Some applications 
of visibility maps include finding the minimal set of observers 
that fully covers a region [4, 10], evaluating the impact of a 
new construction on the view of a landscape [12] or computing 
optimal hidden paths [15]. 

The extraordinary advances in remote sensing technologies 
during the last years have lead to an imperative need for fast 

computational methods. Today, technologies like LIDAR 
produce ever-increasing high resolution DEMs that enable 
research impossible only a decade ago. This, however, also 
brings new challenges given that the volume of data has 
already surpassed the limits of traditional GIS tools. For 
instance, 1-meter resolution data sets for regions the size of 
European countries or USA states are in the order of terabytes 
[3], which clearly exceed the capability of former algorithms. 

Most algorithmic methods for computing viewsheds were 
already proposed several years ago [6, 16] and most present 
researches are about optimizing them. We see two principal 
lines of research in this scope. The first studies the so-called 
I/O-efficient algorithms, focusing on the design of external 
memory algorithms and the use of cache-aware and cache-
oblivious techniques [1, 8, 17]. The second line of research 
targets on porting, redesigning and creating new viewshed 
algorithms that run efficiently on parallel computers. Shared-
memory multi-core computers and modern accelerators are the 
top technologies in this respect [13, 14, 19]. 

In this work we cover both lines of research by redesigning 
the XDRAW algorithm [5] to make it IO-efficient and 
compatible with modern SIMD architectures (e.g. SSE4.2, 
AVX2, GPUs and AVX-512 from Xeon Phi). In section II we 
describe XDRAW and compare it to other approaches. In section 
III we detail the three key improvements to the original 
algorithm: blocking, Morton order and code regularization with 
multiple code paths. Finally we report results from our 
implementation in section IV and our conclusions in section V. 
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Figure 1. (a) Viewshed problem in one dimension. Each discrete one-dimensional point at the bottom stores an elevation. (b) Top view of a two-dimensional case. 

The observer in the center throws lines-of-sight (LOS) to all other points in the Digital elevation Model (DEM). 

 



II. XDRAW ALGORITHM 
XDRAW is commonly attributed to [5] but similar 

approaches were already known, used and reported [16]. It has 
been further studied for instance in [6]. XDRAW builds the 
output visibility map following an iterative expansion from the 
observer toward the cardinal and ordinal directions (Fig. 2a). 
The simplest way to understand this behavior is to look at a 
one-dimensional example. In Fig. 1a the visibility of each new 
point directly depends on whether its elevation is above or 
below the highest line-of-sight (LOS) discovered up to the 
position of the point. More formally, any point Px is visible if 
the LOS OPx from the observer O is higher than the highest 
accumulated LOS. A LOS is higher than another when its slope 
is greater than the other slope. 

Notice that the described process only works if all points lie 
in the same vertical plane. For the two-dimensional case (Fig. 
1b) all LOSs except the ones in the eight compass directions 
need to be walked individually. XDRAW, however, avoids this 
restriction by transforming the two-dimensional problem to a 
one-dimensional case. To do so the highest LOS affecting a 
point is approximated from the two LOSs accumulated until its 
closest preceding neighbors (as indicated by the thin short lines 
in Fig. 2b). In this way the processing of each element depends 
solely on previous computations and this leads to a 
computational complexity of O(1) per data element. 
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Figure 2. (a) Flow Map and (b) Dependency Map in XDRAW. 

A. High Level Description 
XDRAW can be summarized by the following steps: 

1. Choose the position and height of the observer O. 

2. Initialize the maximum slope MSo accumulated at O to 
the lowest floating-point value (-3.40282e+38).  

3. Move to the next layer Ln. Every layer Ln is composed 
by the DEM points with distance n to the observer in 
the vertical, horizontal or both axis (Fig. 2a). 

4. For each point Px in the new layer Ln calculate its MSx 
by interpolation of the maximum slopes MSa and MSb 
accumulated until the nearest preceding neighbors of 
the previous layer. The data dependency map (Fig. 2b) 
shows the direction of the involved neighbors. The 
weights applied in the interpolation are the inverses of 
the distances from the neighbors to the LOS OPx. 
Cardinal and ordinal directions correspond to the one-
dimensional case and do not need interpolation. 

5. Compute the slope Sx of the LOS OPx for each point Px 
with the equation of a straight line. Set Px to visible if 
Sx is greater than MSx. In this case MSx becomes Sx, 
otherwise the previous value is kept in MSx. 

6. Go to 3 while more layers remain. 

B. XDRAW Versus Other Approaches 
There exist three groups of viewsheds methods that 

possess, respectively, complexities of O(N), O(logN) and O(1) 
per data element. The first group is composed by those 
algorithms that walk all LOSs and interpolate between DEM 
height values to obtain the real elevation crossing the LOSs. 
The common example of O(N) algorithm is R3 [6] and some 
IO-efficient versions of this approach are presented in [7, 19]. 

The second group is characterized by algorithms that accept 
the gridded values as close enough approximations to the real 
elevations lying in the trajectory of the LOSs. With this change 
now multiple LOSs traverse same gridded points and several 
strategies can be utilized to avoid repeated access. As a result 
the complexity is reduced to O(logN) in exchange of some loss 
of accuracy. Examples are the SWEEP-LINE method [11] and 
some IO-efficient versions of it [3, 8]. 

The last group comprises those algorithms that, like 
XDRAW, reduce the two-dimensional problems to the one-
dimensional case (Fig. 1). This effectively decreases the 
complexity to O(1) but at the expense of even more loss of 
accuracy than the second set of algorithms. Other examples of 
algorithms from this group are R2 [6], REFERENCE-PLANE [18], 
BACKTRACK [9] and CENTRIFUGAL-SWEEP [3].  

Finally, note that no algorithm is unconditionally better 
than any others. They all present very different tradeoffs 
between speed and accuracy and only the final application and 
input data will determine the suitability of the methods. In this 
paper our main goal is performance and hence we do not 
distrust the accuracy of XDRAW. This is because fast algorithms 
are essential in real-time application for instance, where the 
execution of more accurate methods would be too slow and 
hence useless. On the other hand, applications with high 
requirements of accuracy should be evaluated thoroughly first 
before using a fast approximate approach like XDRAW. 

III. IMPROVEMENTS AND REDESING 
We made three major changes to XDRAW. First we applied 

a blocking scheme to avoid uncoalesced accesses to memory. 
Secondly we orchestrated the processing of blocks with the 
space-filling z-curve to reduce the thrashing of memory. 
Finally we regularized the code with multiple execution paths 
so that instructions are compatible with the SIMD model. In 
addition we process different sectors in different threads to 
exploit the available cores of modern multiple-core processor. 

1) Blocking 

Blocking, also called tiling, is a cache-aware technique that 
pursues a better utilization of cache memories. This technique 
solves the situation where XDRAW was issuing uncoalesced 
accesses to memory. The problem appears when the 
propagation of the algorithm advances perpendicularly to the 



memory layout and memory elements have to be gathered in 
multiple memory transfers. In our improved implementation 
full blocks of data are loaded in a coalesced fashion whichever 
direction the propagation goes into and this ensures an efficient 
utilization of the memory resources. Besides, this technique 
reduces the memory requirements of the algorithm, which 
before required three times the size of the input data (input, 
output and slope buffers) and now just requires three times the 
block size per used thread. For the cases where the propagation 
is perpendicular to the memory layout it is still necessary to 
transpose the block. Nevertheless, this operation is significantly 
more efficient now that the block is loaded into cache. 

2) Z-Order 

Formally known as Morton encoding [2], this space-filling 
curve maps multidimensional data into one dimension while 
keeping its order and locality. Following this order when 
processing data can automatically lead to an efficient 
utilization of cache memories. This is commonly called cache-
obliviousness because the effect is achieved automatically and 
independently of the cache configuration. This technique can 
also help to reduce the trashing of disk pages from main 
memory and improve the disk IO performance since modern 
operating systems always use the main memory as a large 
software cache for the data stored in disk. 
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Figure 3. (a) Traversing order of the blocks in both NE sectors when using z-
order filling curves. (b) Zoom inside a block from the NE-E sector, its data 
dependencies and ghost cells required from previously processed blocks. 

In our implementation we apply the z-curve to orchestrate 
the traversal order in which blocks are processed. During the 
propagation of XDRAW each new layer reutilizes results 
computed in the previous layer. These data elements face the 
risk of being thrashed when following depth-first or bread-first 
traversal orders in very large DEMs. After applying this 
improvement new blocks are likely to be issued soon after their 
previous neighbors have been computed and this reduces the 
thrashing of memory. The ordering starts from the observer and 
grows independently for each sectors as indicated in Fig. 3a. 

3) Code Paths 

In XDRAW all points in a layer experience a similar 
condition, but depending on their relative position to the 
observer some points might require accessing more neighbors, 
performing interpolation or computing some arithmetic 
operations in different order. For instance, while a point in the 
north direction will only access the neighbor in its south, a 
point in the northeast-east sector will access two preceding 
points (Fig. 2b). These dissimilarities end up producing a 
heavily branched code with heterogeneous instructions and 
dynamic memory accesses, which go against the SIMD model. 

Avoiding the aforementioned obstacle requires the code to 
clearly expose the parallelism. In our implementation we set up 
different code paths for each of the possible cases. This helps 
to avoid branches within the inner loops and creates more 
compacted and static codes. Consequently the compiler can 
both issue SIMD instructions and produce more efficient code. 
After this change blocks like the one showed in Fig. 4b will be 
only processed by their own code path, which is specially 
optimized for their specific case. 

IV. BENCHMARKING 
For this work we employed an Intel(R) Core(TM) i7-4770K @ 

3.50GHz processor. It is a quad-core CPU with multithreading 
and AVX2 technology. The machine also included 32GB of 
main memory and a pair of Samsung 840 PRO SSD flash-disks 
in RAID0 mode. The operating system was Ubuntu 14.04 LTS. 
Both algorithms, the reference and our efficient version, were 

 
 Figure 4. Viewshed on data set of a city with 1-feet resolution. The observer was set in a roof of the top-right corner of the DEM. 

 



compiled using GCC 4.9.1 with the following options: Ofast, 
m64, march=native, mtune=native. All the vectorized code 
(AVX2 instructions) was automatically generated by GCC. 

The data sets used in this work were both synthetic and real 
data (Fig. 4). Using synthetic data is adequate because we are 
not measuring the accuracy of the method but its performance. 
XDRAW is an algorithm whose running time solely depends on 
the size of the input terrain hence any data configuration serves 
our purpose. The upper limit of the data size was imposed by 
the largest sample that the original XDRAW could run in our 
testing machine due to its memory requirements. On the other 
hand our efficient version is able to run any data size that fits 
on disk thanks to the blocking technique. 

Results from our experimentation are presented in Table 1. 
Our efficient XDRAW was up to 50 times faster than the 
reference method for the largest tested data set. The given 
speedups result from the combination of the multiple 
improvements discussed in section 3. Table 2 lists the 
individual contribution of said enhancements. The speedup 
achieved through SIMD execution is reported within the Code 
Paths column since this technique is the main enabler for 
SIMD execution. Blocking becomes an important change, not 
only because it eliminates the uncoalesced accesses to memory 
but also because of the reduction on the memory requirements. 

TABLE I. Rereference vs. efficient XDRAW.  

Input&Size
(elevation*points)

512&x&
512

1024&x&
1024

2048&x&
2048

4096&x&
4096

8192&x&
8192

16384&x&
16384

32768&x&
32768

Reference&Xdraw&
(seconds)

0,006 0,024 0,138 0,667 2,965 12,073 49,113

Efficient&Xdraw&
(seconds)

0,004 0,006 0,013 0,03 0,088 0,312 0,98

Speedup
&(naïve*/*efficient)

1,5 4 10,62 22,23 33,69 38,696 50,115
 

TABLE II. Individual speedups of the different improvements. 

Technique Blocking Z*Order Code0Paths Threads)(4)cores)
Speedup 4,111 1,147 2,819 3,769  

V. CONCLUSIONS 
In this paper we present an efficient implementation of 

XDRAW, a fast algorithm for the computation of viewsheds [5]. 
We apply several changes to the algorithm in order to make it 
IO-efficient and compatible with SIMD architectures. We add 
a blocking scheme that eliminates the uncolaesced accesses to 
memory; we reorder the computation with the space-filling z-
curve to reduce the memory thrashing effect and we set up 
different code paths that clearly expose the inherent fine-grain 
parallelism of the algorithm and enable the use of advanced 
SIMD instructions. In addition we distribute the computation 
of the sectors of the DEM to different threads. 

Our improved XDRAW is 50 times faster than the reference 
algorithm and is able to process 109 elevation points per second 
on a quad-core desktop processor with AVX2 technology. This 
makes our method a useful tool when processing viewsheds on 
high-resolution geographical data. For example it allows 
solving optimization problems like finding minimum sets of 
observers in reasonable times. It is moreover suitable for 

situations where real-time responses are desirable, like in real-
time visualization. On the other hand, XDRAW presents the 
drawback of being less accurate than other viewshed methods 
and it might be a compromise to use our approach in 
applications with critical requirements of accuracy. 
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