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Abstract

Identifying similarity patterns in heterogeneous observations is a very common
problem in many branches of science. When the similarities and dissimilarities
are encoded by a group structure, the task of dividing the observed sample into
an unknown number of homogeneous groups is known as cluster analysis. Among
the many types of statistical data analyses, it is one of the most widely applied.

In evolutionary biology, for example, the population structure plays an im-
portant role. Groups naturally arise as the result of evolutionary processes and
depending on the resolution of the study, clusters might represent similar mo-
lecules, organisms, or even species. With the huge amount of genetic data now
freely available in on-line databases, cluster analysis is a valuable technique to
better understand the evolution of organisms.

In this dissertation we focus our attention on Bayesian approaches to model-
based clustering. We review the mathematical formalization of the two most
common methods, finite mixture models and product partition models, together
with algorithms needed to draw inferences. We then introduce a novel Bayesian
model which has been specifically designed to partition categorical data matrices.
Finally, we show how cluster analysis is a very effective method for understanding
the evolution of pathogens, and how this information is relevant to public health.
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Chapter 1

Introduction

The task of allocating statistical units into a discrete number of homogeneous
groups, or clusters, is a common problem in statistics. The group structure of
the population is often interesting per se, such as in biological taxonomy, and
cluster analysis techniques (Rokach, 2010) are routinely applied in many different
branches of science. Even when clusters are not the primary target of the study,
their existence has an indirect effect on the observed values. This fact should
obviously be taken into account if accurate estimates of parameters, for a model
thought to approximate the data generating process, are to be sought.

It is not surprising that applications following this approach date back as far
as the end of the 19th century, with the seminal work of Karl Pearson (1894).
In his study, Pearson employed a mixture of two Normal distributions for the
estimation of biological parameters of crabs from the Bay of Naples (Figure 1.1).
Despite the fact that clustering was not the aim of the statistical analysis, it was
nevertheless implicitly modelled by assuming the presence of two sub-populations
having different size.

This classic example highlights very clearly a key concept on which this work
is based, that is of filtering out the effect of the group structure in order to get
a better view of the underlying stochastic process. Taken to the extreme, this is
the same reason why explanatory variables are included in a statistical model
for a clinical trial. By removing as much variability as possible not imputable
to the treatment (noise), we expect to recover its true effect (signal). Indeed, we
might even think of the discrete clinical parameters as defining a group structure
of the sample according to combinations of, for example, gender, treatment, age,
etc. (Figure 1.2). The main concept of this example is that the information we
possess about the clustering might vary, from complete control to none.

When groups are defined beforehand and the task is to classify new observa-
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Figure 1.1: Histogram of forehead to body length ratio for 1000 crabs sampled
from the Bay of Naples. The solid line represents the maximum likelihood density
of a mixture of two normal distributions (dashed lines).

Figure 1.2: Histogram of Succinate concentration levels (micromoles per litre on
the log scale) from healthy and cancer patients. Data from Eisner et al. (2011).
Solid line represents the maximum likelihood density of a mixture of two normal
distributions (dashed lines) when group association is known.
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tions into such clusters on the basis of a training set, we refer to this approach
as supervised learning (Bishop, 2006). It is the opposite situation of unsupervised
learning (Hastie et al., 2009) which is considered and described in this thesis. In
a setting of (partial) ignorance about the population structure, our aim will be
that of identifying interesting patterns within and between the recovered groups.

1.1 Notation
Observations produced by a statistical experiment are denoted by n multivariate
random variables x1, . . . ,xn of dimension m, collected into a n-by-m data matrix
X. The observed sample X is just a single point in X , the set of all possible
results that the experiment could have produced. If ψ represents all the unknown
characteristics of the phenomenon under study, then Ψ denotes the set of all the
possible hypotheses regarding the phenomenon.

A probabilistic model creates a link between the hypothesis ψ and the ob-
served sample X through a mathematical formula: a probability measure. Let
(X ,FX , Pψ) be a probability space, where FX is a σ-algebra of subsets of X and
Pψ is a probability measure indexed by ψ. For each hypothesis ψ ∈ Ψ, a different
probabilistic explanation is given to the observed sample X. The basic assumption
of a probabilistic model is that only one of the many hypotheses ψ ∈ Ψ is the
“truth”, and that some information about it is contained in X.

In a basic clustering problem the hypothesis ψ ∈ Ψ is decomposed into two
main parameters: the partition R of the rows of X and the parameter θ associated
with the probability distributions that generated the data.

Let N = {1, . . . , n} be the set of indices of the statistical units. A partition R
of N is defined as a collection of non-empty pairwise disjoint subsets of N , such
that their union is N . Formally, R is a partition of N if

• ∅ /∈ R

•
⋃

Rg∈R Rg = N

• Rg ∩Rh = ∅,∀Rg,Rh ∈ R, g 6= h

Refer to Table 1.1 for an example.
The total number of blocks k in the partition R has an important role in

the inferential problem: it defines the dimensions of the parameter space. For
this reason, we will explicitly denote with Rk a partition of N into k parts and
with θk the corresponding distribution parameters. The possible values for the
number of blocks k is the set of integers {1, . . . , n}, meaning that k cannot be
greater than the sample size. This dependency also implies that the cardinality
of the parameter space is a direct function of n. Another problem arising in the
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Table 1.1: Partitions of n = 4.
k Configuration class Partition

1 ? ? ?? (1, 2, 3, 4)

2 ?| ? ?? (1)(2, 3, 4)
(2)(1, 3, 4)
(3)(1, 2, 4)
(4)(1, 2, 3)

? ? | ? ? (1, 2)(3, 4)
(1, 3)(2, 4)
(1, 4)(2, 3)

3 ?| ? | ? ? (1)(2)(3, 4)
(1)(3)(2, 4)
(1)(4)(2, 3)
(2)(3)(1, 4)
(2)(4)(1, 3)
(3)(4)(1, 2)

4 ?| ? | ? |? (1)(2)(3)(4)

estimation of R is that its single realization is never directly observed and it
should be treated as a latent variable: its effect is only seen through the values of
sample X.

Example 1.1. Suppose we want to infer the evolutionary process of a virus
based on the four observed viral strains

X =


T T T
T T C
A T T
A T C


A simple evolutionary model would consider the four strains originating from
the same lineage, defining a single vector θ = (θA, θC , θG, θT )′ for the nucle-
otide probabilities. The observation that the first two strains encode the amino
acid Phenylalanine while the last two translate into Isoleucine suggests the
existence of two different sub-populations. Based on this new information it
might be worth defining k = 2 groups and associate a vector θ1 to (x1,x2) and
a different vector θ2 to (x3,x4). Note that the total number of probabilities
to estimate is now doubled.

There are many different ways to represent the partition R in a mathematical
form. Here, two approaches that are popular in the statistical clustering literature,
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and that will be used in later chapters, are illustrated. The first straightforward
approach is to represent the partition as a matrix of indicator variables. If Zk is
a n-by-k binary matrix, define zig = 1 if and only if unit i (i = 1, . . . , n) belongs
to cluster g (g = 1, . . . , k). By definition,

∑k
g=1 zig = 1 for all i. Block size is

represented by ng and easily computed as ng =
∑n
i=1 zig. The main problem

with this representation, which will become evident in the context of mixture
models, is that Rk is invariant to permutations of the columns of Zk. Expressed
in a different way, cluster labels are arbitrary in the sense that rearranging the
columns of Zk in any discretionary order will result in the same partition Rk.

The second approach is encoding the partition as an adjacency matrix Ak,
whose generic element ait is equal to 1 if units i and t belong to the same group,
or 0 if they do not. It is easy to show that Ak = ZkZ′k and that its values do not
depend on the cluster labels.

1.2 Bayesian inference
Following a subjective view of probability, every uncertain event can be associated
with a probability that quantifies its uncertainty. According to this approach, since
the “true” hypothesis ψ ∈ Ψ is unknown, it is always possible to elicit a probability
measure Pφ on the joint space X × Ψ of observations and hypotheses. If p(·|φ)
is the density function (or mass function in case of discrete random variables)
associated with Pφ, then

p(ψ,X|φ) = p(ψ|φ)p(X|ψ,φ)

where p(ψ|φ) is the prior distribution and p(X|ψ,φ) is the sampling distribution
(or likelihood function if seen as a function of ψ). Hyperparameter φ encodes all
the prior information we possess about the phenomenon and is often assumed to
be a known constant. If there is uncertainty also in the hyperparameter φ, such
as in multilevel/hierarchical models, it is usually straightforward to expand the
model and accommodate another prior probability distribution on φ.

Conditional on the observed sample X, every conclusion about ψ is given in
terms of probabilities. Through the Bayes’ theorem, from which the approach got
its name, prior information about ψ is updated according to the new evidence
contained in X:

p(ψ|X,φ) = p(ψ,X|φ)
p(X|φ) = p(ψ|φ)p(X|ψ,φ)∫

Ψ p(ψ|φ)p(X|ψ,φ)dψ
∝ p(ψ|φ)p(X|ψ,φ)

Answers to inferential problems are usually defined as functions of the posterior
distribution. For example, it is common to look for credibility sets defined as any
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set S that satisfies ∫
S

p(ψ|X,φ)dψ = α

for some fixed probability α. Point estimates are usually defined as measures of
central tendency, such as the posterior mean, median, or mode. In a statistical
decision theory framework, they are defined as the values minimizing the posterior
expected loss

ψ̂ = arg min
ξ∈Ψ

Eψ[L(ψ, ξ)|X] = arg min
ξ∈Ψ

∫
Ψ
L(ψ, ξ)p(ψ|X,φ)dψ

for some loss function L(ψ, ξ).
When expected values with respect to the posterior distribution are not avail-

able in closed form, approximate solutions to quantities of interest can be obtained
through simulation techniques (Robert and Casella, 2004).

Example 1.2. Let t = (t1, . . . , tn)′ be a collection of i.i.d. random variables
representing the time to first occurrence of some event of interest. Each ti is
here modelled with a Gamma distribution with known shape parameter α but
unknown rate parameter β, meaning that

p(t|α, β) =
n∏
i=1

βα

Γ(α) t
α−1
i e−βti =

(
t̃α−1

Γ(α)

)n
βnαe−βnt̄

where t̄ is the arithmetic mean and t̃ is the geometric mean. A maximum
likelihood approach would estimate β by maximizing the previous expression,
leading to β̂ = α/t̄. From a Bayesian point of view, instead, our uncertainty
about β is encoded by a probability distribution. If the unknown parameter
is given a prior Gamma distribution with parameters ω and ρ, then

p(β|α, ω, ρ, t) ∝ βω+nα−1e−(ρ+nt̄)β

and its posterior distribution is again a Gamma distribution with shape para-
meter ω′ = ω + nα and rate parameter ρ′ = ρ + nt̄. From the properties of
the Gamma distribution, its posterior expected value is simply ω′/ρ′ while
the posterior variance is ω′/ρ′2. Credible intervals for β might be obtained
from the quantile function of the Gamma distribution. Finally, note that the
maximum likelihood estimate is recovered when both ω and ρ approach zero
on the limit.

1.3 Probability distributions
Important probability distributions, used extensively in later chapters, are now
presented.
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1.3.1 Exponential family
Let (X ,ZX , µ) be a measure space, where ZX is a σ-algebra of subsets of X and
µ is a σ-finite measure on X . Let S be a subset of X , representing the support
of a random variable X. A family {Fθ : θ ∈ Ω} of probability measures on X is
called exponential if the probability of any measurable set E ⊆ X is equal to the
Lebesgue integral

∫
E
p(x|θ)µ(dx), where

p(x|θ) = h(x)g(θ) exp {λ(θ)′u(x)} = h(x)g(θ) exp
{

d∑
l=1

λl(θ)ul(x)
}

(x ∈ S)

for an arbitrary choice of functions h, g, λ1, . . . , λd, u1, . . . , ud. Fθ is an absolutely
continuous probability distribution if µ is the standard Lebesgue measure (length,
area, etc.) while it is a discrete probability distribution if µ is a counting measure.

The importance of the exponential family in statistics is connected to the
theory of sufficiency (see, for example, Andersen (1970)). From a Bayesian point
of view, its conjugacy property (Bernardo and Smith, 1994) is also of particular
interest.

The likelihood for a sample of (conditionally) independent and identically
distributed random variables is

p(x1, . . . ,xn|θ) ∝ g(θ)n exp
{
λ(θ)′

n∑
i=1

u(xi)
}

where
∑
i u(xi) is the vector of sufficient statistics for θ. If the prior distribution

has the exponential family form

p(θ) ∝ g(θ)β exp {λ(θ)′α}

then it is easy to show that the posterior distribution is again in the exponential
family:

p(θ|x1, . . . ,xn) ∝ g(θ)β+n exp
{
λ(θ)′

(
α+

n∑
i=1

u(xi)
)}

Having a tractable posterior distribution is especially convenient when the
parameter θ is not the primary target of the inferential process, meaning that it
can be integrated out to obtain the predictive distribution

p(x1, . . . ,xn) =
∫

Θ
p(θ)p(x1, . . . ,xn|θ)dθ

Dirichlet-Categorical distribution

Categorical random variables are commonly encountered in statistical modelling of
genetic data. Let A = {a1, . . . , ad} be the support of independent and identically
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distributed discrete random variables Yi (i = 1, . . . , n). In case of DNA data, we
might define A = {A,C,G, T}. If θ = (θ1, . . . , θd)′ is the vector of corresponding
probabilities, then Pr{Yi = al|θ} = θl.

An alternative formalization is obtained by introducing an indicator vector
Xi = (Xi1, . . . , Xid)′, where Xil = 1 if and only if Yi is equal to al. Obviously,∑

lXil = 1 for all i = 1, . . . , n. The likelihood function is simply

n∏
i=1

Pr{Xi = xi|θ} =
n∏
i=1

d∏
l=1

θxil

l =
d∏
l=1

θtll

where tl =
∑
i xil (l = 1, . . . , d) are the sufficient statistics, i.e. the total number

of observations equal to l.
The exponential family form is recovered by choosing h(x) = 1 for all x,

g(θ) = 1 for all θ ∈ Ω, λl(θ) = log θl, and ul(xi) = xil:

p(x1, . . . ,xn|θ) = exp
{

d∑
l=1

tl log θl

}

The conjugate Dirichlet distribution

p(θ|α) =
Γ(
∑d
l=1 αl)∏d

l=1 Γ(αl)
exp

{
d∑
l=1

(αl − 1) log θl

}

is also a member of the exponential family. Multiplying the previous two equations
and integrating out θ leads to the predictive distribution

p(x1, . . . ,xn|α) =
Γ(
∑d
l=1 αl)∏d

l=1 Γ(αl)

∏d
l=1 Γ(αl + tl)

Γ(n+
∑d
l=1 αl)

= B(α+ t)
B(α) (1.1)

where B(·) is the multivariate Beta function. From (1.1), which is known as
the Dirichlet-Categorical distribution, we can easily obtain conditional predictive
distributions for units yet to be observed:

p(xn+1|xn, . . . ,x1,α) = B(α+ t + xn+1)
B(α+ t) =

∏d
l=1(αl + tl)x(n+1)l

n+
∑d
l=1 αl

(1.2)

Beta-Bernoulli distribution

When the set A has cardinality d = 2, the Dirichlet distribution reduces to
the Beta distribution and the Categorical distribution reduces to the Bernoulli
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distribution. In this case, equations (1.1) and (1.2) become

p(x1, . . . ,xn|α1, α2) = B(α1 + t1, α2 + n− t1)
B(α1, α2) (1.3)

p(xn+1|xn, . . . ,x1, α1, α2) = (α1 + t1)x(n+1)1(α2 + n− t1)1−x(n+1)1

n+ α1 + α2
(1.4)

where B(·, ·) is the standard Beta function.

1.3.2 Uniform distributions on partitions of n
The most straightforward (prior) probability distribution over the set of partitions
of N = {1, . . . , n} is to assume that each one of them has the same probability
of being selected. Considering that the total number of partitions of n is equal to
the Bell number

B(n) = 1
e

∞∑
h=0

hn

h!

then the uniform distribution is simply equal to

p(R) = 1
B(n) ∝ 1 (1.5)

Despite its uniform nature, distribution (1.5) induces very different probability
masses on the number of blocks k, favouring partitions with k around the value of
n/ log(n). This can be explained by observing that the total number of partitions
of n into k parts is equal to the Stirling number of the second kind

S(n, k) = 1
k!

k∑
h=0

(−1)k−h
(
k

h

)
hn

and that the Bell number can be rewritten as the sum

B(n) =
n∑
g=1

S(n, g)

The probability of observing a partition with k groups is then equal to

p(k) = S(n, k)∑n
g=1 S(n, g)

attaining its maximum value at k ≈ n/ log(n), that is the maximum of S(n, ·).
As seen in Section 1.1, a clustering of the setN = {1, . . . , n} can be represented

by the total number of clusters k and the actual partition of n units into k
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parts. Therefore, it is natural to model the probability distribution on R with a
hierarchical approach:

p(R|a, b) = p(k|a, b)p(Rk|k) = I(a ≤ k ≤ b)
b− a+ 1

1
S(n, k) (1.6)

where I(A) is the indicator function, equal to 1 ifA is true and 0 otherwise, and 1 ≤
a ≤ b ≤ n are, respectively, the minimum and maximum number of groups allowed.
When a = 1 and b = n the total number of clusters k is uniformly distributed on
the set {1, . . . , n}. Conditional on k, Rk is also uniformly distributed on the set
of partitions of exactly k groups.

Kohonen and Corander (2016) illustrated the stable behaviour of this kind
of prior distribution and compared it with other kind of distributions on the
partitions of n. Cheng et al. (2013) employed this approach with a population
genomics model, as it offers both an easy implementation and a reasonable level
of penalty for an increase in the number of clusters.

Another interesting hierarchical approach has been recently proposed by Case-
lla et al. (2014) as a new option for an objective prior. Their Hierarchical Uniform
Prior (HUP) is defined as

p(R) = p(k)
(

n

n1 · · ·nk

)−1
R(n1, . . . , nk)

b(n, k) (1.7)

where R(n1, . . . , nk) =
∏n
h=1[

∑k
g=1 I(ng = h)]! and b(n, k) is the number of

configuration classes for partitions of n into k parts. The closed form of b(n, k) is
not yet known, and the high computational cost for its evaluation decreases HUP
applicability to real situations with big n.

1.3.3 Ewens-Pitman distribution
The Ewens-Pitman distribution is an important family of probability distribu-
tions indexed by two real parameters (α, η) (Crane, 2016) and its origin lies in
evolutionary molecular genetics with the seminal paper of Ewens (1972). It can be
found in many fields of statistics and mathematics, including Bayesian nonpara-
metric models (Antoniak, 1974) and combinatorial stochastic processes (Pitman,
2006). Its close relationship to coalescent theory (Kingman, 1978; Hoppe, 1987)
and its many desirable mathematical properties make it a good candidate as a
prior distribution on partitions of biological samples.

Its general form is

p(R) = (η + α)k−1,α

(η + 1)n−1,1

k∏
g=1

(1− α)ng−1,1 (1.8)
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Table 1.2: Probability distributions on partitions of n = 4. “U” refers to equation (1.5),
“HU” to equation (1.6) with a = 1 and b = n = 4, “HUP” to equation (1.7) with a
Uniform distribution on k, “EP” to equation (1.8) with α = 0.5 and η = −0.25.

k Configuration class Partition U HU HUP EP

1 ? ? ?? (1, 2, 3, 4) 1/15 1/4 1/4 0.5195

2 ?| ? ?? (1)(2, 3, 4) 1/15 1/28 1/32 0.0519
(2)(1, 3, 4) | | | |
(3)(1, 2, 4) | | | |
(4)(1, 2, 3) | | | |

? ? | ? ? (1, 2)(3, 4) 1/15 1/28 1/24 0.0173
(1, 3)(2, 4) | | | |
(1, 4)(2, 3) | | | |

3 ?| ? | ? ? (1)(2)(3, 4) 1/15 1/24 1/24 0.0260
(1)(3)(2, 4) | | | |
(1)(4)(2, 3) | | | |
(2)(3)(1, 4) | | | |
(2)(4)(1, 3) | | | |
(3)(4)(1, 2) | | | |

4 ?| ? | ? |? (1)(2)(3)(4) 1/15 1/4 1/4 0.0649

where

(x)y,z =
y∏
t=1

(x+ (t− 1)z)

is the Pochhammer k-symbol. In order to result in a proper probability mass
function, the hyperparameters must satisfy either 0 ≤ α < 1 and η > −α, or
α < 0 and η = −Lα for some L ∈ {1, 2, . . .}.

The expected number of groups, when α ≥ 0, equals

E[k] =


Γ(η + n+ α)Γ(η + 1)
αΓ(η + n)Γ(η + α) −

η

α
if α > 0 and η > −α

n∑
g=1

η

η + g − 1 if α = 0 and η > 0

See Table 1.2 and Table 1.3 for an example comparison between distributions
on partitions of n = 4.
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Table 1.3: Probability on the number of groups k of n = 4. “U” refers to equation (1.5),
“HU” to equation (1.6) with a = 1 and b = n = 4, “HUP” to equation (1.7) with a
Uniform distribution on k, “EP” to equation (1.8) with α = 0.5 and η = −0.25.

k U HU HUP EP

1 1/15 1/4 1/4 0.5195
2 7/15 1/4 1/4 0.2597
3 6/15 1/4 1/4 0.1559
4 1/15 1/4 1/4 0.0649

1.4 Loss functions

In the point estimation of parameter R, two loss functions are generally considered
in Bayesian cluster analysis: the unit loss and the Binder loss (Binder, 1978). Both
approaches have their strengths and weaknesses as soon will be shown. The choice
of which one is most suitable for the problem at hand is often simply based on
how much computational power is available.

1.4.1 Unit loss

Let

L(R, R̂) =
{

1 if R̂ 6= R
0 otherwise

be the unit loss function. According to this loss function, every wrong estimate
of R is given the same loss of 1 regardless of how distant the estimation is from
the true value.

The posterior expected loss is

E[L(R, R̂)|X] =
∑
R

L(R, R̂)p(R|X) = 1− p(R̂|X)

and it is obviously minimized when R̂ is equal to the mode of the posterior
distribution. For this reason, this estimator is also known as the Maximum A
Posteriori (MAP) estimator of R.

The simplicity of this estimator lies on the fact that it does not require the
knowledge of the whole posterior distribution in order to be determined. Instead,
optimization techniques are often necessary and employed to find the solution.
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1.4.2 Binder loss
Representing the partition R with the adjacency matrix A, the simplest form of
the Binder loss (Binder, 1978) is equal to

L(R, R̂) =


l1 if ait = 1 and âit = 0
l2 if ait = 0 and âit = 1
0 otherwise

for arbitrary values l1, l2 > 0. This kind of loss function gives different weights
to the pairwise classification errors. If two units belong to the same cluster but
are wrongly put apart, a loss l1 occurs. On the other hand, if they should be in
different clusters but are instead put together, a loss l2 occurs. The ratio l1/l2 is
a measure of how important internal cohesion is compared to external isolation.
When l1 = l2, which is generally the case, the posterior expected loss is simply
equal to (Fritsch and Ickstadt, 2009)

E[L(R, R̂)|X] =
∑
i<t

|âit − πit|

where πit is the posterior probability of i and t being in the same group.
Minimization of the posterior expected Binder loss is known to be a NP-

complete problem (Binder, 1981). Not only samples from the posterior distri-
bution are usually required for approximating the posterior similarity matrix,
but optimization techniques are also needed in order to minimize the posterior
expected loss.
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Chapter 2

Bayesian cluster analysis

2.1 Finite mixture models
A common approach to model-based cluster analysis is to assume data points
to be generated by a finite mixture of k probability distributions (McLachlan
and Peel, 2000). To simplify the notation the index k will be omitted, but it is
important to remember that since k defines the dimensions of the parameter space,
each parameter depends on it.

If π = (π1, . . . , πk)′ is a vector of probabilities (πg ≥ 0 ∀g;
∑
g πg = 1) and θg

is the parameter corresponding to component g, the probability of observing the
sample is

p(x1, . . . ,xn|k,π,θ) =
n∏
i=1

p(xi|k,π,θ) =
n∏
i=1

k∑
g=1

πgpg(xi|θg) (2.1)

leading to the posterior distribution

p(k,π,θ|X) ∝ p(k)p(π,θ|k)
n∏
i=1

k∑
g=1

πgpg(xi|θg) (2.2)

Note that the partition R does not appear explicitly in equation (2.2), meaning
that we cannot use this particular model for evaluating its posterior distribution.
Analytical formulas are greatly simplified if equation (2.1) is rewritten in terms
of the latent cluster association matrix Z (see Section 1.1). If each unit is inde-
pendently put a priori into its own cluster according to π, then

p(Z|k,π) =
k∏
g=1

n∏
i=1

πzig
g
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and the posterior distribution becomes

p(k,π,Z,θ|X) ∝ p(k)p(π,θ|k)
k∏
g=1

n∏
i=1

(πgpg(xi|θg))zig (2.3)

MAP point estimation of (k,π,θ), but not Z, can be obtained with the EM
algorithm (see Section 3.1). Since the parameter of interest is actually Z, a common
approach is to set ẑig = 1 if

π̂gpg(xi|θ̂g)∑k̂
h=1 π̂hph(xi|θ̂h)

is maximized. Note that this approach does not guarantee that the resulting Ẑ
would have exactly k̂ clusters nor that it would be the MAP estimator, making
it a sub-optimal choice.

For a proper Bayesian approach to the estimation of (k,Z), it is thus necessary
to compute the normalizing constant of (2.3). Unfortunately, even in the case
of a conjugate prior for (π,θ), the summation over all the possible values of k
and Z make the computation not feasible for any real dataset. To overcome this
problem, a huge amount of literature has been devoted to simulations from the
posterior distribution. For an extensive survey, see Frühwirth-Schnatter (2006).

The major problem with (2.3) is the invariance to relabeling of the mixture
components when the parameters are considered exchangeable, producing a pos-
terior with at least k! modes (one for each possible reordering of the columns of
Z). Obviously, no MCMC algorithm will be able to properly explore each and
every mode in a reasonable amount of time. A general solution is to reject the
assumption that parameters are exchangeable and introduce clear constraints
within the prior distribution, such as proposed by Robert and Mengersen (1999).

2.2 Product partition models
Taking into account their identifiability problems and considering that in finite
mixture models the partition of the sample is not the main parameter, but
rather a nuisance parameter, product partition models (Hartigan, 1990; Barry
and Hartigan, 1992) are the preferred way to perform Bayesian cluster analysis
in this work.

An immediate benefit obtained by following this approach is the explicit
modelling of the partition R, to which a prior distribution representing our belief
is given and with which a posterior distribution for drawing inferences is directly
associated. Conditional on the knowledge of how the sample is partitioned, each
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cluster is assumed to be stochastically independent from each other, meaning that
the sampling distribution simply factorizes into a product of k components

p(X|R) =
k∏
g=1

p(Xg) =
k∏
g=1

∫
Θg

p(θg)
∏
i∈g

p(xi|θg)dθg (2.4)

where Xg is the data matrix associated with cluster g. Opposite to finite mixture
models, parameter θ is not of interest and is usually integrated out. The posterior
distribution is then equal to

p(R|X) ∝ p(R)
k∏
g=1

p(Xg) (2.5)

A classic product partition model would require the definition of the prior
distribution similar to

p(R) = c0

k∏
g=1

f(Rg) (2.6)

where c0 is the normalizing constant and f(·) is the so called cohesion of the
cluster. By construction, the posterior distribution is again a product of k cohesion
functions

p(R|X) ∝
k∏
g=1

f(Rg)p(Xg)

Although the Ewens-Pitman distribution (1.8) can be rewritten to resemble (2.6),
in general the same does not apply to other kind of distributions. To extend
their applicability, we will refer to product partition models as any model whose
sampling distribution decomposes into a product of independent components,
regardless of the shape of the prior.

2.2.1 Clustering categorical data
When data is categorical, each observation in the n-by-m data matrix X is rep-
resented as a sequence of characters. Let Aj = {a1, . . . , adj

} be the set of possible
letters that can be observed at column j. If θgju is the probability of observing
the letter u ∈ Aj at column j in cluster g, then

Pr{Xij = u|θ,R} =
k∏
g=1

θ
I(i∈g)
gju
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for all i = 1, . . . , n. Let θgj = (θgj1, . . . , θgjdj
)′ be the vector of probabilities

associated with cluster g at column j. Assuming they are a priori independent,
we obtain

p(R,θ) = p(R)p(θ|R) = p(R)
k∏
g=1

m∏
j=1

p(θgj)

As shown in Section 1.3.1, if p(θgj) is the density of a Dirichlet distribution
with parameter αj , and the columns are stochastically independent also in the
likelihood, then

p(X|R) =
k∏
g=1

p(Xg) =
k∏
g=1

m∏
j=1

B(αj + tgj)
B(αj)

where tgj is the sufficient statistic counting the occurrences of each letter in cluster
g at column j. The posterior distribution is then simply

p(R|X) ∝ p(R)
m∏
j=1

1
B(αj)k

k∏
g=1

B(αj + tgj) (2.7)

which is easy to interpret: p(R) controls our prior information about the number of
clusters and their relative size, while the Dirichlet prior regularizes the composition
of letters within each cluster. This model, with the hierarchical uniform prior (1.6),
is employed in article I to analyse bacterial DNA strains (see Section 4.1).

Example 2.1. Consider the binary case Aj = {A,G}, where the Dirichlet
distribution becomes a Beta(αj1, αj2). If αj1 > αj2 we favour configurations
where each cluster has more letters A than G. If we believe that each cluster
contains either one of the two letters, we would then define a symmetric
distribution with modes on its extremities by choosing αj = (α, α)′ with
α < 1. On the other hand, when α1 = α2 = α > 1 the prior puts more weight
on configurations where the letters A and G have approximately the same
proportion within each cluster.

2.2.2 Bi-clustering categorical data
In the case of multivariate data, it is often necessary to identify which statist-
ical variables are the best predictors of cluster association. Here, the task is
accomplished by classifying the observed features according to their amount of
discrimination power.

The simultaneous classification of both the rows and columns of a data matrix
is known as bi-clustering (Mirkin, 1996), whose basic idea is to rearrange the data
matrix across its two dimensions in such a way that non-random patterns present
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Figure 2.1: Point estimate of model parameters. The data matrix is partitioned into
a grid of row and column clusters. Row blocks represent groups of homogeneous
sample vectors while column blocks express similar levels of feature discrimination
power.

in the data are correctly highlighted. Depending on the problem at hand, data
can be restructured into different shapes (Van Mechelen et al., 2004; Madeira and
Oliveira, 2004). The major contribution of this dissertation is the model initially
introduced in article II and subsequently improved in article III, according to
which the categorical data matrix is decomposed into a grid of non-overlapping
sub-matrices (Figure 2.1).

The basic assumption of the proposed bi-clustering model is that, conditioned
on the knowledge of partition R, there is a subset of features that best discriminate
the clusters. In its simplest case, the columns might be classified as either noise or
signal. In the general case, we assume that each feature can be associated with only
one of v possible classes or statuses. The classification is further refined by allowing
each feature, that was given the status u (u = 1, . . . , v), to possess a particular
property l (l = 1, . . . , su) within each cluster g (g = 1, . . . , k). For example, we
might give a feature which was classified as signal (status) the property of either
“low” or “high” probability of success in cluster g.

Formally, define the binary variable cujgl to be equal to 1 if and only if vari-
able j (j = 1, . . . ,m) possesses status u (u = 1, . . . , v) with the property l
(l = 1, . . . , su) in cluster g (g = 1, . . . , k). The whole collection of binary vari-
ables cujgl can be represented by the array C = (C1, . . . ,Cj , . . . ,Cm) where
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Cj = (C1
j , . . . ,Cu

j , . . . ,Cv
j ) and

Cu
j =



cuj11 · · · cuj1l · · · cuj1su

...
...

...
cujg1 · · · cujgl · · · cujgsu

...
...

...
cujk1 · · · cujkl · · · cujksu


The total number of properties, statuses, and their interpretation is assumed

to be known and not a part of the inferential problem.
When all the parameters of the model are fixed, the samples are assumed to

be independent and identically distributed

p(X|R,C,θ) =
k∏
g=1

∏
i∈g

p(xi|R,C,θg)

Within this setting, θ is considered a nuisance parameter and therefore integ-
rated out of the model:

p(X|R,C) =
∫

Θ
p(θ,X|R,C)dθ =

∫
Θ
p(θ|R,C)p(X|R,C,θ)dθ =

=
∫

Θ1

· · ·
∫

Θk

k∏
g=1

p(θg|R,C)
∏
i∈g

p(xi|R,C,θg)dθ1 . . . dθk =

=
k∏
g=1

∫
Θg

p(θg|R,C)
∏
i∈g

p(xi|R,C,θg)dθg =
k∏
g=1

p(Xg|R,C)

Finally, conditional on the knowledge of which class each feature belongs to,
the statistical variables are themselves stochastically independent:

p(X|R,C) =
k∏
g=1

m∏
j=1

p(xgj |R,C) (2.8)

where xgj is the vector observed at column j in cluster g.
We write the joint prior distribution explicitly as p(R,C) = p(R)p(C|R). The

choice of p(R) is left unspecified and free to be chosen among the many available
possibilities as discussed in Section 1.3. Instead, we will focus here on p(C|R).

Elements of array C are considered a priori stochastically independent, so
that the prior distribution factorizes similar to the likelihood function. From an
analytical point of view, this choice allows tractable models. From a practical point

20



of view, having m independent stochastic variables in the posterior distribution
opens the way to parallelization of the computations, speeding up the algorithms
employed.

As shown in Section 3.2 of article III, if each column status is independently
sampled according to the probability distribution γj = (γj1, . . . , γju, . . . , γjv)′
and then, conditional on the realization of this status, each cluster property is
independently sampled according to the (multinomial) probability distribution
ωujg =

(
ωujg1, . . . , ω

u
jgl, . . . , ω

u
jgsu

)′
, the prior distribution becomes

p(C|R) =
m∏
j=1

k∏
g=1

v∏
u=1

su∏
l=1

(
γ

1
k
juω

u
jgl

)cu
jgl

(2.9)

The joint posterior distribution of (R,C), up to a normalizing constant, is
obtained by multiplying the likelihood (2.8), the chosen distribution p(R) and
the prior (2.9):

p(R,C|X) ∝ p(R)p(C,X|R) = p(R)
m∏
j=1

k∏
g=1

v∏
u=1

su∏
l=1

(
γ

1
k
juω

u
jglp

u
jgl

)cu
jgl

(2.10)

where pujgl = p(xgj |cujgl = 1).
By integrating out C from p(C,X|R), we obtain

p(X|R) =
m∏
j=1

v∑
u=1

γju

k∏
g=1

su∑
l=1

ωujglp
u
jgl (2.11)

from which follows that the probability of observing the data associated with a
generic cluster g is

p(Xg|R) =
m∏
j=1

v∑
u=1

su∑
l=1

γjuω
u
jglp

u
jgl (2.12)

and that the conditional distribution p(xi|xi−1, . . . ,x1, k) is equal to the product
of weighted averages

m∏
j=1

v∑
u=1

su∑
l=1

γjuω
u
jglp(x(1:(i−1))j |k, cujgl = 1)

v∑
a=1

sa∑
t=1

γjaωajgtp(x(1:(i−1))j |k, cajgt = 1)
p(xij |x(1:(i−1))j , k, c

u
jgl = 1)

Combining all the previous results, it is easy to show (see supplementary
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material S2 of article III) that

p(C|R,X) =
m∏
j=1

v∏
u=1


γju

k∏
h=1

su∑
t=1

ωujhtp
u
jht

su∑
a=1

γja
k∏
h=1

su∑
t=1

ωajhtp
a
jht


cu

j..
k

k∏
g=1

su∏
l=1

 ωujglp
u
jgl

su∑
t=1

ωujgtp
u
jgt


cu

jgl

(2.13)
from which we can directly sample values of C conditioned on a particular realiz-
ation of R.
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Chapter 3

Inference algorithms

3.1 Expectation-Maximization
The Expectation-Maximization (EM) algorithm is a common procedure for finding
(local) optima of probabilistic models in the presence of latent variables (Gupta
and Chen, 2011). It was originally applied to maximum likelihood estimation
(Dempster et al., 1977), but it can be easily extended to MAP point estimation
(McLachlan and Krishnan, 2008).

Expectation-Maximization is an iterative algorithm in which two steps are
alternated until convergence is reached. In the first step, known as the E-step, the
expected value of the latent variable, conditioned on the current estimate of the
parameter of interest, is computed. In the second step, known as the M-step, the
objective function is maximized with respect to the parameter of interest.

The solution to the optimization problem is the mode ψ̂ of the posterior dis-
tribution p(ψ|X). Since the logarithm is a monotonic function, the same solution
can be obtained by maximizing the logarithm of the joint distribution p(ψ,X).
The normalization constant 1/p(X), not depending on ψ, can be safely ignored.

If ψ ∈ Ψ is the parameter we seek to optimize and Z ∈ Z is the unobservable
parameter, then

p(ψ,X) =
∫
Z
p(Z|ξ,X)p(ψ,Z,X)

p(Z|ξ,X) dZ = EZ|ξ,X

[
p(ψ,Z,X)
p(Z|ξ,X)

]
for all ξ ∈ Ψ. Define

f(ψ|ξ) = EZ|ξ,X

[
log p(ψ,Z,X)

p(Z|ξ,X)

]
(3.1)

By Jensen’s inequality
log p(ψ,X) ≥ f(ψ|ξ)
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for all ψ, ξ ∈ Ψ. It is clear that any increment in the surrogate function (3.1) will
also increase, or leave unchanged, the objective function log p(ψ,X). It is also
easy to show that the log-joint distribution is recovered when ξ is exactly equal
to ψ:

f(ψ|ψ) =
∫
Z
p(Z|ψ,X) log p(ψ,X)p(Z|ψ,X)

p(Z|ψ,X) dZ = log p(ψ,X)

The EM algorithm, as shown in A.1, is guaranteed to converge to a local optimum
or a saddle point (Wu, 1983). To increase the chances of reaching a global optimum,
the recommended approach is to restart the algorithm from many different starting
values.

Algorithm A.1 Expectation-Maximization
Input: Initial estimate ψ(0) ∈ Ψ
Output: Stationary point ψ̂ of the posterior distribution p(ψ|X)
Initialization:

define f(ψ|ξ) as in equation (3.1)
t← 0

1: repeat
2: t← t+ 1
3: g(ψ)← f(ψ|ψ(t−1)) (E-step)
4: ψ(t) ← arg maxψ∈Ψ g(ψ) (M-step)
5: until convergence

In the case of a finite mixture model, ψ = (π,θ) is the parameter of interest
and Z is the latent matrix of cluster associations. For simplicity we consider here
a fixed value for k. In order to find the global maximum, the algorithm must
obviously be repeated for each k = 1, . . . , n, weighting each solution with the
corresponding probability p(k).

From the joint probability distribution (2.3) we easily obtain

p(Z|θ(t−1),π(t−1),X) =
n∏
i=1

k∏
g=1

(
π

(t−1)
g pg(xi|θ(t−1)

g )∑k
h=1 π

(t−1)
h ph(xi|θ(t−1)

h )

)zig

=
n∏
i=1

k∏
g=1

q
zig

ig

For any fixed value of Z, the logarithm of (2.3) can be written as the sum

log p(θ,π,Z,X) = log p(θ,π) +
n∑
i=1

k∑
g=1

zig log p(xi|θg) +
n∑
i=1

k∑
g=1

zig log πg =

= log p(θ,π) + h(θ|Z) + u(π|Z)
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and the function (3.1) computed in the E-step is

f(θ,π|θ(t−1),π(t−1)) = log p(θ,π) +
n∑
i=1

k∑
g=1

qig log p(xi|θg)+

+
n∑
i=1

k∑
g=1

qig log πg −
n∑
i=1

k∑
g=1

qig log qig

which is then maximized, with respect to θ and π, in the M-step of the algorithm.

3.2 Stochastic optimization
Computation of (3.1) in the E-step of the EM algorithm is sometimes not feasible.
In the context of product partition models, the expected value requires to sum
over all the possible partitions of n, which we already know is equal to the Bell
number of n. Stochastic approaches are valid alternatives for finding solutions
to optimization problems (Spall, 2003). In their simplest form, they differ from
deterministic algorithms by proposing new solutions through the use of a random
number generator. In general, they do not provide any guarantee that the given
solution is a stationary point of the objective function. Nevertheless, if properly
designed, they often produce outputs in a neighbourhood of the global optimum.
Here, we will look in detail the algorithms used in articles I and II.

Let R be a partition of the rows of matrix X and ψ another parameter of
interest, such as the partition C of the columns of matrix X as defined in Section
2.2.2. We seek the MAP estimate

(R̂, ψ̂) = arg max
(R,ψ)

p(R,ψ|X) (3.2)

In a standard coordinate ascend algorithm (Wright, 2015), similarly to what has
been done with the EM algorithm, we would maximize the posterior distribution
by alternating maximization of one variable conditioned on the last value of the
other variable. For any given partition R(t) at iteration t, it is usually easy to find
ψ(t) that maximizes (3.2). Taking model (2.10) as an example, the implementation
of an exhaustive search for this task is straightforward as long as the total number
of combinations is not too high. The opposite problem of searching in the partition
space is, instead, a difficult problem.

The greedy algorithm derived from Corander and Marttinen (2006) and em-
ployed in Cheng et al. (2013) was used in the statistical analysis of article I. The
idea behind this algorithm is to explore the space of partitions by performing
local moves from the current known partition. These moves can be summarized
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by split, merge, or transfer operators and their basic forms are shown in algorithm
A.2. The simplest version of the greedy stochastic search is outlined in algorithm
A.3. It is important to note that it employs a data-driven approach in the form
of a pre-computed distance matrix, whose use in guiding proposal moves was
shown to considerably boost the algorithm performance. Without changing its
core structure, a more complex algorithm would modify and combine the three
operators in order to perform a wide variety of different kind of explorations in
the solution neighbourhood.

An alternative version of the transfer operator, for example, is implemented
in article II. First, a reference cluster is chosen at random. Subsequently, in
a sequential manner, units from other clusters are collected until the objective
function is not increased any more. By construction, the log-posterior distribution

Algorithm A.2 Move operators for Greedy Stochastic Search
// Note: l is the current value of the posterior distribution

1: function merge(l,R(t−1))
2: u← l, R(t) ← R(t−1)

3: for all pair of clusters (g, h) in R(t−1) do
4: S← partition obtained by merging (g, h)
5: v ← p(S|ψ(t−1),X)
6: if v > u then
7: u← v, R(t) ← S
8: end if
9: end for

10: return (u,R(t))
11: end function

// Note: D is a matrix of pairwise distances
12: function split(l,R(t−1),D)
13: u← l, R(t) ← R(t−1)

14: for all clusters g in R(t−1) do
15: H ← dendrogram of cluster g built from D
16: S← partition obtained by cutting H at some height h
17: v ← p(S|ψ(t−1),X)
18: if v > u then
19: u← v, R(t) ← S
20: end if
21: end for
22: return (u,R(t))
23: end function
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Algorithm A.2 Move operators for Greedy Stochastic Search (continued)
24: function transfer(l,R(t−1))
25: u← l, R(t) ← R(t−1)

26: for all units i do
27: for all clusters g in R(t−1) do
28: S← partition obtained by moving i to g
29: v ← p(S|ψ(t−1),X)
30: if v > u then
31: u← v, R(t) ← S
32: end if
33: end for
34: end for
35: return (u,R(t))
36: end function

is guaranteed to not decrease at each iteration. The advantage of this kind of
approach comes from the natural use of the univariate conditional probabilities,
which are updated at each step.

Algorithm A.3 Greedy Stochastic Search
Input: Initial estimate R(0)

Output: Approximate stationary point R̂ of p(R|ψ(t−1),X)
Initialization:

compute matrix D of pairwise distances between data points
t← 0
l← p(R(0)|ψ(t−1),X)

1: repeat
2: t← t+ 1
3: w ← random order of operators described in A.2
4: for all operators in w do
5: compute new values for l and R(t)

6: if l is increased then
7: break for
8: end if
9: end for

10: until all operators do not produce a better solution
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3.3 Markov Chain Monte Carlo
When other summaries other than the MAP are desired, simulation techniques
are often employed for complex models (Robert and Casella, 2004). Similar to the
greedy stochastic search algorithm A.3, also in this context global and local moves
are alternated. In this case the aim is to produce samples from the posterior
distribution. Split and merge operators are implemented in the MCMC setting
with the Metropolis-Hastings proposal introduced by Jain and Neal (2007). See,
in particular, the variant proposed by Dahl (2005). Transfer moves are done by
the Gibbs sampler (Neal, 2000), or by the biased random walk of Booth et al.
(2008) when the former is not available. In any case, we assume that p(θ|R,X)
is available in closed form and it is easy to simulate from.

3.3.1 Split-Merge procedure
The Metropolis-Hastings acceptance probability has the general form

α(ψ,ψ?) = min
{

1, p(ψ
?)

p(ψ)
p(X|ψ?)
p(X|ψ)

q(ψ|ψ?)
q(ψ?|ψ)

}
(3.3)

where ψ is the current value of the parameter and ψ? is the new proposed value,
which has been sampled from the proposal distribution q(ψ?|ψ).

Each step of the split-merge algorithm starts by selecting two different units,
i and j, completely at random. If the chosen units belong to the same cluster, say
g, a split operator is performed. On the other hand, if i and j happen to be in
two different groups, say gi and gj , a merge operator is implemented.

In case of a merge, all the units that are currently in clusters gi and gj are
reallocated, with probability 1, into the new cluster R?

g = Rgi ∪Rgj . In case of
a split, all the units U = {u : u ∈ Rg, u 6= i, j} are sequentially reallocated at
random to either gi or gj , the clusters founded by i and j. After iteration s of
the reallocation process, |R?(s)

gi | and |R
?(s)
gj | units have been associated with i and

j respectively. By convention we set R?(0)
gi = {i} and R?(0)

gj = {j}. Obviously,
|R?(s)

gi |+ |R
?(s)
gj | = s+ 2. The next unit is allocated to gi with probability

Pr{(s+ 1) ∈ R?(s+1)
gi

|R?(s)
gi

,R?(s)
gj

,X} ∝ |R?(s)
gi
|p(xs+1|{xu : u ∈ R?(s)

gi
})

and to gj with probability 1−Pr{(s+1) ∈ R?(s+1)
gi |R?(s)

gi ,R?(s)
gj ,X}. The complete

joint probability distribution can be rewritten in compact form as

q(R?
gi
,R?

gj
|X) =

|Rg|−2∏
s=1

Pr{s ∈ R?(s)
h |R?(s−1)

gi
,R?(s−1)

gj
,X} (3.4)
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where h is either gi or gj , depending on the final allocation.
For product partition models (see Section 2.2), the Metropolis-Hastings ac-

ceptance probability becomes

α(ψ,ψ?) = min
{

1,
f(R?

g)
f(Rgi

)f(Rgj
)

p(X?
g)

p(Xgi
)p(Xgj

)q(Rgi
,Rgj

|X)
}

(3.5)

in case of a merge operator, or

α(ψ,ψ?) = min
{

1,
f(R?

gi
)f(R?

gj
)

f(Rg)
p(X?

gi
)p(X?

gj
)

p(Xg)
1

q(R?
gi
,R?

gj
|X)

}
(3.6)

in case of a split operator. The new value of θ is finally sampled from the posterior
distribution, after the Metropolis-Hastings step is completed.

For the proposed model (2.10), Split-Merge Metropolis-Hastings algorithm
is implemented by computing probability (3.4) with equation (2.12), while C is
directly sampled from the posterior distribution (2.13).

3.3.2 Gibbs sampler and Biased Random Walk
A local move in the partition space is accomplished by transferring a single
observation from one cluster to another. By concatenating multiple local moves,
the resulting Markov chain is able to explore in greater detail the surface of the
posterior distribution. Since only one unit is transferred at any step, the process is
usually very slow in escaping high-density regions of the posterior distribution and
states of the Markov chain are often highly autocorrelated. In order to increase the
effective sample size, very long chains are therefore required and the recommended
strategy for a good mixing of the Markov chain is to combine both local and global
moves.

Suppose t− 1 complete iterations of the Markov chain have been performed
and that, during iteration t, i − 1 units have been already reallocated. We seek
to sample the new cluster for unit i from the full conditional distribution

Pr{Z(t)
gi = 1|Z(t)

1:(i−1),Z
(t−1)
(i+1):n,X} ∝ f(R?

g ∪ {i})p(xi|{xu : u ∈ R?
g}) (3.7)

where Z is an indicator matrix of cluster associations, f(·) is the cohesion function
of the product partition model, and R?

g is the current group g (not considering
i). If g is an empty cluster, the probability is simply proportional to f({i})p(xi).
For example, Neal (2000) reviews different ways of obtaining full conditional
distributions associated to Dirichlet Process mixture models.

When the full conditional distributions are not be available in closed form, it
is still possible to implement local moves with a Metropolis-Hastings correction
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(Booth et al., 2008). The basic idea is to select a unit at random, with probability
1/n, among the n available and to reallocate it into a group different from its
own. In the general case, the new cluster is sampled with probability 1/k from
the set of existing clusters plus the empty cluster (in which case, if selected, it
would form a new group). Two special cases might also arise. If k = 1, the unit is
put with probability 1 into its own cluster. If the unit is instead a singleton, it is
allocated with probability 1/(k − 1) into one of the other existing clusters.

The transition matrix constructed following this procedure is symmetric and
the Metropolis-Hastings acceptance probability is simply

α(ψ,ψ?) = min
{

1, p(R
?)p(X|R?)

p(R)p(X|R)

}
(3.8)

which might greatly simplify, depending of the functional forms of the distributions
involved.
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Chapter 4

Applications

4.1 S. pneumoniae population structure
Streptococcus pneumoniae (pneumococcus) is a pathogenic bacterium, normally
colonizing the nasopharynx of healthy individuals in an asymptomatic way. How-
ever, in the presence of a weak immune system, its carriage poses a serious risk for
the development of diseases such as, but not restricted to, pneumonia (Bogaert
et al., 2004). Carriage rates are usually higher in developing countries (Adetifa
et al., 2012) and it is a leading cause of mortality of children worldwide (Rudan
et al., 2008).

In article I, whole-genome sequence data of 3,085 pneumococci isolates were
analysed using the statistical model explained in Section 2.2.1. The aim of the
study was to improve our understanding of the mechanism of recombination at
the pneumococcus population level and quantifying its impact in the development
of antibiotic resistance.

The population structure found by means of unsupervised learning has been
used as basis of the recombination analysis. 33 primary clusters were found by
the algorithm, dividing the sample according to their serotypes. In a hierarchical
fashion, each one of the 33 clusters was independently re-analysed obtaining a total
of 183 secondary clusters in the whole dataset. The sub-clusters were mostly clonal
complexes, that is groups of strains with very little variation, with non-typeable
(NT) bacteria being the most numerous.

Analysis of recombination events focused on the seven largest primary clusters,
comprising enough samples to obtain reliable results. Mutation rates within each
cluster were very similar and compatible with the null hypothesis of equal rates.
Recombination rates, instead, seemed to vary across groups with the NT cluster
being the most recombinogenic. High recombination regions were found to be loc-
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ated at positions occupied by genes encoding antigens or associated with antibiotic
resistance.

The estimated population structure, combined with phylogenetic analyses of
these important genes, led to the hypothesis that specific lineages of pneumococci
take the role of gene hubs. In particular, the NT group possessed high rates of both
acquisition and donation of recombinant DNA, making them putative reservoir
of genetic material for the whole population.

4.2 Haemagglutinin of influenza A/H3N2
Haemagglutinin (HA) is a protein located on the surface of the influenza virion
with the role of binding the virus to the target cell and promoting its entrance
by fusing the viral envelope together with the cell membrane. These two tasks
are accomplished by two separate parts of the protein: HA1, which contains the
binding sites, and HA2, which is involved in membrane fusion (Skehel and Wiley,
2000).

Initial observations of A/H3N2 date back to 1968. Since then, in order to
escape the immune system of the target host, the HA protein has undergone
rapid evolution with regular antigenic changes. Its short coalescent times can be
clearly observed from its ladder-like phylogeny (Bedford et al., 2014; Fitch et al.,
1991; Smith et al., 2004).

The enormous amount of viral strains available in public databases (Bao et al.,
2008; Benson et al., 2005; Bogner et al., 2006; Squires et al., 2012) and the detailed
information about its structure and evolution found in the literature (Bedford
et al., 2014; Bizebard et al., 1995; Fleury et al., 1999; Knossow et al., 2002; Koel
et al., 2013; Smith et al., 2004; Suzuki, 2006; Wolf et al., 2006) make the HA
protein of influenza A/H3N2 a good candidate for testing the proposed model
(2.10).

In article II, 4,898 unique HA sequences made of 567 amino acids were collected
and analysed. MAP estimates suggested that viral proteins were split into a total of
57 different groups, discriminated by a joint set of 117 sites. This subset of protein
amino acid positions were consistent with previous research (Smith et al., 2004),
demonstrating how automatic procedures of unsupervised learning might highlight
interesting spots of genetic evolution without huge effort from the practitioner.

Post-hoc analyses of the 57 original groups discovered the existence of 23
“core” clusters of strains, representing the backbone clades of the A/H3N2 HA
phylogeny. Reassuringly, previous knowledge regarding HA A/H3N2 was reflected
through these core clusters, in particular the dominant role of the B-cell epitopes
in contrast to T-cell epitopes (Suzuki, 2006) and their distinct antigenic variation
(Bedford et al., 2014).
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4.3 VP4 protein of Rotavirus A
Rotavirus belongs to the family Reoviridae and is a double-stranded RNA virus
causing gastroenteritis, of which species A is the most common variant across
humans. Mostly affecting children and infants, it is still a major cause of death
in developing countries (Bernstein, 2009).

Having a spike shape, VP4 is located on the surface of the virion. Similar to
influenza A/H3N2 HA protein, its role is to bind the virus to receptors of the
target cell and promote its entry. For this reason, it is constantly under selective
pressure from the immune system.

For the statistical analysis conducted in article III, a total of 841 unique VP4
sequences, 783 amino acids long, were retrieved from NCBI’s Virus Variation
Resource database (Brister et al., 2013). Together with MAP estimation, 106

MCMC samples were also collected with default prior hyperparameters.
Posterior inference of the total number of groups placed the value of k between

11 and 17 (95% credible interval) with a most likely value of 13. Reassuringly,
estimate of R shown to reflect already known serotypes of rotavirus A, splitting the
dataset into a total of 11 groups. Posterior distribution of parameter C highlighted
regions of most discriminating sites at the extremities of the protein, suggesting
possible sites under heavy selection pressure.

Following a hierarchical approach similar to that applied in article I, the most
common serotype (P[8]) was independently analysed. In this case, the dataset
was perfectly split into 14 clusters with a posterior probability close to 1. In the
global analysis, the clear population structure of P[8] was masked by general noise
introduced by the other strains.

4.4 C. jejuni population structure
Campylobacter jejuni is a species of pathogenic bacteria that is generally found
in the gastrointestinal tract of wild and domesticated animals (Sheppard et al.,
2011). Humans are usually infected by ingestion of contaminated food (Friedman
et al., 2004) and C. jejuni is the most common cause of bacterial food-borne
diarrhoeal disease (Blaser, 1997). Gastroenteritis caused by C. jejuni is rarely
life-threatening and antibiotics are usually not needed, but symptoms are severely
debilitating and may last for a long period of time (Allos, 2001).

In article IV, 601 whole-genome protein sequences of C. jejuni isolates (Yahara
et al., 2017) were analysed using the statistical model explained in Section 2.2.2.
Sequences were 153,911 amino acids long with 17,405 polymorphic sites, resulting
in a final binary data matrix of 601 rows and 37,666 columns. Available metadata
included host information (poultry, ruminant, humans), sequence type (ST), and
clonal complex (CC).
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Bi-clustering results led to the discovery of 36 main bacterial groups. Integ-
rating this information with each isolate source, we were able to further classify
each cluster into one of 4 possible macro-groups: human (12 clusters), human
and chicken (10 clusters), human and cattle (4 clusters), and human, chicken, and
cattle (10 clusters). The most surprising discovery was the existence of groups of
bacteria associated only with human patients and all belonging to the same clonal
complex 21. This led to the hypothesis that a genetic bottleneck might be the
main cause of the increase in relative frequency of particular kinds of bacterial
strains in clinical isolates. Important amino acids in key genes are likely to be
responsible of the higher fitness in human hosts and might be worth investigating.
Phylogenetic analysis also showed an incongruence between DNA and protein
group structures, where distinct lineages at the DNA level were instead conver-
gent into the same protein group. These results show clearly how important it
is to integrate both DNA and amino acid statistical analyses in any population
genomics study.
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Chapter 5

Conclusions

The steady increase in the amount of available genomics data poses great chal-
lenges to statistical inference but also brings many opportunities in understanding
the evolution and transmission of pathogens, for a hope to develop better pre-
vention and treatment of diseases. In this thesis, we showed how cluster analysis
can be a valuable statistical tool for pathogen population genomics. Bayesian
model-based unsupervised learning, in particular, gives the statistician complete
freedom in building a model to target specific types of heterogeneity patterns that
are known a priori to be present in the data.

In article I, for example, we demonstrated how the knowledge of the popula-
tion structure of pneumococcus allows the biologists to test important biological
hypotheses. In particular, we were able to observe how a specific lineage (NT)
of pneumococci has a central role in the exchange of genetic material associated
with antibiotics resistance.

A novel statistical model for identification of cluster-defining features in large
categorical data was introduced in article II. Put to test with nearly 5000 HA pro-
tein sequences of influenza A/H3N2, we demonstrated its efficacy in highlighting
amino acids under selective pressure from the host immune system. Further, the
bi-clustering structure recovered the core evolution of the virus which was hidden
by the noise introduced by the other sequences.

In article III the model was generalized and formulas were derived for imple-
menting MCMC simulations. Posterior inference other than MAP estimation was
done for a real dataset of 841 rotavirus A VP4 proteins. Results were compatible
to current knowledge of rotavirus A, showing the reliability of inference results.

A real dataset of Campylobacter jejuni was finally analysed in article IV.
Inference results allowed the discovery of particular lineages, and the amino acids
involved, that are associated with increased virulence. Thanks to the method
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introduced in article II and III, novel biological hypotheses were made and tested,
showing the usefulness of the model in pathogen population genomics.

Still a lot of potential remains for further research in this area. Current MCMC
techniques are not able to cope with the ever increasing size of datasets. At the
moment, for big datasets, we still recommend the use of MAP estimates as efficient
alternatives to simulation techniques. Nevertheless, knowledge of the posterior
distribution would be valuable for a better understanding of our uncertainty. For
this reason, novel alternatives to the standard Gibbs sampler employed in Bayesian
cluster analysis, or split-merge moves in Metropolis-Hastings algorithm, should
be developed.

MAP estimation can be improved too. Stochastic search done by split-merge-
transfer moves, despite its efficacy, is still computationally costly and might not
scale well with new generation high-throughput data. At the moment, days or
even weeks of computation is the norm for big genetic dataset. Implementation
of parallel computation and recent advances in stochastic optimization, such as
evolutionary algorithms, might be the winning approaches to this problem. The
challenge that this branch has to overcome to become routinely applied is to
provide good solutions in a reasonable amount of time, possibly minutes or even
seconds.
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