
SIAM J. COMPUT. c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela
Vol. 46, No. 4, pp. 1473–1500

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE∗

CHRISTOPH LENZEN† , JOEL RYBICKI†‡§ , AND JUKKA SUOMELA§

Abstract. Consider a complete communication network of n nodes, where the nodes receive
a common clock pulse. We study the synchronous c-counting problem: given any starting state
and up to f faulty nodes with arbitrary behavior, the task is to eventually have all correct nodes
labeling the pulses with increasing values modulo c in agreement. Thus, we are considering algorithms
that are self-stabilizing despite Byzantine failures. In this work, we give new algorithms for the
synchronous counting problem that (1) are deterministic, (2) have optimal resilience, (3) have a linear
stabilization time in f (asymptotically optimal), (4) use a small number of states, and, consequently,
(5) communicate a small number of bits per round. Prior algorithms either resort to randomization,
use a large number of states and need high communication bandwidth, or have suboptimal resilience.
In particular, we achieve an exponential improvement in both state complexity and message size
for deterministic algorithms. Moreover, we present two complementary approaches for reducing the
number of bits communicated during and after stabilization.

Key words. self-stabilization, Byzantine fault-tolerance

AMS subject classifications. 68M14, 68M15, 68Q25, 68W15

DOI. 10.1137/16M107877X

1. Introduction. In this work, we design space- and communication-efficient, self-
stabilizing, Byzantine fault-tolerant algorithms for the synchronous counting problem.
We are given a complete communication network on n nodes with arbitrary initial
states. There are up to f faulty nodes. The task is to synchronize the nodes so that
all nonfaulty nodes will count rounds modulo c in agreement. For example, here is a
possible execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 3; the
execution stabilizes after t = 5 rounds:

Stabilization Counting

Node 1: 2 2 0 2 0 0 1 2 0 1 2 . . .
Node 2: 0 2 0 1 0 0 1 2 0 1 2 . . .
Node 3: faulty node, arbitrary behavior . . .
Node 4: 0 0 2 0 2 0 1 2 0 1 2 . . .

Synchronous counting is a coordination primitive that can be used, e.g., in large
integrated circuits to synchronize subsystems to easily implement mutual exclusion
and time division multiple access in a fault-tolerant manner. Note that in this context,
it is natural to assume that a synchronous clock signal is available, but the clocking
system usually does not provide explicit round numbers. Solving synchronous counting
thus yields highly dependable round counters for subcircuits.

∗Received by the editors June 8, 2016; accepted for publication (in revised form) May 15, 2017;
published electronically August 22, 2017. This paper is an extended and revised version of two
preliminary conference reports [24, 26] that appeared in the Proceedings of the 34th Annual ACM
Symposium on Principles of Distributed Computing (PODC 2015) and in the Proceedings of the 29th
International Symposium on Distributed Computing (DISC 2015).

http://www.siam.org/journals/sicomp/46-4/M107877.html
†Department of Algorithms and Complexity, Max Planck Institute for Informatics, Saarland

Informatics Campus, 66123 Saarbrucken, Germany (clenzen@mpi-inf.mpg.de).
‡Department of Algorithms and Complexity, Max Planck Institute for Informatics, Saarland

Informatics Campus, 66123 Saarbrucken, Germany. Current address: Department of Biosciences,
FI-00014 University of Helsinki, Helsinki, Finland (joel.rybicki@helsinki.fi).
§Helsinki Institute for Information Technology HIIT, and Department of Computer Science, Aalto

University, FI-02150 Espoo, Finland (jukka.suomela@aalto.fi).

1473

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sicomp/46-4/M107877.html
mailto:clenzen@mpi-inf.mpg.de
mailto:joel.rybicki@helsinki.fi
mailto:jukka.suomela@aalto.fi


1474 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

If we neglect communication, counting and consensus are essentially equivalent [13,
14, 15]. In particular, many lower bounds on (binary) consensus directly apply to
the counting problem [16, 20, 27]. However, the known generic reduction of counting
to consensus incurs a factor-f overhead in space and message size. In this work, we
present techniques that reduce the number of bits nodes broadcast in each round to
O(log2 f + log c).

1.1. Contributions. Our contributions constitute of two parts. First, we give
novel space-efficient deterministic algorithms for synchronous counting with optimal
resilience and fast stabilization time. Second, we show how to extend these algorithms
in a way that reduces the number of communicated bits during and after stabilization.

Space-efficient counting algorithms. In this work, we take the following approach
for devising communication-efficient counting algorithms: we first design space-efficient
algorithms, that is, algorithms in which each node stores only a few bits between
consecutive rounds. Space-efficient algorithms are particularly attractive from the
perspective of fault-tolerant systems: if we can keep the number of state bits small,
we can also reduce the overall complexity of the system, which in turn makes it easier
to use highly reliable components for an implementation.

Once we have algorithms that need only a small number of bits to encode the
local state of a node, we also get algorithms that use small messages: the nodes can
simply broadcast their entire state to everyone. Our main result is summarized in the
following theorem; here f -resilient means that we can tolerate up to f faulty nodes.

Theorem 1.1. For any integers c, n > 1 and f < n/3, there exists a deterministic
f -resilient synchronous c-counter that runs on n nodes, stabilizes in O(f) rounds, and
uses O(log2 f + log c) bits to encode the state of a node.

Our main technical contribution is a recursive construction that shows how to
“amplify” the resilience of a synchronous counting algorithm. Given a synchronous
counter for some values of n and f , we will show how to design synchronous counters
for larger values of n and f with a very small increase in time and state complexity.
This has two direct applications:

1. From a practical perspective, we can apply existing computer-designed algo-
rithms (e.g., n = 4 and f = 1) as a building block in order to design efficient
deterministic algorithms for a moderate number of nodes (e.g., n = 36 and
f = 7).

2. From a theoretical perspective, we can design deterministic algorithms for
synchronous counting for any n and any f < n/3, with a stabilization time of
Θ(f), and with only O(log2 f) bits of state per node.

The state complexity and message size is an exponential improvement over prior work,
and the stabilization time is asymptotically optimal for deterministic algorithms [20].

Reducing communication after stabilization. In our deterministic algorithms, each
node need only store a few number of bits between consecutive rounds, and thus, a
node can, e.g., afford to broadcast its entire state to all other nodes in each round.
Moreover, we present a technique to reduce the number of communicated bits further.

We give a deterministic construction in which after stabilization each node broad-
casts O(1 +B logB) bits every κ rounds, where B = O(log c/ log κ), for an essentially
unconstrained choice of κ, at the expense of additively increasing the stabilization
time by O(κ). In particular, for the special case of optimal resilience and polynomial
counter size, we obtain the following result.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1475

Corollary 1.2. For any n > 1 and c = nO(1) that is an integer multiple of
n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f = b(n− 1)/3c, stabilizes in Θ(n) rounds, requires O(log2 n) bits to encode the state
of a node, and for which after stabilization correct nodes broadcast aysmptotically
optimal O(1) bits per Θ(n) rounds.

We remark that in the above result we simply reduce the frequency of commu-
nication and the size of messages instead of, e.g., bounding the number of nodes
communicating in any given round (known as broadcast efficiency) [28]. In our
work, we exploit synchrony after stabilization to schedule communication, and thus,
our approach is to be contrasted with attempting to reduce the total number of
communication partners or communicating nodes after stabilization [9, 10, 28].

Reducing the number of messages. To substantiate the conjecture that finding
algorithms with small state complexity may lead to highly communication-efficient
solutions, we proceed to consider a slightly stronger synchronous pulling model. In
this model, a node may send a request to another node and receive a response in
a single round, based on the state of the responding node at the beginning of the
round. The cost for the exchange is then attributed to the pulling node; in a circuit,
this translates to each node being assigned an energy budget that it uses to “pay”
for the communication it triggers. In this model, it is straightforward to combine
our recursive construction used in Theorem 1.1 with random sampling to obtain the
following results:

1. We can achieve the same asymptotic running time and state complexity as
the deterministic algorithm from Theorem 1.1 with each node pulling only
polylog n messages in each round. The price is that the resulting algorithm
retains a probability of n− polylogn to fail in each round even after stabilization
and that the resilience is f < n/(3 + γ) for any constant γ > 0.

2. If the failing nodes are chosen independently of the algorithm, we can fix the
random choices. This results in a pseudorandom algorithm which stabilizes
with a probability of 1− n− polylogn and in this case keeps counting correctly.

1.2. Our approach. Most prior deterministic algorithms for synchronous count-
ing and closely related problems utilize consensus protocols [14, 22]. Indeed, if we
ignore space and communication, reductions exist both ways showing that the problems
are more or less equivalent [12]; see section 2 for further discussion on prior work.

However, to construct fast space- and communication-efficient counters, we are
facing a chicken-and-egg problem:

• From counters to consensus: If the correct nodes could agree on a counter,
they could jointly run a single instance of synchronous consensus.

• From consensus to counters: If the nodes could run a consensus algorithm,
they could agree on a counter.

A key step to circumvent this obstacle is the following observation:
• From unreliable counters to consensus: If the correct nodes can agree

on a counter at least for a while, they can jointly run a single instance of
consensus.

• From consensus to reliable counters: Consensus can be then used to
facilitate agreement on the output counter, and it is possible to maintain
agreement even if the underlying unreliable counters fail later on.

The task of constructing counters that are correct only once in a while is easier; in
particular, it does not require that we solve consensus in the process. As our main
technical result, we show how to “amplify” the resilience f at a cost of losing some

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1476 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

guarantees:
• Input: Two counters with a small f ; guaranteed to work permanently after

stabilization.
• Output: A counter with a large f ; guaranteed to work only once in a while.

This can be then used to jointly run a single instance of consensus and stabilize the
output. We show how to obtain such a counter based on simple local consistency
checks, timeouts, and threshold voting.

In the end, a recursive application of this scheme allows us to build space-efficient
counting algorithms for any n with optimal resilience. At each level of recursion,
we need only run a single instance of consensus. As there will be O(log f) levels of
recursion, in total each node participates in only O(log f) consensus instances.

1.3. Structure. Section 2 reviews prior work on impossibility results and count-
ing algorithms. Section 3 provides a formal description of the basic model of computa-
tion and the synchronous counting problem. Section 4 gives the main technical result
on resilience boosting, and section 5 applies it to construct fast and communication-
efficient algorithms. Section 6 shows how to reduce the number of bits communicated
during and after stabilization. Section 7 discusses the pulling model and randomized
sampling.

2. Related work. In this section, we first overview impossibility results related
to counting, and then discuss both deterministic and randomized algorithms for the
counting problem.

Impossibility results. As mentioned, counting is closely related to consensus as
reductions exist both ways [12]: consensus can be solved in time O(T ) tolerating f
faults if and only if counting can be solved in time O(T ) tolerating f faults.

With this equivalence in mind, several impossibility results for consensus directly
hold for counting as well. First, consensus cannot be solved in the presence of n/3 or
more Byzantine failures [27]. Second, any deterministic f -resilient consensus algorithm
needs to run for at least f + 1 communication rounds [20]. Third, it is known that the
connectivity of the communication network must be at least 2f + 1 [11]. Finally, any
consensus algorithm needs to communicate at least Ω(nf) bits in total [16].

In terms of communication complexity, no better bound than Ω(nf) on the
total number of communicated bits is known. While nontrivial for consensus, this
bound turns out to be trivial for deterministic counting algorithms: a self-stabilizing
algorithm needs to verify its output, and to do that, each of the n nodes needs to
receive information from at least f + 1 = Ω(f) other nodes to be certain that some
other nonfaulty node has the same output value. Similarly, no nonconstant lower
bounds on the number of state bits nodes are known; however, a nontrivial constant
lower bound for the case f = 1 is known [13].

Prior algorithms. There are several algorithms to the synchronous counting
problem, with different trade-offs in terms of resilience, stabilization time, space
complexity, communication complexity, and the use of random bits. For a brief
summary, see Table 1.

Designing space-efficient randomized algorithms for synchronous counting is fairly
straightforward [13, 17, 18]; for example, the nodes can simply choose random states
until a clear majority of nodes has the same state, after which they start to follow
the majority. Likewise, given a shared coin, one can quickly reach agreement by
defaulting to the coin whenever no clear majority is observed [4]. However, existing
highly resilient shared coins are very inefficient in terms of communication or need
additional assumptions, such as private communication links between correct nodes.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1477

Table 1
Summary of counting algorithms for the case c = 2. For randomized algorithms, we list the

expected stabilization time. (∗) The solution from [4] relies on a shared coin—details vary, but all
known shared coins with large resilience require large states and messages.

Resilience Stabilization time State bits Deterministic Reference

f < n/3 O(1) nO(1) no [4] (∗)

f < n/3 O(f) O(f log f) yes [14]
f < n/3 22(n−f) 2 no [17, 18]
f < n/3 min

{
22f+2 + 1, 2O(f2/n)} 1 no [13]

f = 1, n ≥ 4 7 2 yes [13]
f = n1−o(1) O(f) O(log2 f/ log log f) yes [26]

f < n/3 O(f) O(log2 f) yes this work

Less resilient shared coins are easier to obtain: Resilience Θ(
√
n) is achieved by each

node announcing the outcome of an independent coin flip and locally outputting the
(observed) majority value. In addition, Ω(n/ log2 n)-resilient Boolean functions give
fast communication-efficient coins [1]. Designing quickly stabilizing algorithms that
are both communication-efficient and space-efficient has turned out to be a challenging
task [13, 14, 15], and it remains open to what extent randomization can help in
designing such algorithms.

In the case of deterministic algorithms, algorithm synthesis has been used for
computer-aided design of optimal algorithms with resilience f = 1, but the approach
does not scale due to the extremely fast-growing space of possible algorithms [13]. In
general, many fast-stabilizing algorithms build on a connection between Byzantine
consensus and synchronous counting, but require a large number of states per node [14]
due to, e.g., running a large number of consensus instances in parallel. Recently, in
one of the preliminary conference reports [26] this paper is based on, we outlined a
recursive approach where each node needs to participate in only O(log f/ log log f)
parallel instances of consensus. However, this approach resulted in suboptimal resilience
of f = n1−o(1).

Finally, we note that while counting algorithms are usually designed for the case
of a fully connected communication topology, the algorithms can be extended to use
in a variety of other graph classes with high enough connectivity [13].

Related problems. Boczkowski, Korman, and Natale [7] studied the synchronous
c-counting problem (under the name self-stabilizing clock synchronization) with O(

√
n)

Byzantine faults in a stochastic communication setting that resembles the pulling
model we consider in section 7. However, their communication model is much more
restricted: In every round, each node interacts with at most constantly many nodes
which are chosen uniformly at random. Moreover, nodes only exchange messages of
size O(log c) bits.

Without Byzantine (or other types of permanent) faults, self-stabilizing counters
and digital clocks have been studied as the self-stabilizing unison problem [2, 8, 21].
However, unlike in the fully connected setting considered in this work, the underlying
communication topology in the unison problem is typically assumed to be an arbitrary
graph. In our model, in the absence of permanent faults the problem becomes trivial,
as nodes may simply reproduce the clock of a predetermined leader. The unison
problem has also been studied in asynchronous models [8, 19]; this variant is also
known as self-stabilizing synchronizers [3].

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1478 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

3. Preliminaries. In this section, we define the model of computation and the
counting problem.

3.1. Model of computation. Here we consider a fully connected synchronous
message-passing network. That is, our distributed system consists of a network
of n nodes, where each node is a state machine and has communication links to
all other nodes in the network. All nodes have a unique identifier from the set
[n] = {0, 1, . . . , n − 1}. The computation proceeds in synchronous communication
rounds. In each round, all nodes perform the following in a lock-step fashion:

1. broadcast a single message to all nodes,
2. receive messages from all nodes, and
3. update the local state.

We assume that the initial state of each node is arbitrary and there are up to
f Byzantine nodes. A Byzantine node may have arbitrary behavior, that is, it can
deviate from the protocol in any manner. In particular, the Byzantine nodes can
collude together in an adversarial manner and a single Byzantine node can send
different messages to different correct nodes.

Algorithms. Formally, we define an algorithm as a tuple A = 〈X, g, p〉, where X
is the set of all states any node can have, g : [n] × Xn → X is the state transition
function, and p : [n] ×X → [c] is the output function. At each round when node v
receives a vector x = 〈x0, . . . , xn−1〉 ∈ Xn of messages, node v updates it to state
g(v,x) and outputs p(v, xv). As we consider c-counting algorithms, the set of output
values is the set [c] = {0, 1, . . . , c− 1} of counter values.

The tuples passed to the state transition function g are ordered according to the
node identifiers. In other words, the nodes can identify the sender of a message—this
is frequently referred to as source authentication. Moreover, in the basic model, we
assume that all nodes simply broadcast their state to all other nodes. Thus, the set of
messages is the same as the set of possible states.

Executions. For any set of F ⊆ [n] of faulty nodes, we define a projection πF that
maps any state vector x ∈ Xn to a configuration πF (x) = e, where ev = ∗ if v ∈ F
and ev = xv otherwise. That is, the values given by Byzantine nodes are ignored
and a configuration consists of only the states of correct nodes. A configuration d
is reachable from configuration e if for every correct node v /∈ F there exists some
x ∈ Xn satisfying πF (x) = e and g(v,x) = dv. An execution of an algorithm A is
an infinite sequence of configurations ξ = 〈e0, e1 . . . , 〉 where configuration er+1 is
reachable from configuration er.

3.2. Synchronous counters and complexity measures. We say that an
execution ξ = 〈e0, e1 . . . , 〉 of a counting algorithm A stabilizes in time T if there is
some k ∈ [c] such that for every correct node v ∈ [n] \ F it holds that

p(v, eT+r,v) = r − k mod c for all r ≥ 0,

where eT+r,v ∈ X is the state of node v in round T + r.
An algorithm A is said to be a synchronous c-counter with resilience f that

stabilizes in time T if for every F ⊆ [n], |F| ≤ f , all executions of algorithm A
stabilize within T rounds. In this case, we say that the stabilization time T (A) of
A is the minimal such T that all executions of A stabilize in T rounds. The state
complexity of A is S(A) = dlog |X|e, that is, the number of bits required to encode
the state of a node between subsequent rounds. For brevity, we will often refer to
A(n, f, c) as the family of synchronous c-counters over n nodes with resilience f . For

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1479

example, A ∈ A(4, 1, 2) denotes a synchronous 2-counter (i.e., a binary counter) over
four nodes tolerating one failure.

4. Boosting resilience. In this section, we show how to use existing “small”
synchronous counters to construct new “large” synchronous counters with a higher
resilience f and a larger number of nodes n; we call this resilience boosting. We will
then apply the idea recursively, with trivial counters as a base case.

4.1. Road map. The high-level idea of resilience boosting is as follows. We
start with counters that have a low resilience f ′ and use a small number of nodes n′.
We use such counters to construct a new “weak” counter that has a higher resilience
f > f ′ and a large number of nodes n > n′ but need only behave correctly once
in a while for sufficiently long. Once such a weak counter exists, it can be used to
provide consistent round numbers for long enough to execute a single instance of a
high-resilience consensus protocol. This can be used to reach agreement on the output
counter.

Constructing the weak counter. For clarity, we will use here the term strong counter
to refer to a self-stabilizing fault-tolerant counter in the usual sense, and the term weak
counter to refer to a counter that behaves correctly once in a while. We assume that
f ′-resilient strong counters for all f ′ < f already exist, and we show how to construct
an f -resilient weak counter that behaves correctly for at least τ rounds. Put slightly
more formally, a weak τ -counter satisfies the following property: There exists a round
r such that for all correct nodes v, w ∈ V \ F satisfy

• d(v, r) = d(w, r) and
• d(v, r′) = d(v, r′ − 1) + 1 mod τ for all r′ ∈ {r + 1, . . . , r + τ − 1},

where d(v, r) denotes the value of the weak counter at node v in round r. That is,
eventually there will be τ consecutive rounds during which the (weak) counter values
agree and are incremented by one modulo τ every round. However, after these τ
rounds, the counters can behave arbitrarily.

Let f0 + f1 + 1 = f and n0 + n1 = n. We take an f0-resilient strong 2τ -counter
A0 with n0 nodes and an f1-resilient strong 6τ -counter A1 with n1 nodes, and use
them to construct an f -resilient weak counter with n nodes.

We partition n nodes in disjoint “blocks”: block 0 runs A0 with n0 nodes and
block 1 runs A1 with n1 nodes. At least one of the algorithms will eventually stabilize
and count correctly. The key challenge is making sure that eventually all correct nodes
(in both blocks!) will follow the same correct counter, at least for τ rounds.

To this end, each block maintains a leader pointer. The leader pointers are changed
regularly: block 0 changes its leader pointer every τ rounds, and block 1 changes its
leader pointer every 3τ rounds. If the leader pointers behave correctly, there will be
regular periods of τ rounds such that both of the leader pointers point to the same
correct block.

If we had reliable counters, block i could simply use the current value of counter
Ai to determine the current value of its leader pointer. However, one of the counters
might misbehave. As a remedy, each node v of block i checks if the output variable of
counter Ai increases by 1 in each round. If not, it will consider Ai faulty for Θ(τ)
rounds. The final output of a node is determined as follows:

• If node v in block i thinks that Ai is faulty, it outputs the current value of
counter A1−i.

• Otherwise, it uses the current value of Ai to construct the leader pointer
` ∈ {0, 1}, and it outputs the current value of counter A`.

Note that the counter Ai might seem to be behaving in a faulty manner if there has

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1480 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

not been enough time for Ai to stabilize. However, each node v of block i will consider
a block to be faulty at most Θ(τ) rounds before checking again whether the output
of Ai behaves consistently. Thus, if Ai eventually stabilizes, then eventually node v
stops considering Ai as faulty for good (at least until the next transient failure).

The above consistency check almost cuts it—except that two nodes w 6= v of block
i may have different opinions on the current value of Ai. We clear this final hurdle
by enlisting the help of all nodes for a majority vote on what the current value of Ai

actually is. Essentially, we use threshold voting; this way all nodes that think that Ai

behaves correctly will agree on a globally unique counter value αi for Ai.
If, for example, block 0 contains at most f0 faulty nodes, all of this eventually

entails the following:
1. Counter A0 stabilizes, counts correctly, and all correct nodes agree on its

counter value α0.
2. All correct nodes of block 0 think that block 0 is counting correctly. They

use α0 to derive the value of the leader pointer. Once in 2τ rounds, when the
2τ -counter α0 wraps around to 0, the pointer switches to 0, and the nodes
will output the counter value α0 for τ rounds.

3. Some correct nodes of block 1 may think that block 1 is counting correctly
for Θ(τ) rounds. While this is the case, all of them agree on a value α1 that
increases by 1 in each round. This value is used to derive the leader pointer
of block 1. Once in 6τ rounds, when the 6τ -counter α1 wraps around to 0,
the pointer will switch to 0, and the nodes will output the value of α0 for 3τ
rounds (as the leader pointer does not change for 3τ rounds).

4. Some correct nodes of block 1 may detect that block 1 is faulty. Such nodes
will output the value of α0 for Θ(τ) rounds.

5. In summary, eventually there will be τ consecutive rounds during which all
correct nodes output the same counter value α0.

The other case (block 1 has at most f1 faulty nodes) is analogous.
Using the weak counter. Now we have constructed a counter that will eventually

produce a consistent output for at least τ rounds. We leverage this property to execute
the phase king consensus protocol [6] to stabilize the output counters. The protocol
will have the following crucial property: if all nodes agree on the output, then even if
the round counter becomes inconsistent, the agreement on the output persists. Thus,
it suffices for us that τ is large enough to enable the nodes to consistently execute the
phase king algorithm once to reach agreement; τ = O(f) will do.

The stabilization time on each level is the maximum of the stabilization times
of counters Ai plus O(τ) = O(f); by choosing f1 ≈ f2 ≈ f/2, we can thus ensure
an overall stabilization time of O(f), irrespectively of the number of recursion levels.
Formally, we prove the following theorem.

Theorem 4.1. Let c, n > 1 and f < n/3. Define n0 = bn/2c, n1 = dn/2e,
f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists a
synchronous c-counter B ∈ A(n, f, c) that

• stabilizes in T (B) = max{T (A0), T (A1)}+O(f) rounds, and
• has state complexity of S(B) = max{S(A0), S(A1)}+O(log f + log c) bits.

We fix the notation of this theorem for the remainder of this section. More-
over, for notational convenience we abbreviate T = max{T (A0), T (A1)} and S =
max{S(A0), S(A1)}.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1481

4.2. Agreeing on a common counter (once in a while). In this part, we
construct a counter that will eventually count consistently at all nodes for τ rounds.
The τ -counter then will be used as a common clock for executing the phase king
algorithm.

We partition the set of nodes V = V0 ∪ V1 such that V0 ∩ V1 = ∅, |V0| = n0 and
|V1| = n1. We refer to the set Vi as block i. For each i ∈ {0, 1}, the nodes in set Vi
execute the algorithm Ai. In case block i has more than fi faults, we call the block i
faulty. Otherwise, we say that block i is correct. By construction, at least one of the
blocks is correct. Hence, there is a correct block i for which Ai stabilizes within T
rounds, that is, nodes in block i output a consistent ci-counter in rounds r ≥ T .

Lemma 4.2. For some i ∈ {0, 1}, block i is correct.

Proof. By choice of fi, we have f = f0 + f1 + 1. Hence, at least one of the sets Vi
will contain at most fi faults.

Next, we apply the typical threshold voting mechanism employed by most Byzan-
tine tolerant algorithms in order to filter out differing views of counter values that are
believed to be consistent. This is achieved by broadcasting candidate counter values
and applying a threshold of n− f as a consistency check, which guarantees that at
most one candidate value from the set [c] can remain. In case the threshold check fails,
a fallback value ⊥ /∈ [c] is used to indicate an inconsistency. This voting scheme is
applied for both blocks concurrently, and all nodes participate in the process, so we
can be certain that fewer than one third of the voters are faulty.

In addition to passing this voting step, we require that the counters also have
behaved consistently over a sufficient number of rounds; this is verified by the obvious
mechanism of testing whether the counter increases by 1 each round and counting the
number of rounds since the last inconsistency was detected.

In the following, nodes frequently examine a set of values, one broadcast by each
node, and determine majority values. Note that Byzantine nodes may send different
values to different nodes, that is, it may happen that correct nodes output different
values from such a vote. We refer to a strong majority as at least n−f nodes supporting
the same value, which is then called the majority value. If a node does not see a strong
majority, it outputs the symbol ⊥ instead. Clearly, this procedure is well-defined for
f < n/2.

We will refer to this procedure as a majority vote, and slightly abuse notation by
saying “majority vote” when, precisely, we should talk of “the output of the majority
vote at node v”. Since we require that f < n/3, the following standard argument
shows that for each vote, there is a unique value such that each node either outputs
this value or ⊥.

Lemma 4.3. If v, w ∈ V \ F both observe a strong majority, they output the same
majority value.

Proof. Fix any set A of n − f correct nodes. For v and w to observe strong
majorities for different values, for each value A must contain n− 2f nodes supporting
it. However, as correct nodes broadcast the same value to each node, this leads to the
contradiction that |A| ≥ 2(n− 2f) = n− f + (n− 3f) > n− f = |A|.

We now put this principle to use. In the following, we will use the notation
x(v, r) to refer to the value of local variable x of node v in round r. As we consider
self-stabilizing algorithms, the nodes themselves are not aware of what is the value of
r. We introduce the following local variables for each node v ∈ V , block i ∈ {0, 1},
and round r > 0 (see Tables 2 and 3):

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1482 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

Table 2
The local state variables used in the boosting construction.

Variable Range Description

mi(v, r) [ci] the most frequent value observed for the Ai counter of block i
Mi(v, r) [ci] ∪ {⊥} the result of majority vote on mi(·, r − 1) values
wi(v, r) [c1 + 1] “cooldown counter” that is reset if block i behaved inconsistently

di(v, r) [ci] ∪ {⊥} observation on what seems to be the counter output of block i
`i(v, r) {0, 1,⊥} the value of the “leader pointer” for block i
`(v, r) {0, 1,⊥} leader pointer used by node v
d(v, r) [τ ] once-in-a-while round counter for clocking phase king

a(v, r) [c] ∪ {∞} the output of the new c-counter we are constructing
b(v, r) {0, 1} helper variable for the phase king algorithm

Table 3
Behavior of local state variables; pointers switch once in 3iτ rounds.

Variable Block i is correct Block i is faulty

mi(v, r) consistent counter arbitrary values
Mi(v, r) consistent counter ⊥ or some consistent value
di(v, r) consistent counter ⊥ or some consistent counter
`i(v, r) consistent pointer ⊥ or some consistent pointer

• mi(v, r) stores the most frequent counter value in block i in round r, which
is determined from the broadcasted output variables of Ai with ties broken
arbitrarily,

• Mi(v, r) stores the majority vote on mi(v, r − 1),
• wi(v, r) is a cooldown counter which is reset to 2c1 whenever the node perceives

the counter of block i behaving inconsistently, that is, Mi(v, r) 6= Mi(v, r −
1) + 1 mod ci. Note that this test will automatically fail if either value is ⊥.
Otherwise, if the counter behaves consistently, wi(v, r) = max{wi(v, r − 1)−
1, 0}.

Clearly, these variables can be updated based on the local values from the previous
round and the states broadcast at the beginning of the current round. This requires
nodes to store O(log ci) = O(log f) bits.

Furthermore, we define the following derived variables for each v ∈ V , block
i ∈ {0, 1}, and round r (see Tables 2 and 3):

• di(v, r) = Mi(v, r) if wi(v, r) = 0, otherwise di(v, r) = ⊥,
• `i(v, r) =

⌊
di(v, r)/(3iτ)

⌋
if di(v, r) 6= ⊥, otherwise `i(v, r) = ⊥,

• for v ∈ Vi, `(v, r) = `i(v, r) if `i(v, r) 6= ⊥, otherwise `(v, r) = `1−i(v, r), and
• d(v, r) = d`(v,r)(v, r) mod τ if `(v, r) 6= ⊥, otherwise d(v, r) = 0.

These can be computed locally, without storing or communicating additional values.
The variable `(v, r) indicates the block that node v currently considers leader. Note
that some nodes may use `0(·, r) as the leader pointer while some other nodes may
use `1(·, r) as the leader pointer, but this is fine:

• all nodes v that use `(v, r) = `0(v, r) observe the same value `0(·, r) 6= ⊥,
• all nodes w that use `(w, r) = `1(w, r) observe the same value `1(·, r) 6= ⊥,
• eventually `0(·, r) and `1(·, r) will point to the same correct block for τ rounds.

We now verify that `(v, r) indeed has the desired properties. To this end, we
analyze di(v, r). We start with a lemma showing that eventually a correct block’s
counter will be consistently observed by all correct nodes.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1483

Lemma 4.4. Suppose block i ∈ {0, 1} is correct. Then for all v, w ∈ V \ F , and
rounds r ≥ R = T +O(f) it holds that di(v, r) = di(w, r) and di(v, r) = di(v, r − 1) +
1 mod ci.

Proof. Since block i is correct, algorithm Ai stabilizes within T (Ai) rounds. As
fi < ni/3, we will observe correctly mi(v, r+1) = mi(v, r)+1 mod ci for all r ≥ T (Ai).
Consequently, Mi(v, r + 1) = Mi(v, r) + 1 mod ci for all r ≥ T (Ai) + 1. Therefore,
wi(v, r) cannot be reset in rounds r ≥ T (Ai) + 2, yielding that wi(v, r) = 0 for all
r ≥ T (Ai) + 2 + 2c1 = T + O(f). The claim follows from the definition of variable
di(v, r).

The following lemma states that if a correct node v does not detect an error in
a block’s counter, then any other correct node w that considers the block’s counter
correct in any of the last 2c1 rounds has a counter value that agrees with v.

Lemma 4.5. Suppose for i ∈ {0, 1}, v ∈ V \ F , and r ≥ 2c1 = O(f) it holds that
di(v, r) 6= ⊥. Then for each w ∈ V \ F and each r′ ∈ {r − 2c1 + 1, . . . , r} either

• di(w, r′) = di(v, r)− (r − r′) mod ci, or
• di(w, r′) = ⊥.

Proof. Suppose di(w, r′) 6= ⊥. Thus, di(w, r′) = Mi(w, r′) 6= ⊥. By Lemma 4.3,
either Mi(v, r′) = ⊥ or Mi(v, r′) = Mi(w, r′). However, Mi(v, r′) = ⊥ would imply
that wi(v, r′) = 2c1 and thus

wi(v, r) ≥ wi(v, r′) + r′ − r = 2c1 + r′ − r > 0,

contradicting the assumption that di(v, r) 6= ⊥. Thus, Mi(v, r′) = Mi(w, r′) =
di(w, r′). More generally, we get from r−r′ < 2c1 and wi(v, r) = 0 that wi(v, r′′) 6= 2c1
for all r′′ ∈ {r′, . . . , r}. Therefore, we have that Mi(v, r′′ + 1) = Mi(v, r′′) + 1 mod c
for all r′′ ∈ {r′, . . . , r − 1}, implying

di(v, r) = Mi(v, r) = Mi(v, r′) + r − r′ = di(w, r′) + r − r′,

proving the claim of the lemma.

The above properties allow us to prove a key lemma: within T + O(f) rounds,
there will be τ consecutive rounds during which the variable `(v, r) points to the same
correct block for all correct nodes.

Lemma 4.6. Let R be as in Lemma 4.4. There is a round r ≤ R+O(f) = T+O(f)
and a correct block i so that for all v ∈ V \ F and r′ ∈ {r, . . . , r + τ − 1} it holds that
`(v, r′) = i.

Proof. By Lemma 4.2, there exists a correct block i. Thus by Lemma 4.4, variable
di(v, r) counts correctly during rounds r ≥ R. If there is no round r ∈ {R, . . . , R+ci−1}
such that some v ∈ V \ F has `1−i(v, r) 6= ⊥, then `(v, r) = `i(v, r) for all such v and
r and the claim of the lemma holds true by the definition of `i(v, r) and the fact that
di(v, r) counts correctly and consistently.

Hence, assume that r0 ∈ {R, . . . , R + ci − 1} is minimal with the property that
there is some v ∈ V \ F so that `1−i(v, r0) 6= ⊥. Therefore, d1−i(v, r0) 6= ⊥ and, by
Lemma 4.5, this implies for all w ∈ V \F and all r ∈ {r0, . . . , r0 + 2c1− 1} that either
d1−i(w, r) = ⊥ or d1−i(w, r) = d1−i(v, r0) + r − r0. In other words, there is a “virtual
counter” that equals d1−i(v, r0) in round r0 so that during rounds {r0, . . . , r0 +2c1−1}
all d1−i(·, ·) variables that are not ⊥ agree with this counter.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1484 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

Consequently, it remains to show that both `i and the variable `1−i derived
from this virtual counter are equal to i for τ consecutive rounds during the interval
I = {r0, . . . , r0 + 2c1 − 1}, as then `(v, r′) = i for v ∈ V \ F and all such rounds r′.

Clearly, the c1-counter consecutively counts from 0 to c1 − 1 at least once during
the interval I = {r0, . . . , r0 + 2c1 − 1}. Recalling that c1 = 6τ , we see that `1(v, r) = i
for all v ∈ V \ F with `1(v, r) 6= ⊥ for some interval I1 ⊂ I of 3τ consecutive
rounds. As c0 = 2τ , we have that `0(v, r) = i for all v ∈ V \ F with `0(v, r) 6= ⊥
for τ consecutive rounds during this subinterval I1. Thus, we have an interval
I0 = {r, . . . , r+ τ − 1} ⊆ I1 such that for all r′ ∈ I0 we have `0(v, r′), `1(v, r′) ∈ {i,⊥}
and `0(v, r′) 6= ⊥ or `1(v, r′) 6= ⊥ yielding `(v, r′) = i for each correct node. Because
r < r0 + 2c1 − 1 < R+ 3c1 = T +O(f), this completes the proof.

Using the above lemma, we get a counter where all nodes eventually count correctly
and consistently modulo τ for at least τ rounds.

Corollary 4.7. There is a round r = T + O(f) so that for all v, w ∈ V \ F it
holds that

1. d(v, r) = d(w, r) and
2. for all r′ ∈ {r + 1, . . . , r + τ − 1} we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .

Proof. By Lemma 4.6, there is a round r = T +O(f) and a correct block i such
that for all v ∈ V \ F we have `(v, r′) = i for all r′ ∈ {r, . . . , r+ τ − 1}. Moreover, r is
sufficiently large to apply Lemma 4.4 to di(v, r′) = d(v, r′) for r′ ∈ {r+1, . . . , r+τ−1},
yielding the claim.

4.3. Reaching consensus. Corollary 4.7 guarantees that all correct nodes even-
tually agree on a common counter for τ rounds, i.e., we have a weak counter. We will
now use the weak counter to construct a strong counter.

Our construction uses a non-self-stabilizing consensus algorithm. The basic idea
is that the weak counter serves as the “round counter” for the consensus algorithm.
Hence we will reach agreement as soon as the weak counter is counting correctly. The
key challenge is to make sure that agreement persists even if the counter starts to
misbehave. It turns out that a straightforward adaptation of the classic phase king
protocol [6] does the job. The algorithm has the following properties:

• the algorithm tolerates f < n/3 Byzantine failures,
• the running time of the algorithm is O(f) rounds and it uses O(log c) bits of

state,
• if node k is correct, then agreement is reached if all correct nodes execute

rounds 3k, 3k + 1, and 3k + 2 consecutively in this order,
• once agreement is reached, it will persist even if nodes execute different rounds

in arbitrary order.
We now describe the modified phase king algorithm that will yield a c-counting

algorithm. Denote by a(v, r) ∈ [c] ∪ {∞} the output value of the algorithm at round
r. Here ∞ is used as a “reset state” similarly to ⊥ in the previous section. There is
also an auxiliary binary value b(v, r) ∈ {0, 1}. Define the following short-hand for the
increment operation modulo c:

x⊕ 1 =

{
x+ 1 mod c if x 6=∞,
∞ if x =∞.

For k ∈ [f + 2], we define the instruction sets listed in Table 4. Recall that in
the model of computation that we use in this work, in each round all nodes first

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1485

Table 4
The instruction sets for node v ∈ V in the phase king protocol.

Set Instructions for round r > 0

I3k: 0a. If fewer than n− f nodes sent a(v, r − 1), set a(v, r) =∞.
0b. Otherwise, a(v, r) = a(v, r − 1)⊕ 1.

I3k+1: 1a. Let zj = |{u ∈ V : a(u, r − 1) = j}| be the number of j values received.
1b. If za(v,r−1) ≥ n− f , set b(v, r) = 1. Otherwise, set b(v, r) = 0.
1c. Let z = min{j : zj > f}.
1d. Set a(v, r) = z ⊕ 1.

I3k+2: 2a. If a(v, r − 1) =∞ or b(v, r − 1) = 0, set a(v, r) = min{c− 1, a(k, r − 1)} ⊕ 1.
2b. Otherwise, a(v, r) = a(v, r − 1)⊕ 1.
2c. Set b(v, r) = 1.

broadcast their current state (in particular, the current value of a), then they receive
the messages, and finally they update their local state. The instruction sets pertain to
the final part—how to update the local state variables a and b based on the messages
received from the other nodes.

First, we show that if the instruction sets are executed in the right order by all
correct nodes for a correct leader node k ∈ [f + 2], then agreement on a counter value
is established.

Lemma 4.8. Suppose that for some correct node k ∈ [f + 2] and a round r > 2, all
nonfaulty nodes execute instruction sets I3k, I3k+1, and I3k+2 in rounds r − 2, r − 1,
and r, respectively. Then a(v, r) = a(u, r) 6= ∞ for any two correct nodes u, v ∈ V .
Moreover, b(v, r + 1) = 1 at each correct node v ∈ V .

Proof. This is essentially the correctness proof for the phase king algorithm.
Without loss of generality, we can assume that the number of faulty nodes is exactly
f . Since we have f < n/3, it is not possible that two correct nodes u, v ∈ V \ F
both satisfy a(v, r − 2) 6= a(u, r − 2) and a(v, r − 2), a(u, r − 2) ∈ [c]: otherwise, on
round r−2, nodes u and v would have observed different majority values contradicting
Lemma 4.3. Therefore, there exists some x ∈ [c] such that a(v, r − 2) ∈ {x,∞} for all
v ∈ V \F . Checking I3k+1 we get that a(v, r− 1) ∈ {x+ 1 mod c,∞}, as no node can
see values other than x or ∞ more than f times when executing instruction 1c.

To prove the claim, it remains to consider two cases when executing instructions
in I3k+2. In the first case, all nonfaulty nodes execute instruction 2a on round r. Then
a(u, r) = a(v, r) = min{c− 1, a(k, r − 1)} ⊕ 1 ∈ [c] for any u, v ∈ V \ F .

In the second case, there is some node v not executing instruction 2a. Hence,
a(v, r − 1) 6=∞ and b(v, r − 1) = 1, implying that v computed za(v,r−2) ≥ n− f on
round r − 1. Consequently, at least n− 2f > f correct nodes u satisfy a(u, r − 2) =
a(v, r−2) 6=∞. We can now infer that a(u, r−1) = a(v, r−1) = a(v, r−2)+1 mod c for
all correct nodes u: instruction 1c must evaluate to a(v, r−1) ∈ [c] at all correct nodes,
because we know that no correct node u satisfies that both a(u, r − 2) 6= a(v, r − 2)
and a(u, r − 2) 6=∞. This implies that a(u, r) = a(v, r) 6=∞ for all correct nodes u,
regardless of whether they execute instruction 2a. Trivially, b(v, r) = 1 at each correct
node v due to instruction 2c.

Next, we argue that once agreement is established, it persists—it does not matter
any more which instruction sets are executed.

Lemma 4.9. Assume that a(v, r) = x ∈ [c] and b(v, r) = 1 for all correct nodes v
in some round r. Then a(v, r + 1) = x+ 1 mod c and b(v, r + 1) = 1 for all correct

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1486 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

nodes v.

Proof. Each node observes at least n− f nodes with counter value x ∈ [c], and
hence at most f nodes with some value y 6= x. Let v be a correct node and consider
all possible instruction sets it may execute.

First, consider the case where instruction set I3k is executed. In this case, v
increments x, resulting in a(v, r + 1) = x + 1 mod c and b(v, r + 1) = 1. Second,
executing I3k+1, node v evaluates zx ≥ n− f and zy ≤ f for all y 6= x. Hence it sets
b(v, r + 1) = 1 and a(v, r + 1) = x+ 1 mod c. Finally, when executing I3k+2, node v
skips instruction 2a and sets a(v, r + 1) = x+ 1 mod c and b(v, r + 1) = 1.

4.4. Proof of Theorem 4.1. We now have all the building blocks to devise an
f -resilient c-counter running on n nodes. The idea is as follows: First, we use the
construction given in subsection 4.2 to get a weak τ -counter that eventually counts
correctly for τ = 3(f + 2) rounds. Concurrently, all nodes execute the modified phase
king algorithm given in subsection 4.3 which by Lemmas 4.8 and 4.9 guarantees that all
nodes will establish and maintain agreement on the output variable for the c-counter.

Theorem 4.1. Let c, n > 1 and f < n/3. Define n0 = bn/2c, n1 = dn/2e,
f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists a
synchronous c-counter B ∈ A(n, f, c) that

• stabilizes in T (B) = max{T (A0), T (A1)}+O(f) rounds, and
• has state complexity of S(B) = max{S(A0), S(A1)}+O(log f + log c) bits.

Proof. First, we apply the construction underlying Corollary 4.7. Then we have
every node v ∈ V in each round r execute the instructions for round d(v, r) of the
phase king algorithm from subsection 4.3. It remains to show that this yields a
correct algorithm B with stabilization time T (B) = T +O(f) and state complexity
S(B) = S +O(log f + log c), where T = max{T (Ai)} and S = max{S(Ai)}.

By Corollary 4.7, there exists a round r = T +O(f) so that the variables d(v, r)
behave as a consistent τ -counter during rounds {r, . . . , r + τ − 1} for all v ∈ V \ F .
As there are at most f faulty nodes, there exist at least two correct nodes v ∈ [f + 2].
Since τ = 3(f + 2), then for at least one correct node k ∈ [f + 2] \ F , there is a round
r ≤ rk ≤ r + τ − 3 such that d(w, rk + h) = 3k + h for all w ∈ V \ F and h ∈ {0, 1, 2}.
Therefore, by Lemmas 4.8 and 4.9, the output variables satisfy a(v, r′) = a(w, r′) ∈ [c]
for all correct nodes and rounds r′ ≥ rk + 3. Thus, the algorithm stabilizes in
rv + 3 ≤ r + τ = r +O(f) = T +O(f) rounds.

The bound for the state complexity follows from the facts that, at each node, we
need at most S bits to store the state of Ai and O(log τ + log c) = O(log f + log c)
bits to store the variables listed in Table 2.

5. Deterministic counting. In this section, we use the construction given in
the previous section to obtain algorithms that need only a small number of state bits.
Essentially, all that remains is to recursively apply Theorem 4.1. Each step of the
recursion roughly doubles the resilience in an optimal manner: If we start with an
optimally resilient algorithm, we get a new algorithm with higher, but still optimal,
resilience. Therefore, to get any desired resilience of f > 0, it suffices to repeat the
recursion for Θ(log f) many steps. Figure 1 illustrates how we can recursively apply
Theorem 4.1.

We now analyze the correctness, time, and state complexity of the resulting
algorithms.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1487

A(8, 2)

A(8, 2)

A(16, 5)

Fig. 1. An example of how to recursively construct a 5-resilient algorithm running on 16 nodes.
The small circles represent the nodes. Each group of four nodes runs a 1-resilient counter A(4, 1).
On top of this, each larger group of eight nodes runs a 2-resilient counter A(8, 2) attained from the
first step of recursion. At the topmost layer, all of the 16 nodes run a 5-resilient counter A(16, 5).
Faulty nodes are black and faulty blocks are gray.

Theorem 1.1. For any integers c, n > 1 and f < n/3, there exists a deterministic
f -resilient synchronous c-counter that runs on n nodes, stabilizes in O(f) rounds, and
uses O(log2 f + log c) bits to encode the state of a node.

Proof. We show the claim by induction on f . The induction hypothesis is that
for all f > f ′ ≥ 0, c > 1, and n′ > 3f ′, we can construct B ∈ A(f ′, n′, c) with

T (B) ≤ 1 + αf ′
dlog f ′e∑
k=0

(1/2)k and S(B) ≤ β(log2 f ′ + log c),

where α and β are sufficiently large constants and for f ′ = 0 the sum is empty, that is,
T (B) ≤ 1. As

∑∞
k=0(1/2)k = 2, the time bound will be O(f ′).

Note that for f ≥ 0 it is sufficient to show the claim for n(f) = 3f + 1, as we can
easily generalize to any n > n(f) by running B on the first n(f) nodes and letting
the remaining nodes follow the majority counter value among the first n(f) nodes
executing the algorithm; this increases the stabilization time by one round and induces
no memory overhead.

For the base case, observe that a 0-resilient c-counter of n(0) = 1 node is trivially
given by the node having a local counter. It stabilizes in 0 rounds and requires dlog ce
state bits. As pointed out above, this implies a 0-resilient c-counter for any n with
stabilization time 1 and dlog ce bits of state.

For the inductive step to f , we apply Theorem 4.1 with the parameters n0 = bn/2c,
n1 = dn/2e, f0 = b(f − 1)/2)c, f1 = d(f − 1)/2)e, τ = 3(f + 2), and ci = 3i · 2τ . Since
fi ≤ f/2 and ni > 3fi, for i ∈ {0, 1}, the induction hypothesis gives us algorithms
Ai(ni, fi, ci). Now by applying Theorem 4.1 we get an algorithm B with

T (B) = max{T (A0), T (A1)}+O(f)

≤ 1 +
αf

2

dlog f/2e∑
k=0

(
1
2

)k
+O(f)

= 1 + αf

dlog fe∑
k=1

(
1
2

)k
+O(f)

≤ 1 + αf

dlog fe∑
k=0

(
1
2

)k
,

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1488 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

where in the second to last step we use that α is a sufficiently large constant. Since
the sum is at most 2, we get that T (B) = O(f). Moreover, the state complexity is
bounded by

S(B) = max{S(A0), S(A1)}+O(log f + log c)

≤ β
(

log2 f

2
+ log

f

2

)
+O(log f + log c)

≤ β
(
log2 f + log c

)
,

where we exploit that β is a sufficiently large constant. Hence, S(B) = O(log2 f+log c),
the induction step succeeds, and the proof is complete.

6. Reducing the number of bits communicated. In this section, we discuss
how to reduce the number of bits broadcast by a node after stabilization. We
consider the following extension of the model of computation: Instead of a node always
broadcasting its current state, we allow it to broadcast an arbitrary message (including
an empty message) each round. Formally, this entails that we extend the definition of
an algorithm by (1) introducing a new function µ : [n]×X →M that maps the current
state x to a message µ(x) which is broadcast and (2) modify the state transition
function to map the old internal state and the vector of received messages to a new
state, that is, the new state transition function has the form g′ : [n]×X ×Mn → X.

First, we show how to construct counters that only send O(1 + B logB) bits
every κ rounds, where B = O(log c/ log κ), while increasing the stabilization time only
by an additive O(κ) term, where κ = Ω(f) is a parameter. In particular, we show
that for polynomial-sized counters with optimal resilience, the algorithm need only
communicate an asymptotically optimal number of bits after stabilization.

Corollary 6.1. For any n > 1 and c = nO(1) that is an integer multiple of
n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f = b(n− 1)/3c, stabilizes in Θ(n) rounds, requires O(log2 n) bits to encode the state
of a node, and for which after stabilization correct nodes broadcast aysmptotically
optimal O(1) bits per Θ(n) rounds.

We start by outlining the high-level idea of the approach, then give a detailed
description of the construction we use, and finally prove the main results of this section.

6.1. High-level idea. The techniques we use are very similar to the ones we used
for deriving Theorem 1.1. Essentially, we devise a “silencing wrapper” for algorithms
given by Theorem 1.1. Let A be such a counting algorithm. The high-level idea and
the key ingredients are the following:

• The goal is that nodes eventually become happy : they assume stabilization
has occurred and check for counter consistency only every κ rounds (as
self-stabilizing algorithms always need to verify their output).

• Happy nodes do not execute the underlying algorithm A.
• Using a cooldown counter with similar effects as shown in Lemma 4.5, we

enforce that all happy nodes output consistent counters.
• We override the phase king instruction of A if at least n− 2f ≥ f + 1 nodes

claim to be happy and propose a counter value x. In that case nodes adjust
their counter output to match x. If there is no strong majority of happy nodes
supporting a counter value, either all nodes become unhappy or all correct
nodes reach agreement and start counting correctly.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1489

• If all correct nodes are unhappy, they execute A “as is” reaching agreement
eventually.

• The counters are used to make all nodes concurrently switch their state to
being happy, in a way that does not interfere with the above stabilization
process.

We will show that happy nodes can communicate their counter values very effi-
ciently in a manner that self-stabilizes within κ rounds. As their counter increases by
1 modulo c every round (or they become unhappy), they can use multiple rounds to
encode a counter value; the recipient simply counts locally in the meantime.

6.2. The silencing wrapper. Let A ∈ A(n, f, c) be an algorithm given by
Theorem 1.1, and let c = jκ for any j > 0 and κ > T (A). We use the short-hand
T = T (A) throughout this section. Let a(v, r) be the output of the synchronous
counting algorithm for node v in round r. Recall that by a strong majority we mean
that at least n− f received messages support a value. We now modify A so that it
meets the additional requirement of little communication after stabilization.

We introduce two new variables: a cooldown counter t(v, r) ∈ [T + 1] and a
“happiness” indicator h(v, r) ∈ {0, 1}. These are updated according to the following
rules in every round r > 0:

1. Set t(v, r) = T if there was no strong majority of nodes w with a(w, r − 1) =
a(v, r−1) or a(v, r) 6= a(v, r−1)+1 mod c. Otherwise, decrement the counter,
that is, t(v, r) = max{0, t(v, r − 1)− 1}.

2. Set h(v, r) = 0 if h(v, r− 1) = 1, but there was no strong majority of nodes w
with h(w, r−1) = 1 and a(w, r−1) = a(v, r−1), or if t(v, r) > 0. Set h(v, r) = 1
if t(v, r − 1) = 0 and a(v, r − 1) = 0 mod κ. Otherwise, h(v, r) = h(v, r − 1).

3. If h(v, r) = 0, execute a single step of A except for the phase king instructions
given in Table 4. The counter value a(v, r + 1) is updated according to the
next rule.

4. If one receives n− 2f times a value a(w, r) = x from nodes with h(w, r) = 1,
set a(v, r+ 1) = x+ 1 mod c; if there are two such values x, it does not matter
which is chosen. Otherwise, execute only the phase king instructions of A
given in Table 4 as indicated by the once-in-a-while round counter d(v, r) as
usual; in particular, this determines a(v, r + 1).

In the following, we say that a node v ∈ V \ F with value h(v, r) = 1 is happy in
round r and unhappy if h(v, r) = 0. Moreover, the counters converge in round r if for
all v, w ∈ V \F , it holds that a(v, r) = a(w, r). The idea is to show that not only do the
counters converge (and then count correctly), but also all correct nodes become happy.
As a happy node that remains happy simply increases its counter value by 1 modulo c,
there is no need to explicitly communicate this except for verification purposes. It is
straightforward to exploit this to ensure that the algorithm communicates very little
(explicitly) once all nodes are happy; we will discuss this after showing stabilization of
the routine.

6.3. Proof of stabilization. Let us first establish that if the counters converge,
they will keep counting correctly and correct nodes will become happy within O(κ+T )
additional rounds for any parameter κ > T .

Lemma 6.2. If the counters converge in round r, then a(u, r′) = a(v, r′) = a(u, r)+
(r − r′) mod c for all u, v ∈ V \ F and r′ ≥ r.

Proof. Since the counters have converged, there is a strong majority of nodes
supporting the same value. Hence, variable a(u, r′) is updated according to rule 4.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1490 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

As all counter values from correct nodes are identical, it does not matter whether
these nodes are happy or not; either way, the counters are increased by 1 modulo c
(cf. Lemma 4.9).

Lemma 6.3. If the counters converge in round r, then for all rounds r′ ≥ r+T +κ
and all nodes v ∈ V \ F we have h(v, r′) = 1.

Proof. By Lemma 6.2, the agreement on output values will persist once reached.
Hence, at all nodes v ∈ V \ F we have t(v, r′) = 0 in all rounds r′ ≥ r + T by rule 1.
Therefore, there is a round r′ ≤ r + T + κ so that t(v, r′) = 0 and a(v, r′) = 0 mod κ
at all such v. Consequently, all correct nodes jointly set h(v, r′ + 1) = 1. By induction
on the round number, we see that no such node sets h(v, r′′) = 0 for r′′ > r′ + 1, as
there is always a strong majority of n − f happy and correct nodes supporting the
(joint) counter value.

We now proceed to show that the counters converge within O(κ + T ) rounds.
The first step is to observe that if no correct node is happy, then algorithm A is run
without modification, and hence, the counters converge in T rounds.

Lemma 6.4. Let r ≥ T . If for all v ∈ V \ F and r′ ∈ {r − T + 1, . . . , r}, we have
h(v, r′) = 0, then the counters converge in round r + 1.

Proof. Since h(v, r′) = 0, each node v applies rule 3 in any such round r′. As
there are no happy nodes in round r′, a node can never receive the same counter value
from more than f nodes that (claim to be) happy. Hence, rule 4 boils down to just
updating a(v, r′) according to the rules of A. As T = T (A), algorithm A stabilizes
and thus a(v, r) = a(w, r) for all v, w ∈ V \ F .

To deal with the case that some nodes may be happy (which entails that not all
nodes may execute A correctly, destroying its guarantees), we argue that ongoing
happiness also implies that the counters converge. To this end, we first show that
the cooldown counters t(v, r) ensure that correct nodes whose counters are 0 count
correctly and agree on their counter values. This is shown analogously to Lemma 4.5.

Lemma 6.5. Let r > T and v, w ∈ V \ F . If t(v, r) = t(w, r′) = 0 for r′ ∈
{r − T + 1, . . . , r}, then a(v, r) = a(w, r′) + r − r′ mod c.

Proof. Since t(v, r) = 0, by rule 1 it holds that t(v, r′) ≤ r − r′ < T . Hence,
both v and w saw a strong majority of nodes u with a(u, r′ − 1) = a(v, r′ − 1) and
a(u, r′ − 1) = a(w, r′ − 1), respectively. By Lemma 4.3, it follows that a(v, r′ −
1) = a(w, r′ − 1). Likewise, t(v, r′′) 6= T for rounds r′ < r′′ ≤ r, implying that
a(v, r) = a(v, r′) + r − r′ mod c, and a(w, r′) = a(w, r′ − 1) + 1 mod c = a(v, r′).

Except for the initial rounds, the above lemma implies that happy nodes always
have the same counter value: By rule 2, a node v with h(v, r) = 1 must have t(v, r) = 0.
A node remaining happy thus entails that every node receives the same counter value
from at least n− 2f ≥ f + 1 happy nodes, and no other counter value with the same
property may be perceived. In other words, a node staying happy implies that the
counters converge.

Lemma 6.6. If h(v, r − 1) = h(v, r) = 1 for some v ∈ V \ F and r > 3, then the
counters converge in round r + 1.

Proof. By rule 2, any node w with h(v, r) = 1 satisfies t(w, r) = 0. We apply
Lemma 6.5 to see that, for any w ∈ V \ F that is happy in round r − 1, we have
that a(v, r − 1) = a(w, r − 1). As h(v, r) = h(v, r − 1) = 1, node v observed a strong
majority of happy nodes w with a(v, r − 1) = a(w, r − 1) in round r − 1, implying

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1491

that all nodes received this counter value from at least n− 2f ≥ f + 1 happy nodes.
Together with rule 4, these observations imply that a(u, r) = a(v, r − 1) + 1 mod c for
all u ∈ V \ F .

Using these lemmas and the fact that nodes may become happy only after counting
consistently for sufficiently long and when their counters are 0 modulo κ > T , we can
show that the counters converge in all cases.

Lemma 6.7. Within O(κ) rounds, the counters converge.

Proof. Either all v ∈ V \F with h(v, 3) = 1 set h(v, 4) = 0 or Lemma 6.6 shows the
claim. If there are no nodes v with h(v, r) = 1 for r ∈ {4, . . . , T + 3}, then Lemma 6.4
shows the claim. Hence, assume that there is some node v with h(v, r) = 1 6= h(v, r−1)
for some minimal r ∈ {4, . . . , T + 3}. Again, either h(v, r + 1) = 0 for all such nodes
or we can apply Lemma 6.6; thus assume the former in the following.

Suppose for contradiction that there is a node w with h(w, r′) = 1 for a minimal
r′ ∈ {r + 1, . . . , r + T}. As r′ is minimal and all nodes with h(v, r) = 1 have
h(v, r+ 1) = 0, it must hold that h(w, r′− 1) = 0. Hence, t(w, r′− 1) = 0 = t(v, r− 1).
By Lemma 6.5, this implies that a(w, r′ − 1) = a(v, r − 1) + r − r′ mod c. However,
κ > T , 0 < r−r′ ≤ T , and a(v, r−1) = 0 mod κ, implying that a(w, r′−1) 6= 0 mod κ,
which (by rule 2) is a contradiction to h(w, r′) = 1 6= h(w, r′ − 1).

We conclude that h(v, r′) = 0 for all v and r′ ∈ {r + 1, . . . , r + T}. The claim
follows by applying Lemma 6.4.

We now can conclude that within O(κ) rounds, the algorithm stabilizes in the
sense that all nodes become happy and count correctly and consistently.

Corollary 6.8. There exists a round R = O(κ) such that for all v ∈ V \ F and
r ≥ R, it holds that h(v, r) = 1, and a(v, r) = a(v, r−1)+1 mod c, and a(v, r) = a(w, r)
for all w ∈ V \ F .

Proof. By Lemma 6.7 we get that there exists a round r′ = O(κ) in which the
counters converge. Since r′ + T + κ = O(κ), happiness follows from Lemma 6.3 and
agreement follows from Lemma 6.2.

6.4. Reducing the communication complexity after stabilization. As
noted earlier, the counter variables for happy nodes count modulo c. Hence, it
is trivial to deduce the counter value of a happy node from its counter value in an
earlier round. Moreover, happy nodes do not execute algorithm A. Therefore, we can
change the encoding of the happy nodes’ counter values to reduce the communication
complexity after stabilization.

Corollary 6.9. Suppose happy nodes communicate their counter values by any
method that stabilizes in κ rounds, then the algorithm presented in this section retains
its properties, except that its stabilization time increases by an additive κ rounds.

The above immediately implies that happy nodes v could simply transmit the
a(v, r) only in rounds r when a(v, r) mod κ = 0 and perform no other communication.
The fact that v does not transmit readily implies that it is happy, permitting to derive
its counter value by counting from the most recent value v transmitted. Moreover, by
Lemma 6.5 the output counters of happy nodes agree after O(1) rounds. Thus, a single
local counter suffices for verification yielding a cost of using only dlog ce additional
bits of memory per node.

Clearly, this trivial encoding mechanism stabilizes in κ rounds. However, we can
do much better. For simplicity, we do not try to give a tight bound here.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1492 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

Lemma 6.10. Happy nodes can communicate their counter values by sending only
O(1 +B logB) bits per κ rounds, where B = O(log c/ log κ), in a way that stabilizes
in κ rounds.

Proof. First, we fix two unique bit strings happy and unhappy both having
a length of O(1) bits. We mark all messages from unhappy nodes with the header
unhappy. Happy nodes v ∈ V \ F send the bit string happy in rounds r when
a(v, r) mod κ = 0. In this and the subsequent κ− 1 rounds, they furthermore send
up to b bits in order to encode the value of a(v, r) ∈ [c], where they avoid the two
excluded unique bit strings happy and unhappy. Since we are only interested in the
asymptotic behavior, we may neglect these possible collisions and determine how large
b must be so that in κ rounds we can encode c different values.

Since there are κ rounds in which to broadcast a message, we can think of each
round as being a bin containing the bits broadcast by a node. Suppose we have
B = b/ log b uniquely labeled balls that we can place in κ different bins. This way we
can encode B-length strings over an alphabet of size κ by interpreting each ball in a
bin i ∈ [κ] as giving the indices for the symbol i. This allows us to encode a total of
κB distinct values.

Since encoding the unique label of a single ball takes O(logB) bits and we can
use constant-sized delimiters when encoding the set of balls in a single bin, we need
O(B logB) bits to encode all the values. Thus, each node communicates a total of
O(B logB) = O(b) bits during the course of κ rounds. In order to encode c different
values, it suffices to satisfy c ≤ κB. This can be done by choosing B ≥ log c/ log κ.
Taking into account the bits for delimiters and the happy string, the claim then
follows.

Overall, we obtain the following theorem.

Theorem 6.11. For any integers n > 1, f < n/3, κ = Ω(f), and c = κj for
j > 0, there exists an f -resilient synchronous c-counter that runs on n nodes, stabilizes
in O(κ) rounds, and requires O(log2 f + log c) bits to encode the state of a node.
Moreover, once stabilized, nodes send only O(1 + B logB) bits per κ rounds, where
B = O(log c/ log κ).

Proof. Let A ∈ A(n, f, c) be an algorithm given by Theorem 1.1. As T (A) = Θ(f),
for any κ > T (A), the claim now directly follows from Corollaries 6.8 and 6.9 and
Lemma 6.10, where we note that only a constant number of variables of size at most
max{T (A), c} need to be encoded in the state of a node.

We remark that since κ > T (A) = Θ(f), in case of optimal resilience and c = nO(1),
it holds that B = O(1), and thus also, O(1 +B logB) = O(1).

Corollary 6.12. For any n > 1 and c = nO(1) that is an integer multiple of
n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f = b(n− 1)/3c, stabilizes in Θ(n) rounds, requires O(log2 n) bits to encode the state
of a node, and for which after stabilization correct nodes broadcast aysmptotically
optimal O(1) bits per Θ(n) rounds.

Proof. All properties except for the optimality of the last point follow from the
choice of parameters by picking κ = Θ(n) in Theorem 6.11. The claimed optimality
follows from the fact that in order to prove to a node that its counter value is
inconsistent with that of others, it must receive messages from at least f + 1 = Θ(n)
nodes; to guarantee stabilization in O(n) rounds, this must happen every Ω(n) rounds
for each correct node.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1493

7. Sending fewer messages. So far we have considered the size of messages
nodes need to broadcast every round. In the case of the algorithm given in Theorem 1.1,
every node will send S = O(log2 f + log c) bits in each round. As there are Θ(n2)
communication links, the total number of communicated bits in each round is Θ(S ·n2).
In this section, we consider a randomized variant of the algorithm that achieves better
message and bit complexities in a slightly different communication model.

7.1. Pulling model. Throughout this section we consider the following variant
of our communication model, where in every synchronous round t each correct node v:

1. contacts a subset C(v, t) ⊆ V of other nodes to pull information from,
2. pulls a response message ru ∈M from every contacted node u ∈ C(v, t),
3. updates its local state according to its current state and the responses it

received.
Thus, every round t node v obtains a message vector m = 〈m0, . . .mn−1〉, where
mu = ru if u ∈ C(v, t) and mu = ⊥, otherwise. Besides this modification, the model of
computation is as before: Node v updates its state using the state transition function
g : [n]×X ×Mn → X and a correct node u in state xu responds with the message
µ(xu), where µ : X →M maps the internal state of a node to a message. However,
in the pulling model, the algorithm also needs to specify the set C(v, t) of nodes it
contacts every round. We assume that every correct node chooses this set randomly
independent of its internal state.

As before, faulty nodes may respond with arbitrary messages that can be different
for different pulling nodes. We define the (per-node) message and bit complexities of
the algorithm as the maximum number of messages and bits, respectively, pulled by a
nonfaulty node in any round.

This model is motivated by the challenges of designing energy-limited fault-tolerant
circuits. We suggest the approach in which each node that makes a request for data
also has to provide the energy resources for processing and answering the request.
This way by limiting the energy supply of each individual node, we can also effectively
limit the total amount of energy wasted due to the actions of the Byzantine nodes.
However, to make this approach feasible, we have to design an algorithm in which
each nonfaulty node needs to make only a few requests for data. In this section we
design a randomized algorithm that satisfies this property.

7.2. High-level idea of the probabilistic construction. To keep the number
of pulls, and thus number of messages sent, small, we modify the construction of
Theorem 4.1 to use random sampling where useful. Essentially, the idea is to show that
with high probability (w.h.p.) a small set of sampled messages accurately represents
the current state of the system and the randomized algorithm will behave as the
deterministic one. There are two steps where the nodes rely on information broadcast
by the all the nodes: The majority voting scheme over the blocks and the variant of
the phase king algorithm. In the following, both are shown to work under the sampling
scheme with high probability by using concentration bound arguments.

More specifically, here w.h.p. means that for any constant k ≥ 1 the probability
of failure is bounded above by η−k when sampling K = Θ(log η) messages (where
the constants in the asymptotic notation may depend on k); here η denotes the total
number of nodes in the system after the recursive application of the resilience boosting
procedure described in section 5. The idea is to use a union bound over all levels of
recursion, nodes, and considered rounds to show that the sampling succeeds w.h.p. in
all cases. For the randomized variant of Theorem 1.1, we will require the following
additional constraint: When constructing a counter on n nodes, the total number of

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1494 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

failures is bounded by f < n
3+γ , where γ > 0 is constant.

This allows us to construct probabilistic synchronous c-counters in the sense that
we say that the counter stabilizes in time T , if for each round t ≥ T all nonfaulty
nodes count correctly with probability 1− η−k.

7.3. Sampling communication channels. As discussed, there are two steps
in the construction of Theorem 4.1 where we rely on broadcasting: (1) the majority
voting scheme for electing a leader block and counter, and (2) the execution of the
phase king protocol. For the sake of clarity, we only focus on modifying the basic
algorithm, where the nodes broadcast their entire state each round. We start with a
sampling lemma we use for both steps. First, recall the following concentration bound
for the sum of independent random binary variables:

Lemma 7.1 (Chernoff’s bound). Let X =
∑
Xi be a sum of independent random

variables Xi ∈ {0, 1}. Then for 0 < δ < 1,

Pr[X ≤ (1− δ) E[X]] ≤ exp
(
−δ

2

2
E[X]

)
.

Lemma 7.2. Let U ⊆ V be a nonempty set of nodes such that the fraction of faulty
nodes in U is strictly less than 1/(3 + γ). Suppose we sample K nodes v0, . . . , vK−1
uniformly at random from the set U . For a given local variable x(·, r) encoded in the
nodes’ local state on round r ≥ 0 and a value y, define the random variable

Xi =

{
1 if x(vi, r) = y and vi /∈ F ,
0 otherwise

for each i ∈ [K], and let X =
∑K−1
i=0 Xi be the number of y values sampled from correct

nodes. There exists K0(η, k, γ) = Θ(log η) such that K ≥ K0 implies the following
w.h.p.:

(a) If x(u, r) = y for all u ∈ U \ F , then X ≥ 2K/3.
(b) If a majority of nodes u ∈ U \ F have x(u, r) = y, then X ≥ K/3.
(c) If X ≥ 2K/3, then |{x(u, r) = y : u ∈ U \ F}| ≥ |U \ F|/2.

Proof. Define δ = 1− 2
3 ·

3+γ
2+γ and let ρ < 1/(3 + γ) be the fraction of faulty nodes

in U .
(a) If all correct nodes u ∈ U \ F agree on value x(u, r) = y, then

E[X] = (1− ρ)K >
2 + γ

3 + γ
K.

As δ satisfies (1− δ) E[X] > 2K/3, it follows from Chernoff’s bound that

Pr
[
X <

2K
3

]
≤ Pr[X < (1− δ) E[X]]

≤ exp
(
−δ

2

2
E[X]

)
≤ exp

(
−δ2 2 + γ

2(3 + γ)
K

)
.

If K0(η, k, γ) = Θ(log η) is sufficiently large, K ≥ K0(η, k, γ) implies that this proba-
bility is bounded by η−k.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1495

(b) If a majority of nonfaulty nodes u have value x(u, r) = y, then

E[X] ≥ 1
2

(1− ρ)K >
1
2
· 2 + γ

3 + γ
K.

As above, by picking the right constants and using concentration bounds, we get that

Pr
[
X ≤ K

3

]
≤ Pr[X < (1− δ) E[X]]

≤ exp
(
−δ

2

2
E[X]

)
≤ exp

(
−δ2 2 + γ

4(3 + γ)
K0

)
≤ η−k.

(c) Suppose the majority of correct nodes have values different from y. Define

X̄i =

{
1 if x(vi, r) 6= y and vi /∈ F ,
0 otherwise,

and X̄ =
∑K−1
i=0 X̄i as the random variable counting the number of samples with

values different from y. Arguing as for (b), we see that

Pr
[
X ≥ 2K

3

]
= Pr

[
X̄ <

K

3

]
≤ η−k,

where again we assume that K0(η, k, γ) = Θ(log η) is sufficiently large. Thus, X
≥ 2K/3 implies w.h.p. that the majority of correct nodes have value y.

Randomized majority voting. Recall that in the majority voting scheme, there
are four local variables, two for each i ∈ {0, 1}, whose values depend directly on the
messages broadcast by all nodes:

• mi(v, r) stores the most frequent counter value in block i in round r, which
is determined from the broadcast output variables of Ai with ties broken
arbitrarily, and

• Mi(v, r) stores the majority vote on mi(v, r − 1).
Throughout the remainder of this section, we let K = Θ(log η) such that K ≥ K0

as given by Lemma 7.2. Let m∗i (v, r) be the sampled version of mi(v, r); here the value
is determined by taking a random sample of size K from the set Vi. Analogously, the
variable M∗i (v, r) is determined by taking a random sample of size K from the set V
and taking the value that appears at least 2K/3 times in the sample.

Remark 7.3. It holds that fi/ni < 1/(3 + γ) for i ∈ {0, 1}.
Lemma 7.4. Suppose block i ∈ {0, 1} is correct. Then for all v ∈ V \ F and

r ≥ T (Ai), we have

m∗i (v, r) = mi(v, r),
M∗i (v, r + 1) = Mi(v, r + 1)

w.h.p.

Proof. To show the claim, we will apply Lemma 7.2 with U = V and U = Vi.
Before this, note that the fraction of faulty nodes in both V and Vi is less than 1/(3+γ):

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1496 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

By assumption, we have f/n < 1/(3 + γ) and by Remark 7.3 yield fi/ni < 1/(3 + γ).
Thus, in both cases, we satisfy the first condition of Lemma 7.2.

For the claim regarding variable mi, we apply Lemma 7.2 with U = Vi, that
is, sample the subset Vi ⊆ V consisting of nodes in block i. Since |Vi| = ni and i
is a correct block, the set Vi contains at most fi faulty nodes and all correct nodes
output the same value y ∈ [ci], as Ai has stabilized by round r ≥ T (Ai). Moreover,
fi/ni <

1
3+γ by Remark 7.3, so statement (a) of Lemma 7.2 yields that w.h.p. at least

a fraction of 2/3 of the sampled nodes output y.
To show the claim for variable M∗i , note that by the previous case, m∗i (v, r) =

mi(v, r) holds for all correct nodes v w.h.p. Applying statement (a) of Lemma 7.2 to
the set V and variable m∗i (v, r), we get that at least a fraction of 2/3 of the samples
have the same value.

From Lemma 7.4 it follows that we get probabilistic—in the sense that the
claims hold w.h.p.—variants of Lemmas 4.4–4.6. These, in turn, yield the following
probabilistic variant of Corollary 4.7.

Corollary 7.5. There is a round r = T + O(f) so that for all v, w ∈ V \ F
w.h.p. it holds that

1. d(v, r) = d(w, r) and
2. for all r′ ∈ {r + 1, . . . , r + τ − 1} we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .

Randomized phase king. To obtain a randomized variant of the phase king algo-
rithm, we modify the threshold votes used in the algorithm as follows. Instead of
checking whether at least n− f of all messages have the same value, we check whether
at least a fraction of 2/3 of the sampled messages have the same value. Similarly, when
checking for at least f + 1 values, we check whether a fraction of 1/3 of the sampled
messages have this value.

As a corollary, we get that when using the sampling scheme in the pulling model,
the execution of the phase king essentially behaves as in the deterministic broadcast
model.

Corollary 7.6. When executing the randomized variant of the phase king protocol
from section 4 for ηO(1) rounds, the statements of Lemmas 4.8 and 4.9 hold w.h.p.

Proof. The modified phase king algorithm given in subsection 4.3 uses two thresh-
olds, n− f and f + 1. As discussed, these are replaced with threshold values of 2K/3
and K/3 when taking K ≥ K0(η, k, γ) samples. Using the statements of Lemma 7.2,
we can argue analogously to the proofs of Lemmas 4.8 and 4.9.

First, to see that Lemma 4.8 holds w.h.p., note that from statements (b) and
(c) of Lemma 7.2, it follows that if a node samples 2K/3 times value y, then w.h.p.
other nodes sample at least K/3 times the same value (that is, we get the probabilistic
version of Lemma 4.3). Now we can follow the same reasoning as in Lemma 4.8.

Similarly, it is straightforward to check that Lemma 4.9 holds w.h.p.: If all correct
nodes agree on a(·), then all correct nodes sample at least 2K/3 times the same value
w.h.p. by statement (a) of Lemma 7.2. Thus, analogously as in the proof of Lemma 4.9,
we get that the agreement persists when executing I3k, I3k+1, or I3k+2 w.h.p.

Finally, we can apply the union bound over all ηO(1) rounds and samples taken by
correct nodes (n− f ≤ η per round), that is, in total over ηO(1) events. By choosing
large enough k = O(1), we get that the claim holds w.h.p. 1− η−k.

7.4. Randomized resilience boosting. It remains to formulate the proba-
bilistic variant of Theorem 4.1. To this end, define P(n, f, c, η, k) as the family of

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1497

probabilistic synchronous c-counters on n nodes of resilience f . Here, probabilistic
means that an algorithm P ∈ P(n, f, c, η, k) with stabilization time T (P) merely
guarantees that it counts correctly with probability 1 − η−k in any given round
t ≥ T (P).

Let P (P) denote the number of messages pulled per node by a probabilistic
counter P ∈ P(n, f, c, η, k). For any deterministic algorithm A ∈ A(n, f, c), we define
P (A) = n.

Theorem 7.7. Let c, n > 1 and f < n/(3 + γ), where γ > 0 and n ≤ η. Define
n0 = bn/2c, n1 = dn/2e, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for
i ∈ {0, 1} there exist synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i ·2τ , then
for any sufficiently large k = O(1), there exists a probabilistic synchronous c-counter
B ∈ P(n, f, c, η, k) that

• stabilizes in T (B) = max{T (A0), T (A1)}+O(f) rounds,
• has state complexity of S(B) = max{S(A0), S(A1)} + O(log f + log c) bits,

and
• each node pulls at most P (B) = max{P (A0), P (A1)}+O(log η) messages per

round.

Proof. The proof proceeds analogously to the proof of Theorem 4.1. First, we
apply Corollary 7.5 to get a round counter that works once in a while w.h.p. We can
then use this to clock the randomized phase king and Corollary 7.6 implies that the
new output counter will reach agreement in O(f) rounds w.h.p. The time and state
complexities are as in the proof of Theorem 4.1.

To analyze the number of pulls, observe that in Lemma 7.4 each node samples
twice K = O(log η) messages (from both V0 and V1) and Corollary 7.6 samples O(log η)
messages from all the nodes. Thus, in total, a node v ∈ Vi samples O(log η) messages
in addition to the messages pulled when executing Ai.

Note that we can choose to replace A ∈ A(n, f, c) by Q ∈ P(n, f, c, η, k) when
applying this theorem, arguing that w.h.p. it behaves like a corresponding algorithm
A ∈ A(n, f, c) for polynomially many rounds. Furthermore, note that it is also possible
to boost the probability of success, and thus the period of stability, by simply increasing
the sample size. For instance, sampling polylog η messages yields an error probability
of η− polylog η in each round, whereas in the extreme case, by “sampling” all nodes the
algorithm reduces to the deterministic case.

Using Theorem 7.7 recursively as in section 5 for O(log f) steps, we get the
following result.

Theorem 7.8. For any integers c, n > 1, f < n/(3+γ), there exists an f -resilient
probabilistic synchronous c-counter that runs on n nodes, requires O(log2 f + log c) bits
to encode the state of a node, has each node pull O(log f log n) messages per round,
and stabilizes in O(f) rounds with probability 1− n−k, where k > 0 is a freely chosen
constant.

7.5. Oblivious adversary. Finally, we remark that under an oblivious adversary,
that is, an adversary that picks the set of faulty nodes independently of the randomness
used by the nonfaulty nodes, we get pseudorandom synchronous counters satisfying
the following: (1) the execution stabilizes w.h.p. and (2) if the execution stabilizes,
then all nonfaulty nodes will deterministically count correctly. In other words, we can
fix the random bits used by the nodes to sample the communication links once, and
w.h.p. we sample sufficiently many communication links to nonfaulty nodes for the
algorithm to (deterministically) stabilize. This gives us the following result.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1498 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

Corollary 7.9. For any integers c, n > 1, f < n/(3 + γ), there exists a pseudo-
random synchronous c-counter with resilience f against an oblivious fault pattern that
runs on n nodes, requires O(log2 f + log c) bits to encode the state of a node, has each
node pull O(log f log n) messages per round, and stabilizes in O(f) rounds.

8. Conclusions. In this work, we showed that there exist algorithms for syn-
chronous counting that (1) are deterministic, (2) tolerate the optimal number of
faults, (3) have asymptotically optimal stabilization time, and (4) need to store and
communicate a very small number of bits between consecutive rounds—something no
prior algorithms have been able to do.

In addition, we discussed two complementary approaches on how to further reduce
the total number of communicated bits in the network. The first one is a deterministic
construction that lets the nodes communicate only a few bits after stabilization, in order
to verify that stabilization has occurred and that the counters agree. The construction
retains all properties (1)–(4), and in particular, when constructing polynomially sized
counters with linear resilience, the algorithm communicates an asymptotically optimal
number of bits after stabilization.

The second technique for reducing the amount of communication is based on
random sampling of communication channels. Here, we employed randomization so
that each node needs to communicate only with polylog n instead of n− 1 other nodes
in the system, thus reducing the number of messages sent from Θ(n2) to Θ(n polylog n).
The trade-off here is that the resulting algorithm has slightly suboptimal resilience
of f < n/(3 + γ), where γ > 0 is a constant, and is merely guaranteed to work for
polynomially many rounds w.h.p. before a new stabilization phase is required. The
latter issue disappears when employing pseudorandomness. In this case, one may
simply fix a random topology and the algorithm will not fail again after stabilization;
naturally, this necessitates that the Byzantine faulty nodes are chosen in an oblivious
manner, i.e., independently of the topology.

We can also combine both techniques to attain probabilistic counters that dur-
ing stabilization communicate Θ(npolylog n) bits each round and after stabilization
asymptotically optimal O(1) bits every Θ(n) rounds.

To conclude the paper, we now wish to highlight some interesting problems that
still remain open:

Q1. Our solutions are not adaptive (as defined in [23]), as their stabilization time
is not bounded by a function of the number of actual permanent faults. Can
this be achieved?

Q2. Are there algorithms that satisfy (1)–(3), but need to store and communi-
cate substantially fewer than log2 f bits? This question has been partially
answered in follow-up work [25], showing that O(log f) bits suffice. However,
no nontrivial lower bound is known, so it remains open whether o(log f) bits
suffice.

Q3. Can the ideas presented in this paper be applied to randomized consensus
routines in order to achieve sublinear stabilization time with high resilience
and small communication overhead? Again, a partial answer is provided
in [25]: this is possible, but the given solutions may still fail after stabilization
(with a very small probability per round). The question thus remains open
w.r.t. the original problem definition, which requires that after stabilization
the algorithm keeps counting correctly.

Finally, we point out that the recursive approach we employ in this paper can be
interpreted as an extension of its similar use in synchronous consensus routines [5, 6],

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 1499

where the shared round counter is implicitly given by the synchronous start.
Q4. Can a similar recursive approach also be used for deriving improved pulse

synchronization [14, 18] algorithms?
Interestingly, no reduction from consensus to pulse synchronization is known, so there
is still hope for efficient deterministic pulse synchronization algorithms that stabilize
in sublinear time.

Acknowledgment. We thank the anonymous reviewers for their helpful com-
ments.

REFERENCES

[1] M. Ajtai and N. Linial, The influence of large coalitions, Combinatorica, 13 (1993), pp. 129–
145, https://doi.org/10.1007/BF01303199.

[2] A. Arora, S. Dolev, and M. G. Gouda, Maintaining digital clocks in step, Parallel Process.
Lett., 1 (1991), pp. 11–18, https://doi.org/10.1142/S0129626491000161.

[3] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese, A time-optimal
self-stabilizing synchronizer using a phase clock, IEEE Trans. Dependable Secure Comput.,
4 (2007), pp. 180–190.

[4] M. Ben-Or, D. Dolev, and E. N. Hoch, Fast self-stabilizing Byzantine tolerant digital
clock synchronization, in Proceedings of the 27th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2008), ACM, New York, 2008, pp. 385–394, https:
//doi.org/10.1145/1400751.1400802.

[5] P. Berman, J. A. Garay, and K. J. Perry, Bit optimal distributed consensus, in Computer
Science: Research and Applications, Springer, Boston, pp. 313–321, https://doi.org/10.
1007/978-1-4615-3422-8 27.

[6] P. Berman, J. A. Garay, and K. J. Perry, Towards optimal distributed consensus, in
Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS
1989), IEEE, Washington, DC, 1989, pp. 410–415, https://doi.org/10.1109/SFCS.1989.
63511.

[7] L. Boczkowski, A. Korman, and E. Natale, Minimizing message size in stochastic com-
munication patterns: Fast self-stabilizing protocols with 3 bits, in Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), SIAM, Philadelphia,
2017, pp. 2540–2559, https://doi.org/10.1137/1.9781611974782.168.

[8] C. Boulinier, F. Petit, and V. Villain, Synchronous vs. asynchronous unison, Algorithmica,
51 (2008), pp. 61–80, https://doi.org/10.1007/s00453-007-9066-x.

[9] C. Delporte-Gallet, S. Devismes, and H. Fauconnier, Robust stabilizing leader election, in
Proceedings of the 9th Symposium on Stabilization, Safety, and Security of Distributed
Systems, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 219–233.

[10] S. Devismes, T. Masuzawa, and S. Tixeuil, Communication efficiency in self-stabilizing
silent protocols, in Proceedings of the 29th Conference on Distributed Computing Systems
(ICDCS), IEEE Computer Society Washington, DC, 2009, pp. 474–481, https://doi.org/10.
1109/ICDCS.2009.24.

[11] D. Dolev, The Byzantine generals strike again, J. Algorithms, 3 (1982), pp. 14–30.
[12] D. Dolev, M. Függer, C. Lenzen, U. Schmid, and A. Steininger, Fault-tolerant distributed

systems in hardware, Bulletin of the EATCS, 116 (2015), http://bulletin.eatcs.org/index.
php/beatcs/issue/view/18.

[13] D. Dolev, K. Heljanko, M. Järvisalo, J. H. Korhonen, C. Lenzen, J. Rybicki, J. Suomela,
and S. Wieringa, Synchronous counting and computational algorithm design, J. Comput.
System Sci., 82 (2016), pp. 310–332, https://doi.org/10.1016/j.jcss.2015.09.002.

[14] D. Dolev and E. N. Hoch, On self-stabilizing synchronous actions despite Byzantine attacks,
in Proceedings of the 21st International Symposium on Distributed Computing (DISC
2007), Lecture Notes in Comput. Sci. 4731, Springer, Berlin, Heidelberg, 2007, pp. 193–207,
https://doi.org/10.1007/978-3-540-75142-7 17.

[15] D. Dolev, J. H. Korhonen, C. Lenzen, J. Rybicki, and J. Suomela, Synchronous counting
and computational algorithm design, in Proceedings of the 15th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS 2013), Lecture Notes in
Comput. Sci. 8255, Springer-Verlag, New York, 2013, pp. 237–250, https://doi.org/10.1007/
978-3-319-03089-0 17.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1007/BF01303199
https://doi.org/10.1142/S0129626491000161
https://doi.org/10.1145/1400751.1400802
https://doi.org/10.1145/1400751.1400802
https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1109/SFCS.1989.63511
https://doi.org/10.1137/1.9781611974782.168
https://doi.org/10.1007/s00453-007-9066-x
https://doi.org/10.1109/ICDCS.2009.24
https://doi.org/10.1109/ICDCS.2009.24
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
https://doi.org/10.1016/j.jcss.2015.09.002
https://doi.org/10.1007/978-3-540-75142-7_17
https://doi.org/10.1007/978-3-319-03089-0_17
https://doi.org/10.1007/978-3-319-03089-0_17


1500 CHRISTOPH LENZEN, JOEL RYBICKI, AND JUKKA SUOMELA

[16] D. Dolev and R. Reischuk, Bounds on information exchange for Byzantine agreement, J.
ACM, 32 (1985), pp. 191–204, https://doi.org/10.1145/2455.214112.

[17] S. Dolev, Self-Stabilization, The MIT Press, Cambridge, MA, 2000.
[18] S. Dolev and J. L. Welch, Self-stabilizing clock synchronization in the presence of Byzantine

faults, J. ACM, 51 (2004), pp. 780–799, https://doi.org/10.1145/1017460.1017463.
[19] S. Dubois, M. Potop-Butucaru, M. Nesterenko, and S. Tixeuil, Self-stabilizing byzantine

asynchronous unison, J. Parallel Distrib. Comput., 72 (2012), pp. 917–923, https://doi.org/
10.1016/j.jpdc.2012.04.001.

[20] M. J. Fischer and N. A. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982), pp. 183–186, https://doi.org/10.1016/0020-0190(82)
90033-3.

[21] M. G. Gouda and T. Herman, Stabilizing unison, Inform. Process. Lett., 35 (1990), pp. 171–175.
[22] E. Hoch, D. Dolev, and A. Daliot, Self-stabilizing Byzantine digital clock synchronization,

in Proceedings of the 8th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS 2006), Lecture Notes in Comput. Sci. 4280, Springer, Berlin,
Heidelberg, 2006, pp. 350–362, https://doi.org/10.1007/978-3-540-49823-0 25.

[23] S. Kutten and B. Patt-Shamir, Adaptive stabilization of reactive protocols, in Proceedings
of the 24th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), Springer-Verlag, Berlin, Heidelberg, 2005, pp. 396–407, https://doi.org/
10.1007/978-3-540-30538-5 33.

[24] C. Lenzen and J. Rybicki, Efficient counting with optimal resilience, in Proceedings of the
29th International Symposium on Distributed Computing (DISC 2015), Lecture Notes in
Comput. Sci. 9363, Springer, Berlin, Heidelberg, 2015, pp. 16–30, https://doi.org/10.1007/
978-3-662-48653-5 2.

[25] C. Lenzen and J. Rybicki, Near-optimal self-stabilising counting and firing squads, in Pro-
ceedings of the 18th Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), Lecture Notes in Comput. Sci. 10083, Springer, Cham, 2016, pp. 263–280,
https://doi.org/10.1007/978-3-319-49259-9 21.

[26] C. Lenzen, J. Rybicki, and J. Suomela, Towards optimal synchronous counting, in Proceedings
of the 34th Annual ACM Symposium on Principles of Distributed Computing (PODC
2015), ACM, New York, 2015, pp. 441–450, https://doi.org/10.1145/2767386.2767423.

[27] M. C. Pease, R. E. Shostak, and L. Lamport, Reaching agreement in the presence of faults,
J. ACM, 27 (1980), pp. 228–234, https://doi.org/10.1145/322186.322188.

[28] T. Takimoto, F. Ooshita, H. Kakugawa, and T. Masuzawa, Communication-efficient self-
stabilization in wireless networks, in Proceedings of the 14th Conference on Stabilization,
Safety, and Security of Distributed Systems (SSS), Lecture Notes in Comput. Sci. 7596,
Springer, Berlin, Heidelberg, 2012, pp. 1–15, https://doi.org/10.1007/978-3-642-33536-5 1.

c© 2017 Christoph Lenzen, Joel Rybicki, Jukka Suomela

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

28
.2

14
.8

8.
17

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1145/2455.214112
https://doi.org/10.1145/1017460.1017463
https://doi.org/10.1016/j.jpdc.2012.04.001
https://doi.org/10.1016/j.jpdc.2012.04.001
https://doi.org/10.1016/0020-0190(82)90033-3
https://doi.org/10.1016/0020-0190(82)90033-3
https://doi.org/10.1007/978-3-540-49823-0_25
https://doi.org/10.1007/978-3-540-30538-5_33
https://doi.org/10.1007/978-3-540-30538-5_33
https://doi.org/10.1007/978-3-662-48653-5_2
https://doi.org/10.1007/978-3-662-48653-5_2
https://doi.org/10.1007/978-3-319-49259-9_21 
https://doi.org/10.1145/2767386.2767423
https://doi.org/10.1145/322186.322188
https://doi.org/10.1007/978-3-642-33536-5_1

	Introduction
	Contributions
	Our approach
	Structure

	Related work
	Preliminaries
	Model of computation
	Synchronous counters and complexity measures

	Boosting resilience
	Road map
	Agreeing on a common counter (once in a while)
	Reaching consensus
	Proof of Theorem 4.1

	Deterministic counting
	Reducing the number of bits communicated
	High-level idea
	The silencing wrapper
	Proof of stabilization
	Reducing the communication complexity after stabilization

	Sending fewer messages
	Pulling model
	High-level idea of the probabilistic construction
	Sampling communication channels
	Randomized resilience boosting
	Oblivious adversary

	Conclusions
	References

