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Approximately half of the variation in wellbeing measures overlaps with variation in personality traits. Stud-
ies of non-human primate pedigrees and human twins suggest that this is due to common genetic in-
fluences. We tested whether personality polygenic scores for the NEO Five-Factor Inventory (NEO-FFI)
domains and for item response theory (IRT) derived extraversion and neuroticism scores predict variance
in wellbeing measures. Polygenic scores were based on published genome-wide association (GWA) results
in over 17,000 individuals for the NEO-FFI and in over 63,000 for the IRT extraversion and neuroticism
traits. The NEO-FFI polygenic scores were used to predict life satisfaction in 7 cohorts, positive affect in 12
cohorts, and general wellbeing in 1 cohort (maximal N = 46,508). Meta-analysis of these results showed
no significant association between NEO-FFI personality polygenic scores and the wellbeing measures. IRT
extraversion and neuroticism polygenic scores were used to predict life satisfaction and positive affect in
almost 37,000 individuals from UK Biobank. Significant positive associations (effect sizes <0.05%) were ob-
served between the extraversion polygenic score and wellbeing measures, and a negative association was
observed between the polygenic neuroticism score and life satisfaction. Furthermore, using GWA data,
genetic correlations of -0.49 and -0.55 were estimated between neuroticism with life satisfaction and pos-
itive affect, respectively. The moderate genetic correlation between neuroticism and wellbeing is in line
with twin research showing that genetic influences on wellbeing are also shared with other independent
personality domains.

� Keywords: wellbeing, genetics, polygenic prediction, happiness, genetic correlation

Happiness is a desirable state that is universally pursued. It
is also linked to personality traits, such as those of the Five-
Factor Model (Adams et al., 2012; DeNeve & Cooper, 1998).
Individuals who score lower on neuroticism and higher on
extraversion, agreeableness, and conscientiousness report
being happier and more satisfied with their lives (meta-
analytic correlations ranged 0.17–0.22; DeNeve & Cooper,
1998). Genetic influences account for approximately 40% of
variation in wellbeing (Bartels, 2015), which is comparable
to the heritability estimates for personality traits (Bouchard
& Loehlin, 2001). Genetic analysis has shown that although
unique, non-additive genetic effects were found for happi-
ness and general quality of life (Bartels & Boomsma, 2009),
a common additive genetic factor influences different well-
being measures (i.e., general quality of life, present qual-
ity of life, life satisfaction, and subjective happiness/positive
affect).

Evidence for shared genetic variance between person-
ality and wellbeing comes from biometric genetic studies
of great ape pedigrees (Adams et al., 2012; Weiss et al.,
2002). It also comes from studies of human twins and sib-

lings. Using a three-item wellbeing measure (present and
general life satisfaction, control over one’s life), Weiss et al.
(2008) showed that a general personality additive genetic
factor explained 2.2% of the variance in wellbeing. Addi-
tional genetic contributions to wellbeing were via indepen-
dent factors that influenced neuroticism (5.3% of variance),
extraversion (13%), and conscientiousness (0.8%). Hahn
et al. (2013) confirmed the absence of unique genes in-
fluencing a multidimensional measure of life satisfaction
in their extended twin study, additionally showing shared
non-additive genetic variance between neuroticism and life
satisfaction.

A complementary test of the hypothesis that common
genes underlie variation in personality and happiness is
to use molecular data, such as single nucleotide polymor-
phisms (SNPs). In a recent large study (N ≈ 300K), a
polygenic score constructed from a genome-wide asso-
ciation (GWA) meta-analysis on subjective wellbeing ex-
plained ∼0.7% of the variance in neuroticism and ∼0.4%
of the variance in extraversion (Okbay et al., 2016). Ap-
plying bivariate linkage disequilibrium score regression
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(Bulik-Sullivan et al., 2015) to the GWA summary statis-
tics for wellbeing and neuroticism resulted in a SNP-based
genetic correlation of -0.75 (SE = 0.034; Okbay et al.,
2016). This genetic correlation represents the correlation
of common, additive genetic effects between the two traits.
Whereas the variance in a trait explained by polygenic
scores is typically low, methods to infer the expected SNP-
derived variance from polygenic scores show agreement
with their empirical and simulation-based estimates (Dud-
bridge, 2013; Wray et al., 2014).

To provide greater support for a genetic association be-
tween personality and wellbeing, our aim here is to pre-
dict phenotypic scores for wellbeing and its subcomponents
of life satisfaction and positive affect by using information
about SNP effects on neuroticism, extraversion, openness,
agreeableness, and conscientiousness. We used a method
involving polygenic prediction models that enabled us to
test whether genes influencing one trait influence another
trait (for a review, see Wray et al., 2014). In this method,
GWA results of a trait are used to create a polygenic score
representing the sum of the effects of individual SNPs on
that trait in an independent sample. This score is then used
to predict the trait of interest. Polygenic prediction mod-
els do not require family designs, enabling the use of a
large number of population-based studies with wellbeing
and genotyping data.

We furthermore established genetic correlations be-
tween neuroticism and wellbeing measures by using a bi-
variate restricted maximum likelihood (REML) estimation
(Lee et al., 2012) that has not previously been applied to
these traits. This method uses genome-wide SNP data to
calculate a genetic relationship matrix between unrelated
individuals which within a REML framework allows esti-
mation of the heritability due to all SNPs. This extends to
the bivariate case from which genetic correlations can be
ascertained.

We created polygenic scores using GWA results for the
NEO Five-Factor Inventory (NEO-FFI; de Moor et al.,
2012) and for extraversion and neuroticism from item re-
sponse theory (IRT) analyses of varying personality scales
(de Moor et al., 2015; van den Berg et al., 2015). Whereas
the NEO-FFI GWA meta-analysis comprised a smaller to-
tal sample size (N = 17,375) than the IRT extraversion and
neuroticism GWA meta-analyses (N ∼ 63,000 ), impor-
tantly, it measures all five personality domains, and poly-
genic prediction based on these results has been success-
ful for extraversion (predicting bipolar disorder) and neu-
roticism (predicting major depressive disorder; Middel-
dorp et al., 2011). We used unit-weighted tests to determine
whether the polygenic score of any personality domain was
associated with phenotypic variance in life satisfaction, pos-
itive affect, and wellbeing. For the NEO-FFI GWA results,
polygenic prediction was tested in 14 cohorts that were in-
dependent of the GWA, and for the IRT extraversion and
neuroticism GWA results, polygenic prediction was tested

in the UK Biobank, which was independent of the GWA
meta-analyses. To establish genetic correlations between
neuroticism and wellbeing using bivariate REML, we used
a large cohort of unrelated individuals with genome-wide
data and measurements on all the traits of interest.

Methods
Participants

NEO-FFI polygenic prediction in 14 cohorts. Cohorts
were drawn from a GWA study meta-analysis of wellbeing
conducted by the Social Sciences Genetic Association Con-
sortium (SSGAC; http://www.thessgac.org), with the pro-
viso that none of the cohorts were part of the GWAS meta-
analysis of the NEO-FFI (de Moor et al., 2012); personal-
ity data were not required for analysis. Participants were
(or were ancestors of) white Europeans. Thirteen cohorts
with positive affect (n ranged 351–11,971) and seven co-
horts with life satisfaction (n ranged 351–9,938) were avail-
able (five cohorts had positive affect and life satisfaction
measures) for inclusion in our meta-analysis. An additional
cohort (n = 6,960) had a measure of general wellbeing that
was analyzed separately. Individual cohort descriptions, in-
cluding the scales and/or items used to measure wellbeing,
are provided in the Supplementary information. The rele-
vant institutional ethics review boards approved the indi-
vidual studies.

DNA was extracted using standard protocols. Genotyp-
ing procedures are summarized in Supplementary Table S1.
Cohorts used HapMap II imputed data or, if unavailable,
observed genotypes for analysis. Imputed data were pre-
ferred because the GWAS personality results were based
on HapMap II data, thus ensuring that all SNPs would be
matched to those available in the GWAS. One cohort used
1000G imputation but removed SNPs that were not avail-
able in HapMap II.

Extraversion and neuroticism polygenic prediction in
UK Biobank. Five of the SSGAC cohorts participated in
the IRT extraversion and neuroticism GWA studies (de
Moor et al., 2015; van den Berg et al., 2015); therefore,
another independent cohort was sought for this predic-
tion analysis. Participants were drawn from the baseline
survey of the UK Biobank (http://www.ukbiobank.ac.uk),
a resource established for investigating factors influenc-
ing disease in middle and older age. These measures (in-
cluding questionnaire and biological samples) were col-
lected between 2006 and 2010 on 502,655 British com-
munity residing individuals, a subset of whom were used
in the present study. Positive affect was measured by the
item ‘In general how happy are you?’ on a six-point scale
(extremely happy, very happy, moderately happy, moder-
ately unhappy, very unhappy, and extremely unhappy). Gen-
eral life satisfaction was surveyed across family relation-
ships, financial situation, friendship, health, and work/job
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domains on the same six-point scale. Responses on these
items demonstrated positive manifold and were best de-
scribed by a single factor that explained 37% of variance. An
averaged life satisfaction score was used to account for miss-
ing data where a person was currently unemployed (n =
11,679), did not know (n ranged 97–380), or preferred not
to answer (n ranged 30–170). Neuroticism was measured
by 12 items from the Eysenck Personality Questionnaire
Revised (Eysenck & Eysenck, 1991). Wellbeing data were
available for 36,737 (positive affect) and 36,911 (life sat-
isfaction) individuals with genome-wide genotyping data.
These data were skewed in the direction of lower positive af-
fect/life satisfaction, but no ceiling effect was present. Ages
ranged between 40 and 70 years (mean age = 57.31 years,
SD = 7.92).

DNA was obtained via blood samples and genotyping
performed with either the UK BiLEVE array or the UK
Biobank axiom array. Standard quality control procedures
were followed, including checks for gender mismatch and
non-British ancestry. Further description can be found in
Hagenaars et al. (2016). Polygenic scores were created on
the observed genotypes. UK Biobank received ethical ap-
proval from the Research Ethics Committee (REC reference
11/NW/0382).

Statistical Analysis

NEO-FFI polygenic prediction in 14 cohorts. Five sets
of polygenic scores representing the personality domains
of neuroticism, extraversion, openness, agreeableness, and
conscientiousness were estimated using SNP association re-
sults from the largest GWA meta-analysis of NEO-FFI do-
mains to date (de Moor et al., 2012). This GWA study in-
cluded 10 discovery samples (N = 17,375). None of the
cohorts – except NTR – in the present study were part of
this personality GWA. For their analyses, NTR removed
the participants who were part of the personality GWA
meta-analysis.

Personality polygenic scores were estimated in each co-
hort using five probability thresholds for choosing SNPs
to include in the score. These were based on the signifi-
cance value for each SNP from the GWAS meta-analysis:
p < .01, p < .05, p < .1, p < .5, and p < 1. Polygenic
scores were formed by summing the meta-analytic effect
size coefficients (betas) weighted by the number of copies
(0/1/2) of the effect allele carried by the individual across
all SNPs within the threshold. For imputed data, best guess
genotypes were used but excluding SNPs with an imputa-
tion quality estimated r2 less than 0.80. Before score calcula-
tion, SNPs with a minor allele frequency <0.05 and Hardy–
Weinberg Equilibrium test <p × 10-7 were removed. SNPs
were then pruned for linkage disequilibrium using an r2

cut-off of 0.25 within a 200-SNP sliding window, following
Purcell et al. (2009). Missing SNPs for an individual were
imputed dependent on the observed allele frequency in the
cohort. Polygenic scores were calculated using PLINK (Pur-

cell et al., 2007). Supplementary Table S2 shows the number
of SNPs included in the calculation of the polygenic score
at each threshold for all the cohorts.

To predict phenotypic wellbeing scores from the poly-
genic personality scores, regression analysis was used. The
dependent measures (positive affect, life satisfaction, and
general wellbeing) were residualized on age, age squared (if
significant), sex, population stratification components, and
number of non-missing SNPs contributing to each individ-
ual’s score (where observed genotypes were used or where
sparse genotyping led to poorer imputation quality). Stan-
dardized residual scores were then used as the dependent
variable. A series of univariate regression analyses using
each of the five polygenic personality scores as predictors
was run for each polygenic score threshold (i.e., 25 tests).
For the MCTFR cohort, a feasible generalized least squares
regression was used to account for familial correlations.
For NTR, a generalized estimating equating model was
used to account for family structure. A meta-analysis of
the standardized regression coefficients from the regres-
sion models for life satisfaction and positive affect was
performed assuming random effects in R (MAc package;
http://cran.r-project.org/web/packages/MAc/index.html).
This produced an overall effect size and standard error. A
false discovery rate correction (Benjamini and Hochberg
method) to an alpha level of 0.05 was applied to each of
the meta-analyses and to the analysis of general wellbeing.
Cohort estimate heterogeneity was assessed by Cochran’s
Q, which uses the sum of squared deviations of each study’s
effect size from the meta-analytic estimate to determine
significance. A supplementary meta-analysis was per-
formed on combined life satisfaction, positive affect and
general wellbeing measures to obtain a maximal sample
size (∼10,000 more individuals than the positive affect
analysis). Where a cohort had two measures, the measure
with the larger sample was chosen.

Extraversion and neuroticism polygenic prediction in
UK Biobank. Five polygenic scores were calculated for
extraversion and neuroticism based on the significance
value for each SNP from the largest respective GWA meta-
analysis of these traits (p < .01, p < .05, p < .1, p < .5,
and p < 1 (de Moor et al., 2015; van den Berg et al., 2015).
Both GWA studies were based on the same 29 meta-analysis
samples that included 63,030 individuals for extraversion
and 63,661 individuals for neuroticism. Because there was
variation in the personality scale used across samples, an
IRT procedure was used to harmonize the personality traits
prior to GWA (van den Berg et al., 2014). Polygenic scores
(as described in the previous section) for extraversion and
neuroticism were created using PRSice software (Euesden
et al., 2015) at the five SNP inclusion levels. Before calcu-
lating the scores, exclusions were made of SNPs with low
minor allele frequency (<0.01) and of SNPs in linkage dis-
equilibrium (r2 > 0.25) using a clumping method within
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TABLE 1
Meta-Analysis Results (Regression Coefficient, Standard Error, p Value) for Univariate Analyses of Personality
Polygenic Scores (at Five SNP Inclusion Thresholds) Predicting Life Satisfaction (Total N = 19,270)

p < .01 p < .05 p < .1 p < .5 p < 1

Neuroticism 0.01 (0.007) 0.01 (0.010) 0.016 (0.011) -0.001 (0.007) 0.002 (0.007)
p = .16 p = .27 p = .15 p = .70 p = .66

Extraversion 0.014 (0.010) 0.012 (0.007) 0.015 (0.007) 0.012 (0.007) 0.009 (0.007)
p = .15 p = .08 p = .031 p = .09 p = .21

Openness -0.012 (0.010) -0.014 (0.01) -0.014 (0.009) -0.012 (0.007) -0.012 (0.007)
p = .25 p = .14 p = .12 p = .08 p = .09

Agreeableness -0.008 (0.007) 0 (0.008) 0.002 (0.007) 0.004 (0.008) 0.006 (0.009)
p = .28 p = .75 p = .62 p = .56 p = .46

Conscientiousness 0.004 (0.007) 0.01 (0.007) 0.002 (0.007) 0.017 (0.007) 0.015 (0.007)
p = .51 p = .16 p = .63 p = .021 p = .042

Note: False discovery rate q = 0.002.

a 250 kb window. A lower minor allele frequency level ex-
clusion was set for this sample due to its much larger size
than the samples comprising the meta-analysis described
above; and given the increased reliability of individual ef-
fects from the larger GWA meta-analysis, the clumping pro-
cedure, which preferentially selects SNPs showing the great-
est association, was preferred. For extraversion, the poly-
genic scores were the composite of 4,271, 18,606, 34,981,
143,525, and 238,487 SNPs for respective p < .01, p < .05,
p < .1, p < .5, and p < 1 inclusion thresholds. For neu-
roticism, the polygenic scores were the composite of 4,266,
18,427, 34,700, 143,520, and 205,751 SNPs for respective p
< .01, p < .05, p < .1, p < .5, and p < 1 inclusion thresholds.
The regression models for polygenic extraversion and neu-
roticism scores predicting wellbeing included additional in-
dependent variables: age at survey, sex, genotyping batch
and array, assessment center, and the first 10 genetic prin-
cipal components (to correct for population stratification).
FDR correction was applied to these analyses.

Genetic correlations between neuroticism and wellbeing
in UK Biobank. Given the large size of UK biobank and
the availability of neuroticism and two wellbeing measures,
genetic correlations were derived using SNP-based meth-
ods (bivariate REML; Lee et al., 2012). This method uses a
standard bivariate linear model in which random polygenic
effects are fitted and the variance covariance matrix condi-
tioned by a genomic similarity relationship matrix that is
estimated from genome-wide SNP information. The pro-
gram GCTA (Yang et al., 2011) was used for this analysis
on unrelated individuals only (individuals with a genetic
similarity >0.025 were removed) to remove potential con-
founding from environmental influences. Observed geno-
types were used excluding SNPs with a minor allele fre-
quency less than 0.01. All phenotypes were regressed for the
effects of age, sex, assessment center, genetic batch, genetic
array, and 10 population stratification components; result-
ing residual scores were used in the GCTA analysis.

Results
NEO-FFI Polygenic Prediction in 14 Cohorts

Meta-analysis results for univariate regression models
where personality polygenic scores predict life satisfaction
and positive affect can be found in Tables 1 and 2, respec-
tively. These tables display the regression beta, standard er-
ror and p value for each personality domain at each of the
polygenic score inclusion thresholds (i.e., p < .01, p < .05,
p < .1, p < .5, and p < 1).

No tests were significant for life satisfaction or positive
affect at the false discovery rate corrected alpha (q = 0.002).
For positive affect, heterogeneity between cohorts was ob-
served for all neuroticism polygenic scores, four of the ex-
traversion polygenic score estimates and three of the agree-
ableness polygenic scores (see Supplementary Table S3, for
individual cohort betas). The correlations between person-
ality polygenic scores and wellbeing (and corresponding p
values) are shown in Table 3. In this analysis, no correla-
tions surpassed the FDR corrected significance level. Re-
sults from the meta-analysis in which all measures were
combined are presented in Supplementary Table S4. No re-
gression coefficients differed significantly from zero and
there was significant heterogeneity between cohort esti-
mates for five tests (neuroticism at SNP inclusion p < .01,
extraversion at SNP inclusion p < .5 and p < 1, and agree-
ableness at SNP inclusion p < 0.5 and p < 1).

IRT Extraversion and Neuroticism Polygenic Prediction
in UK Biobank

The significance value and amount of variance explained
by the polygenic extraversion and neuroticism scores in
predicting life satisfaction and positive affect are shown in
Figure 1. The FDR significance level was 0.0325. Extraver-
sion polygenic scores significantly predicted both wellbe-
ing measures (at all SNP inclusion thresholds for positive
affect and at three thresholds for life satisfaction), whereas
neuroticism polygenic scores significantly predicted only
life satisfaction (at all thresholds). In all models, poly-
genic scores at the more liberal SNP inclusion thresholds
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TABLE 2
Meta-Analysis Results (Regression Coefficient, Standard Error, p Value) for Univariate Analyses of Personality
Polygenic Scores (at Five SNP Inclusion Thresholds) Predicting Positive Affect (Total N = 46,508)

p < .01 p < .05 p < .1 p < .5 p < 1

Neuroticism -0.006 (0.011)b -0.007 (0.013)b -0.01 (0.014)b -0.019 (0.016)b -0.013 (0.016)b

p = .52 p = .51 p = .43 p = .22 p = .37
Extraversion 0.001 (0.005) 0.012 (0.008)a 0.015 (0.009)a 0.02 (0.010)b 0.019 (0.010)b

p = .68 p = .10 p = .08 p = .048 p = .047
Openness -0.006 (0.005) -0.001 (0.005) 0.000 (0.005) -0.004 (0.005) -0.003 (0.005)

p = .17 p = .66 p = .73 p = .39 p = .45
Agreeableness 0.012 (0.006) 0.02 (0.007)a 0.02 (0.007) 0.020 (0.009)b 0.021 (0.009)a

p = .033 p = .006 p = .004 p = .029 p = .019
Conscientiousness 0.004 (0.005) 0.005 (0.005) 0.003 (0.005) 0.002 (0.005) 0.000 (0.005)

p = .38 p = .24 p = .50 p = .60 p = .74

Note: False discovery rate q = 0.002.
aSignificant heterogeneity p < .05.
bsignificant heterogeneity p < .001.

TABLE 3
Correlation and p Value for Univariate Analyses of Personality Polygenic Scores (at Five SNP Inclusion Thresholds)
Predicting General Wellbeing in the MCTFR (N = 6,960)

p < .01 p < .05 p < .1 p < .5 p < 1

Neuroticism -0.009 -0.017 -0.018 -0.023 -0.026
p = .42 p = .15 p = .13 p = .05 p = .03

Extraversion 0.011 0.022 0.02 0.015 0.015
p = .35 p = .06 p = .09 p = .21 p = .22

Openness 0.011 0.002 0.003 0.01 0.01
p = .34 p = .86 p = .82 p = .39 p = .42

Agreeableness -0.015 0.002 0.008 0.008 0.007
p = .22 p = .87 p = .53 p = .49 p = .55

Conscientiousness -0.011 -0.004 0.012 0.007 0.001
p = .34 p = .73 p = .31 p = .54 p = .69

Note: False discovery rate q = 0.002.

explained more variance than the more restrictive SNP in-
clusion sets. The direction of the effect was as predicted with
polygenic neuroticism scores negatively related to life sat-
isfaction and extraversion positively related to measures of
wellbeing. The amount of variance explained was extremely
small, not exceeding 0.04%.

Genetic correlations between neuroticism and wellbeing
in UK Biobank. For the analysis of neuroticism and pos-
itive affect, 30,367 individuals were included. SNP-based
heritabilities of 0.15 (SE = 0.02) and 0.08 (SE = 0.02)
were estimated for respective neuroticism and positive af-
fect measures with a genetic correlation of -0.55 (SE =
0.09). The analysis of neuroticism and life satisfaction (N
= 30,494) gave a heritability of 0.13 (SE = 0.02) for life sat-
isfaction and a genetic correlation of -0.49 (SE = 0.07) with
neuroticism.

Discussion
These results build upon biometric research showing that
common genes influence personality and happiness. The
polygenic prediction based on the larger GWA of IRT-based
extraversion and neuroticism showed significant associa-

tion with wellbeing measures at a corrected false discov-
ery rate. The personality polygenic prediction of wellbe-
ing based on the smaller GWA of personality was non-
significant for all five NEO-FFI domains. In the NEO-FFI
meta-analysis heterogeneity was evident in, at most, four
cohorts, suggesting that there were few differences owing
to study specific factors (e.g., variation in measurement
instrument). Because the meta-analysis and UK Biobank
prediction samples were of comparable size (and resulting
power), the limiting factor then for these analyses was the
difference in power between the GWA studies of the NEO-
FFI traits and IRT-based extraversion and neuroticism, on
which the polygenic scores were based. In our test of the ge-
netic correlation between neuroticism and wellbeing mea-
sures using genetic relationships based on genome-wide
SNP data, we found a moderate degree of genetic overlap
for both positive affect and life satisfaction.

The finding in UK Biobank that extraversion polygenic
scores predicted both life satisfaction and positive affect
(measures showing a 0.62 phenotypic correlation in our
sample) but that neuroticism polygenic scores predicted
only life satisfaction was unexpected given that the com-
bined measure of happiness and satisfaction with life used
in the recent GWA of wellbeing significantly predicted
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FIGURE 1
Neuroticism and extraversion polygenic scores at five SNP inclusion thresholds (x-axis) predicting life satisfaction and positive affect in
UK Biobank. Amount of variance explained by the polygenic scores is depicted on the y-axis and the significance value of the polygenic
predictor is displayed on the bars.

neuroticism and extraversion (Okbay et al., 2016). Our
finding in UK Biobank of similar-sized genetic correlations
between neuroticism with positive affect and life satisfac-
tion would also predict that polygenic neuroticism should
relate to positive affect. The null finding might point to type
2 error rather than an interpretation that positive and neg-
ative affect are not opposite poles of the same dimension
(e.g., Russell & Carroll, 1999). It is likely that the SNP-based
genetic correlation between extraversion and positive affect

will be stronger than for neuroticism, but we were unable to
test this here because no other personality traits were col-
lected in UK Biobank.

The amount of variance in the wellbeing measures ex-
plained by the polygenic scores was extremely small, less
than half a percent. But given that polygenic neuroticism
only predicts 0.66% of variance in neuroticism itself (de
Moor et al., 2015), our finding is not unexpected. As GWA
meta-analysis studies of personality get larger, this effect
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size should increase; this is demonstrated by the superior
reverse prediction of personality from polygenic wellbeing
(Okbay et al., 2016). However, given the low estimated SNP-
based heritabilities for neuroticism and wellbeing (<0.15 in
our study), the limit for variance explained by a polygenic
measure will necessarily be small. Twin and family stud-
ies show that heritabilities for personality and wellbeing
are at least double that of the SNP-based estimates, which
only consider the genetic variation due to common variants.
Therefore, further gains in prediction might be achieved by
investigating rare and/or structural genetic variants. There
are no rare variant studies on personality, but in the only
study (Power & Pluess, 2015) to estimate the heritabil-
ity of all the Five-Factor Model domains using genome-
wide SNP data (N = 5,011), only neuroticism and open-
ness showed significant genetic influences, suggesting that
rare variants might be important. With regard to struc-
tural variants, preliminary investigations do not show an
effect of large copy number variants on personality (Lu-
ciano, MacLeod et al., 2012). Additionally, by using an ad-
ditive composite of personality SNP effects we may have re-
stricted the prediction of wellbeing. Extended twin studies
show non-additive genetic effects for extraversion, neuroti-
cism, and conscientiousness (Hahn et al., 2013; Keller et al.,
2005), and measures of wellbeing (Bartels & Boomsma,
2009; Hahn et al., 2016). Further studies are therefore
needed to confirm whether different personality traits
share greater additive or non-additive genetic variance with
wellbeing.

Our study confirms that improvements in polygenic
score prediction results from larger meta-analysis GWA
studies of the predictor trait. However, it should be noted
that Middeldorp et al. (2011) used a subsample (N =
13,835) of de Moor et al.’s (2012) NEO-FFI GWA study
to create polygenic personality scores that predicted major
depressive disorder (from neuroticism) and bipolar disor-
der (from extraversion). Moreover, Luciano, Huffman et al.
(2012) predicted depressive symptoms from polygenic neu-
roticism using a GWA sample that was even smaller. Ac-
cepting that their results were not type 1 errors, one must
ask why we failed to predict wellbeing here. One possi-
bility is that the genetic correlations between neuroticism
and extraversion are stronger with major depressive disor-
der (∼0.72; Middeldorp et al., 2005) and bipolar disorder
(0.44; Hare et al., 2012) than the genetic correlations be-
tween personality and wellbeing (0.20–0.66; Weiss et al.,
2008). These estimates, however, are based on twin stud-
ies where the similarity across all types of genetic varia-
tion is considered. The polygenic scores focus only on com-
mon variants, so genetic correlations based on these are
more relevant. Using GWA results to estimate genetic corre-
lations, neuroticism showed the same absolute correlation
(0.75) with wellbeing (combined positive affect and life sat-
isfaction) and depression (Okbay et al., 2016), although in
our bivariate SNP-based method using raw genotypes, ge-

netic correlations between neuroticism and separate posi-
tive affect and life satisfaction measures were lower (-0.55
and -0.49). Genetic correlations between extraversion and
wellbeing using genome-wide SNP data will be informative.
It may well be that personality has stronger genetic links
with mental illness than wellbeing. That wellbeing is influ-
enced predominantly by environmental factors unrelated to
personality (Weiss et al., 2008) might also limit polygenic
prediction.

Using the largest GWA studies to date of extraversion
and neuroticism (independent of the UK Biobank sample)
we confirmed that polygenic effects for these personality
domains influenced wellbeing. Prediction tended to be bet-
ter when using all SNP data rather than limiting prediction
to a smaller number of SNPs with larger effects on person-
ality. This suggests that many genes of very small effect are
important for extraversion, neuroticism, and wellbeing.
Although neuroticism has captured the interest of many re-
searchers in cognitive psychology and psychiatry, our study
also shows an important role of extraversion in mental
wellbeing. We expect that genes influencing agreeableness,
conscientiousness and openness will also have some role
in explaining wellbeing, but our analysis could not reliably
address this.
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