
Department of Psychology and Logopedics 
Faculty of Medicine 

University of Helsinki, Finland 
Doctoral Programme Brain & Mind

Finnish Institute of Occupational Health 
Helsinki, Finland

Burnout in the brain at work

Laura Sokka

Academic dissertation to be publicly discussed, 
by due permission of the Faculty of Medicine 

at the University of Helsinki 
in Auditorium XII of the University Main Building, Unioninkatu 34, 

on the 19th of April, 2017, at 12 o'clock

Helsinki 2017



Supervisors
Docent Minna Huotilainen, PhD, Cognitive Brain Research Unit, Department of Psychology 
and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Finnish 
Institute of Occupational Health, Helsinki, Finland; Swedish Collegium for Advanced Study, 
Uppsala, Sweden

Professor Kimmo Alho, PhD, Department of Psychology and Logopedics, Faculty of 
Medicine, University of Helsinki, Helsinki, Finland

Reviewers

Professor John Connolly, PhD, Department of Linguistics and Languages, McMaster 
University, Hamilton, Ontario, Canada

and

Dr. Pia Rämä, PhD, Laboratoire Psychologie de la Perception, Université Paris Descartes, 
Paris, France

Opponent

Associate Professor Iiro Jääskeläinen, PhD, Department of Neuroscience and Biomedical 
Engineering, Aalto University School of Science, Espoo, Finland

Dissertationes Scholae Doctoralis
Ad Sanitatem Investigandam Universitatis Helsinkiensis
21/2017

ISSN 2342-3161 (print)
ISSN 2342-317X (online)
ISBN 978-951-51-3001-3 (nid.)
ISBN 978-951-51-3002-0 (PDF) 
http://www.ethesis.helsinki.fi 
Unigrafia 
Helsinki 2017

2

http://www.ethesis.helsinki.fi


Contents

A b stract......................................................................................................................................... 4
T iivistelm ä.................................................................................................................................... 5
Acknowledgem ents.................................................................................................................... 6
L ist o f original publications....................................................................................................8
A bbreviations.............................................................................................................................. 9
1  Introduction.......................................................................................................................... 10

1.1 Job burnout is a stress -related syndrome....................................................................... 10
1.1.1 Cognitive functioning in burnout........................................................................... 13

1.2 Electroencephalography (EEG) and event-related potentials (ERP)............................ 15
1.2.1 Central auditory processing.................................................................................... 16
1.2.2 ERPs related to involuntary attention and target detection.................................17

1.3 Top-down mechanisms in goal-directed behavior......................................................... 19
1.3.1 Widespread cortical activation in working-memory updating............................20
1.3.2 Working-memory load affects involuntary attention............................................21
1.3.3 Attentional set shifting in the brain........................................................................ 21

2 Aim s o f Studies I-IV ............................................................................................................ 24
3 M ethods.................................................................................................................................. 25

3.1 Participants and procedure ............................................................................................. 25
3.2 Collection of self-reports.................................................................................................. 27
3.3 Experimental paradigms in Studies I-IV ....................................................................... 30
3.4 EEG data acquisition and analysis.................................................................................. 35

3.4.1 Studies I and II ........................................................................................................ 36
3.4.2 Study III....................................................................................................................37
3.4.3 Study IV ................................................................................................................... 38

3.5 Statistical analysis.............................................................................................................39
3.5.1 ERPs...........................................................................................................................39
3.5.2 Behavioral data........................................................................................................ 40

4 R e su lts ....................................................................................................................................42
4.1 Participant characteristics...............................................................................................42
4.2 Speech sound processing and attention capture to emotional utterances in burnout 

(Studies I and II)............................................................................................................... 45
4.3 Burnout-related dysfunctions in involuntary and voluntary attention (Study III) .... 48

4.3.1 Behavioral data....................................................................................................... 48
4.3.2 ERP data.................................................................................................................. 48

4.4 Inadequate attentional set shifting in severe burnout (Study IV)................................ 52
4.4.1 Behavioral data ........................................................................................................52
4.4.2 ERP data...................................................................................................................54

5 D iscussion.............................................................................................................................. 57
5.1 Processing of emotionally uttered speech and its alterations in burnout................... 58
5.2 Dysfunctions in attentional control mechanisms in burnout........................................59
5.3 Inadequate attentional set shifting in severe burnout................................................... 61
5.4 Burnout as a subject for brain research..........................................................................63
5.5 Clinical considerations.....................................................................................................65
5.6 Future directions..............................................................................................................66

6 R eferen ces.............................................................................................................................68

3



Abstract

Long-term exposure to a stressful working environment where demands of the job 

exceed the resources of the worker may develop into job burnout. It is a major 

concern in working life, and in Finland, approximately one fourth of working aged 

people experience symptoms of burnout. Burnout is a psychological syndrome 

typically characterized by exhaustion, cynicism, and reduced professional efficacy. 

Individuals who experience symptoms of burnout often report decreased sense of 

efficacy in performing their daily work, as well as difficulties in concentration and 

memory. To date, however, little is known about the relationship between burnout 

and cognitive processes in the brain. The present thesis explores how pre-attentive 

auditory processing, and attentional and cognitive control processes are associated 

with burnout. As a method, we used scalp recordings of event-related potentials 

(ERPs) extracted from continuous electroencephalogram (EEG). The participants 

were 41 volunteers reporting a wide range of burnout symptoms, and 26 control 

participants. The results showed that burnout is associated with alterations in ERP 

responses reflecting involuntary attention shift and voluntary task-related processes. 

More specifically, momentary involuntary capture of attention to emotionally 

valenced speech sounds is faster for negative, and slower for positive utterances in 

burnout than in the control group as reflected by divergent P3a latencies even when 

the burnout symptoms are relatively mild. Burnout is also associated with 

dysfunctions in cognitive control needed to monitor and update information in 

working-memory as reflected by a decrease in task-related P3b responses over 

posterior scalp and increase over frontal areas. Perhaps, in burnout, sustaining a 

similar performance level as that of the control group might require additional 

recruitment of anterior regions to compensate the decrement in posterior activity. In 

addition, orienting of attention towards potentially significant unexpected sounds is 

ineffective in burnout during working-memory processing as indicated by reduced 

P3a responses elicited by the distractor sounds. Finally, severe burnout is associated 

with less accurate performance and inadequate processing when rapid shifting of 

attention between tasks is required as reflected by smaller P3 responses compared to 

the mild burnout and control groups. The findings of the present thesis provide new 

information about dysfunctions in electrophysiological processes related to cognitive 

control in burnout.
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Tiivistelmä

Kun työtilanne ylittää yksilön voimavarat ja työstressi pitkittyy, seurauksena voi olla 

työuupumus. Työuupumus on merkittävä ammatillinen huolenaihe työelämässä, ja 

Suomessa noin joka neljäs työikäisistä kokee eriasteisia työuupumuksen oireita. 

Työuupumukseen liittyy uupumusasteista väsymystä, joka ei liity yksittäisiin työn 

kuormitushuippuihin. Muita ominaispiirteitä ovat oman työn merkityksen 

kyseenalaistaminen sekä ammatillisen itsetunnon heikkeneminen. On tavallista, että 

henkilöt, joilla on työuupumusoireita, kokevat muistin ja keskittymisen vaikeuksia. 

Vielä ei kuitenkaan tiedetä, miten työuupumus liittyy tiedonkäsittelyn toimintoihin 

aivoissa. Tässä väitöskirjassa tutkittiin työuupumuksen yhteyttä esitietoiseen 

kuuloinformaation käsittelyyn sekä tarkkaavaisuuden ja kognitiivisen kontrollin 

prosesseihin. Tutkimusmenetelmänä käytimme aivosähkökäyrässä (EEG) esiintyviä 

tapahtumasidonnaisia jännitevasteita (event-relatedpotential, ERP). Tutkimukseen 

osallistui 41 työssäkäyvää henkilöä, jotka kokivat eriasteisia työuupumusoireita sekä 

26 verrokkihenkilöä. Tulokset osoittivat, että työuupumus on yhteydessä poikkeaviin 

ERP-vasteisiin, jotka ilmentävät tahattoman ja tahdonalaisen tarkkaavaisuuden 

prosesseja. Jo  verrattain lievä työuupumus on yhteydessä muutoksiin 

tarkkaavaisuuden kääntymisessä emotionaaliseen puheääneen. Tätä ilmentää P3a- 

vasteen kesto siten, että työuupuneet reagoivat sävyltään kielteiseen puheääneen 

tavallista nopeammin ja vastaavasti sävyltään myönteiseen puheääneen tavallista 

hitaammin. Työmuistiprosessoinnin aikainen aivotoiminta poikkeaa siten, että 

työuupuneilla tehtävätyöskentelyyn liittyvät P3b-vasteet olivat tavanomaista 

pienemmät päälaenlohkolla ja suuremmat otsalohkon alueella. On mahdollista, että 

työuupuneilla verrattain hyvä tehtäväsuoriutuminen edellyttää tavallista 

voimakkaampaa aivojen etuosien aktivaatiota kompensoimaan taaempien alueiden 

heikompaa aktivaatiota. Myös pienemmät P3a-vasteet yllättäviin häiriöääniin 

työskentelyn aikana osoittivat, että tarkkaavaisuuden kääntyminen tällaisiin 

mahdollisesti merkityksellisiin ääniin ei ole työuupuneilla yhtä tehokasta kuin 

verrokeilla. Lisäksi vakava työuupumus oli yhteydessä virheiden lisääntymiseen ja 

pienempiin P3-vasteisiin tehtävästä toiseen vaihdettaessa verrattuna lievästi 

uupuneisiin ja verrokkiryhmään. Tulokset tuovat uutta tietoa työuupumukseen 

liittyvistä kognitiivisen kontrollin poikkeavuuksista aivojen sähköisessä toiminnassa.
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1 Introduction

1.1 Job burnout is a stress-related syndrome

At work, it is common to encounter cognitively demanding tasks and contexts on a 

daily basis. For example, for successful performance it is essential to be able to focus 

on a given task even in the presence of distracting events, to flexibly switch between 

tasks and assignments, to modify one’s behavior in light of new information, to solve 

novel problems or to generate new strategies. In addition, performance at and 

commitment to work are affected by numerous psychosocial factors such as emotions 

or attitudes, requirements for social skills, opportunities to influence one’s workplace 

conditions or working time, and competition-related changes in working life (Work 

and Health Survey in Finland 2012; Kauppinen et al., 2013). Individuals who 

experience long-term work-related mental strain often report decreased sense of 

efficacy in performing their daily work, as well as difficulties in concentration, 

information processing, and memory.

Long-term exposure to a stressful working environment where demands of the job 

are high and the resources of the worker are low may gradually develop into job 

burnout (Maslach, Schaufeli, & Leiter, 2001; Melamed et al., 1999; Schaufeli & 

Enzmann, 1998). The central characterizations of job burnout share the idea that 

burnout is a psychological syndrome-like condition resulting from such prolonged, 

unresolvable stress at work. It concerns working life not only at an individual level 

but also at interpersonal and organizational levels (Le Blanc, de Jonge, & Schaufeli,

2008).

According to the most consensual characterization, burnout is a three-dimensional 

syndrome consisting of emotional exhaustion, cynicism toward work, and lack of 

professional efficacy (Maslach & Jackson, 1981; Maslach et al., 2001). Exhaustion, or 

fatigue, as the core symptom reflects the stress dimension of burnout while cynicism 

is considered as a way to cope with the work overload by distancing oneself 

emotionally and cognitively from work. Sense of inefficacy, or reduced personal 

accomplishment, seems less essential to the syndrome than the two other dimensions 

(Cox, Tisserand, & Taris, 2005). It is thought to emerge from lack of resources while

10



exhaustion and cynicism arise from work overload and social conflict (Maslach et al., 

2001). Another widely cited conception views burnout as relating to individuals’ 

feelings of emotional exhaustion, physical fatigue, and cognitive weariness (Melamed 

et al., 1999; Melamed, Kushnir, & Shirom, 1992; Melamed, Shirom, Toker, Berliner,

& Shapira, 2006). This characterization thus focuses on the depletion of one’s 

empowering coping resources as a result of long-term work-related stress.

In addition, burnout is typically associated with impaired sleep (Ekstedt et al., 

2006; Ekstedt, Söderström, & Äkerstedt, 2009). This is indicated by more sleep 

fragmentation and wake time, shorter latencies of slow wave sleep and rapid eye 

movement sleep, as well as lower sleep efficiency in burnout than control 

participants. Consequently, individuals with burnout show greater sleepiness and 

mental fatigue at most times of the days than others (Ekstedt et al., 2006).

Burnout overlaps with other stress-related disorders (van Dam, 2016), such as 

depressive disorders (Ahola, Hakanen, Perhoniemi, & Mutanen, 2014; for a review, 

see Bianchi, Schonfeld, & Laurent, 2015), anxiety (Blonk, Brenninkmeijer, Lagerveld, 

& Houtman, 2006; Ekstedt et al., 2006, 2009), and chronic fatigue syndrome 

(Huibers et al., 2003). Especially the relationship with burnout and depressive 

disorders has been under debate since the onset of burnout research in the 1970s 

(Freudenberger, 1974). For example, until the 1990s, it was suggested that burnout 

and depression can be conceptually and empirically distinguished, not only because 

burnout is job-related, but also because burnout includes social and attitudinal 

symptoms thought to be absent in depression (Schaufeli & Enzmann, 1998). Since 

then, however, Ahola and colleagues (2014) have proposed a conceptual similarity 

between burnout and depressive symptoms in the work-context. In a similar vein, 

according to a recent review, the distinction between burnout and depression is 

thought to be conceptually rather fragile, albeit empirically the distinction is partly 

supported (Bianchi et al., 2015). Definite conclusions about burnout-depression 

overlap are difficult to draw, partly due to somewhat inconsistent definitions of 

burnout among studies but also insufficient consideration of the heterogeneity of the 

spectrum of depressive disorders, too.

In terms of medical decision-making, no diagnostic criteria are available for 

identifying individual burnout cases. Burnout does not appear in the 5th edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric 

Association, 2013) while in the 10th revision of the International Statistical
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Classification of Diseases and Related Health Problems (ICD-10; World Health 

Organization, 1992) it is identified as a factor influencing health status and contact 

with health services, and as a problem related to life management difficulty.

However, in clinical practice in Finland, a substitute diagnosis such as adjustment 

disorder, or depression, is sometimes made for individuals especially with severe 

burnout symptoms, and the diagnosis is used as a starting point for further actions 

and interventions (Tuunainen, Akila, & Räisänen, 2011). In Sweden, in turn, burnout 

has been established as a legitimate justification for sick leave (Friberg, 2009). 

Nevertheless, whether burnout should be regarded as an illness in its own right or 

not, remains an issue in scientific and clinical debate (Bianchi et al., 2015; van Dam, 

2016).

The prevalence of job burnout varies somewhat together with the general 

circumstances in working life. For example, approximately 23-25% in working 

populations in Finland experience mild burnout symptoms (Ahola et al., 2005; 

Koskinen, Lundqvist, & Ristiluoma, 2012). Severe burnout, in turn, has been found to 

be rather stable in nature (Shirom, 2005), and its estimated prevalence varies 

between 2-7% in working populations according to studies conducted in the 

Netherlands (Schaufeli & Enzmann, 1998), Sweden (Hallsten, 2005), and Finland 

(Ahola et al., 2005; Koskinen et al., 2012). Such population based estimates have 

been suggested to be indicative of the situation in other developed western countries 

as well (Shirom, 2005). Thus, burnout appears to be quite prevalent, and it 

represents considerable economic, social, and psychological costs to employees and 

employers in all kinds of vocational groups (Ahola et al., 2006, 2008; Shirom, 2005). 

As a comparison, occasional insomnia-related symptoms are common among Finnish 

employees and they continue to increase as shown by a recent population-based 

study (Kronholm et al., 2016). In 2002, the prevalence of occasional insomnia- 

related symptoms were approximately 35%, whereas in 2013 the estimation was 45% 

in the general adult population. In parallel with this increase, the prevalence of 

depressive disorders in Finland has significantly increased from 7.3% to 9.6% during 

a follow-up period from the year 2000 to 2011 (Markkula et al., 2015).

In the research literature, burnout symptoms are assessed with questionnaires, 

and the most commonly applied instrument is the Maslach Burnout Inventory -  

General Survey (MBI-GS; Schaufeli, Leiter, Maslach, & Jackson, 1996). It is a 

standardized instrument, addressing 16 items clustered in three dimensions:
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exhaustion, cynicism, and lack of professional efficacy. Other tools have been 

designed for assessing burnout, too, such as the Shirom-Melamed Burnout Measure 

(SMBM) covering physical fatigue, emotional exhaustion, and cognitive weariness as 

the core symptoms with 14 items (Melamed, Kushnir, & Shirom, 1992; Shirom & 

Ezrachi, 2003; Shirom & Melamed, 2006). In clinical settings in Finland, although 

no definite assessment guidelines exist, occupational health professionals commonly 

use the Bergen Burnout Indicator 15 (BBI-15; Näätänen, Aro, Matthiesen, & Salmela- 

Aro, 2003) to assess the severity of burnout symptoms. In the present thesis, 

grouping of the participants into burnout and control groups was based on the MBI- 

GS.

1.1.1 Cognitive functioning in burnout

Several behavioral studies have indicated that burnout is associated with 

impairments in cognitive functions (for a review, see Deligkaris, Panagopoulou, 

Montgomery, & Masoura, 2014), especially processing speed (Eskildsen, Andersen, 

Pedersen, Vandborg, & Andersen, 2015; Jonsdottir et al., 2013; Österberg, Karlson, & 

Hansen, 2009), working-memory updating (Jonsdottir et al., 2013; Oosterholt, Van 

der Linden, Maes, Verbraak, & Kompier, 2012), sustained attention and response 

inhibition (Sandström, Rhodin, Lundberg, Olsson, & Nyberg, 2005; Van der Linden, 

Keijsers, Eling, & Schaijk, 2005), as well as switching between tasks (van Dam, 

Keijsers, Eling, & Becker, 2011). Such deficits have been observed particularly in 

groups consisting of burnout outpatients, many of whom being on sick leave due to 

their severe burnout symptoms. However, the findings have been somewhat 

inconsistent with some of the results giving only partial support to the hypothesis of 

burnout-related impairments in cognitive functioning. For example, in the studies of 

Oosterholt and colleagues (2014), and Österberg and colleagues (2009), severe 

burnout was related only to a slightly slower performance in tests assessing 

processing speed but not in any other cognitive functions studied such as verbal 

memory, working-memory updating, inhibition or task shifting.

When the burnout symptoms are relatively mild, performance can be sustained at 

an equally good level as that of others (Castaneda et al., 2011; Oosterholt et al., 2014). 

Yet, despite this relatively comparable performance on traditional behavioral
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cognitive tests, Österberg and colleagues (2009) observed that subjective cognitive 

complaints about attention and memory were considerably more common among 

individuals with burnout symptoms than their control participants. The authors 

suggested that in reporting of the subjective cognitive problems, negative self

perception, or worry about future health and career due to decreased working 

capacity may be important determinants. Together these could lead to disturbances 

or decreased performance in everyday situations, and consequently, experienced as 

cognitive impairment.

Evidence from brain imaging studies suggests burnout-related alterations, too, 

especially in the functional connectivity of the limbic networks (Golkar et al., 2014; 

Jovanovic, Perski, Berglund, & Savic, 2011). The limbic system contains a group of 

interacting cortical and subcortical brain structures essential for processing of 

emotion and stress, and regulating motivational behavior (e.g., Heimer & Van 

Hoesen, 2006; Morgane, Galler, & Mokler, 2005). For example, the regulation of 

stress responses during emotional conflict is thought to be processed via functional 

connectivity between the amygdala and anterior cingulate cortex, parts of the limbic 

system, and the connected prefrontal cortical areas (Egner, Etkin, Gale, & Hirsch, 

2008; Ochsner & Gross, 2005; Wager, Davidson, Hughes, Lindquist, & Ochsner,

2008). Notably, in a recent functional magnetic resonance image (fMRI) study of 

Golkar and colleagues (2014), participants with burnout symptoms showed weaker 

functional connectivity in the circuitry of the amygdala, anterior cingulate cortex, 

dorsolateral prefrontal cortex, and motor cortex than the control participants. 

Burnout symptoms were also associated with higher startle responses during down- 

regulation of negative emotion as measured with electromyographic recordings. 

Consequently, the authors suggested that the ability to modulate stressful emotions is 

impaired in burnout. Imbalanced interaction between the prefrontal cortex, anterior 

cingulate cortex, and amygdala has also been shown in relation to anxiety suggesting 

negative biases in the interpretation of emotion eliciting stimuli and enhanced 

selective attention to threat (Bishop, Duncan, Brett, & Lawrence, 2004; Bishop, 

2007), as well as major depression (Davidson, Pizzagalli, Nitschke, & Putnam, 2002) 

and chronic psychosocial stress (Liston et al., 2006; Liston, McEwen, & Casey,

2009). In addition, regional morphological changes in the brain have been reported 

in association with burnout, as shown by reductions in cortical thickness in the 

dorsolateral prefrontal cortex and anterior cingulate cortex (Blix, Perski, Berglund, &

14



Savic, 2013), as well as in the medial prefrontal cortex (Savic, 2013), all of which have 

an essential role in the cortico-limbic circuitry (e.g., Ochsner & Gross, 2005).

All in all, however, a coherent theoretical framework for cognitive functioning in 

burnout is to date still lacking, and the underlying brain mechanisms are largely 

unknown due to scarcity of the literature and a number of methodological differences 

between the studies (Deligkaris et al., 2014). For instance, these studies vary in terms 

of cognitive functions of interest and methods with which they are evaluated, the 

applied methods for assessing burnout symptoms, or the nature of samples of 

participants (clinical vs. non-clinical). Moreover, electrophysiological studies related 

to burnout are still almost absent. Notably however, brain research methods provide 

a means to study fast cognitive processes in a more objective manner than behavioral 

methods. Consequently, they may have the potential to contribute to our 

understanding of the health and performance consequences of long-term stress at 

work. The present thesis addresses the association of burnout with attention and task 

-related brain mechanisms by means of electrophysiological recordings.

1.2 Electroencephalography (EEG) and event-related potentials 

(ERP)

Cortical processes associated with sensory, cognitive, and motor events can be 

studied with electroencephalography (EEG). It is a non-invasive brain research 

technique in which the electrical activity of neurons is recorded with a set of 

electrodes placed on the surface of the scalp. The temporal resolution of the EEG is 

high, that is, in the range of milliseconds. From EEG, one can extract neural 

responses that are time-locked to specific events of interest, such as processing of a 

sound or allocation of visual or auditory attention, by averaging EEG signals typically 

across tens, hundreds or thousands of presentations of experimental stimuli (Luck, 

2014). These time-locked responses are called event-related potentials (ERPs). ERPs 

consist of a series of positive and negative voltage deflections, and they can be 

described across three dimensions: amplitude, latency, and scalp distribution. ERP 

recordings have been essential in understanding the cortical basis of fast sensory and 

cognitive processes. They are widely applied both in basic research, and in studies 

with different clinical subgroups such as patients with depression (McNeely, Lau,
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Christensen, & Alain, 2008), insomnia and/or excessive sleepiness (Gumenyuk, 

Belcher, Drake, & Roth, 2015), chronic fatigue syndrome (Polich, Moore, & 

Wiederhold, 1995), a brain lesion (Knight, 1984; Polich & Squire, 1993), coma 

patients (for a meta-analysis, see Daltrozzo, Wioland, Mutschler, & Kotchoubey, 

2007), schizophrenia (Alain, Hargrave, & Woods, 1998) or attention deficit 

hyperactivity disorder (Oja et al., 2016).

1.2.1 Central auditory processing

Occurrence of a discrete sound elicits the auditory N1 response, a negative deflection 

of the ERP peaking at around 100 ms from stimulus onset over the fronto-central 

scalp. The N1 consists of several distinct components as it has multiple active 

neuronal generators highly overlapping in time (for a review, see Näätänen & Picton, 

1987). Its amplitude is sensitive to the acoustical properties of eliciting sound as well 

as the stimulus-onset asynchrony (SOA, i.e., the time between onsets of successive 

stimuli) within a sequence of sounds, the N1 amplitude reducing with decreasing 

SOAs.

A stream of repeated standard sounds is thought to induce a transient memory 

trace. When a deviant sound is occasionally presented within such stream, the 

mismatch negativity (MMN) ERP response is generated even when the participant’s 

attention is directed away from this sound stream (Näätänen, Gaillard, & Mäntysalo, 

1978; for reviews, see Näätänen, Paavilainen, Rinne, & Alho, 2007; Näätänen, 

Astikainen, Ruusuvirta, & Huotilainen, 2010). The MMN appears to be elicited by 

any distinguishable change in a predictable pattern of sounds. Thus, while the N1 is 

suggested to reflect some stage of stimulus or feature detection, the MMN reflects 

detection of occasional changes in stimulus sequences. The MMN has its (negative) 

amplitude maximum over fronto-central scalp areas at about 100-250 ms after 

deviance onset. Since the MMN can be elicited in the absence of attention it was 

proposed to reflect a relatively automatic change detection process where the 

incoming stimulus is compared to and found deviating from the internal model of the 

auditory environment (Näätänen et al., 1978). More recent accounts on MMN 

elicitation stress the role of a larger neural model used to predict the future auditory 

events. On these theories, the MMN is related to the comparison process of a single 

acoustic event against the full neural model (Näätänen & Winkler, 1999; Näätänen et
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al., 2010), or even to the updating of the model (Sussman & Winkler, 2001; Winkler, 

Denham, & Nelken, 2009).

Traditionally, the MMN has been recorded using the so-called oddball paradigm 

(Näätänen et al., 1978) where infrequent (probability, p  = 10-20%) deviant sounds 

are randomly or pseudo-randomly scattered within a sequence of standard (p = 80

90%) sounds. Such recordings, however, are time-consuming. In the new multi

feature paradigms (e.g., Näätänen, Pakarinen, Rinne, & Takegata, 2004; Pakarinen, 

Takegata, Rinne, Huotilainen, & Näätänen, 2007) several different types of sound 

changes are presented within the same stimulus sequence while reducing the number 

of standard stimulus presentations proportionally. This allows for several MMNs to 

be elicited by changes in different auditory attributes in the same sequence of sounds, 

thereby markedly shortening the recording time. It is assumed that the deviant 

stimuli can strengthen the memory trace of the standard with respect to those 

stimulus features they have in common with (Nousak, Deacon, Ritter, & Vaughan, 

1996), albeit the MMN to a change in one feature is not, however, fully independent 

of all other stimulus features (Huotilainen et al., 1993; Paavilainen, Valppu, & 

Näätänen, 2001). Multi-feature paradigms have enabled an unprecedentedly fast 

parametric evaluation of central auditory processing of physical changes in simple 

tones (Näätänen et al., 2004; Pakarinen, Huotilainen, & Näätänen, 2010; Pakarinen 

et al., 2007), phonetic and acoustic changes in spoken syllables (Pakarinen et al.,

2009) and pseudowords (Partanen, Vainio, Kujala, & Huotilainen, 2011), changes in 

emotional prosody in spoken pseudowords (Thönnessen et al., 2010), as well as 

changes in sounds integrated in a musical context (Huotilainen, Putkinen, & 

Tervaniemi, 2009; Vuust et al., 2011). In the present thesis, a new variant of the 

multi-feature paradigm was developed in Study I, and applied in Study II with a 

sample of participants with burnout symptoms.

1.2.2 ERPs related to involuntary attention and target detection

Attention is directed to a certain event either voluntarily or involuntarily (for reviews, 

see Corbetta & Shulman, 2002; Soltani & Knight, 2000). An important function of 

cognitive control is to regulate the interplay of voluntary and involuntary attention in 

order to flexibly adapt to changes in the environment. For example, attention is easily 

captured by unexpected events in the acoustical environment, which thereby disrupt

17



the ongoing activity. Such sudden changes occurring outside the current focus of 

attention, however, may provide significant information for further adaptive 

behavior, and thus demand a switch of attention (Berti, 2008; Escera, Alho,

Schröger, & Winkler, 2000).

When attention is allocated to an auditory or a visual stimulus, a large positive 

deflection, the P3, is elicited. The P3 typically consists of more than one positive- 

polarity ERP components peaking between 250-600 ms from stimulus onset. 

Voluntary and involuntary attention allocation yield distinct ERPs differing in 

relation to their cortical distribution, peak latency, and cognitive function (for 

reviews, see Polich, 2007; Soltani & Knight, 2000).

Involuntary attention involves orienting towards an unexpected event (e.g., Alho 

et al., 1998; Escera, Alho, Winkler, & Näätänen, 1998; Hölig & Berti, 2010; Soltani & 

Knight, 2000). In the acoustic domain, task-irrelevant unexpected novel sounds elicit 

a P3a response, peaking approximately 250-400 ms following stimulus onset 

(Escera, Alho, Winkler, & Näätänen, 1998; Friedman, Cycowicz, & Gaeta, 2001; 

Knight, Scabini, Woods, & Clayworth, 1989; Knight, 1984), but also shorter P3a peak 

latencies have been reported when novel environmental sounds are used as the 

eliciting stimuli (Alho et al., 1998). The P3a is thought to reflect involuntary capture 

of attention. Emotionally strongly valenced stimuli have been shown to elicit stronger 

and faster P3a responses than neutral stimuli (Campanella et al., 2002; Dominguez- 

Borräs, Garcia-Garcia, & Escera, 2008). Especially stimuli with negative contents 

may enhance novelty processing under potentially threatening conditions. In the 

present thesis, Studies I-III address the topic of novelty processing.

Task-relevant stimuli, in turn, elicit a P3b response, peaking approximately at 

300-600 ms after stimulus onset over parietal scalp sites. It is thought to reflect a 

range of cognitive processes, such as context updating in working-memory, or 

activation of relevant task set (Donchin & Coles, 1988; Hölig & Berti, 2010; Picton, 

1992; Polich, 2007; Soltani & Knight, 2000). In the research literature, the terms 

“P3”, “P300”, and “P3b” are often used partially synonymously to refer mainly to 

volitional target stimulus processing. In the present thesis, the “P3b” is used in Study 

III, and “P3” in Study IV to refer to the late positive response associated with target 

detection.

The scalp distribution of the P3a is more anterior than that of the P3b suggesting 

different neural generators. Both involuntary attention capture and voluntary target

18



detection are generated by a widespread network of cortical regions, apparently 

including the dorsolateral prefrontal cortex, temporo-parietal junction, and medial 

temporal regions (Escera et al., 1998; Friedman et al., 2001; Knight et al., 1989; 

Knight, 1997; Polich, 2007; Soltani & Knight, 2000).

Because responses in the P3 family are thought to reflect attention and memory 

processes, they have been widely studied in clinical and subclinical groups (Polich & 

Kok, 1995; Polich & Herbst, 2000; Polich, 2007; Soltani & Knight, 2000). For 

example, the P3 response has been suggested to be susceptible to stress as well as 

fluctuations in the participant’s level of arousal. More specifically, the P3b amplitude 

tends to attenuate with high stress (Shackman, Maxwell, McMenamin, Greischar, & 

Davidson, 2011), and both P3a and P3b amplitudes have been shown to reduce with 

increased sleepiness following sleep deprivation (for reviews, see Colrain & Campbell, 

2007; Polich & Kok, 1995). In addition, there is evidence suggesting depression- 

related attenuation both in P3a amplitude in response to novel auditory stimuli 

(Bruder et al., 2009) and in task-related P3b amplitude together with lengthened P3b 

latency in response to emotionally positively valenced visual stimuli (Cavanagh & 

Geisler, 2006). Together these findings suggest disturbed attention- and task-related 

electrical brain activity in these conditions.

1.3 Top-down mechanisms in goal-directed behavior

At work, goal-directed behavior and the ability to rapidly and accurately switch 

attention between tasks and assignments are essential prerequisites for efficient and 

coherent performance. For this, specific cognitive processes need to be adaptively 

controlled and coordinated. Such top-down control mechanisms are called executive 

functions. Factor analytic and meta-analytic reviews have consistently identified 

three core executive functions: updating and monitoring working-memory 

representations, attentional shifting between task sets, and inhibition of prepotent 

responses (Miyake et al., 2000). Working-memory is the cognitive system 

responsible for storing, integrating, updating, and manipulating information during 

complex activities (Baddeley & Hitch, 1974; Baddeley, 1992, 2000). Typically in 

working-memory tasks, an increase in memory load results in longer reaction times 

(RTs) and higher error rates (e.g., Smith & Jonides, 1997). Also attentional switching
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between tasks, or task rules, typically comes with a cost, that is, responses are slower 

and, often, more error-prone immediately after a switch in the task compared to 

repeating the same task, a phenomenon called switch cost (Meiran, 1996; Monsell, 

2003; Rogers & Monsell, 1995). Inhibition, in turn, refers here to one’s ability to 

intentionally suppress inappropriate responses and behaviors (Jurado & Rosselli, 

2007; Miyake et al., 2000).

In summary, working-memory and attention interact in a way that enables us to 

focus on relevant items and maintain current goals. In the present thesis, Study III 

addresses the association between burnout and distractibility during working- 

memory performance. Study IV, in turn, addresses the association between burnout 

and shifting of attentional set.

1.3.1 Widespread cortical activation in working-memory updating

In order to investigate the neural underpinnings of working-memory, the n-back 

paradigm is commonly applied. In this paradigm, participants are asked to monitor a 

series of stimuli and to respond if the incoming stimulus matches to the one 

presented n trials before. Several neuroimaging studies have shown that working- 

memory updating brings about considerable load-dependent activation on a fronto

parietal network, including the dorsolateral prefrontal cortex, posterior and inferior 

regions of the frontal cortex, and the posterior parietal cortex (e.g., Alain, Shen, Yu, & 

Grady, 2010; Carlson et al., 1998; Cohen et al., 1997; Leung & Alain, 2011; Owen, 

McMillan, Laird, & Bullmore, 2005; Rämä et al., 2001; Smith & Jonides, 1997). 

Evidence from ERP studies suggests that demands placed on the working-memory 

affect the P3 in such a way that as the memory load increases, the P3 amplitude 

decreases over parietal regions (Wintink, Segalowitz, & Cudmore, 2001; for a review, 

see Kok, 2001).

Clinical studies have shown that performance on an n-back task is not necessarily 

affected by partial or total sleep deprivation (Lo et al., 2012), or major depression 

(Harvey et al., 2005). However, despite comparable working-memory task 

performance, Harvey and colleagues (2005) observed in their fMRI study that the 

depressed patients showed greater activation of the lateral prefrontal cortex and the 

anterior cingulate compared to healthy control participants to achieve similar 

performance.
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1.3.2 Working-memory load affects involuntary attention

Unexpected, novel sounds delivered during performance of a visual task cause a delay 

in participants’ responses to task-relevant stimuli, as shown by studies using 

auditory-distraction paradigms, that is, participants are instructed to ignore the 

auditory stimulation while performing a visual task (Escera et al., 1998; Escera, Yago, 

& Alho, 2001; Escera & Corral, 2007). Two distinct consecutive phases, early and 

late, of the auditory P3a response have been identified to be elicited by distractor 

sounds, peaking approximately 230 and 320 ms after stimulus onset, respectively 

(Escera et al., 1998; Winkler, Denham, & Escera, 2015; Yago, Escera, Alho, Giard, & 

Serra-Grabulosa, 2003). The early phase of the P3a is maximal over temporo-parietal 

and fronto-temporal locations, whereas the later phase has a wider distribution 

spreading towards prefrontal and superior parietal regions (Escera et al., 1998; Yago 

et al., 2003).

When the task requires working-memory, the memory load modulates the 

distraction caused by the task-irrelevant auditory stimuli (Berti & Schroger, 2003; 

SanMiguel, Corral, & Escera, 2008). The distracting effect of novel sounds over the 

performance on the working-memory task is reduced when the memory load is high. 

This is indicated both behaviorally and by attenuation of the P3a amplitude, 

especially the later phase of the P3a, elicited by the distractor sounds. It should be 

noted, however, that other studies have suggested contradictory effects, that is, 

distractor effects are greater in high than in low working-memory load (Lavie & de 

Fockert, 2005; Lavie, 2005). In such proposals, working-memory load will increase 

distraction only when a conflict between target stimuli and distractor stimuli needs to 

be resolved but not when there is no response conflict generated by the stimuli as is 

the case in the auditory-distraction paradigms.

1.3.3 Attentional set shifting in the brain

Goal-directed control of attention is commonly investigated using task switching 

paradigms (for a review, see Monsell, 2003) requiring rapid shifting between simple 

task sets, or specific rules of a task. Good performance requires sustained attention
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on the task at hand when the task rule remains the same, but also flexibility that 

allows rapid execution of task set shifting when necessary. This switching between 

task-sets typically results in performance decrement, that is, the switch cost (Meiran, 

1996; Monsell, 2003; Rogers & Monsell, 1995). Furthermore, performance is 

decreased to a greater extent following sleep deprivation (Heuer, Kleinsorge, Klein, & 

Kohlisch, 2004), and in certain clinical conditions affecting frontal functions, such as 

severe burnout (van Dam et al., 2011; van Dam, Keijsers, Eling, & Becker, 2012), 

depression (Meiran, Diamond, Toder, & Nemets, 2011), and prefrontal cortical 

lesions (Barcelo & Knight, 2002).

There are a number of versions of the task switching paradigm. A widely applied 

paradigm is the alternating runs paradigm introduced by Rogers and Monsell (1995) 

in which switching between two simple tasks is predictable as the trials are presented 

in succession in a clockwise manner. Another popular variant is the task-cueing 

paradigm in which switch and repetition trials are randomly presented in a sequence 

with each upcoming target stimulus indicated by a cue, that is, whether the task rule 

will be switched or repeated (Meiran, 1996). The time interval between the cue and 

the target affects the switch cost: the shorter the interval, the larger the switch cost 

(Logan & Bundesen, 2003, 2004; Meiran, 1996). When the cue and target are 

presented simultaneously, for instance, when the location of the target stimulus 

indicates the task to be completed on a given trial, the cue and the possible task 

switch it instructs need to be encoded in parallel with target stimulus processing 

which may be disrupted, resulting in a further increase in switch cost (Logan & 

Bundesen, 2003; Nicholson, Karayanidis, Poboka, Heathcote, & Michie, 2005). In 

addition, with short cue-target interval or simultaneous cue-target presentation, 

there is a substantial temporal overlap between cue-related and target-related 

processes as indicated by coinciding switch-related positive deflections in the ERP 

waveforms (Nicholson et al., 2005).

Neural processes related to task switching can indeed be studied separately, for 

example, in relation to the cue, the target, or the motor response. ERP responses 

time-locked to the onset of the cue, presented separately from the target, typically 

show a larger posterior positivity for switch trials than repetition trials, as indicated 

by enhanced cue-related centro-parietal P3-like responses (Barcelo, Perianez, & 

Knight, 2002; Gajewski & Falkenstein, 2011; Karayanidis et al., 2010; Kieffaber & 

Hetrick, 2005; Kieffaber, O’Donnell, Shekhar, & Hetrick, 2007; Kopp & Lange, 2013;
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Lange, Seer, Müller, & Kopp, 2015; Nicholson, Karayanidis, Bumak, Poboka, & 

Michie, 2006; Nicholson et al., 2005; Tarantino, Mazzonetto, & Vallesi, 2016) and a 

fronto-central task-novelty P3 response (Barcelo, Escera, Corral, & Perianez, 2006; 

Barcelo et al., 2002; Perianez & Barcelo, 2009). Recently, Berti (2016) applied a 

memory updating task in which either the same or another memory items were 

compared with the preceding trials, resulting in switch and repetition trials. Both 

trial types elicited a large bi-phasic P3-like response being more pronounced for the 

switch than the repetition trials.

By contrast, P3-like responses time-locked to the target stimulus have been 

typically shown to be smaller in amplitude for switch trials compared to repetition 

trials (Barcelo, Munoz-Cespedes, Pozo, & Rubia, 2000; Gajewski & Falkenstein, 2011; 

Goffaux, Phillips, Sinai, & Pushkar, 2006; Hsieh & Liu, 2008; Kieffaber & Hetrick, 

2005; Tarantino et al., 2016) suggesting potentially functionally distinct target- 

related and cue-related processes. Furthermore, ERPs related to the response given 

to the preceding trial are characterized by a parietally maximal negativity between 

the response and the onset of the subsequent stimulus, reaching its maximal around 

400 ms post-response (Karayanidis, Coltheart, Michie, & Murphy, 2003). When the 

response-stimulus interval is short so that there is only little time to prepare for the 

upcoming stimulus, there is likely a temporal overlap between response-related and 

stimulus-related processes (Karayanidis et al., 2003).

In sum, several studies applying a wide variety of stimulus and task manipulations 

indicate that the switch-related ERP responses consist of many underlying 

components, and that various control processes are recruited during performance of 

task switching, including context monitoring and updating, rapid reconfiguration, 

and task set preparation and execution (for a review, see Karayanidis et al., 2010). In 

the present thesis, we applied a paradigm with random switches, simultaneous cue- 

target presentation, and short response-stimulus interval (Study IV).
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2 Aims of Studies I-IV

The present thesis explores attentional and cognitive control processes associated 

with burnout as reflected by ERPs. First, in Study I, we aimed at developing a variant 

of the multi-feature paradigm that allows the assessment of natural speech-sound 

processing as well as involuntary attention switch towards speech sound stimuli 

containing strong emotional prosody within one short recording time. Second, in 

Study II, we used the paradigm developed in Study I to investigate whether pre- 

attentive auditory change-detection processing as reflected by the MMN, and 

attention capture towards emotionally uttered speech sounds as reflected by the P3a 

are affected by burnout. Third, the aim was to explore whether or not burnout is 

associated with performance in a visual task with varying memory loads, and 

involuntary orienting of attention to unexpected, novel sounds during task 

performance (Study III), and fourth, rapid shifting between task sets (Study IV). In 

Studies II and III, the group comparisons were made between two groups, that is, 

burnout and control groups, whereas in Study IV, the group comparisons were 

conducted between three groups, that is, mild burnout, severe burnout, and control 

groups.
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3 Methods

3.1 Participants and procedure

All studies in the present thesis are part of the “Job Burnout and Cognition” research 

project carried out at the Finnish Institute of Occupational Health (FIOH) in 

collaboration with the Occupational Health Centre of the city of Helsinki. The 

number of initially volunteered participants was 67, age range being 27-62 years 

(Studies II-IV). However, in Study III, one participant did not complete the applied 

paradigm, thus resulting in data from 66 participants. In Study IV, three participants 

did not complete the applied paradigm, resulting in data from 64 participants.

The participants were customers of the Occupational Health Centre of the city of 

Helsinki, or employees of the city of Helsinki. They were recruited through 

advertisements informing about the present research project in which association 

between burnout symptoms and cognitive functions was explored by means of brain 

research and neuropsychological methods. The advertisements were displayed at the 

local occupational health care station, as well as on the intranet sites of the 

aforementioned organizations. Alternatively, the participants were referred by a 

physician, psychologist, or nurse during appointments at the local occupational 

health care station to participate in the study. All control participants and 

approximately four fifths of the burnout participants entered the study after noticing 

the advertisement. About one fifth of the burnout participants were referred by an 

occupational health practitioner. At the time of the study, the participants were 

working.

All participants were first interviewed by telephone by the author of the present 

thesis to ensure that the potentially experienced symptoms of burnout were work- 

related, or to find out whether they volunteered as possible control participants. The 

interview included questions about, for instance, the symptoms and their onset, 

possible diagnosed neurologic or severe psychiatric illnesses (exclusion criteria), 

other possible etiology for the symptoms, education, and employment status. All 

worked only during daytime, that is, shift workers were included but night-shift 

workers were excluded. Other exclusion criteria were (i) excessive use of alcohol (i.e.,
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> 40 g of ethanol per day for men, > 20 g of ethanol per day for women; Alcohol: 

Current Care Guidelines, 2011) or drugs, (ii) diagnosed severe psychiatric or 

neurological disorders, and (iii) schizophrenia in first grade family members. Also 

other diagnosed illnesses of organic origin resulting in fatigue, such as an organic 

sleep disorder or severe anemia, were considered as exclusion criteria. All 

participants reported having normal or corrected-to-normal vision, and no hearing 

deficits. After recruitment, an appointment was made for the participation in the 

study.

Written informed consent for voluntary participation was obtained from all 

participants before entering the study. The protocol followed the Declaration of 

Helsinki for the rights of the participants and the procedures of the study. An ethical 

approval of the present research protocol was obtained from The Coordinating Ethics 

Committee of the Hospital District of Helsinki and Uusimaa. For their participation 

in the study, all participants were given a book gift and a gift card.

Final groupings of the participants into the burnout and control groups (Studies II 

and III) as well as to the mild burnout, severe burnout, and control groups (Study IV) 

were implemented in the following way. The Finnish version of the Maslach Burnout 

Inventory -  General Survey (MBI-GS; Kalimo, Hakanen, & Toppinen-Tanner, 2006) 

was completed only after the ERP recordings, and the scores of the survey were used 

as a grouping criterion (Studies II and III: the total score cut-off point of 1.5, i.e., at 

least mild burnout, and Study IV: cut-off points of 1.5 for mild burnout, and 3.5 for 

severe burnout). The participants in Study I were the same as the control participants 

in Study II.

Based on exclusion criteria of EEG analysis (see section “3.4 EEG data acquisition 

and analysis” for details), complete datasets of 61, 49, and 57 participants were 

selected for further analysis in Studies II, III, and IV, respectively. In Study II, data 

from six participants (4 burnout and 2 control participants) were discarded due to 

excessive artifacts in their EEG, or technical difficulties in the EEG recordings. In 

Study III, data from 17 participants (10 burnout and 7 control participants), and in 

Study IV, data from 7 participants (3 mild burnout, 2 severe burnout, and 2 control 

participants) were discarded due to aforementioned reasons. The resulting groups 

did not differ statistically in terms of age, gender, education or working experience.

The participants were tested individually in two sessions, one consisting of 

measurements of ERPs in five different paradigms after which self-reports were
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completed, and the other of neuropsychological assessment (Table 1). The 

participants were given the opportunity to attend both sessions on one day or on two 

separate days, according to their preference. The ERP recordings were conducted in 

the morning: they began around 9 am, they lasted approximately 2.5 hours 

(including breaks). They were completed in a similar manner for all participants, 

starting from the cognitively most demanding experiments. Within 1-2 months after 

the entire study protocol, the participants were offered an opportunity to get 

individual feedback on the self-reports as well as the performance in the 

neuropsychological assessment, and to discuss their work situation with a 

psychologist (the author of the present thesis) and a neurologist from the Finnish 

Institute of Occupational Health.

In the present thesis, results from three out of five ERP paradigms are reported: 

the multi-feature MMN paradigm with emotional utterances of rare sounds (Studies I 

and II), the n-back paradigm with distractor sounds (Study III), and the task 

switching paradigm (Study IV). The two ERP paradigms not reported in the present 

thesis (Tasks A and B in Table 1) also required active engagement in cognitively 

demanding tasks.

Table 1. The ERP recording sessions always began in the morning around 9 am, and they lasted 
approximately 2.5 h (including breaks). Final grouping of the participants into study groups was 
completed after the ERP recordings on the basis of their responses to the burnout symptom 
questionnaire MBI-GS.

Session 1 Electrophysiological recordings

Experiment

Time
(minutes)

Task A Break Study Break 
IV

20 5 30 10

Study
III
30

Break Task B Studies I  
and II 

5 15 30

Questionnaires

20

Session 2 Neuropsychological assessment 60 min

Session 3 Individual feedback 30 min

3.2 Collection of self-reports

In order to evaluate burnout symptoms, the Finnish version of the MBI-GS (Kalimo, 

Hakanen, & Toppinen-Tanner, 2006) and the Shirom-Melamed Burnout Measure 

(SMBM; Melamed, Kushnir, & Shirom, 1992; Shirom & Ezrachi, 2003; Shirom &
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Melamed, 2006) were used. We chose to use the MBI-GS as the grouping criterion as 

it is widely used in research and maintains a consistent factor structure across a 

variety of occupations (Leiter & Schaufeli, 1996; Schutte, Toppinen, Kalimo, & 

Schaufeli, 2000). The MBI-GS manual provides instructions for calculating the total 

score (range 0-6), and separate scores for each subscale (exhaustion, cynicism, and 

professional inefficacy).

In addition, the following clinical measures were completed: the Finnish versions 

of Beck’s Depression Inventory (BDI-II, scoring range 0-63; Beck, Steer, & Brown, 

1996, Finnish norms, 2004) and Beck’s Anxiety Inventory (BAI, scoring range 0-63; 

Beck & Steer, 1990), a questionnaire concerning possible prescribed medication for 

sleep disturbances and mood disorders, and a modified version of the Basic Nordic 

Sleeping Questionnaire for screening sleep disturbances (BNSQ, scoring range 0-11; 

Partinen & Gislason, 1995). Based on the BNSQ, sleep disturbances were evaluated 

with four weighted dimensions (weight coefficient in parenthesis): insufficient sleep 

(high), insomnia (high), sleep-apnea related symptoms (low), and excessive daytime 

sleepiness (very low). In addition, the participants were asked about caffeine intake 

within 24 hours prior to the recordings. Before the start of the ERP recording session, 

and between experimental paradigms, the participants were asked to rate their 

subjective sleepiness on the 9-point Karolinska Sleepiness Scale (KSS; Akerstedt & 

Gillberg, 1990) as reported in Studies II and III. They were also asked to fill in the 

NASA Task Load Index questionnaire (NASA-TLX; Hart & Staveland, 1988) to 

evaluate subjective workload (e.g., effort put to the task) while performing the 

preceding task in the ERP recording session as reported in Study IV.
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Table 2. Summary of the paradigms.

Paradigm Stimuli T a s k  o f the participant Behavioral response N um ber of stimuli

Studies I  and II
M ulti-feature 
M M N  w ith rare

Spoken pseudowords: 
standard /ta:ta/.

Ignore the pseudow ords N o behavioral response required Standard and deviants: 
210 each (p ~  0,09)

em otional
utterances

nine deviants,
three em otionally  uttered
variants

C oncentrate on w atching a m uted video 
film

E m otionally  uttered variants: 
42 each (p 0,02)

Study III
N -back with 
distractor sounds

Visual: num bers (0-9) C oncentrate on perform ing the visual task: In all conditions: In each condition:

0-back: Identify the current stim ulus as Button press for each visual Visual: 212, 33%  m atches
predeterm ined ‘5 ’ or any  other stim ulus 

I-back: D eterm ine w hether the current

stim ulus (keyboard Ctrl buttons 
covered w ith tape w ere used)

num ber was the sam e or not as the Response to ‘m atch ’ stimulus:
previous one button press with right index finger

2-back: Each stim ulus was com pared with 
the stim ulus presented tw o tria ls before

Response to ‘m ism atch’ stim ulus: 
button press with left index finger

Sounds: environm ental sounds Ignore the auditory stimuli N o behavioral response for the 
auditory stimuli

D istractor sounds: 32

Study I V
T ask sw itching Latin  letters

and Arabic num bers (2-9)

Letter-num ber pairs presented 
either above o r below  a solid 
sta tionary  line

Above the line: classify the num ber in the 
letter-num ber pair as odd or even

Below the line: classify the letter in the 
letter-num ber pair as consonant or vowel

Button press for each stim ulus pair 
w ith  right or left index finger (see 
text for detailed instructions)

545 stim ulus pairs w ith 122 
task switches



3.3 Experimental paradigms in Studies I-IV

Stimulus presentation. The auditory stimuli (Studies I-III) were presented via two 

loudspeakers (Genelec, Iisalmi, Finland) placed on the wall of the chamber at a 

height of 160 cm and at a distance of 130 cm from the participant. The loudspeakers 

were placed at approximately 50 degrees to the left and right of the participant. 

Average sound intensity was 57 decibels (dB) sound pressure level (SPL), and it was 

measured with an SPL meter placed at the position of the participant’s head.

The visual stimuli were white numbers (Study III) and letter-number pairs (Study 

IV) on a black background (static contrast ratio 1000:1), presented in the center of a 

computer screen each character subtending a visual angle of 1°  x 1.9° (Study III) and 

2.4° x 1.6° (Study IV) at a distance of 80 cm in front of the participant. In Study IV, a 

solid, white horizontal stationary line (height 0.3°, length 5.6°) was present at the 

center of the screen throughout the paradigm, and the vertical gap between the 

letter-number pair and the line was 0.5°. In Studies I and II, a muted nature film was 

used as a visual stimulus. All experiments were constructed and presented with 

Presentation software (version 14.9, Neurobehavioral Systems, Inc., Berkeley, 

California). Table 2 summarizes the experimental paradigms applied in the present 

thesis, and they are described in detail in the text below.

Multi-feature MMN with emotional utterances o f rarely occurring sounds (Studies I  

and II). The stimuli in the multi-feature MMN paradigm were as follows, and 

described in detail in Table 3: The standard stimulus was a 336-ms natural utterance 

of a bisyllabic pseudoword /ta-ta/, uttered by a native Finnish female speaker. As is 

typical of the Finnish language, the stress was on the first syllable as indicated by 

slightly higher F0 and intensity compared to the second syllable. The nine deviants 

differed from the standard in linguistically relevant manners such as spectral density, 

frequency, intensity, location, consonant duration, or vowel change. The deviation 

always occurred in the second syllable of the pseudoword except for the location 

deviant. It was identical to the standard with the exception of the 90 as interaural 

time difference between the stereo channels so that half of the location deviants were 

perceived as coming 90° from the left and half 90° from the right. The vowel-change 

deviant as well as the vowel-duration deviant were recordings of natural utterances, 

and thus the physical characteristics of these deviants slightly differed from the
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standard on the first syllable, too. The remaining seven deviants were created by 

digitally editing the standard stimulus and were hence identical to the standard 

except for the edited auditory attribute. In addition, three variants of the standard 

sound with strong emotional prosody, that is, happy, angry, and sad, were used as 

rarely occurring, novelty-like variants of the standard. The physical characteristics of 

these emotional variants differed considerably from those of the standard, for 

example in length, pitch, and momentary intensity.

All stimuli were presented within the same stimulus sequence. The probabilities of 

the standard and the nine deviant stimuli were identical. The standard stimulus and 

each deviant were presented 210 times each (p  » 0.09 for each), and the three 

emotional utterances were presented 42 times each (p » 0.02 for each). The stimuli 

were pseudo-randomized in a way that neither the same deviant type nor the 

standard were ever repeated consecutively, and the emotionally uttered rare 

pseudowords were presented in varying intervals, once every 10 to 16 seconds. Thus, 

the arrangement of stimuli is similar to the no-standard multi-feature paradigm 

(Pakarinen et al., 2010) except that the present paradigm includes the standard and 

the emotionally uttered rare stimuli. The stimulus-onset asynchrony (SOA) was 750 

ms, and the total recording time was 28 min.
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Table 3 . Stimulus characteristics for Studies I and II.

Stimulus Utterance Duration (ms)

Total Syllable

Intensity (dB) Frequency (Hz)

Syllable Syllable
1“ 2nd jst 2nd Is* 2 nd

Standard /ta-ta/ 336 168 168 -2.5 175 168.5

Deviants

Density /ta-ta/ 336 168 168

Deviance spesifics

Linear attenuation o f  upper and/or lower harmonics

Frequency /ta-ta/ 336 168 168

within 100-5000 Hz (50%  each); perceived as pressed vs. 
breathy voicing

Frequency +7-25.5 Hz (50%  each); perceived as pitch

Intensity /ta-ta/ 336 168 168

changes
Intensity + /-6  dB (50%  each); perceived as loudness

Location /ta-ta/ 336 168 168

changes
Entire stimulus perceived from 90° left or right

Noise /ta-ta/ 336 168 168

(50%  each); 90 gs interaural time difference 

Overlapping 60 ms (including 20 ms rise/fall times) o f

Consonant /ta-:ta / 420 144 176

20 dB o f  pink noise at 200-260 ms
Removal o f  16 ms at 140-160 ms, and addition o f

duration

Omission /ta-/ 172 168 0

100 ms silence between the syllables at 140-240 ms 

Linear fade out at 160-172 ms

Vowel /ta-to/ 336 168 168 Natural utterance
change

Vowel /ta-ta:/ 400 168 232

Intensity difference from Std: < 1 dB 
Frequencies: 175 Hz and 168.5 Hz for the 1st 
and 2nd syllables, respectively*
Natural utterance

duration

Emotional variants (natural utterances)

Happy /ta-ta:/ 388 125 263

Intensity difference o f  the I3* syllable from Std: -2 dB 
Frequencies 168 Hz and 162 Hz*

Frequencies: 276 Hz and 177 Hz*

Angry /ta-ta/ 337 125 212

Intensities: + 1 dB and - 2 dB* 

Frequencies: 276 Hz and 260 Hz*

Sad /ta:-ta:/ 436 218 218
Intensities: - 1 dB and - 2 dB* 
Frequencies: 196 Hz and 163 Hz*
Intensities: +  3 dB and - 6 dB*

Note: Deviation always occurred in the 2nd syllable of the pseudoword, except for the sound-source 
location deviant which was identical to the standard except for the 90 as interaural time difference 
between the left and right ears (compared to the front location of all other stimuli). Std denotes the 
Standard.
* Presented values for the first and second syllables of the pseudoword, respectively.

N-back task (Study III). The participants completed a visual n-back task consisting 

of 0-, 1-, and 2-back conditions. The conditions were presented in the same order (0

1-2) for all participants. Table 2 summarizes the tasks the participants performed on 

a given condition. Response to a ‘match’ stimulus was given with a button press with 

right index finger, and response to a ‘mismatch’ stimulus was given with a button 

press with left index finger. Each condition consisted of a total of 212 stimuli
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delivered in a pseudorandom order so that 33% of them were matches and 67% 

mismatches in a given n-back task (Figure 1). Stimulus duration was 500 ms, and the 

SOA was 2000 ms. During the delay period, a black screen was visible.

During the visually presented n-back tasks, participants were presented with 

isolated complex environmental distractor sounds, such as those produced by a 

hammer, drill, telephone ringing, door or rain. Sound duration was 200 ms. The 

sounds were the same as used by Escera and colleagues (Escera et al., 1998; Escera, 

Yago, Corral, Corbera, & Nunez, 2003). Ninety-six most identifiable novel sounds 

according to the classification of Escera and colleagues (2003) were presented in 

varying intervals, once every 10-16 seconds. Each complex sound was presented only 

once during the experiment. In each condition, thirty-two distractor sounds were 

presented.

Figure 1. Schematic example of the experimental design in Study III. Each line in the figure represents 
one condition. Each condition comprised 212 visual stimuli, 33% of them being matches in the 0-back, 
1-back, and 2-back task. During the visual tasks, ninety-six novel sounds were presented, thirty-two in 
each n-back condition, once every 10-16  seconds. Participants were instructed to concentrate on the 
visual task, respond to every visual stimulus with right or left button press, and ignore the sounds. The 
gray toned visual stimuli are preceded or followed by a distractor sound. ‘L’ denotes a correct response 
with the left button press; ‘R ’ denotes a correct response with the right button press.

Task switching (Study IV). Each letter-number pair was presented in 

pseudorandom order with the letter presented on the left side of the pair. The 

position of the letter-number pair was always either above or below the horizontal 

line, and this served as a cue according to which the participants were required to 

judge the stimulus pairs: when the stimulus pair occurred above the horizontal line, 

the participant had to classify the number in the letter-number pair as odd or even. 

When it occurred below the line, the participant had to classify the letter as 

consonant or vowel. The decision to be made in each task was hence unknown to the 

participant until the letter-number pair was presented. The participants were 

instructed to respond to each stimulus pair with a button press: consonants and odd 

numbers required a response with the left index finger while vowels and even
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numbers required a response with the right index finger. To avoid the possibility of 

participants fixating their gaze on exact upcoming stimulus locations above or below 

the line, a horizontal jitter in the location of the stimulus was applied. The pairing of 

the letter-number pairs was semi-randomized so that approximately half of the 

letter-number pairs were unambiguously correct in the task context and half of them 

were ambiguously correct in the task context, that is, the task-irrelevant stimulus in 

the stimulus pair was mapped either to a response with same or the other hand (e.g., 

when the task was to classify the number as odd or even in ‘E5’, a correct response 

was given with left hand, whereas the task-irrelevant character was mapped to a 

correct response with right hand).

In all, the paradigm consisted of 545 stimulus pairs with 122 task switches (22%) 

and 423 task repetitions (78%). Task runs of one to nine stimulus pairs were 

presented in succession above or below the line before a switch. In the entire 

sequence, there were 20 task runs (16%) consisting of only one stimulus pair before a 

switch, 26 task runs (21%) constituting two repetitions before the switch, and on 

average 11 task runs (9%) of 3 to 9 repetitions, each.

Each stimulus pair was shown until response, however, not longer than 2500 ms 

(Figure 2). The presentation rate was tied to the participant’s response in the 

following way: a correct response was followed by a 150 ms delay period after which 

the next stimulus pair was presented. An incorrect or missed response was followed 

by a 1500 ms delay until the next stimulus pair was presented.

(Switch) (Switch) (Switch)

R5 K8 A2 M3 E7 A5 K9

consonant [L] /vow e l [R] G8 U4 13

E
Stimulus Stimulus

Reaction time 1 RS! _ Reaction time
...2500 \ 150/1500 ...2500 Time in ms

t
Response

Figure 2. Study IV: Schematic example of the experimental design (A), and illustration of the 
presentation rate (B). The location (above or below the horizontal line) of the stimulus pair signaled the 
task to be completed on that trial. For illustration purposes, switch trials are marked with (Switch). [L]: 
response with left button press, [R]: response with the right button press. Response-stimulus interval 
(RSI; the temporal interval between the response given to the preceding stimulus pair and the onset of 
the next one) was either 150  ms or 1500  ms, depending on the response given (correct or incorrect, 
respectively).

0
odd [L] I even [R]
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Performance and feedback in behavioral tasks. In Studies III and IV, task 

performance, that is, accuracy and reaction times (RTs), was recorded. Speed and 

accuracy of response were equally emphasized in the task instructions. Responses 

were given with keyboard button presses (left and right ctrl buttons covered with 

tape). In Study III, participants did not receive feedback on their performance 

whereas in Study IV, the length of the delay period between the stimulus pairs served 

as feedback of a correct or incorrect response. Prior to the tasks in Studies III and IV, 

participants were presented with written instructions and they practiced the tasks in 

order to familiarize themselves with the experiments. In Study IV, the participants 

first practiced the tasks separately above and below the solid line and, thereafter, the 

task switching task was practiced. In Study III, the participants had a brief break 

between conditions. The experiment in Study IV was divided into two blocks, 

enabling a brief break between the blocks.

3.4 EEG data acquisition and analysis

In all studies of the present thesis, the EEG recordings were conducted in a similar 

manner. The recordings were carried out in a soundproofed chamber where the 

participants were comfortably seated at an office workstation. The participants were 

instructed to sit still and to blink as little as possible. The EEG was recorded using a 

32-channel active electrode system (actiCAP, Brain Products GmbH, Gilching, 

Germany) connected to a neurOne amplifier (Mega Electronics Ltd., Kuopio, 

Finland). The EEG was recorded from 26 electrodes placed according to the extended 

international 10-20 electrode system (excluding channels O1, O2, TP9, TP10, PO9, 

and PO10). The common reference and ground were located at FCz and AFz, 

respectively. Two additional electrodes were placed at the left and right mastoids to 

allow re-referencing in later analyses. In addition, a bipolar horizontal electro

oculogram was recorded from two electrodes placed on the left and right canthi, and 

a vertical electro-oculogram was recorded from electrodes placed above and below 

the left eye. All biosignals were sampled at 500 Hz.

In all studies, the EEG analyses were conducted using EEGLAB (Delorme & 

Makeig, 2004). Filtering, epoching, and artefact rejection were conducted in the
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following way, after which individual waveforms were separately created for each 

participant, stimulus type, and task condition/trial type. In all studies, the EEG was 

bandpass-filtered offline (0.5-30 Hz), and re-referenced to the mean signal of the 

mastoid electrodes. Epochs were extracted from the continuous EEG records as 

follows. In Studies I and II, ERPs were obtained by averaging 600-ms EEG epochs 

including a 100-ms pre-stimulus period and a 500-ms post-stimulus period, baseline 

corrected, and separately averaged for each electrode site, and each of the 13 stimulus 

types (i.e., standard, nine deviants, and three emotionally uttered variants). The 

mean voltage of the pre-stimulus period served as a baseline for the amplitude 

measurements in all studies. In Study III, the signals were averaged over a time

interval of -100-800ms relative to the stimulus onset, separately for each electrode 

site, stimulus type (i.e., auditory and visual), and task condition (0-back, 1-back and

2-back). In Study IV, the signals were averaged over a time-interval of -100-700ms 

relative to the stimulus onset. The signals for the switch trials were averaged 

separately, whereas the repetition trials (2-9 repetitions) were averaged together to 

increase the signal-to-noise ratio. Furthermore, in Studies III (regarding visual trials) 

and IV, only trials preceding correct responses (to matched stimuli in Study III) were 

analyzed (see sections “3.4.2 Study III”, and “3.4.3 Study IV” for details). In all 

studies, the epochs contaminated by artifacts caused by eye movements, blinks or 

other extracerebral factors and producing voltage changes exceeding ±65 aV at any 

electrode were omitted from averaging.

The following fronto-parietal midline electrodes with the most pronounced 

amplitude were chosen for further calculation of ERPs: Fz in Studies I and II, as well 

as for the auditory ERPs in Study III; Pz in Study IV and for the visual ERPs in Study 

III.

3.4.1 Studies I and II

In Studies I and II, only data from those participants whose averaged ERP contained 

more than 65% of the total number of the presented stimuli (equals at least 137 

standard trials, 137 of each of the deviant trials, and 28 of each of the emotional 

variant trials) were included in further analyses.

In order to evaluate early perceptual auditory processing, the averaged responses 

to the standard stimulus were used to calculate the N1 mean amplitudes and peak

36



latencies in Study II. To delineate the MMN in Studies I and II, the averaged signal to 

the standard stimulus was separately subtracted from those to the deviants and 

emotional utterances, thus resulting in nine difference signals for the deviant stimuli 

and three for the emotionally uttered rare stimuli. Within the vowel-change, vowel- 

duration, and omission deviant trials, two consecutive MMN responses were detected 

for each deviant due to the nature of the deviants. Thus, a total of 12 MMN responses 

were detected for the deviant stimuli. The P3a amplitudes and latencies, also in 

Studies I and II, were measured from the ERPs to the three rare emotional utterances 

(happy, angry, and sad).

The N1 was determined as the largest negative deflection between 50 and 150 ms 

from stimulus onset in the grand average ERP. For each participant, the N1 mean 

amplitude was calculated as a mean voltage at the 40-ms period centered at the peak 

latency in the grand average signal. The MMN signals were identified as the most 

negative peaks within a time window of 100-220 ms from deviance onset in the grand 

average difference signals. Thereafter, the MMN mean amplitudes for each deviant 

type and each participant were calculated as a mean voltage of a 40-ms window 

centered at the peak latency in the grand average ERP difference signal of the deviant 

type. The same was done for the MMN mean amplitudes for the emotionally uttered 

rare pseudowords, with the exception that we used a 60-ms window. In the signals 

for the emotional utterances of rare sounds, the P3a responses were identified as the 

most positive peaks within a predetermined time windows from deviance onset (200

300 ms for happy, and 250-350 ms for angry and sad). The P3a mean amplitudes 

were calculated as a mean voltage at the 60-ms period centered at the peak latency in 

the grand average signal. In Study II, the individual peak latencies for the N1 and P3a 

were measured from the largest peak occurring at the 100-ms period centered at the 

peak latency in the grand average signal. For the peak latencies of the MMNs, the 

same was done but using the grand average difference signal.

3.4.2 Study III

Only data from those participants whose averaged auditory ERP contained more than 

55% of the novel sound trials were included in further analyses of the auditory ERP 

and behavioral data. The group mean of novel sound trials per condition included in 

the ERP average was 23.7 (SD = 4.5) trials for the burnout group while for the control
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group it was 23.3 (SD = 4.3). Correspondingly, the data used in the visual ERP 

analysis were from the same participants as in the auditory ERPs with the exception 

that in addition, data from one control participant was discarded due to technical 

difficulties in recording the visual ERPs. Based on the 0-back condition, the group 

means of visual trials included in the ERP average were 42.3 (SD = 18.2) and 43.1 

(SD = 15.9) trials for the burnout and control group, respectively.

For the auditory ERPs, the early and late P3a were identified as the largest positive 

deflections in the two measurement windows (170-270 ms for the early phase and 

280-480 ms for the late phase) in the grand average signal of the 0-back condition. 

The mean amplitudes of the two phases of the P3a were calculated as a mean voltage 

at the 100-ms time windows around the peak of each phase in the grand average 

signal. The same was done for the visual P3b with the exception that the 

measurement interval was 300-500 ms from stimulus onset. The auditory N1 was 

computed in the same way as in Study II.

3.4.3 Study IV

The number of switch trials included in the single-participant average ERP ranged 

from 45 to 118 (M = 94, SD = 24) in the mild burnout group, from 43 to 115 (M = 88, 

SD = 22) in the severe burnout group, and from 64 to 119 (M = 97, SD = 16) in the 

control group. Temporal windows around the ERP responses of interest were 

identified by visual inspection in the grand average signal of the switch condition 

across all participants. The P3 was double-peaked: its earlier phase was determined 

as the largest positive deflection in the measurement windows of 180-280 ms, and 

the later phase was measured between 300-400 ms from stimulus onset. The mean 

amplitudes were calculated as a mean voltage over 80-ms periods centered at the 

peak latency of each phase of the P3 in the grand average signal. Individual peak 

latencies were measured from the largest peak occurring at the 100-ms period 

centered at the peak latency in the grand average signals in switch and repetition 

trials.
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3.5 Statistical analysis

3.5.1 ERPs

Group differences in the demographic and symptom characteristics, and other 

background variables of the participants (Studies II-IV) were assessed with t-tests, 

chi-square tests, and univariate analysis of variance (ANOVA). Correlations between 

symptom variables were measured with Pearson correlation coefficient r.

Group differences in the ERP parameters relative to stimulus type (Studies II and

III), task load (Study III), trial type (Study IV), and electrode position (Studies III 

and IV), as well as performance in the cognitive tasks (Studies III and IV) were 

assessed with repeated measures analysis of variance (ANOVA). The analyses are 

next described in more detail.

In Study I, one-tailed t-tests were conducted in order to test the statistical 

significance of the MMN and P3a mean amplitudes at midline electrodes Fz, Cz, and 

Pz. The MMN mean amplitudes were compared between the stimulus types (12 

MMNs for deviants, and 3 for rare emotional utterances) and electrode position (Fz, 

Cz, Pz) with repeated-measures ANOVA. Similarly, P3a mean amplitudes were 

compared between the utterance types (happy, angry, and sad) and electrode sites 

(Fz, Cz, Pz) with repeated measures ANOVA. In Study II, group differences in the 

MMN and P3a mean amplitudes and peak latencies were analyzed using Group x 

Stimulus Type repeated-measures ANOVAs. In addition, in Study II, the N1 

amplitudes and latencies were compared between the standard stimulus and study 

groups with one-way ANOVA.

In Studies III and IV, different subsets of electrodes were taken together to 

investigate the effects of burnout on the topographical distribution of the ERPs. The 

anterior-posterior distribution of the auditory ERP analysis in Study III comprised 

the following electrode sites: anterior (F3, Fz, F4), central (C3, Cz, C4), and posterior 

(P3, Pz, P4). The corresponding electrode sites for the analysis of the visual ERPs in 

Studies III and IV were anterior (F3, F7, Fz, F4, F8, Fp1, Fp2), central (C3, Cz, C4, 

FC1, FC2), and posterior (P3, P7, Pz, P4, P8, CP1, CP2).
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In Study III, mean amplitudes of the auditory and visual ERPs were analyzed 

using a repeated-measures ANOVA with Group (burnout, control) as the between- 

participants factor, and Task Load (0-, 1-, 2-back condition), and Electrode Position 

(anterior, central, posterior) as the within-participant factors. In Study IV, mean 

amplitudes for each of the peaks in the ERP were analyzed using a repeated- 

measures ANOVA with Group as between-participants factor, and Trial Type (switch, 

repetition) and Electrode Position (anterior, central, posterior) as within-participant 

factors.

3.5.2 Behavioral data

We used individual median response times (RT) for correct responses (Studies III 

and IV), hit rates (Study III), error percentages (Study IV), and intraindividual RT 

variability calculated using the standard error in relation to median RTs (Study IV) as 

performance metrics. A correct button press within 200-1999 ms (Study III) and 

200-2500 ms (Study IV) after the onset of the visual stimulus was regarded as a hit. 

The individual median RT was chosen as in a task with varying requirements and 

performance, the median gives the most stable results (Ratcliff, 1993).

In Study III, a repeated-measures ANOVA with Group as the between-participants 

factor, and Task Load and Auditory Distractor (present, absent) as the within- 

participant factors was performed for the means of the median RTs of the correct 

responses. Visual stimuli were defined as “distractor present” when preceded or 

followed by a distractor sound (i.e., occurred in a stimulus-response chain of “Picture 

-  Sound -  Response”, or “Sound -  Picture -  Response”; Figure 1). The hit rates were 

compared by means of a Group x Task Load repeated-measures ANOVA.

In Study IV, all trials followed by a correct response were chosen for further 

analysis because the RTs were observed to be comparable for unambiguous and 

ambiguous trials (tii2 = -0.17, p  = 0.87). In addition, although the trial position for 

the repetition trials (positions 2 to 9) had an effect on the RTs (F7, 392 = 20.14, p  < 

0.001, s = 0.48, n2 = 0.03), the pairwise comparisons revealed no differences 

between repetition trials in the task runs (Holm-Bonferroni corrected, p  > 0.05) 

except for one difference between the 2nd and the 8th position (p = 0.03). Therefore, 

for the non-switch trials, trials in positions two to nine in the runs were taken
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together to explore the association between burnout and task repetition as was the 

case in the ERP analysis. For the group means of the individual median RTs and the 

intraindividual variability of the RTs, repeated-measures ANOVAs with Group (mild 

burnout, severe burnout, control) as the between-participants factor, and Trial Type 

(switch, repetition) as the within-participant factor were performed. RT switch costs 

were calculated as the difference in RT between switch and repetition trials. In 

addition, for further analysis of the error rates, all trials followed by an incorrect 

response were used as the difference between the error rates for unambiguous and 

ambiguous trials was not significant (tii2 = 1.75, p  = 0.08). The group mean error 

rates were compared using a Group x Trial Type repeated-measures ANOVA.

The assumption of sphericity was evaluated using Mauchly’s procedure and, when 

violated, the Greenhouse-Geisser correction was used to adjust the degrees of 

freedom for the ANOVA ̂ -distribution. For all studies, F-values, original degrees of 

freedom, and corrected p -values are reported. In addition, for Studies III and IV, 

effect sizes using generalized eta squared (Olejnik & Algina, 2003; Picton et al.,

2000) are reported together with the Greenhouse-Geisser correction factor epsilon 

when this correction was needed. After finding a significant main effect or 

interaction, post-hoc t-tests were carried out to investigate the pairwise effects. The 

p-values were adjusted using the Holm-Bonferroni (Studies II-IV) and Bonferroni 

(Study I) methods for multiple comparisons. We chose to use the scores derived from 

the following self-reported questionnaires as covariates in the analyses when 

comparing group differences in the ERP and behavioral results: symptoms of 

depression (BDI-II; Study II); sleepiness ratings during the recordings, and 

symptoms of anxiety (KSS, BAI; Study III); symptoms of anxiety, depression, and 

sleep disturbances (BAI, BDI-II, BNSQ; Study IV). All statistical analyses were 

carried out using the R software environment with a set of packages for statistical 

computing and graphics (Lawrence, 2013; R Core Team, 2014; Sarkar, 2008; Wei, 

2013; Wickham, 2007, 2009, 2011, 2012).
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4 Results

4.1 Participant characteristics

Figure 3 shows the correlations between the self-reported symptoms of burnout, 

depression, anxiety, and sleep disturbances. As shown in the matrix, the correlations 

were positive and statistically significant between all evaluated symptom measures 

except for three insignificant correlations (i.e., the correlation of sleep disturbances 

with anxiety, professional inefficacy as evaluated in MBI-GS, and emotional 

exhaustion as evaluated in SMBM). The burnout measures (MBI-GS and SMBM) 

with all their subscales correlated strongly with each other. Furthermore, the 

stronger the burnout symptoms, the higher the scores were on depression, anxiety, 

and sleep disturbance scales. Of the 67 initially volunteered participants, complete 

datasets of 61, 49, and 57 participants were included in further analysis in Studies II, 

III, and IV, respectively.

F ig u re  3 .  Correlations between self-reported symptoms of burnout (MBI-GS and SMBM; total scores 
and subscales), depression (BDI-II), anxiety (BAI), and sleep disturbances (BNSQ). Data are from 67 
initially volunteered participants. All correlations were positive. Color intensity and the size of the circle 
are proportional to the correlation coefficients. Level of statistical significance was set at p  < 0.05. All 
correlations were statistically significant except those marked with x. Subcomponents of the burnout 
measures: MBI-exh: emotional exhaustion in the MBI-GS; MBI-cyn: cynisicm; MBI-ineff: professional 
inefficacy; SMBM-phy: physical fatigue in the Shirom-Melamed Burnout Measure; SMBM-emo: 
emotional exhaustion; SMBM-cogn: cognitive weariness.

0 0.1 0.2 0.3 0 .4 0.5 0 V  0.7 0.8 0.9
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Table 4. Demographic and symptom characteristics of the participants in Studies I-IV.

Studies I-II S tudy III Study IV

Burnout
<n=37)

Control
(n=24)

p  value Burnout
(n=30)

Control
(n=19)

p  value Mild 
burnout 
("  21)

Severe
burnout
(n=12)

Control
(n=24)

p  value

Dem ographic Age 47.S (S.5) 46.2(9.2) 0.49 (t) 47.5(8.2) 43.4(8.7) 0.09 (t) 47.7(8.6) 47.1 (8.4) 45.1 (8.7) 0 .59(F)
Female/male 34/3 21/3 0 .9 0 ( f ) 27/3 15/4 0.51 ( f ) 19/2 11/1 20/4 0.69 Of2)
Education 15.5(2.0) 15.2(1.9) 0.52 (t) 15.5(2.0) 15.2(2.1) 0.59 (t) 15.9(1.7) 14.9(2.6) 15.3(1.9) 0.40 (F)
Work experience 22.1 (10.1) 21.5(13.3) 0.87 (t) 22.1 (10.5) 19.1 (13.9) 0.40 (t) 20.9(9.9) 22.1 (11.4) 21.3(12.9) 0.95 (F)

Symptom MBI-GS total 3.1 (0.9) 0.9 (0.4) <0.001 (t) 3.1 (0.9) 0.9 (0.4) <0.001 (t) 2.5 (0.5) 4.2 (0.6) 0.9 (0.4) <0.001 (F)a
Exhaustion 3.9 (1.3) 0.9 (0.7) <0.001 (t) 3 .93(1.27) 0.84(0.63) <0.001 (t) 3.21 (0.90) 5.07(1.07) 0 .87(0.63) <0.001 (F)a
Cynicism 3.3 (1.5) 1.0 (0.8) <0.001 (t) 3 .30(1.52) 1.05(0.84) <0.001 (t) 2.62(1.41) 4.58 (0.92) 1.06(0.82) <0.001 (F)a
Inefficacy 1.9 (1.2) 0.7 (0.6) <0.001 (t) 1.87(1.26) 0.69(0.53) <0.001 (t) 1.59(1.06) 2.75(1.21) 0.82 (0.67) <0.001 (F)b

BDI-II 16.4(6.1) 5.3 (5.2) <0.001 (t) 16.0(6.2) 4.6 (5.2) <0.001 (t) 14.1 (5.7) 19.9 (5.1) 4.9 (5.3) <0.001 (F)a
BAI 10.2 (5.7) 4.0 (3.6) <0.001 (t) 9.5 (5.2) 3.7 (3.7) <0.001 (t) 9.1 (4.0) 10.2 (6.6) 3.6 (3.4) <0.001 (F)c
BNSQ 3.0 (1.9) 1.6(1.6) 0.004 (t) 3.1 (1.9) 1.7(1.6) 0.009 (t) 2.1 (1.5) 4.1 (2.1) 1.6 (1.6) <0.001 (F)d

Age, education, and work experience are presented in years. Data are mean values (with standard deviations) except for gender. The participants in Study 
I are the same as the control participants in Study II. MBI-GS: Maslach Burnout Inventory -  General Survey; BDI-II: Beck’s Depression Inventory; BAI: 
Beck’s Anxiety Inventory; BNSQ: Basic Nordic Sleeping Questionnaire, p  values are derived from t-tests (t), chi-square tests (x2), and one-way ANOVAs 
(F), Pairwise comparisons in Study IV: 
a Control < Mild < Severe, p  < 0.001
b Control < Mild, p  = 0.005; Mild < Severe, p  = 0.007; Control < Severe, p  < 0.001 
f Control < Mild, p  < 0.001; Control < Severe, p  < 0.001; Mild vs. Severe, p  = 0,56 
d Control vs. Mild,p = 0.23; Mild < Severe,p  = 0.004; Control < Severe, p  < 0.001



Table 4 summarizes the demographic and symptom characteristics of the 

participants in Studies I-IV. Figure 4 shows the correlations between the burnout 

scores (MBI-GS) and the subjective sleepiness ratings (KSS) during the entire 

recording session. The correlations were positive and statistically significant. Group 

comparisons in Study II showed that the average score for the KSS before the onset of 

the entire ERP recording session was higher for the burnout group (M = 5.0, SD = 

1.34) than for the control group (M = 4.0, SD = 1.67; t58 = 2.49, p  = 0.02). Also the 

KSS score prior to the last ERP recording (Study II) was higher for the burnout group 

(M = 5.6, SD = 1.14) than for the control group (M = 4.5, SD = 1.19; t58 = 3.30, p  = 

0.002).

0 1 2 3 4 5 0  1 2 3 4  5 0  1 2 3 4  5 0  1 2 3 4  5
Burnout score

Figure 4 . Scatter plot showing the distribution of subjective sleepiness ratings during the ERP 
recording session in relation to self-reported symptoms of burnout (MBI-GS). Linear regression lines 
with 95% confidence region is included. For illustration purposes, a jitter for the positioning of the data 
points is used. Data are from 67 initially volunteered participants except for one participant from whom 
the KSS ratings are missing due to technical difficulties, resulting in data from 66 participants. KSS 
ratings are presented in a chronological order:
1. Before the entire recording session, r =  0 .3 4 , p  =  0.005
2. After the task switching paradigm (Study IV), r = 0.46, p  < 0.001
3. Before the n-back paradigm (Study III), r = 0.51, p  < 0.001
4. Before the MMN paradigm (Study II), r = 0.42, p  < 0.001

In Studies II-IV, the self-reported prescribed medication within 24 hours prior to 

ERP recordings for the burnout groups were 7-8% for sleep disorders, and 24-27% 

for mood disorders, depending on the samples included in the analyses. The 

corresponding percentages for the control groups were 0% for sleep disorders, and 

17% for mood disorders. Caffeine consumption 24 hours before the recordings did 

not differ statistically between the groups in any of the studies.
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4.2 Speech sound processing and attention capture to emotional 

utterances in burnout (Studies I and II)

The MMN signals varied across the deviant types and emotionally uttered variants, 

as shown by significant main effects of Stimulus Type on MMN mean amplitude in 

both studies (Study I: —14,322 = 16.32, p  < 0.001; Study II: —14,826 = 3 9 .9 7 , p  < 0.001, n2 

= 0.35), and on peak latency in Study II (—14,826 = 977.13, p  < 0.001, n2 = 0.94). Figure 

5 shows the ERP signals and voltage maps for the nine deviant stimuli and the three 

rare emotional utterances.

In Study II, the N1 mean amplitudes and peak latencies for the standard stimulus 

did not differ between the burnout and control groups (—1,59 = 0.08, p  = 0.78, n2 < 

0.001; —1,59 = 0.85, p  = 0.36, n2 = 0.01, respectively). Neither did the MMN 

parameters for the deviants and emotionally uttered rare variants differ between the 

groups (Amplitude: —1,59 = 0.67, p  = 0.42, n2 = 0.002; Latency: —1,59 = 0.08, p  = 0.78, 

n2 < 0.001). For the MMN latencies, the interaction between Group and Stimulus 

Type was significant (—14,826 = 2.45, p  = 0.009, n2 = 0.04), resulting from two 

inconsistent latency differences related to duration changes when comparing the 

groups.

The emotional variant type had an effect on the P3a mean amplitudes (Study I: 

—2,46 = 17.14, p  < 0.001; Study II: —2,118 = 23.48, p  < 0.001, n2 = 0.17) and peak 

latencies (Study II: —2,118 = 176.67, p  < 0.001, n2 = 0.69). For the peak latencies in 

Study II, a significant interaction between the group and the emotional variant type 

was observed (—2,118 = 5.98, p  = 0.005, n2 = 0.07; Figures 6 and 7). The P3a latencies 

for the burnout group were longer for the happy (p = 0.02), and shorter for the angry 

(p = 0.01) variants than those for the control group whereas the latencies for the sad 

variant did not differ between the groups (p = 0.25).

In summary, the results suggest that the multi-feature paradigm developed in 

Study I allows evaluation of natural speech-sound processing and involuntary 

attention allocation towards emotionally uttered speech within one, approximately 

30-minute recording session. This is indicated by significant MMN responses for the 

nine deviants as well as P3a responses for the three rare emotionally uttered variants 

of the standard. The results of Study II suggest that momentary involuntary capture 

of attention to emotionally valenced speech is altered in burnout as indicated by
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longer P3a latencies for the happy, and shorter P3a latencies for the angry variants in 

the burnout group than the control group.

Location Vowel C hange /ta-to / [vowel D uration /ta-ta:/

MMN 126 ms M M N 1 4 8 m s M M N 3 5 4 m s M M N 1 32 m s M M N 3 51 m s
t = -9.7; P <  0.001 t  =  - 1.5; P -- 0.08, ns t  = -2 .8 ; P <0.01 t  = -2 .6 ; P < 0.01 t  = -2 .8 ; P < 0.01

Consonant Duration /ta-:ta/  Omission /ta/  Noise

MMN 240 ms MMN 238 ms MMN 355 ms MMN 302 ms
t = -4.5; P <  0.001 f  == -5.1; P < 0 001 t  =-3 .1 ; P < 0.01 t =  -3.7; P  < 0.001

Frequency ] |_______ Intensity_______  Density

MMN 116 ms P 3a226m s M M N 1 3 0 m s P3a310m s M M N 1 42 m s P3a 300 ms 
t  =  -8.7; P  < 0.001 t =  13.7; P <  0.001 f  =  -6.2; P <  0.001 t =  7.6; P <  0.001 t =  -7.2; P <  0.001 t  =  -9.4; P  < 0.001

Figure 5. ERP signals and voltage maps for the nine deviant stimuli (panel A; MMN responses) and 
the three rare emotionally uttered variants (panel B; MMN and P3a responses) overlapped with the time 
amplitude illustrations of the stimuli consisting of two spoken syllables. The solid line denotes the ERP 
to the standard stimulus, the dotted line denotes the ERP to the deviant stimuli (panel A) or emotional 
uttered variants (panel B), and the dashed line the difference signal. Time-amplitude illustrations of the 
stimuli appear in grey. For the frequency, density, and intensity deviants, only the increasing deviant 
tones are illustrated. The location deviant is identical to the standard except for the 90 ps interaural 
time difference between the left and right ears. t-values and p-values are presented for the mean 
amplitude at Fz.
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A)

Figure 6. Grand average and difference signals to the rare emotional utterances in the burnout and 
control groups overlapped with time-amplitude illustrations of the stimuli (panel A). The red line 
denotes the burnout group, the black line the control group. Time-amplitude illustrations of the stimuli 
appear in grey. Panel B: Topographical voltage maps for P3a peak latencies (Fz) for the rare emotional 
utterances for both groups (26 electrodes were used for calculating the voltage maps).

Figure 7. Barplots showing the group mean P3a peak latencies (ms) and the standard errors for the 
rare emotional utterances at electrode site Fz in the burnout and control groups. * denotes p  = 0.02 for 
happy; p  = 0.01 for angry variants.
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4.3 Burnout-related dysfunctions in involuntary and voluntary 

attention (Study III)

4.3.1 Behavioral data

As expected, the task load level had an effect on the hit rate (—2,94 = 152.39, p  < 0.001, 

s = 0.56, n2 = 0.66), and the RTs (—2,94 = 61.44, p  < 0.001, s = 0.55, n2 = 0.35). With 

increasing cognitive load, the overall hit rate decreased (0-, 1-, 2-back: 93.1%, 88.7%, 

72.8%, respectively; pairwise comparisons: 0-back > 1-back > 2-back, p  < 0.001), and 

the RTs became longer (0-back < 1-back < 2-back, p  < 0.001). However, the hit rates 

and RTs were comparable between the burnout and control groups (—1,47 = 1.55, p  = 

0.22; —1,47 = 0.05, p  = 0.80, main effects of Group for hit rate, and RT, respectively).

The main effect of distraction caused by presenting novel sounds was significant 

(—1,47 = 55.74, p  < 0.001, n2 = 0.01). However, RTs only tended to be longer on 

distracted trials than on silent trials not preceded or followed by a novel sound (p = 

0.08) indicating a trend towards a distracting effect of novel sounds over the 

performance on the visually presented task with three load levels. The interaction 

between Task Load and Auditory Distractor (present vs. absent) was significant (—2,94 

= 10.1, p  = 0.007, s = 0.70, n2 = 0.005) but pairwise comparisons revealed no 

significant differences in the distracting effects.

4.3.2 ERP data

In both groups, auditory novelty-related electrophysiological activity was 

characterized by an N1 wave, followed by a large P3a response with two phases. For 

the visual ERPs, a large P3b response was elicited for trials preceding correct 

responses. Figures 8-10 show the grand average signals and scalp potential 

distribution mapping of the auditory and visual responses for both groups. The 

auditory early P3a was maximal over the central scalp regions whereas the late phase 

was distributed over fronto-central regions. The visual P3b was maximal over the 

centro-parietal scalp regions with the lowest task load. With higher task loads, the 

amplitude of the P3b was decreased compared to the low-load condition, and the 

amplitude maximum shifted towards more posterior parietal scalp regions.

48



Figure 8. Grand average waveforms from the novel sounds for job burnout and control groups in 0-, 
1-, and 2-back conditions at electrode sites Fz, Cz, and Pz. The dashed line denotes the job burnout 
group, the solid line the control group.

Figure 9. Voltage distribution over the scalp for the early and late PZa peak latencies (Fz) for the novel 
sounds for both groups (26 electrodes were used for calculating the voltage maps).
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Figure 10 . Grand average waveforms from the visual trials preceding correct responses to match 
stimuli for burnout and control groups in each condition at electrode sites Fz, Cz, and Pz. (panel A). The 
dashed line denotes the job burnout group, the solid line the control group. Panel B: Voltage distribution 
over the scalp for the P3b peak latencies (Pz) for the corresponding visual trials for both groups (data 
from 26 electrodes were used for calculating the maps).

For the auditory early P3a mean amplitudes, the main effect of Group was not 

significant (FM7 = 1.85, p  = 0.18) nor were the main effect of Task Load significant 

(̂ 2,94 = 0.31, p  = 0.73). However, the interaction between Group and Task Load was 

significant (#2,94 = 3.11, p  = 0.049, s = 0.99, n2 = 0.01). The burnout group showed 

smaller early P3a amplitudes than the control group in the 2-back condition (p < 

0.001) while in the 0- and 1-back conditions the responses did not differ between the 

groups (p = 0.34, p  = 0.95, respectively).

As seen in Figure 11, the auditory late P3a amplitudes were affected by the groups 

(F1,47 = 4.34, p  = 0.04, n2 = 0.05) and the task loads (F2.94 = 16.42, p  < 0.001, s =

0.93, n2 = 0.09). The late P3a amplitudes were smaller in the burnout group than in 

the control group. Furthermore, the late P3a was the largest (most positive) in the 0- 

back condition, intermediate in the 1-back, and the smallest in the 2-back condition 

(0-back > 1-back: p  < 0.001; 0-back > 2-back: p  < 0.001; 1-back > 2-back: p  =

0 .0 4 9 ).

For the auditory responses, the amplitude was significantly dependent of the 

electrode position (early P3a: #2,94 = 90.42, p  < 0.001, s = 0.69, n2 = 0.16; late P3a:
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F2,94 = 31.64, p  < 0.001, s = 0.57, n2 = 0.08). The P3a amplitudes were the largest at 

anterior scalp locations, and the smallest over the posterior regions (early P3a: 

anterior vs. central, p  = 0.87, anterior > posterior, and central > posterior: p  < 0.001; 

late P3a: anterior > central: p  = 0.04; anterior > posterior, and central > posterior: p  

< 0.001).

3
0}■o3
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E

anterior central posterior anterior central posterior anterior central posterior
Electrode position

Figure 11 . Line plots showing the group mean amplitudes (pV) with standard errors of the auditory 
late P3a for both groups at anterior, central, and posterior scalp.

For the visual P3b mean amplitudes, the main effect of Group was not significant 

(Fl,46 = 2.21, p  = 0.14 ). However, the amplitudes were affected by the task load (#2,92 

= 37.47, p  < 0.001, s = 0.87, n2 = 0.12) in such a way that the amplitudes became 

smaller as the task load increased (0-back > 1-back > 2-back, p  < 0.001). As expected, 

there was a significant main effect of Electrode Position (#2,92 = 61.14, p  < 0.001, s = 

0.68, n2 = 0.15), with the largest amplitudes at posterior and central scalp locations, 

becoming smaller towards anterior regions (posterior > anterior, central > anterior, p  

< 0.001; posterior vs. central, p  = 0.056). Notably, the interaction between Group 

and Electrode Position was significant (#2,92 = 4.39, p  = 0.03, s = 0.68, n2 = 0.01).

For the burnout group, the responses were smaller over the posterior (p = 0.002) and 

central (p = 0.03) regions, but larger over the anterior (p = 0.003) regions than for 

the control group (Figure 12). The interaction between Task Load and Electrode 

Position was also significant (#4,184 = 7.45, p  < 0.001, s = 0.69, n2 = 0.004). The P3b 

amplitudes were the largest at central and posterior scalp locations when the task
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load was the lowest, decreasing as a function of increase in task load, and the smallest 

at anterior regions also decreasing with an increase in task load.

Figure 1 2 . Line plots showing the group mean amplitudes (UV) with standard errors of the visual P3b 
for both groups at anterior, central, and posterior scalp.

In summary, the key findings in Study III were the following two burnout-related 

alterations: 1) a decrease in the auditory P3a amplitude in response to distractor 

sounds during task performance, and 2) smaller working-memory related visual P3b 

amplitudes over posterior scalp and larger P3b amplitudes over frontal areas in the 

burnout group compared to the control group.

4.4 Inadequate attentional set shifting in severe burnout (Study 

IV)

4.4.1 Behavioral data

Overall, the participants found the paradigm cognitively demanding. In terms of the 

self-reported effort put on the task as evaluated by the NASA-TLX, an insignificant 

difference between the groups was observed ( 2̂,53 = 2.45, p  = 0.09, n2 = 0.08). The
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participants with mild bumout symptoms tended to report that they invested 

somewhat more effort (M = 67.4, SD = 11.8) in the task than those in the control 

group (M = 54.8, SD = 22.8) in order to accomplish their level of performance while 

the ratings in the severe burnout (M = 65.17, SD = 24.14) did not differ from the 

other groups.

Switch cost was indicated by a significant main effect of Trial Type (#1,54 = 619.74, 

p  < 0.001, n2 = 0.65). RTs on switch trials (M = 1210.4 ms, SD = 165.6 ms) were 

~400 ms slower than on repetition trials (M = 810.4 ms, SD = 145.6 ms). However, 

the group means of the individual median RTs were comparable between the groups 

(F2,54 = 0.15, p  = 0.86) as was the intraindividual RT variability (main effect of Group: 

F2,54 = 0.01, p  = 0.99). Notably, the group had an effect on the error rates (#2,54 =

3.28, p  = 0.04, n2 = 0.09). Pairwise comparisons revealed that the group mean error 

rate was the largest for the severe burnout group, but comparable in mild burnout 

and control groups, (control vs. severe, p  = 0.009, mild vs. severe, p  = 0.004, control 

vs. mild, p  = 0.67; Figure 13). The main effect of Trial Type was significant (#1,54 = 

28.97, p  < 0.001, n2 = 0.08), with the error rate being higher for switch trials (5.2%) 

than for repetition trials (3.1%).

Figure 13 .  Group mean error rates for the switch and repetition trials in all study groups. Error bars 
represent standard error of the means.
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4.4.2 ERP data

As seen in Figure 14, the P3 response had two distinct phases for task switch trials: 

the first peaking around 200-250 ms and the second about 100 ms later. According 

to scalp potential distribution mapping, the two phases had a similar distribution of 

the maximum amplitude over parietal scalp regions (Figure 15). The P3 responses 

were more pronounced on switch trials than on repetition trials as also seen in 

Figures 14 and 15.
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Figure 14 . Grand average ERPs for each group from the switch and repetition trials at electrode sites
Fz, Cz, and Pz.
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Figure 15 . Voltage distribution over the scalp for both phases of the P3 response for each group (panel 
A: early; panel B: late).

Statistical analysis comparing group differences showed that the mean amplitudes 

of both the early and the late phase of P3 response were larger on switch than 

repetition trials (main effect of Trial Type: = 95.73, p  < 0.001, n2 = 0.17; F ^  =

227.05, p  < 0.001, n2 = 0.28, for early and late phases, respectively; Figure 16). The 

main effects of Electrode Position were also significant (early phase: F2408 = 54.99, p  

< 0.001, s = 0.68, n2 = 0.15; late phase: F 2,m8 = 101.14, p  < 0.001, s = 0.75, n2 = 0.24), 

showing that the amplitudes for both phases were the largest at posterior sites 

(anterior < central < posterior, p  < 0.001). Notably, the Group x Trial Type 

interaction was significant for both phases of P3 (early phase: F 2,54 = 4.37, p  = 0.017, 

n2 = 0.02; late phase: F 2,54 = 5.01, p  = 0.01, n2 = 0.02), with the amplitudes being the 

smallest in the severe burnout group, and mostly comparable between the mild 

burnout and control groups (Table 5).
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Table 5. Pairwise comparisons for the Group x Trial Type interactions for the mean amplitudes of both 
phases of P3.

control vs. 
mild burnout

control vs. 
severe burnout

mild burnout vs. 
severe burnout

early phase switch 0.01 < 0.001 <  0.001
repetition 0.41 < 0.001 <  0.001

late phase switch 0.12 < 0.001 <  0.001
repetition 0 .1 5 < 0.001 0.02

Group
control
mild

.

Figure 16. Bar plots showing the group mean amplitudes (pV) with standard error of means of the 
early (upper figure), and late (lower figure) phase of the P3 for each group at posterior scalp.

In summary, the results of Study IV suggest that severe burnout is associated with 

inadequate processing when rapid shifting of attention between tasks is required. 

This is indicated by a decreased P3  amplitude and less accurate performance in the 

severe burnout group compared to the mild burnout and control groups.
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5 Discussion

The four studies reported here investigated attentional mechanisms and cognitive 

control processes associated with job burnout. Specifically, ERP recordings and 

questionnaires were performed on 67 currently working employees with burnout 

symptoms to explore the association of burnout with pre-attentive auditory change- 

detection processing and attention capture towards emotionally uttered speech 

(Study II), performance on a working-memory task with varying loads, and 

involuntary orienting of attention to novel, unexpected sounds during task 

performance (Study III), as well as shifting of attentional set (Study IV). In Study I, a 

variant of the multi-feature paradigm was developed to be applied in Study II.

The key finding was that burnout is associated with alterations in attention-related 

auditory and visual ERP responses. More specifically, we observed burnout-related 

alterations in momentary involuntary capture of attention to emotionally valenced 

speech, even when the symptoms are relatively mild (Study II). In addition, burnout 

was associated with ineffective orienting of attention to novel and potentially 

important events in the auditory environment during visual task performance, as well 

as dysfunctional cognitive control processes at fronto-parietal regions needed to 

monitor and update information in working-memory (Study III). Furthermore, 

severe burnout was associated with inadequate shifting of attention between task 

sets, resulting in less accurate performance (Study IV). Taken together, Studies II-IV 

showed burnout-related susceptibility of the P3 response. Such susceptibility has also 

been observed in high stress (Shackman et al., 2011), sleep deprivation (Polich & Kok, 

1 9 9 5 ), and depression (Bruder et al., 1995, 2009; Cavanagh & Geisler, 2006). In the 

following sections, six topics relevant to the studies will be discussed in more detail:

1) processing of emotionally uttered speech and its alterations in burnout, 2) 

dysfunctions in attentional control mechanisms in burnout 3) inadequate shifting of 

attentional set in severe burnout, 4) burnout as a subject for brain research, 5) 

clinical considerations, and 6) future directions.
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5.1 Processing of emotionally uttered speech and its alterations in 

burnout

In Studies I and II, the ERP waveforms observed in the Ni, MMN, and P3a latency 

ranges were affected by the acoustical properties of the stimuli. For example, the 

MMN amplitudes were larger for the emotional utterances, and for the location and 

spectral density deviants than for most other deviants. This reflects the fact that the 

MMN signal is larger with increasing magnitude of sound change (Pakarinen et al., 

2007; Sams, Paavilainen, Alho, & Näätänen, 1985; Tiitinen, May, Reinikainen, & 

Näätänen, 1994). However, the groups did not differ with respect to the Ni and MMN 

signals. These highly similar response patterns suggest that an accurate memory 

trace is constructed for the invariant sound features of the auditory input and that 

the change-detection processes for speech sounds are similar in both groups 

(Näätänen et al., 2004; Näätänen, 1992; Pakarinen et al., 2009; Thönnessen et al.,

2010).

The emotional utterances generated significant P3a responses, consistent with the 

involuntary attention capture triggered to novel, unexpected auditory stimuli (Escera 

et al., 1998; Friedman et al., 2001; Soltani & Knight, 2000), enabling rapid shifts of 

attention towards potentially important cues, including those which may carry 

socially relevant information. The P3a responses were elicited even though the 

emotional utterances in our study were not novel as such, but rarely occurring 

novelty-like variants of the standard. In terms of processing the emotional contents 

of the stimuli, there is evidence suggesting that the emotional meaning of prosodic 

features can be rapidly and systematically registered and identified in an accurate, 

differentiated categorical manner during speech processing (Jaywant & Pell, 2012; 

Laukka, 2005; Pell et al., 2015; Pell, Jaywant, Monetta, & Kotz, 2011; Pell & Kotz, 

2011; Pell, 2006). Perhaps, emotional prosody is encoded in memory in the form of 

prototype expressions that correspond to basic emotions (Laukka, 2005).

Importantly, the P3a latencies were found to vary between the groups according to 

the type of emotional stimuli in the following way: The P3a latencies were 

significantly shorter to angrily uttered speech sounds, and slower to happy utterances 

for the burnout group compared to the control group. When interpreting the P3a 

responses to the emotional utterances, one should take into account that the P3a
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responses reflect not only the novelty or the emotional content of the stimuli but also 

the physical deviation, the saliency from the standard (Escera et al., 1998; Polich, 

2007). Therefore, for valid conclusions the P3a responses need to be considered in 

relation to the Ni and MMN signals. The fact that the Ni and MMN responses were 

comparable in both groups suggests that the divergent P3a latencies towards negative 

and positive emotions between the groups might be due to the emotional properties 

of the novelty-like stimuli, and not the mere detection of basic sound features alone. 

Thus, the results suggest that in our sample of burnout participants, there was an 

attention capture tendency that is faster for negative, and slower for positive 

emotions compared to that of the control participants. Given the essential role of the 

prefrontal cortex in processing emotions and regulating attention together with the 

anterior cingulate cortex and the amygdala (e.g., Ochsner & Gross, 2005), the present 

results are in accordance with recent findings of dysfunctional cortico-limbic 

connectivity in burnout suggesting alterations in the processing of emotionally 

stressful stimuli (Golkar et al., 2014). In a similar vein, increased neurophysiological 

activity to salient negative stimuli has been shown in association with high levels of 

depression (McNeely et al., 2008), and anxiety (Bishop et al., 2004; Bishop, 2007). 

Importantly, however, the group differences remained significant after self-reported 

depressive symptoms were statistically controlled for in the analyses.

The notable advantage of the multi-feature paradigms is that in virtually the same 

recording time as with the traditional single- or two-deviant oddball paradigm, one 

can obtain a profile of a wide spectrum of auditory feature discrimination processes. 

This new configuration of stimuli results in ~45% shorter recording time than the 

multi-feature paradigm with alternating standard sounds (Näätänen et al., 2004; 

Pakarinen et al., 2009), and the ERP signals well reflect the perceptual properties of 

these sounds.

5.2 Dysfunctions in attentional control mechanisms in burnout

The novel sounds in Study III elicited a P3a response with two phases reflecting 

involuntary orienting of attention to these sounds, however being smaller in 

amplitude in the burnout group. More specifically, the auditory early P3a was smaller
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in the burnout group when the cognitive load of the visual working-memory task was 

high whereas the late P3a was reduced across all task loads.

Moreover, the magnitude of the auditory P3a was modulated by the complexity of 

the visual task so that when the task load increased, the late phase of the P3a to the 

distracting sounds attenuated in both groups. This is in accordance with previous 

studies suggesting that involuntary attention switching to distracting auditory 

stimulation is modulated by top-down mechanisms (Berti & Schroger, 2003; Escera 

& Corral, 2007; SanMiguel et al., 2008). Importantly, however, the late P3a 

responses were smaller in the burnout group than in the control group across all 

memory loads, and the early P3a was reduced with the highest memory load. These 

results suggest that orienting to task-irrelevant but potentially significant distinct 

events in the acoustic environment may be insufficient in burnout, as shown in 

patients with prefrontal lesions (Knight, 1984).

The visual P3b responses elicited for the task-relevant stimuli differed between the 

groups as a function of the topographical distribution. The burnout group showed a 

relative attenuation of the P3b at posterior regions while a relative amplification of 

the P3b was observed at anterior regions. Such frontally enhanced activation in 

response to task demands has also been observed in older adults (Friedman, 

Kazmerski, & Fabiani, 1997), and major depression (Harvey et al., 2005). For 

example, Friedman and colleagues (1997) proposed that older adults still depend on 

frontal regions for processing stimuli that have already been well encoded in young 

adults.

Finally, we did not find any difference between the groups in the task performance 

as indicated by comparable reaction times and error rates, in line with the findings of 

Harvey and colleagues (2005) in their fMRI study with patients with major 

depression. Thus, successful task performance in burnout might require additional 

recruitment of anterior regions to compensate for the decrement in posterior activity. 

These results suggest that burnout is associated with deficits in cognitive control 

needed to monitor and update information in working-memory. Furthermore, the 

more the working-memory is taxed, the more ineffective is the orienting of attention 

towards potentially significant unexpected sounds in individuals with burnout.
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5.3 Inadequate attentional set shifting in severe burnout

In the task switching paradigm applied in Study IV, the key findings were a decreased 

P3 amplitude in response to the onset of the stimulus and less accurate performance 

in the severe burnout group compared to the mild burnout and control groups. The 

observed group differences remained significant after self-reported depressive 

symptoms, symptoms of anxiety, and sleep disturbances were controlled for in the 

analysis suggesting that dysfunctions in attentional set shifting were not merely a by

product of the participants in the severe burnout group reporting more intense 

symptoms of related conditions.

The behavioral results suggest that severe burnout is associated with inadequate 

processing in cognitive tasks where rapid shifting between tasks is required. 

Participants in all groups strived to sustain their speed of performance as was 

stressed in the task instructions. However, in order to do so the accuracy was 

sacrificed in the severe burnout group. This finding is in accordance with previous 

behavioral studies suggesting that severe burnout is associated with impaired 

performance in attention and executive functions as indicated by slower RTs 

(Kleinsorge, Diestel, Scheil, & Niven, 2014; Oosterholt et al., 2014), higher error rates 

(Diestel, Cosmar, & Schmidt, 2013), or both (Sandström et al., 2005; van Dam et al.,

2011). An increased number of errors related to previously relevant rules has also 

been observed in mental fatigue as induced by time on task (Lorist et al., 2000) as 

well as in patients with dorsolateral prefrontal lesions (Barcelo & Knight, 2002). 

Perhaps, the lesions not only impair the mechanisms underlying attentional set 

shifting but also make it difficult for the patients to keep track of the ongoing task set.

The attenuation of the P3 amplitude in the group of participants experiencing 

intense symptoms of burnout suggests ineffective shifting of attentional set in 

burnout. This finding may reflect differences in activation or selection of relevant 

task sets (Hölig & Berti, 2010; Kieffaber & Hetrick, 2005; Lange et al., 2015; 

Nicholson et al., 2006; Sohn, Ursu, Anderson, Stenger, & Carter, 2000) suggesting 

that greater activation associated with switch trials might reflect increased effort in 

the selection process. Perhaps, selecting what is relevant and what is irrelevant for 

the task is ineffective in severe burnout as reflected by reduced P3, resulting in more 

performance errors. Alternatively, the observed smaller P3 in the severe burnout 

group might reflect reduced ability to maintain spatial information online in
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working-memory, thereby disrupting working-memory processing and further 

resulting in less accurate performance. Evidence from neuroimaging studies suggests 

that orienting attention to a location might functionally overlap with top-down 

mechanisms such as preparing and executing goal-directed selection of stimuli and 

responses, thereby recruiting prefrontal cortical areas which together with posterior 

association cortices are involved in executive control of set shifting (for reviews, see 

Corbetta & Shulman, 2002; Miller, 2000).

In Study IV, the applied paradigm involves features that complicate the 

interpretation of the ERP results. First, the interval between correct response to the 

preceding stimulus and the onset of the subsequent stimulus was very short (150 ms). 

Second, the cue and the target were only presented simultaneously without 

manipulation of the cue-target interval. The presentation rate was rapid, and 

therefore the participants found the task cognitively demanding which was our aim in 

this study design. However, such features of the paradigm presumably led to 

temporal overlap of the stimulus-related and response-related processes.

The visual stimuli evoked a pattern of parietally maximal P3 activation with two 

phases across switch and repetition trials, in accordance with a recent study of Berti 

(2016) showing a bi-phasic large positive response within 200-400 ms from stimulus 

onset with more pronounced amplitudes for the switch trials than repetition trials. 

The two subsequent P3 responses had similar scalp distributions suggesting that they 

reflect the same P3b response including some contribution presumably from an 

overlapping parietally maximal negativity related to the response given to the 

previous stimulus (Karayanidis et al., 2003). Given the short response-to-stimulus 

interval, the processes related to the preceding response were likely to be still in 

progress when the subsequent stimulus was presented. In addition, as the cue and 

the target were presented simultaneously, and the task switches were not predictable, 

the participants had no opportunity to predict whether the task rule changes, or 

remains the same. Thus, performance on each trial required both encoding the cue, 

and selecting and processing of the target character in the stimulus pair. 

Consequently, there is likely a temporal overlap between cue-related and target- 

related processes (Nicholson et al., 2005). Unfortunately, the present paradigm 

limits our possibilities to disentangle these overlapping processes. An experimental 

paradigm including manipulations of cue-target intervals should be used in the 

future in order to separate the ERP responses.
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While the task performance was comparable between the burnout and control 

groups in Study III, the severe burnout group performed less accurately than the 

other groups in Study IV suggesting that in severe burnout, processing is inadequate 

when rapid shifting between tasks is required. Perhaps, intense burnout symptoms 

might be required for impaired cognitive task performance to be observed as is the 

case in a number of previous behavioral studies (e.g., Oosterholt et al., 2014; 

Sandström et al., 2005; Van der Linden et al., 2005).

5.4 Burnout as a subject for brain research

From a brain research perspective, burnout is a challenging research subject due to 

the heterogeneity of symptomatology among individuals experiencing burnout (van 

Dam, 2016). For example, there might be considerable variability between 

individuals with burnout symptoms in the degree to which working conditions are 

experienced as stressful (for a review, see Seidler et al., 2014). Thus, the main 

challenges most obviously relate to the conclusions that could be drawn from the 

results.

In the present thesis, the sample of participants experiencing symptoms of 

burnout was heterogeneous and non-clinical in nature. The participants were 

working-aged (ranging from 27 to 62 years), at work at the time of study, and the 

participants in the burnout group reported a wide range of burnout symptoms from 

mild to severe. Based on previous population-based research literature, we 

considered the sample representative of Finnish working life (Ahola et al., 2006) with 

the exception of the fact that most of the present participants were females. This may 

be partly due to the recruitment process or reflect previous burnout research 

suggesting that women are somewhat more emotionally exhausted than men (Ahola 

et al., 2006; Purvanova & Muros, 2010). Notably, however, the ratio of female and 

male participants in all study groups were comparable suggesting that the present 

results of differences between the groups cannot be easily explained by gender 

differences. In addition, as the data in all studies of the present thesis were from the 

same sample of participants (with few exceptions due to exclusion criteria in the ERP 

analysis), further studies with different samples of participants would be needed in 

order to be able to increase the generalizability of the results. Furthermore, the
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present findings need to be considered at a group level since they do not provide a 

method for patient assessment at an individual level. Significant results with 

relatively small effect sizes in group comparisons can be considered a representation 

of this.

The present thesis showed burnout-related dysfunctions in attention and cognitive 

control processes. Such dysfunctions have been also observed in other conditions 

such as major depression, generalized anxiety disorder or other stress-related 

neuropsychiatric conditions (American Psychiatric Association, 2013), and sleep 

deprivation (Heuer et al., 2004; Kingshott, Cosway, Deary, & Douglas, 2000).

Indeed, the burnout participants reported not only burnout symptoms but also a 

great deal of depressive symptoms, as well as symptoms of anxiety and sleep 

disturbances. Strong positive correlations were observed between most of these 

symptoms. In addition, individuals with burnout symptoms showed greater 

sleepiness during the ERP recording session than the control participants, in 

accordance with the findings of Ekstedt and colleagues (2006, 2009). Thus, given 

these overlaps, it is worth discussing to what extent the findings of the present thesis 

could reflect other overlapping conditions even though the results remained 

significant after depressive symptoms (Studies II and IV), subjective sleepiness 

(Study III), symptoms of anxiety (Studies III and IV), and sleep disturbances (Study

IV) were statistically controlled for when comparing the burnout and control groups.

Typically, an important prerequisite for valid conclusions from neurophysiological 

and clinical studies is that the clinical subgroups are defined as precisely as possible. 

Burnout as a heterogeneous condition does not necessarily meet such a requirement. 

At the same time, however, one needs to bear in mind the spectrum of depressive and 

anxiety disorders, too (for reviews, see e.g., Davidson et al., 2002; Hettema, Neale, 

Kendler, & Ph, 2001; Olatunji, Cisler, & Tolin, 2007; Richards, 2011; Stein, 2009). 

They may arise from a multitude of causes emerging in broad symptoms, and the 

underlying mechanisms may also differ. In addition, the more severe the burnout 

symptoms are, the more common is depression, but notably, all individuals with 

severe burnout are not diagnosed with depression (Ahola et al., 2005). Consequently, 

the overlap between the conditions means that studying the neurophysiology of 

burnout at least to some extent means studying also the neurophysiology of 

depressive and anxiety disorders. In addition, the questionnaires for assessing 

symptoms of burnout or depression share similar questions, inevitably leading to
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strong correlations even at the methodological level. Thus, in the present thesis, 

although none of the participants were diagnosed with severe clinical depression or 

anxiety disorder, and the overlapping conditions were in different ways controlled for 

in the studies, we cannot fully rule out the possibility of some contribution from 

depressive or anxiety disorders, or sleep disturbances on the results. One could 

attempt to recruit volunteers who report only burnout symptoms but no symptoms of 

depression or anxiety, but that would be difficult, and such a sample would also be 

non-representative of people experiencing job burnout.

Despite the challenges, the present thesis showed that the methods, traditionally 

used in basic research and clinical settings, can also be applied to study 

heterogeneous groups of working aged people reporting a wide range of prolonged 

work-related stress symptoms. Thus, the findings are of value when striving to 

characterize burnout at a group level amongst related conditions with shared and 

unique features.

5.5 Clinical considerations

The present thesis raises questions and challenges also from a clinical perspective. 

First, why do employees with prolonged work fatigue seem to hesitate in contacting 

the occupational health care due to their symptoms? In the present thesis, 

approximately only one fifth of the burnout participants entered the study as referred 

by a health care professional, and the rest of them contacted directly our research 

group after noticing the study advertisement. Conversations with the participants 

shed some light on this issue, but in the present thesis the topic remains only 

speculative. For example, the participants reported worry about a possible label of a 

mental illness that burnout might bring, worry about keeping one’s job, or worry 

about the effects their own complaints might have on their work community. Indeed, 

worry about stigma and the possible harm and misconceptions it would bring have 

been shown in relation to many mental illnesses (Corrigan & Watson, 2002;

Sartorius, 2007). Personality traits might also partly explain this behavior as 

employee personality, especially conscientiousness and neuroticism, has been 

suggested to be related to susceptibility to burnout (Alarcon, Eschleman, & Bowling, 

2009; Armon, Shirom, & Melamed, 2012). Thus, worry and employee personality
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may lead to avoidance towards contacting occupational health care when well-being 

at work is at risk.

Second, behavioral methods assessing cognitive performance may not necessarily 

be sensitive enough to capture the putative burnout-related impairments, especially 

when the burnout symptoms are relatively mild. In clinical work, it is thus important 

to validate the individual’s experiences of cognitive disturbances and complaints even 

though no performance decrement would be observed in a clinical assessment using 

traditional pen-and-paper methods. In future research, subjective cognitive 

complaints should be systematically evaluated in order to study whether or not they 

would correlate with brain research findings on attention and cognitive control 

processes.

In addition, effort invested in task performance in burnout might warrant further 

studies with larger sample sizes than in the present thesis. In individual clinical 

settings, it is typically assessed by the participant or the health care professional. In 

Study IV, there was a tendency for the mild burnout group to put more effort on the 

task performance than the severe burnout and control groups as indicated by 

subjective ratings. This finding may be informative but should be interpreted with 

caution. One might consider this tendency in light of the attentional control theory by 

Eysenck, Derakshan, Santos and Calvo (2007). They stated that in anxiety, 

performance may remain effective when individuals put in compensatory strategies 

such as enhanced effort to use. Perhaps cognitive performance in mild burnout 

shares some elements with that of individuals with anxiety symptoms, when 

participants increase their effort striving to sustain the performance level as good as 

possible, as also suggested by van Dam (2016). Given that no additional effort was 

reported in the severe burnout group compared to the control group, the accuracy in 

the severe burnout group was sacrificed while striving to sustain the performance 

level.

5.6 Future directions

The present findings may be of help when developing burnout-related interventions 

in the occupational health care, or preventive actions in workplace settings. However, 

the relatively large-scale prevalence of burnout potentially leading to considerable 

economic, social, and psychological costs to employees and employers certainly calls
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for further studies to contribute to a better understanding of the health and 

performance consequences of long-term work-related stress. With this regard, 

applied psychophysiological research methods serving the needs of today’s working 

life might be beneficial in evidence-based health promotion at work. For example, in 

addition to brain research, other psychophysiological parameters such as heart-rate- 

variability (e.g., Kemp et al., 2010; Segerstrom & Nes, 2007) or eye blink rate (for a 

review, see Jongkees & Colzato, 2016) might provide additional value, not only in 

characterizing burnout features at group level, but also at an individual level in the 

clinical settings when assessing burnout, or in providing information possibly related 

to the recovery of burnout.

It should be emphasized that causality cannot be determined in the present thesis. 

To date, only little is known about the long-term consequences of prolonged work- 

related stress in terms of behavioral performance and brain mechanisms. A recent 

behavioral follow-up study showed that after one year from the initial professional 

care-seeking, performance of the former burnout patients was improved in tasks 

evaluating executive functions relative to the initial assessment (Eskildsen, Andersen, 

Pedersen, & Andersen, 2016). However, they still continued to perform worse than 

their control participants suggesting that cognitive functioning should be taken into 

account when interventions for alleviating burnout symptoms or return to full-time 

employment after possible sick leave are planned. These issues should also be 

considered in interventions that include workplace prevention activities through 

reducing psychosocial workload and risk factors at work.

Finally, longitudinal studies could provide a better understanding of which 

individual, interpersonal, or organizational factors contribute to who stays at or 

returns to work after experienced burnout. These issues will be addressed in a 

currently ongoing collaborative follow-up study at the Finnish Institute of 

Occupational Health to which the participants of the present thesis are invited.
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