
Incremental Update in Web Service Environ-
ment – Case: Use of the OGC’s GeoSynchroni-
zation Service to Integrate Hydrographic Da-
tasets

Pekka Latvala, Eero Hietanen

Finnish Geospatial Research Institute (FGI), National Land Survey of Fin-
land, pekka.latvala@nls.fi, eero.hietanen@nls.fi

Abstract. The increasing use of local copies of spatial data sets that are
maintained by other parties as source data for various web services sets
demands for data update procedures. The copied data sets should be kept
continuously up-to-date in order to maintain good data quality in the ser-
vices. This paper describes a piloted example case where a prototype im-
plementation of the Open Geospatial Consortium’s (OGC) GeoSynchroniza-
tion Service (GSS) candidate standard was created in order to execute the
same updates that were carried out in a master hydrographic data set in a
local copy of that database.

Keywords: GeoSynchronization service, web service

1. Introduction

The current trend in Europe where different governmental organizations
are opening up their spatial data sets has led to increased use of spatial data
and services. This trend has been largely set in motion by the INSPIRE di-
rective (European Commission, 2007) that sets requirements for the IN-
SPIRE participants to set up various types of Web Services that cover data
from multiple themes. Different companies, organizations and individuals
can download the original data sets from the data providers and create their
own products and services on top of them. The copied data sets should be
updated regularly from the master databases in order to maintain good data
quality in the services. The execution of a full update where all data are re-
placed is often unfeasible because of the large amounts of data or because
the data might have been changed or new data might have been added in
the local service databases. An alternative to full update is to perform the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/132489767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

updates incrementally, feature-by-feature. The GeoSynchronization Service
(GSS) specification developed by the Open Geospatial Consortium (OGC)
defines a web service interface that can be used for executing the data up-
dates at feature level.

Previous research on the use of GeoSynchronization for integrating data
sets has been made by (Milanović et al. 2010) who has studied automated
synchronizing of geographic data in Catalonia, (Sparks et al. 2011) who has
studied integration of hydrographic datasets in Indiana and (Chormann &
Harrison 2012) who have examined the use of GeoSynchronization in New
Hampshire.

This paper describes a piloted example case for GSS implementation where
a prototype of the GSS service was created for handling the updates for hy-
drographic data. The second chapter introduces the GeoSynchronization
service specification. The third chapter describes the studied example case.
The fourth chapter describes the prototype GSS implementation. The paper
ends with discussion and conclusions.

2. GeoSynchronization Service

The OGC’s GSS specification provides one solution to the incremental data
update problem. The GSS specification is currently an OGC candidate
standard and it has not yet achieved a full standard status. The latest activi-
ties related to the standardization process of the GSS have been executed in
2011 (Vretanos 2011a, Vretanos 2011b).

The workflow of the GSS is based on the use of three different Atom feeds
(Nottingham & Sayre 2005) (Figure 1) that deliver information on the re-
quested change proposals, the accepted changes and the changes that have
been executed on the master database. The GSS defines three user roles:
publisher, reviewer and subscriber. Publisher can suggest change proposals
that are to be executed in the master database. These change proposals are
collected into the change feed (1) that is sent to reviewer (2) who inspects
the change proposals and either accepts or rejects them. The reviewer’s de-
cisions are collected into the resolution feed (3) that is sent back to the pub-
lisher (4) in order to deliver information about the acceptance of the change
proposals. The accepted changes are executed in the database (5). The
change proposal reviewing process can be executed either manually or algo-
rithmically depending on its content and requirements. Alternatively, it is
also possible to skip the change proposal reviewing phase entirely and exe-
cute the proposed changes immediately in the master database if the pub-
lisher is viewed as trusted authority.

The changes that are executed in the database are collected into the replica-
tion feed (6) that allows the subscribers to synchronize their local databases
with the master database. The subscribers can read the replication feed (7)
and use it for executing the exact same changes in their local database (8).
The subscribers can also query the replication feed and fetch only those
changes that are relevant to them.

3. Studied Example Case

The use of GeoSynchronization Service was studied in an example case
where the updates that are executed in a master database are wanted to be
replicated in a copy of that database. The example case is related to the
handling of updates for hydrographic data in a situation where the data is
collected and maintained by the National Land Survey of Finland (NLS)
and used by the Finnish Environmental Institute (SYKE). SYKE has copied
the hydrographic data from the NLS between the years 2000 and 2008 and
created a hydrologic network model from the hydrographic features. After
the initial data load, SYKE has performed reclassification and topology
checks for the data and updated it partially. Most of the hydrographic data

Figure 1: GSS workflow

Table 2: The implemented GSS operations

has not been updated since the initial data load and it has fallen out of sync
with the master database. SYKE has identified a strong need for keeping
their network model up-to-date by replicating regularly the changes that
are made to the original database into their local database.

4. GSS Prototype Implementation

The GSS prototype implementation was created as a Java Servlet that was
deployed to the Apache Tomcat application server. The GSS candidate
standard specification was implemented partially. The implemented opera-
tions, listed in Table 1, were: Insert, Update, Delete, GetEntries and the
custom GetEntryObjectGeometry operation. The change proposal review-
ing stage was bypassed in the prototype because all proposed changes are
seen as authoritative changes that don’t need to be reviewed and they are
accepted immediately. Therefore, the operations: Accept Change, Reject
Change and Review Changes that are related to the change proposal re-
viewing were not implemented in the prototype. Also the operations that
are related to topics and subscriptions were not implemented in the GSS
prototype because the resolution feed querying functionality via the GetEn-
tries operation was considered to be sufficient for the prototype.

GSS operation Implemented

GetCapabilities -

Insert x

Update x

Delete x

GetEntries x

AcceptChange -

RejectChange -

ReviewChanges -

CreateTopic -

RemoveTopic -

ListTopics -

Subscribe -

ListSubscriptions -

PauseSubscription -

ResumeSubscription -

CancelSubscription -

Custom operations Implemented

GetEntryObjectGeometry x

Table 2: The structure of the GSS database

4.1. GSS Database

The database of the GSS prototype was implemented with the Post-
greSQL/PostGIS database. The database is used for storing the information
about inserted, updated and deleted features. The database consists of one
table where one row represents one change event. The structure of the da-
tabase is described in Table 2.

The presented table structure enables the database to be queried with vari-
ous filters. The GID column can be used for retrieving all changes that have
been made to a single feature. The Type column enables querying by fea-
ture class. The Change time column can be used for performing temporal
queries and the Geometry column for spatial queries. The Transaction col-
umn is used for storing the change queries in a WFS-T form (Vretanos
2010). The entryID column defines unique identifier for the change events.
The Author column is used for storing the information about the person
who made the change.

4.2. Insert, Update and Delete Operations

The Insert, Update and Delete operations were implemented as HTTP
POST operations that read XML data. These operations take in WFS-T que-
ries that are first parsed in the GSS module. After the queries have been
parsed, they are sent to the WFS-T service that executes the changes in the
master database. After the queries have been executed, the information on
the changes is stored into the GSS database. Because the incoming WFS-T
Delete operations don’t contain the geometries of the features that are to be
deleted, their geometries are fetched from the WFS-T service before the
Delete operations are executed.

Database Column Data type Description

GID integer Unique identifier for the feature

Type string Name of the feature class

Change time date/time Timestamp of the change

Operation string Operation type (Insert / Update / Delete)

Transaction string WFS-T query

Geometry geometry Geometry

entryID integer Unique identifier for the change event

Author string Publisher of the change

Table 3: The parameters of the GetEntries operation

4.3. GetEntries Operation

The GetEntries operation was implemented as a HTTP GET operation with
a key-value pair (KVP) encoding. The GetEntries operation is used for cre-
ating the Atom-formatted replication feed. It supports various query types.
The replication feed can be queried with spatial, temporal or id-based filters
that allow the subscribers to fetch only those changes that they are interest-
ed in. The implemented operation supports also the custom FEATUREID
parameter that can be used for retrieving the changes that are related to a
specific feature. The implemented parameters of the GetEntries operation
are listed in Table 3.

GetEntries operation parameter Implemented

SERVICE x

VERSION x

REQUEST x

FEED x

OUTPUTFORMAT (default format)

STARTPOSITION -

MAXENTRIES x

SEARCHTERMS -

BBOX x

GEOM x

SPATIALOP -

CRS -

STARTTIME x

ENDTIME x

TEMPORALOP -

ENTRYID x

FILTER -

Custom parameters Implemented

FEATUREID x

4.4. GetEntryObjectGeometry Operation

The GetEntryObjectGeometry is a custom operation that was implemented
as a HTTP GET operation with KVP encoding. It can be used for retrieving
the geometry of a specific change event. It has an entryid parameter that
indicates the identifier of an entry whose geometry is to be returned. The
operation was included to the GSS prototype because it was found to be
useful when the change events are explored in a map application.

5. Discussion

The change proposal reviewing stage was bypassed in the GSS prototype
implementation because all changes are seen as authoritative changes that
don’t need to be accepted. This is called a no-validation workflow (Vretanos
2011b). In many cases, the reviewing phase is essential because the change
proposals cannot be trusted without checking their validity. One such sce-
nario is the collection of change proposals via crowd-sourcing.

Also the change proposal reviewing stage could be crowd-sourced. In this
scenario, the review process could be implemented so that it doesn’t have to
rely on a single user making the right reviewing decision. The change pro-
posal might be ultimately accepted only after a certain amount of users have
accepted it.

6. Conclusions

The work described in this paper is related to the implementation of a GSS
prototype that is used for carrying out an incremental update process be-
tween two hydrographic datasets. The experiences gained from the proto-
type implementation indicate that the GSS seems to be a suitable solution
for performing incremental data updates in a web service environment. The
broad querying capabilities that the GSS offers to the replication feed ena-
ble good control on the update process. The updates can be focused either
to a single feature, time interval, geographic area or the whole dataset. The
fact, that the GSS is based on open standards makes it suitable for both
commercial and open source software.

References

Chormann R, Harrison J (2012) New Hampshire NHD GeoSynchronization
Network. Available at:

https://www.fgdc.gov/grants/2010CAP/InterimFinalReports/238-10-2-
NH-FinalReport.pdf [Accessed: 2015-04-08).

European Commission (2007) INSPIRE Directive. Available at: http://eur-
lex.europa.eu/LexUriServ/ LexUriS-
erv.do?uri=OJ:L:2007:108:0001:0014:EN:PDF [Accessed: 2015-04-08].

Milanović A, Guimet J, Rodellas E, Bolívar M. A. (2010) Interorganizational Geo-

Synchronization Using Open Geospatial Consortium's (OGC) Technologies to Share and

Harmonize Data in Catalonia, INSPIRE Conference 2010, Krakow. Available at:

http://geoportal.cat/geoportal/eng/documents/articles/Ponencia_INSPIRE_2010.pdf

[Accessed: 2015-04-08].

Vretanos P. A. (ed.) (2010) OpenGIS Web Feature Service 2.0 Interface Standard.

Available at: https://portal.opengeospatial.org/files?artifact_id=39967 [Accessed: 2015-
04-08].

Vretanos P. A. (ed.) (2011a) OWS 7 Engineering Report – Geosynchroniza-
tion service. Available at:
https://portal.opengeospatial.org/files/?artifact_id=39476 [Accessed:
2015-04-08).

Vretanos, P. A. (ed.) (2011b) OWS-8 - GeoSynchronization Best Practices.
Available at: https://portal.opengeospatial.org/files/?artifact_id=46037
[Accessed: 2015-04-08).

Nottingham M, Sayre R (eds.) (2005) The Atom Syndication Format. Avail-
able at: http://tools.ietf.org/html/rfc4287 [Accessed: 2015-04-08).

Sparks J, Worrall P, Ehman J, Nail D (2011) Indiana High & Local-
Resolution NHD Update Geosynchronization Grant 2010 Category 2:
Framework Data Exchange through Automated Geosynchronization.
Available at:
https://www.fgdc.gov/grants/2010CAP/InterimFinalReports/242-10-2-
IN-FinalReport.pdf [Accessed: 2015-04-08).

