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1. Overview

The unifying theme of the four articles, [A,B,C,D], forming this dissertation
is the existence and non-existence of continuous entire non-constant solutions
for nonlinear differential operators on a Riemannian manifold M . The exis-
tence results of such solutions are proved by studying the asymptotic Dirichlet
problem under different assumptions on the geometry of the manifold.

Minimal graphic functions are studied in articles [A] and [D]. Article [A]
deals with an existence result whereas in [D] we give both existence and non-
existence results with respect to the curvature of M . Moreover p-harmonic
functions are studied in [D].

Article [B] deals with the existence of A-harmonic functions under similar
curvature assumptions as in [A]. In article [C] we study the existence of f -
minimal graphs, which are generalisations of usual minimal graphs. In contrast
to the other articles, here we also consider the existence in the case of bounded
domains.

Before turning to the ideas and results of the research articles, we present
some key concepts of the thesis and give a brief history of the development
of the asymptotic Dirichlet problem. Due to the similarity of the techniques
in [A] and [B], we treat them together in Section 4. Article [C] is treated in
Section 5 and article [D] in Section 6. At the beginning of the Sections 4 –
6 we briefly give the background of the methods and techniques used in the
articles.

2. Preliminaries

This section is devoted to defining the key concepts of this thesis. Throughout
the thesis we assume that M is an n-dimensional, n ≥ 2, connected, non-
compact orientable Riemannian manifold equipped with a Riemannian metric
〈·, ·〉. The tangent space at each point x ∈M will be denoted by TxM and the
norm with respect to the Riemannian metric by | · |. Unless otherwise specified,
the integration will be with respect to the Riemannian volume form dm.

In the case of smooth functions u : M → R, the covariant derivation will
be denoted by D or semicolon. The first covariant derivative agrees with the
usual partial derivative and for the second covariant derivative we have

DiDju = ui;j = uij − Γkijuk = uj;i = DjDiu,

with uk = ∂u/∂xk. The third covariant derivative is no more symmetric with
respect to the last indices. If the Riemannian metric is given by ds2 = σijdx

idxj

in local coordinates with inverse matrix (σij), we will use a short hand notation
ui = σijDju.

A Cartan-Hadamard (also Hadamard) manifold M is a simply connected
Riemannian manifold whose all sectional curvatures satisfy

KM ≤ 0.

Basic examples of such manifolds are the Euclidean space Rn, with zero cur-
vature, and the hyperbolic space Hn, with constant negative curvature. The
name of these manifolds has its origin in the Cartan-Hadamard theorem which
states that the exponential map is a diffeomorphism in the whole tangent space
at every point of M .
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Given a smooth function k : [0,∞) → [0,∞) we denote by fk : [0,∞) → R
the smooth non-negative solution to the initial value problem (Jacobi equation)

fk(0) = 0,

f ′k(0) = 1,

f ′′k = k2fk.

These functions play an important role in estimates involving curvature bounds
since they result to rotationally symmetric manifolds that can be used in var-
ious comparison theorems, e.g. Hessian and Laplace comparison (see [40]).

Recall that a rotationally symmetric manifold, also a model manifold, Mf

is Rn equipped with a metric of the form g2 = dr2 + f(r)2dθ2, where r is the
distance to a pole o and dθ is the standard metric on the unit sphere Sn−1.
The sectional curvatures of a model manifold can be obtained from the radial
curvature function, namely we have

KMf
(Px) = −

f ′′
(
r(x)

)
f
(
r(x)

) cos2 α +
1− f ′

(
r(x)

)2

f
(
r(x)

)2 sin2 α, (2.1)

where α is the angle between ∇r(x) and the 2-plane Px ⊂ TxM , and hence
these manifolds offer examples of Cartan-Hadamard manifolds when f ′′ ≥ 0.
In the case of the radial sectional curvature the formula simplifies to

KMf
= −f

′′

f
.

For the verification of these formulae one could see e.g. [85].

2.1. Mean curvature equation and minimal surfaces. In 2-dimensional
case we have a nice and simple interpretation. Let Ω ⊂ R2 be an open set and
u : Ω → R a C2 function with graph Σu = {(x, u(x)) : x ∈ Ω}. Keeping the
boundary ∂Σu fixed and making a smooth variation of the graph, we get that
the critical points of the area functional∫

Ω

√
1 + |∇u|2

are solutions to the minimal graph equation

div
∇u√

1 + |∇u|2
= 0. (2.2)

The graphs of solutions of (2.2) have the minimal area among all graphs with
fixed boundary ∂Σu.

More generally we define minimal graphic functions as follows. Let Ω ⊂ M
be an open set. Then a function u ∈ W 1,1

loc (Ω) is a (weak) solution of the
minimal graph equation if ∫

Ω

〈∇u,∇ϕ〉√
1 + |∇u|2

= 0

for every ϕ ∈ C∞0 (Ω). Note that the integral is well-defined since√
1 + |∇u|2 ≥ |∇u| a.e.,
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and thus ∫
Ω

|〈∇u,∇ϕ〉|√
1 + |∇u|2

≤
∫

Ω

|∇u||∇ϕ|√
1 + |∇u|2

≤
∫

Ω

|∇ϕ| <∞.

The operator in (2.2) gives also the mean curvature of the graph Σu. Namely,
if N̄ is the unit normal vector field of Σu, then the mean curvature vector at
point x is given by (

div
∇u√

1 + |∇u|2

)
N̄(x) = H̄(x)

and the (scalar) mean curvature is

div
∇u√

1 + |∇u|2
= H(x). (2.3)

Therefore it is also called the mean curvature operator. Recall that the mean
curvature of a submanifold is the trace of the second fundamental form and
general minimal (hyper) surfaces (not necessarily graphs of functions) are the
surfaces having zero mean curvature.

Instead of minimal surfaces, one can also consider surfaces of constant mean
curvature (CMC surfaces) or surfaces of prescribed mean curvature. In the
latter case one considers solutions of (2.3) and H is a function defined on M
or in more general situation in M × R, see Section 5 and [C].

It is well known that under certain conditions there exists a (strong) solution
of (2.2) with given boundary values. Namely, let Ω ⊂⊂ M be a smooth
relatively compact open set whose boundary has positive mean curvature with
respect to inwards pointing unit normal. Then for each θ ∈ C2,α(Ω̄) there
exists a unique u ∈ C∞(Ω) ∩ C2,α(Ω̄) that solves the minimal graph equation
(2.2) in Ω and has the boundary values u|∂Ω = θ|∂Ω. Similar existence result
holds also for the case of prescribed mean curvature equation (2.3) but with
an assumption that the lower bound for the mean curvature of the boundary
∂Ω depends on the function H.

The standard strategy to prove these type of results is to obtain a priori
height and gradient estimates for the solutions and then apply the continuity
or Leray-Schauder method. For the proofs in the Euclidean case one should see
the original papers by Jenkins and Serrin [59] and by Serrin [80] or the book
[39] where also more general equations are considered. For the Riemannian
case see e.g. [81] and [32]. In [C] we treat the more general case where the
prescribed mean curvature depends also on the R-variable of the product space
M × R. Good references for the general theory of minimal surfaces are e.g.
[26] and [63].

It is also useful to write the minimal graph equation in a non-divergence
form

1

W
gijDiDju = 0,

where W =
√

1 + |∇u|2,

gij = σij − uiuj

W 2
(2.4)
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and ui = σijDju. The induced metric on the graph of u is given by

gij = σij + uiuj

with inverse (2.4). Similarly the mean curvature of the graph is given by

1

W
gijDiDju = nH.

For the derivation of these formulae, see e.g. [77].

2.2. A-harmonic functions. The weak solutions of the quasilinear elliptic
equation

Q[u] = − divAx(∇u) = 0 (2.5)

are called A-harmonic functions. Here the A-harmonic operator (of type p),
A : TM → TM , is subject to certain conditions; for instance 〈A(V ), V 〉 ≈
|V |p, 1 < p < ∞, and A(λV ) = λ|λ|p−2A(V ) for all λ ∈ R \ {0} (see [B] for
the precise definition). The set of all such operators is denoted by Ap(M)

To be more precise what we mean by a weak solution, let Ω ⊂ M be an
open set and A ∈ Ap(M). A function u ∈ C(Ω) ∩W 1,p

loc (Ω) is A-harmonic in
Ω if it satisfies ∫

Ω

〈A(∇u),∇ϕ〉 = 0 (2.6)

for every test function ϕ ∈ C∞0 (Ω). If |∇u| ∈ Lp(Ω), then it is equivalent
to require (2.6) for all ϕ ∈ W 1,p

0 (Ω) by approximation. In the special case
A(v) = |v|p−2v, yielding an equation

− div
(
|∇u|p−2∇u

)
= 0, (2.7)

A-harmonic functions are called p-harmonic and, in particular, if p = 2, we
obtain the usual harmonic functions. Therefore we see that A-harmonic func-
tions are really a generalisation of harmonic functions.

As the properties of the harmonic functions can be studied with superhar-
monic functions, the A-superharmonic functions play a similar role for the
A-harmonic functions. A lower semicontinuous function u : Ω → (−∞,∞] is
called A-superharmonic if u 6≡ ∞ in each component of Ω, and for each open
D ⊂⊂ Ω and for every h ∈ C(D̄), A-harmonic inD, h ≤ u on ∂D implies h ≤ u
in D. In the case of equation (2.7) these functions are called p-superharmonic.
A very good standard reference for the study of nonlinear potential theory in
the Euclidean case is the book [46] by Heinonen, Kilpeläinen and Martio. For
the Riemannian setting see [48].

The question about the solvability of the Dirichlet problem (also the as-
ymptotic one, see Section 2.3) for A-harmonic functions can be approached
via the Perron’s method which reduces the problem to the question about the
regularity of the boundary points. Recall that a boundary point x0 is regular
if

lim
x→x0

Hf (x) = f(x0)

for every continuous boundary data f . Here Hf is the upper Perron solution.
For precise definitions see [B] and for a complete treatment [46].
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2.3. Asymptotic Dirichlet problem on Cartan-Hadamard manifolds.
Cartan-Hadamard manifolds can be compactified by adding the asymptotic
boundary (also sphere at infinity) ∂∞M and equipping the resulting space
M̄ := M ∪∂∞M with the cone topology, making M̄ diffeomorphic to the closed
unit ball. The asymptotic boundary ∂∞M consists of equivalence classes of
geodesic rays under the equivalence relation

γ1 ∼ γ2 if sup
t≥0

dist
(
γ1(t), γ2(t)

)
<∞.

Equivalently it can be considered as the set of geodesic rays emitting from a
fixed point o ∈M , which justifies the name sphere at infinity.

The basis for the cone topology in M̄ is formed by cones

C(v, α) := {y ∈M \ {x} : ^(v, γ̇x,y0 ) < α}, v ∈ TxM, α > 0,

truncated cones

T (v, α,R) := C(v, α) \ B̄(x,R), R > 0,

and all open balls in M . Cone topology was first introduced in [37].
This construction allows us to define the main concept of this thesis, namely

the asymptotic Dirichlet problem (also Dirichlet problem at infinity) for a quasi-
linear elliptic operator Q:

Problem. Let θ : ∂∞M → R be a continuous function. Does there exist a
continuous function u : M̄ → R with{

Q[u] = 0 in M ;

u|∂∞M = θ,

and if yes, is the function u unique?

In the case such function u exists for every θ ∈ C(∂∞M), we say that the
asymptotic Dirichlet problem in M̄ is solvable. As we will see, the solvability
of this problem depends on the geometry of the manifold M , but the unique-
ness of the solutions depends also on the operator Q. For the usual Laplace,
A-harmonic and minimal graph operators we have the uniqueness but more
complicated operators may not satisfy maximum principles and hence also the
uniqueness of solutions will be lost (see Section 5).

3. Background of the asymptotic Dirichlet problem

In this section we give a brief history of the asymptotic Dirichlet problem
and developments before [A],[B],[C] and [D]. We will denote by M a Cartan-
Hadamard manifold with sectional curvature KM . Point o ∈M will be a fixed
point and r = d(o, ·) is the distance to o. By Px we denote a 2-dimensional
subspace of TxM .

3.1. Harmonic functions. The study of the harmonic functions on Cartan-
Hadamard manifolds has its origin in [40] where they proposed the conjecture
that if the sectional curvatures of the manifold M satisfy

KM ≤ −
C

r2
, C > 0,
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outside a compact set, then there exists a bounded non-constant harmonic
function on M . One way to show the existence of such functions is to try
to solve the asymptotic Dirichlet problem with continuous boundary data on
∂∞M .

The study of the asymptotic Dirichlet problem began in the beginning of
1980’s when Choi [23] gave a definition of the problem and showed that it can
be solved on a general n-dimensional Cartan-Hadamard manifold by assuming
that the sectional curvatures have an upper bound KM ≤ −a2, for some con-
stant a > 0, and that any two points on the boundary ∂∞M can be separated
by convex neighbourhoods. In [6] Anderson showed that such neighbourhoods
can be constructed by assuming that the sectional curvatures are bounded
between two negative constants, resulting to the following.

Theorem. Assume that the sectional curvatures of M satisfy

−b2 ≤ KM ≤ −a2, (3.1)

where 0 < a ≤ b are arbitrary constants. Then the asymptotic Dirichlet prob-
lem is uniquely solvable.

Sullivan [82] solved the asymptotic Dirichlet problem independently at the
same time by assuming (3.1) and using probabilistic methods. In [7] Anderson
and Schoen gave an identification of the Martin boundary of M under the
assumption (3.1).

A slightly different setting was considered by Ballmann [9], and Ballmann
and Ledrappier [10] when studying the Dirichlet problem on negatively curved
rank 1 manifolds. Ancona considered Gromov hyperbolic graphs [3] and Gro-
mov hyperbolic manifolds [4]. In [2] he solved the asymptotic Dirichlet problem
by assuming an upper bound for the sectional curvatures and that balls up to
a fixed radius are L-bi-Lipschitz equivalent to an open set in Rn.

In [19] Cheng introduced the pointwise pinching condition

|KM(Px)| ≤ CK |KM(P ′x)| (3.2)

for the sectional curvatures, and solved the problem assuming (3.2) and positive
bottom spectrum for the Laplacian. Here CK > 0 is a constant and Px, P

′
x ⊂

TxM are any 2-dimensional subspaces containing the radial vector field. It
is worth noting that (3.2) allows the curvature to behave very freely along
different geodesic rays.

Trying to relax the assumption (3.1), the first result allowing the curvature
to approach zero was due to Hsu and March [57] with assumption

−b2 ≤ KM ≤ −C/r2

for some constants b > 0 and C > 2. On the other hand, Borbély [14] allowed
the curvature to decay with assumption

−beλr ≤ KM ≤ −a
for some constants b ≥ a > 0 and λ < 1/3.

In 2003 Hsu [56] solved the asymptotic Dirichlet problem already under very
general curvature assumptions, namely his first result allowed the upper bound
behave like KM ≤ −α(α − 1)/r2 for α > 0 and instead of a lower bound for
the sectional curvatures, he assumed a Ricci lower bound −r2β ≤ Ric with
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β < α − 2. His second result assumed a constant sectional curvature upper
bound −a but allowed the Ricci lower bound to decay as

−h(r)2e2ar ≤ Ric,

where h is a function satisfying
∫∞

0
rh(r) dr <∞.

3.2. A- and p-harmonic functions. Investigation of the nonlinear setting
was started by Pansu [73] in 1988 when he showed the existence of non-constant
bounded p-harmonic functions, with p > (n−1)b/a and gradients in Lp, under
the curvature assumption (3.1). His proof was based on study of the Lp-
cohomology and it also gave non-existence for p ≤ (n− 1)a/b.

In [50] Holopainen showed that the direct approach by Anderson and Schoen
in [7] can be generalised to work also in the case of p-harmonic functions under
the assumption (3.1). Few years later Holopainen, Lang and Vähäkangas [53]
proved the existence of non-constant bounded p-harmonic functions in Gromov
hyperbolic metric measure spaces X equipped with a Borel regular locally
doubling measure.

Vähäkangas [86] replaced Cheng’s [19] assumption on the spectrum of the
Laplacian by a curvature upper bound KM ≤ −φ(φ − 1)/r2 and was able to
generalise the techniques used by Cheng to show the existence of non-constant
bounded A-harmonic functions assuming also (3.2).

Holopainen and Vähäkangas [55] (see also the unpublished licentiate thesis
[85]) generalised the approach of [50] and [7] even further to allow very general
curvature bounds

−(b ◦ r)2 ≤ KM ≤ −(a ◦ r)2,

where a and b are functions satisfying assumptions [55, (A1)-(A7)] (see also
[C, Section 4]). As a special case they obtain e.g. the following.

Theorem. Let M be a Cartan-Hadamard manifold of dimension n ≥ 2. Sup-
pose that

−r(x)2(φ−2)−ε ≤ K(Px) ≤ −
φ(φ− 1)

r(x)2
, (3.3)

r(x) ≥ R0, for some constants φ > 1 and ε, R0 > 0. Then the asymptotic
Dirichlet problem for p-Laplacian is solvable for every p ∈ (1, 1 + (n− 1)φ).

And assuming a constant curvature upper bound −k, they can also allow
the curvature to decay exponentially. Namely under the curvature bounds

−r(x)−2−εe2kr(x) ≤ KM(Px) ≤ −k (3.4)

they solve the Dirichlet problem for every p ∈ (1,∞).
In the unpublished preprint [87] Vähäkangas proved the existence of A-

harmonic functions under curvature assumptions similar to (3.3) and (3.4). His
technique adapted the method of Cheng [19] using Sobolev and Caccioppoli-
type inequalities together with complementary Young functions. Recently
Casteras, Holopainen and Ripoll [17] refined the methods of [87] and improved
the curvature upper bound to (almost) optimal, assuming

−
(

log r(x)
)2ε̃

r(x)2
≤ KM(Px) ≤ −

1 + ε

r(x)2 log r(x)
(3.5)

for some constants ε > ε̃ > 0.
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3.3. Minimal graphic functions. In this subsection we mention also some
results that do not concern directly the asymptotic Dirichlet problem but are
still related to the study of this thesis. Readers interested in the general theory
of minimal surfaces could see e.g. the survey [69].

The theory of minimal surfaces is very classical and has its origin in the
18th century. One of the most interesting questions was the Plateau’s problem
raised originally by Lagrange [62] in 1760, named after the Belgian physicist
Joseph Plateau (1801-1883), and finally solved independently by Douglas [36]
and Radó [74] in the beginning of 1930’s. Another interesting aspect is the
Bernstein-type problem that deals with minimal hypersurfaces in Rn. The
3-dimensional case was proved by Bernstein [13] in 1915-1917.

In 1968 Jenkins and Serrin [59] proved the solvability of the Dirichlet prob-
lem on bounded domains Ω ⊂ Rn whose boundary has non-negative mean
curvature. Serrin [80] gave a classical existence result for the prescribed mean
curvature graphs in Rn and more recently Guio and Sa Earp [45] considered
similar Dirichlet problem in the hyperbolic space.

Nelli and Rosenberg [72] constructed catenoids, helicoids and Scherk-type
surfaces in H2 × R and they also proved the solvability of the asymptotic
Dirichlet problem in H2.

Theorem. Let Γ be a continuous rectifiable Jordan curve in ∂∞H2 × R, that
is a vertical graph. Then, there exists a minimal vertical graph on H2 having
Γ as asymptotic boundary. The graph is unique.

In 2005 Meeks and Rosenberg [68] developed the theory of properly embed-
ded minimal surfaces in N × R, where N is a closed orientable Riemannian
surface but the existence of entire minimal surfaces in product spaces M × R
really draw attention after the papers by Collin and Rosenberg [27] and Gálvez
and Rosenberg [38]. In [27] Collin and Rosenberg constructed a harmonic dif-
feomorphism from C onto H and hence disproved the conjecture of Schoen
and Yau [79]. Gálvez and Rosenberg generalised this result to Hadamard sur-
faces whose curvature is bounded from above by a negative constant. A key
tool in their constructions was to solve the Dirichlet problem on unbounded
ideal polygons with alternating boundary values ±∞ on the sides of the ideal
polygons.

Spruck [81] established a priori gradient estimates and existence results for
graphs of constant positive mean curvature in product spaces N ×R, where N
is n-dimensional simply connected and complete Riemannian manifold. Many
of these results apply also to the case of zero mean curvature and especially
the gradient estimate has been used in later works considering the asymptotic
Dirichlet problem.

Sa Earp and Toubiana [78] constructed minimal vertical graphs over un-
bounded domains in H2 ×R taking prescribed boundary data. Esṕırito-Santo
and Ripoll [35] considered the existence of solutions to the exterior Dirich-
let problem on simply connected manifolds with negative sectional curvature.
Here the idea is to find minimal hypersurfaces on unbounded domains with
compact boundary assuming zero boundary values.
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Esṕırito-Santo, Fornari and Ripoll [34] proved the solvability of the asymp-
totic Dirichlet problem with negative constant upper bound for the sectional
curvature and an assumption on the isometry group of the manifold.

Rosenberg, Schulze and Spruck [77] studied minimal hypersurfaces in N×R+

with N complete Riemannian manifold having non-negative Ricci curvature
and sectional curvatures bounded from below. They proved so-called half-
space properties both for properly immersed minimal surfaces and for graphical
minimal surfaces. In the latter, a key tool was a gradient estimate for solutions
of the minimal graph equation.

Ripoll and Telichevesky [76] showed the existence of entire bounded non-
constant solutions for slightly larger class of operators, including minimal graph
operator, by studying the strict convexity (SC) condition of the manifold.
Similar class of operators was studied also by Casteras, Holopainen and Ripoll
[18] but instead of considering the SC condition, they solved the asymptotic
Dirichlet problem by using similar barrier functions as in [55]. Both of these
gave the existence of minimal graphic functions under the assumption (3.4)
and the latter also included (3.3).

The method of Cheng adapted also to the case of minimal graphs and in
[17] Casteras, Holopainen and Ripoll proved the following.

Theorem. Let M be a Cartan-Hadamard manifold of dimension n ≥ 3 and
suppose that

−
(

log r(x)
)2ε̃

r(x)2
≤ KM(Px) ≤ −

1 + ε

r(x)2 log r(x)
(3.6)

holds for some constants ε > ε̃ > 0 and r large enough. Then the asymptotic
Dirichlet problem is uniquely solvable.

Telichevesky [83] considered the Dirichlet problem on unbounded domains
Ω proving the existence of solutions provided that KM ≤ −1, the ordinary
boundary of Ω is mean convex and that Ω satisfies the SC condition at infinity.
The SC condition was studied by Casteras, Holopainen and Ripoll also in [16]
and they proved that the manifold M satisfies the SC condition under very
general curvature assumption. As special cases they obtain the bound (3.6)
and

−ce(2−ε)r(x)ee
r(x)/e3 ≤ KM ≤ −φe2r(x)

for some constants φ > 1/4, ε > 0 and c > 0.

3.4. Rotationally symmetric manifolds. The situation on rotationally sym-
metric manifolds is slightly different from the general n-manifolds and hence
we decided to treat them separately, although the problems on these mani-
folds has been studied at the same time as on the general manifolds. In [23]
Choi gave also a definition of the asymptotic Dirichlet problem with respect
to a pole on model manifolds and in the case of a Cartan-Hadamard model, it
coincides with the previous definition.

As in the case of general manifolds, the study of the existence results begun
with the harmonic functions. In 1977 Milnor [70] proved that a 2-dimensional
rotationally symmetric surface Mf possess non-constant harmonic functions if
and only if

∫∞
1

1/f(s) ds < ∞. In terms of curvature bounds this gives the
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existence when

KMf
≤ − 1 + ε

r2 log r
. (3.7)

Choi [23] extended this result and proved that if (3.7) holds outside a compact
set, then the asymptotic Dirichlet problem with respect to a pole is solvable
for all n ≥ 2.

March [66] studied the behaviour of the Brownian motion and used the
invariant σ-field to characterise the existence of harmonic functions in terms
of the curvature function, obtaining the following result.

Theorem. Let Mf be a model manifold with negative radial curvature. Then
there exist non-constant bounded harmonic functions if and only if∫ ∞

1

(
f(s)n−3

∫ ∞
s

f(t)1−ndt
)
ds <∞. (3.8)

In 2-dimensional case this corresponds to the curvature bound (3.7) and
when n ≥ 3, (3.8) is equivalent to

KMf
≤ −1/2 + ε

r2 log r
.

Murata [71] gave an analytic proof that (3.8) is equivalent to either (i) Mf does
not have strong Liouville property or (ii) the asymptotic Dirichlet problem is
solvable. A simple analytic proof for the existence part of March’s result can
be found from Vähäkangas’ licentiate thesis [85].

In 2012 Ripoll and Telichevesky [75] considered the asymptotic Dirichlet
problem for the minimal graph equation. They proved the existence of entire
non-constant bounded minimal graphic functions on 2-dimensional Hadamard
surfaces assuming (3.8), i.e. the curvature upper bound (3.7). Idea in the
proofs in [85] and [75] is to use (3.8) to construct barriers at infinity.

3.5. Non-existence of solutions. By the non-existence results in Rn, it is
already clear that the curvature upper bound must be strictly negative but the
discussion about the rotationally symmetric case and the theorems replacing
the sectional curvature lower bound with the pinching condition (3.2) raise
a question about the necessity of the lower bound. However, when M is a
general n-dimensional Cartan-Hadamard manifold it is not enough to assume
only the curvature upper bound.

Concerning results in this direction, Ancona [5] proved in 1994 the following.

Theorem. There exists a 3-dimensional Cartan-Hadamard manifold with KM ≤
−1 such that the asymptotic Dirichlet problem for the Laplacian is not solvable.

His construction of such manifold was based on probabilistic methods. Namely,
he proved the non-solvability of the asymptotic Dirichlet problem by showing
that Brownian motion almost surely exits M at a single point on the asymp-
totic boundary.

Borbély [15] constructed similar manifold using analytic arguments and later
Ulsamer [84] showed that Borbély’s manifold can be constructed also with
probabilistic methods, and generalised the Anconas result to higher dimen-
sions. Arnaudon, Thalmaier and Ulsamer [8] continued the probabilistic study
of these manifolds.
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Holopainen [52] generalised Borbély’s example to cover also the p-harmonic
functions and then Holopainen and Ripoll [54] proved that the same example
works also for the minimal graph equation. These results show that apart
from the 2-dimensional or the rotationally symmetric setting, one really needs
to have a control also on the lower bound.

It is also worth pointing out two closely related results by Greene and Wu
[41] that partly answer the question about the optimal curvature upper bound.
Firstly, in [41, Theorem 2 and Theorem 4] they showed that an n-dimensional,
n 6= 2, Cartan-Hadamard manifold with asymptotically non-negative sectional
curvature is isometric to Rn. Secondly, in [41, Theorem 2] they showed that
an odd dimensional Riemannian manifold with a pole o ∈ M and everywhere
non-positive or everywhere non-negative sectional curvature is isometric to Rn

if lim infs→∞ s
2k(s) = 0, where k(s) = sup{|K(Px)| : x ∈ M, d(o, x) = s, Px ∈

TxM two-plane}.

4. Pointwise pinching condition for the sectional curvatures

4.1. Background. To solve the asymptotic Dirichlet problem for the Lapla-
cian, Anderson and Schoen [7] solve the problem{

∆uR = −∆f in B(o,R),

uR = 0 on ∂B(o,R)
(4.1)

in geodesic balls and then construct a barrier function to be able to extract
a converging subsequence from (uR + f) when R → ∞. This process relays
highly on the curvature assumption −b2 ≤ KM ≤ −a2.

Assuming only a pointwise pinching condition

|KM(Px)| ≤ CK |KM(P ′x)| (4.2)

and positivity of the first eigenvalue of the Laplacian, Cheng [19] was able to
relax the curvature assumptions of Anderson and Schoen. To prove the claim,
it is still necessary to extract the converging subsequence and show the correct
boundary values at infinity but for this end Cheng’s approach did not use
barriers. His proof of convergence is based on an Lp-norm estimate, namely,
he proves an upper bound for the Lp-norm of a solution in compact subsets in
terms of the Lp-norm of |∇f |.

In order to show the correct boundary values of u at infinity, Cheng uses
the assumption |∇f | ∈ Lp and Moser iteration technique to prove that the
supremum of |u|p on a ball B(x, (1 − ε)R), ε ∈ (0, 1), is bounded in terms of
the integral of |u|p over B(x,R). The last step is to show that the gradient
of radially constant function is in Lp and this is the step requiring condition
(4.2).

Vähäkangas [86] replaced the assumption on the eigenvalue by a curvature
upper bound

KM(Px) ≤ −
φ(φ− 1)

r(x)2
, φ > 1,

and showed that the same result holds also for the p-Laplacian. The approach
in his proof was essentially the same as Cheng’s. In [87] Vähäkangas refined this
argument with help of Young functions and was able to prove the solvability
result for A-harmonic functions under the curvature assumptions of [55].
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These ideas involving Young functions was also used in [17] where Casteras,
Holopainen and Ripoll solved the asymptotic Dirichlet problem for the minimal
graph equation and the A-harmonic equation under the assumption (3.6).

4.2. Articles [A] and [B] revisited. In [A] we generalise the result of Vähäkan-
gas [86] and prove that under the same curvature assumptions the asymptotic
Dirichlet problem is solvable also for the minimal graph equation. To be more
precise, our main theorem is the following.

Theorem 4.3 ([A, Theorem 1.3]). Let M be a Cartan-Hadamard manifold of
dimension n ≥ 2 and let φ > 1. Assume that

K(P ) ≤ −φ(φ− 1)

r(x)2
, (4.4)

where K(P ) is the sectional curvature of any two-dimensional subspace P ⊂
TxM containing the radial vector ∇r(x), with x ∈M \B(o,R0). Suppose also
that there exists a constant CK <∞ such that

|K(P )| ≤ CK |K(P ′)|
whenever x ∈ M \ B(o,R0) and P, P ′ ⊂ TxM are two-dimensional subspaces
containing the radial vector ∇r(x). Moreover, suppose that the dimension n
and the constant φ satisfy the relation

n >
4

φ
+ 1. (4.5)

Then the asymptotic Dirichlet problem for the minimal graph equation is uniquely
solvable for any boundary data f ∈ C(∂∞M).

We notice that if we choose the constant φ in the curvature assumption to
be bigger than 4, then our theorem holds in every dimension n ≥ 2. Similarly,
if we let the dimension n to be at least 5, we can take the constant φ to be as
close to 1 as we wish.

In [B] we improve the results of Vähäkangas [86, 87] and Casteras, Holopainen
and Ripoll [17] and show that in the case of A-harmonic functions it is possible
to solve the asymptotic Dirichlet problem assuming only the pinching condi-
tion (4.2) and a weaker curvature upper bound. A localised argument proving
the A-regularity of points x0 ∈ ∂∞M leads to the main theorem of [B].

Theorem 4.6 ([B, Theorem 1.3]). Let M be a Cartan-Hadamard manifold of
dimension n ≥ 2. Assume that

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
, (4.7)

for some constant ε > 0, where K(P ) is the sectional curvature of any two-
dimensional subspace P ⊂ TxM containing the radial vector ∇r(x), with x ∈
M \B(o,R0). Suppose also that there exists a constant CK <∞ such that

|K(P )| ≤ CK |K(P ′)| (4.8)

whenever x ∈ M \ B(o,R0) and P, P ′ ⊂ TxM are two-dimensional subspaces
containing the radial vector ∇r(x). Then the asymptotic Dirichlet problem
for the A-harmonic equation is uniquely solvable for any boundary data f ∈
C(∂∞M) provided that 1 < p < nα/β.
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In the case of usual Laplacian we have α = β = 1 and p = 2. Hence we
obtain the following special case.

Corollary 4.9 ([B, Corollary 1.6]). Let M be a Cartan-Hadamard manifold
of dimension n ≥ 3 and assume that the assumptions (4.7) and (4.8) are
satisfied. Then the asymptotic Dirichlet problem for the Laplace operator is
uniquely solvable for any boundary data f ∈ C(∂∞M).

It is also worth pointing out that in dimension n = 2 the condition (4.2) is
trivially satisfied since at any point x ∈M there exists only one tangent plane
Px. Therefore it is enough to assume only a curvature upper bound and we
obtain the following corollaries.

Corollary 4.10. Let M be a 2-dimensional Cartan-Hadamard manifold and
let φ > 4. Assume that

K(P ) ≤ −φ(φ− 1)

r(x)2
,

where K(P ) is the sectional curvature of a two-dimensional subspace P ⊂ TxM
containing the radial vector ∇r(x), with x ∈M\B(o,R0). Then the asymptotic
Dirichlet problem for the minimal graph equation is uniquely solvable for any
boundary data f ∈ C(∂∞M).

Corollary 4.11. Let M be a 2-dimensional Cartan-Hadamard manifold or n-
dimensional rotationally symmetric Cartan-Hadamard manifold satisfying the
curvature upper bound (4.7). Then the asymptotic Dirichlet problem for the
A-harmonic equation is uniquely solvable for any boundary data f ∈ C(∂∞M)
provided that 1 < p < nα/β.

As it was pointed out in [17] (see also [D, Theorem 5.1]), the curvature
upper bound and the range of p, 1 < p < nα/β, in Theorem 4.6 are in a sense
optimal. Namely, if we assume that

K(P ) ≥ − 1

r(x)2 log r(x)

and consider A-harmonic operator of type p ≥ n, it follows that M is p-
parabolic, i.e. every bounded A-harmonic function (of type p) is constant.

In Cheng’s proof one of the key points was to show the Lp-bound for a
solution u and in the proofs of Theorems 4.3 and 4.6 we need a similar estimate.
However, instead of just considering the norm of u, we take an auxiliary smooth
function ϕ : [0,∞)→ [0,∞), related to Young functions, and show the bound
for ϕ(|u − θ|/c). In [A] θ is a radial extension of the boundary data function
and in [B] it is a certain continuous function that can also be thought as a
boundary data. Once we have the integral estimate, it remains to show that
we can bound the supremum of ϕ(|u−θ|) in B(x, s/2) in terms of the integral of
ϕ(|u− θ|) over B(x, s). Together these estimates guarantee that u(x)→ θ(x0)
as x→ x0 ∈ ∂∞M .

4.2.1. Integral bounds for solutions. Vähäkangas [87, Lemma 2.17] proved an
integral estimate for A-harmonic functions under the curvature assumption
KM ≤ −φ(φ − 1)/r2. Clever idea in his proof was to use a Caccioppoli-type
inequality, special type of Young functions F and G, and Young’s inequality.
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Taking certain smooth homeomorphism H : [0,∞)→ [0,∞) he defined G(t) =∫ t
0
H(s)ds and F (t) =

∫ t
0
H−1(s)ds. Then

ψ(t) =

∫ t

0

ds

G−1(s)

and ϕ = ψ−1 are homeomorphisms so that G ◦ ϕ′ = ϕ. For the functions F
and G we have the Young’s inequality

ab ≤ F (a) +G(b)

and the idea is to reduce the integrability of ϕ(|u − θ|) to the integrability
of F (|∇θ|w) for some Lipschitz weight function w. In order to do this, a
Caccioppoli-type inequality [87, Lemma 2.15](∫

U

ηpψ′(h)|∇u|p
)1/p

≤ β

α

(∫
U

ηpψ′(h)|∇θ|p
)1/p

+
pβ

α

(∫
U

ψp

(ψ′)p−1
(h)|∇η|p

)1/p

, (4.12)

h = |u− θ|, plays a central role.
Refining this idea Casteras, Holopainen and Ripoll proves the Lp-estimate

for A-harmonic functions under the curvature assumption (4.7).

Lemma 4.13. [16, Lemma 16] Let M be a Cartan-Hadamard manifold satis-
fying (4.7). Suppose that U ⊂ M is an open relatively compact set and that
u is an A-harmonic function in U with u − θ ∈ W 1,p

0 (U), where A ∈ Ap(M)
with

1 < p <
nα

β
,

and θ ∈ W 1,∞(M) is a continuous function with ||θ||∞ ≤ 1. Then there exists
a bounded C1-function C : [0,∞) → [0,∞) and a constant c0 ≥ 1, that is
independent of θ, U and u, such that∫

U

ϕ
(
|u− θ|/c0

)p(
log(1 + r) + C(r)

)
≤ c0 + c0

∫
U

F

(
c0|∇θ|r log(1 + r)

log(1 + r) + C(r)

)(
log(1 + r) + C(r)

)
.

In [A] also the second derivative ϕ′′ appears in the estimates and hence we
need also another pair, F1 and G1, of Young functions so that G1 ◦ ϕ′′ ≈ ϕ.
Then, with the Caccioppoli-type inequality [A, Lemma 3.1]∫

U

η2ϕ′(|u− θ|/ν)
|∇u|2√

1 + |∇u|2
≤ Cε

∫
U

η2ϕ′(|u− θ|/ν)|∇θ|2

+ (4 + ε)ν2

∫
U

ϕ2

ϕ′
(|u− θ|/ν)|∇η|2, (4.14)

we are able to obtain similar estimate if the gradient of θ is bounded in terms
of the infimum j(x) of the norms |V (x)| of the Jacobi fields V along geodesic
γo,x.
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Lemma 4.15 ([A, Lemma 3.3]). Let M be a Cartan-Hadamard manifold sat-
isfying (4.4) and (4.5). Let U = B(o,R), with R > 0 big enough, and suppose
that u ∈ C2(U) ∩ C(Ū) is the unique solution to the minimal graph equa-
tion in U , with u|∂U = θ|∂U , where θ : M → R is a Lipschitz function, with
|∇θ(x)| ≤ 1/j(x) almost everywhere. Then there exists a constant c indepen-
dent of u such that∫

U

ϕ(|u− θ|/c) ≤ c+ c

∫
U

F (r|∇θ|) + c

∫
U

F1(r2|∇θ|2).

The integrability of functions F and F1 in the previous lemmata follows from
their construction and from the assumptions on the curvature and function θ.

4.2.2. Pointwise estimates. The last major step is to pass from the integral es-
timates to pointwise estimates. Together with the Caccioppoli-type inequality
(4.12), the Sobolev inequality (see e.g. [47])(∫

B(x,rS)

|η|n/(n−1)

)(n−1)/n

≤ CS

∫
B(x,rS)

|∇η|, (4.16)

η ∈ C∞0 (B(x, rS)), and a Moser iteration procedure Vähäkangas obtains the
supremum estimate [87, Lemma 2.20]

ess sup
B(x,s/2)

ϕ
(
|u− θ|

)p(n−1) ≤ c

∫
B(x,s)

ϕ
(
|u− θ|

)p
for A-harmonic functions u ∈ W 1,p

loc (M), with u − θ ∈ W 1,p
0 (Ω), infM θ ≤ u ≤

supM θ, and u = θ a.e. in M \ Ω.
In [A] we prove a similar estimate for the minimal graphic functions and,

again, the Caccioppoli-type inequality (4.14), the Sobolev inequality (4.16)
and a Moser iteration procedure are the main tools.

Lemma 4.17 ([A, Lemma 3.4]). Let Ω = B(o,R) and suppose that θ : Ω→ R
is a bounded Lipschitz function with |θ|, |∇θ| ≤ C1. Let u ∈ C2(Ω) be a solution
of the minimal graph equation in Ω such that u has the boundary values θ and
infΩ θ ≤ u ≤ supΩ θ. Fix s ∈ (0, rS), where rS is the radius of the Sobolev
inequality (4.16), and suppose that B = B(x, s) ⊂ Ω. Then there exists a
positive constant ν0 = ν0(ϕ,C1) such that for all fixed ν ≥ ν0

sup
B(x,s/2)

ϕ
(
|u− θ|/ν

)n+1 ≤ c

∫
B

ϕ
(
|u− θ|/ν

)
,

where c is a positive constant depending only on n, ν, s, CS, C1 and ϕ.

4.2.3. Further questions. It remains open whether the curvature upper bound
(4.4) could be relaxed to

K(Px) ≤ −
1 + ε

r(x)2 log r(x)
(4.18)

since the methods used in [A] or in [17] do not apply to this case. In [17]
they have the upper bound (4.18) but they also assume a lower bound for the
sectional curvatures, which enables to have an a priori gradient estimate. This
is needed to obtain [17, Lemma 22].



16

Another question concerns the condition (4.5). It is a technical assumption
coming from the Caccioppoli-type inequality (4.14) and there should not be a
deeper reason requiring it.

5. f-minimal graphs

Let M be an n-dimensional Riemannian manifold with a Riemannian metric
given by ds2 = σijdx

idxj in local coordinates. Assume that f : N → R is
a smooth function, where N = M × R is equipped with the product metric
ds2 + dt2. Then f -minimal graphs are special type of surfaces with prescribed
mean curvature, namely graphs of functions u : Ω → R that are solutions to
the f -minimal graph equationdiv

∇u√
1 + |∇u|2

=
〈
∇̄f, ν

〉
in Ω;

u|∂Ω = ϕ,

(5.1)

where Ω ⊂ M is a bounded domain, ∇̄f is the gradient of f with respect to
the product Riemannian metric, and ν denotes the downward unit normal to
the graph of u, i.e.

ν =
(∇u,−1)√
1 + |∇u|2

. (5.2)

More generally an f -minimal hypersurface Σ is an immersed hypersurface
of a Riemannian manifold (N, g) whose mean curvature satisfies

H =
〈
∇̄f, ν

〉
at every point of Σ. To get some interpretation of f -minimal surfaces we
mention the following examples:

(a) minimal hypersurfaces if f is identically constant,
(b) self-shrinkers in Rn+1 if f(x) = |x|2/4,
(c) minimal hypersurfaces of weighted manifolds Mf =

(
M, g, e−fd volM

)
,

where (M, g) is a complete Riemannian manifold with the Riemannian
volume element d volM .

A reader interested in recent studies on self-shrinkers and f -minimal hyper-
surfaces should see [89], [25], [24], [20], [21], [22], [58], and references therein.

As a remark we point out that we cannot ask for the uniqueness of a solution
of (5.1) if the function f : M ×R→ R depends on the t-variable since compar-
ison principles fail to hold, see [39, Theorem 10.1]. A simple counter example
is obtained if one considers the function f : R2 × R → R, f(x, t) = |(x, t)|2/4
and the open disk B(0, 2) ⊂ R2. Namely, then both the upper and lower
hemispheres and the disk B(0, 2) itself are f -minimal hypersurfaces with zero
boundary values on the circle ∂B(0, 2).

5.1. Background.

5.1.1. Barrier method. A priori estimates and the barrier method goes back
to the work of Bernstein [11, 12] and has been widely used to solve Dirichlet
problems for different PDEs. A classical way to construct barriers on bounded
domains is to use the distance function to the boundary and combine it with
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some auxiliary function h satisfying i.a. h(0) = 0. For a comprehensive de-
scription of the method one should see e.g. [39]. For more recent research,
with similar choice of the function h as in [C], see [81] and [32].

To obtain a priori interior gradient estimates, at least for the mean curvature
equation, is not as straightforward as the cases of height and boundary gradient
estimates. In 1986 Korevaar [61] introduced two different approaches to obtain
the estimate. His idea is to use a carefully chosen cutoff function η and then
prove a priori bound for

η
(
x, u(x)

)
W (x),

W =
√

1 + |∇u|2, in a ball B(0, 1) ⊂ Rn. The first approach is“Standard form
calculation”, suggested by L. Simon, that is based on direct computations at a
maximum point of ηW . The second approach is to perturb the surface along
its downward normal and then lift the perturbed surface in order to try to get
a barrier.

More recently, and in the manifold setting, Korevaar’s (also Korevaar-Simon)
method has been used for example in [81], [77], [29].

5.1.2. Barrier at infinity. The approach of Anderson and Schoen [7] was based
on the idea of extending a continuous boundary value function ϕ : ∂∞M → R
radially to the whole M̄ . Then after a suitable smoothening procedure they ob-
tain sub- and superharmonic functions that can be used as barriers. Holopainen
[50] used similar technique to prove the solvability of the asymptotic Dirichlet
problem for p-Laplacian under the same curvature assumption

−b2 ≤ K ≤ −a2

for some constants b ≥ a > 0.
Holopainen and Vähäkangas [55] generalised this approach to cover the more

general curvature conditions (3.3) and (3.4) for the p-Laplacian. In order to
allow the more general bounds, their smoothening procedure depends also on
the curvature lower bound. This difference to the earlier proofs results to
very technical and long computations. However, the barrier function that they
obtained has appeared to be very flexible and suit also other PDEs, like the
minimal graph equation which was considered by Casteras, Holopainen and
Ripoll [18]. We will use their constructions also in [C].

5.2. Article [C]. The article [C] is divided roughly into two parts: In the
first part we study the existence of f -minimal graphs over bounded domains
Ω with continuous boundary values on ∂Ω and in the second part we prove
the existence of entire f -minimal graphs by solving the asymptotic Dirichlet
problem. In the first part, under a technical assumption that f ∈ C2(Ω̄ × R)
is of the form

f(x, t) = m(x) + r(t), (5.3)

we obtain the following existence result.

Theorem 5.4 ([C, Theorem 1.2]). Let Ω ⊂M be a bounded domain with C2,α

boundary ∂Ω. Suppose that f ∈ C2(Ω̄× R) satisfies (5.3), with

F = sup
Ω̄×R
|∇̄f | <∞, RicΩ ≥ −

F 2

n− 1
, and H∂Ω ≥ F.
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Then, for all ϕ ∈ C(∂Ω), there exists a solution u ∈ C2,α(Ω) ∩ C(Ω̄) to the
equation (5.1) with boundary values ϕ.

A standard way to obtain solutions for PDEs with C2,α boundary values is
to use the Leray-Schauder method [39, Theorem 13.8], that we have chosen, or
the continuity method [39, Theorem 5.2, Theorem 17.8]. Both of these options
reduces the question of the solvability of the Dirichlet problem to the existence
of a priori height and gradient (both boundary and interior) estimates. Finally
the reduction of the smoothness of boundary data is obtained via similar ap-
proximation as in [29]. This is possible since the local interior gradient estimate
[C, Lemma 2.3] does not depend on the gradient of the boundary data.

In the second part of the article, applying this existence result above, we are
able to generalise the result of Holopainen and Vähäkangas [55] and show that,
under the same very general curvature assumptions, the asymptotic Dirichlet
problem is solvable for the f -minimal graph equation.

Before stating the main results, we need to give some technical definitions
and assumptions on the function f . We assume that there exists an auxiliary
smooth function a0 : [0,∞)→ (0,∞) such that∫ ∞

1

(∫ ∞
r

ds

fn−1
a (s)

)
a0(r)fn−1

a (r)dr <∞,

for the discussion about the choice of a0 see [C, Example 4.5] and [C, Example
4.6]. Then we define g : [0,∞)→ [0,∞) by

g(r) =
1

fn−1
a (r)

∫ r

0

a0(t)fn−1
a (t)dt. (5.5)

The function g was introduced in [67] where they studied elliptic and parabolic
equations with asymptotic Dirichlet boundary conditions on Cartan-Hadamard
manifolds. In addition to (5.3), we assume that the function f ∈ C2(Ω̄ × R)
satisfies

sup
∂B(o,r)×R

|∇̄f | ≤ min

{
a0(r) + (n− 1)f

′
a(r)
fa(r)

g3(r)(
1 + g2(r)

)3/2
, (n− 1)

f ′a(r)

fa(r)

}
, (5.6)

for every r > 0, and

sup
∂B(o,r)×R

|∇̄f | = o

(
f ′a(r)

fa(r)
r−ε−1

)
(5.7)

for some ε > 0 as r → ∞. Then, as special cases of the main result [C,
Theorem 1.3], we obtain the following corollaries.

Corollary 5.8 ([C, Corollary 1.34]). Let M be a Cartan-Hadamard manifold
of dimension n ≥ 2. Suppose that there are constants φ > 1, ε > 0, and
R0 > 0 such that

−ρ(x)2(φ−2)−ε ≤ K(Px) ≤ −
φ(φ− 1)

ρ(x)2
, (5.9)

for all 2-dimensional subspaces Px ⊂ TxM and for all x ∈M , with ρ(x) ≥ R0.
Assume, furthermore, that f ∈ C2(M × R) satisfies (5.3), (5.6), and (5.7),
with fa(t) = t for small t ≥ 0 and fa(t) = c1t

φ + c2t
1−φ for t ≥ R0. Then the
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asymptotic Dirichlet problem for equation (5.1) is solvable for any boundary
data ϕ ∈ C

(
∂∞M

)
.

In another special case we assume that sectional curvatures are bounded
from above by a negative constant −k2 but allow the lower bound to decrease
even exponentially.

Corollary 5.10 ([C, Corollary 1.5]). Let M be a Cartan-Hadamard manifold
of dimension n ≥ 2. Assume that

−ρ(x)−2−εe2kρ(x) ≤ K(Px) ≤ −k2 (5.11)

for some constants k > 0 and ε > 0 and for all 2-dimensional subspaces
Px ⊂ TxM , with ρ(x) ≥ R0. Assume, furthermore, that f ∈ C2(M × R)
satisfies (5.3), (5.6), and (5.7), with fa(t) = t for small t ≥ 0 and fa(t) =
c1 sinh(kt) + c2 cosh(kt) for t ≥ R0. Then the asymptotic Dirichlet problem for
the equation (5.1) is solvable for any boundary data ϕ ∈ C

(
∂∞M

)
.

The proof of the solvability of the asymptotic Dirichlet problem follows the
usual path of solving the problem in a sequence of geodesic balls, hence ob-
taining a sequence of solutions. Then the last part is to show the existence of
a limit that is a solution with correct boundary values on ∂∞M . In order to
extract the converging subsequence, we have to prove a uniform height esti-
mate [C, Lemma 4.4] for the sequence of solutions. The correct behaviour at
infinity can be then proved with suitable barrier functions.

5.2.1. A priori estimates. The usual way to obtain a priori height and bound-
ary gradient estimates for solutions u in bounded domains Ω is to construct
upper and lower barriers using the distance function d(·) = dist(·, ∂Ω) to the
boundary. Then these barriers, together with the comparison principle, im-
plies the desired estimates. This procedure requires two key assumptions: The
(inward) mean curvature of the level sets of d is bounded from below by the
prescribed mean curvature of the graph of u in some neighbourhood of ∂Ω and,
of course, that the distance function is smooth enough.

The mean curvature assumption in the neighbourhood of ∂Ω can be replaced
by an assumption on the boundary and by a lower bound for the Ricci curva-
ture. Namely, denoting by Ω0 ⊂ Ω the open set of points that can be joined
to ∂Ω by unique minimising geodesic, it follows that if

H∂Ω ≥ F and RicΩ ≥ −F 2/(n− 1)

then H(x0) ≥ F for all x0 ∈ Ω0. Here H(x0) denotes the mean curvature
of the level set of d passing through x0. This is done in [C, Lemma 3.1] (see
also [81, Lemma 4.2] and [32, Lemma 5]) and the proof is based on a Riccati
equation for the shape operator. The smoothness of the distance function in
Ω0 was proved in [65], to wit, in Ω0 d has the same regularity as the boundary
∂Ω.

In order to use the comparison principle we have to “freeze” the mean cur-
vature term

〈
∇̄f, ν

〉
in (5.1). More precisely, if u is a solution of (5.1),

Q[u] =
1

W

(
σij − uiuj

W 2

)
ui;j −

〈
∇̄f, νu

〉
,
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we define an operator

Q̃[v] =
1

W

(
σij − vivj

W 2

)
vi;j − b,

where W =
√

1 + |∇v|2 and

b(x) =
〈
∇̄f
(
(x, u(x)

)
, ν(x)

〉
.

The reason for this is that the operator Q need not satisfy the required as-
sumptions of comparison principles, see e.g. [39, Theorem 10.1], whereas Q̃
does. The desired height estimate is finally obtained in [C, Lemma 2.1] and
the boundary gradient estimate in [C, Lemma 2.2].

The interior gradient estimate is obtained in [C, Lemma 2.3] and the proof
is based on the method due to Korevaar and Simon [61], see also [29] in the
case of Killing graphs. The estimate is localised to balls B(o, r) ⊂ Ω and if the
solution is C1(Ω̄) we have also a global gradient estimate with upper bound
depending also on the gradient on the boundary. Idea is to have an auxiliary
smooth function η vanishing outside B(o, r) and then consider a function

h = ηW

with W =
√

1 + |∇u|2. It follows that the function h attains its maximum
at some point p ∈ B(o, r) and this permits to prove an upper bound for W ,
and hence also for |∇u|. It is in this part of the paper where we need the
asumption (5.3), namely, for technical reasons we need to assume that all the
“space derivatives”

fi =
∂

∂xi
, i = 1, . . . , dimM

are independent of t, i.e. fit = fti = 0.

5.2.2. Entire f -minimal graphs. First step of solving the asymptotic Dirichlet
problem is to consider an exhaustion of M and obtain a sequence of solutions.
A natural exhaustion is, of course, the sequence of geodesic balls B(o, k), k ∈ N,
for which the boundary mean curvature assumption of Theorem 5.4 is satisfied.
More precisely, we have

H(x) = ∆r(x) ≥ (n− 1)
f ′a
(
r(x)

)
fa
(
r(x)

) ≥ sup
∂B(o,r(x))×R

|∇̄f |,

whereH(x) denotes the inward mean curvature of the level set {y ∈ B̄(o,R) : d(y) =
d(x)} = ∂B(o, r(x)) and the last estimate follows from the assumption (5.6).
This implies that we can even drop the assumption on the Ricci curvature.
This step is done in [C, Lemma 4.7].

In order to obtain the uniform height estimate [C, Lemma 4.4] we use a
function V ,

V (x) = V
(
r(x)

)
=

(∫ ∞
r(x)

ds

fn−1
a (s)

)(∫ r(x)

0

a0(t)fn−1
a (t)dt

)

−
∫ r(x)

0

(∫ ∞
t

ds

fn−1
a (s)

)
a0(t)fn−1

a (t)dt−H + ||ϕ||∞,
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H := lim sup
r→∞

{∫ ∞
r

ds

fn−1
a (s)

∫ r

0

a0(t)fn−1
a (t)dt

−
∫ r

0

∫ ∞
t

ds

fn−1
a (s)

a0(t)fn−1
a (t)dt

}
≤ 0,

constructed in [67]. There it was used as a supersolution for an elliptic equation
but it turns out that under the assumption (5.6) V works also as an upper
barrier for the f -minimal equation. Then, replacing V by −V , we obtain
a lower barrier and together these imply the desired height estimate. Even
though (5.6) seems a very technical assumption, it is not more restrictive than
(5.7), see [C, Example 4.5] and [C, Example 4.6].

Final crucial step is to prove the correct boundary values on ∂∞M and this
requires barriers at infinity. It turns out that the barrier function

ψ = A(Rδ
3r
−δ + h)

used by Holopainen and Vähäkangas [55] is very flexible and it suits also the
case of f -minimal graphs, see [C, Lemma 4.3]. The assumption (5.7) for the
asymptotic behaviour of the gradient ∇̄f is required in this part of the article.

6. Optimality of the curvature bounds

6.1. Background. The background of the Korevaar-Simon method for ob-
taining interior gradient estimates was discussed in Section 5.1.1. However, we
mention two articles that are closely related to our results. In [77] Rosenberg,
Schulze and Spruck proved a gradient estimate for minimal graphic functions
M × R → R assuming non-negative Ricci curvature and negative constant
lower bound for the sectional curvatures. This estimate was applied to prove a
half-space property for non-negative solutions of the minimal graph equation.

Dajczer and Lira [30] extended this result for the Killing graphs in warped
products M×%R proving that, under certain assumptions on the manifold, any
bounded entire Killing graph with constant mean curvature must be a slice.
The key ingredient of their proof was a global gradient estimate that extended
the result in [77].

Harnack’s inequalities has been studied so widely that it is impossible to
give a brief background about the developments in different settings so we just
mention the works of Grigor’yan and Saloff-Coste [44], Holopainen [49], and
Li and Tam [64] that are closely related to [D]. Concerning the background of
the asymptotic Dirichlet problems on rotationally symmetric cases, see Section
3.4.

6.2. Article [D]. The motivation for the study of the article [D] was to show
that the curvature upper bound

KM ≤ −
C

r2 log r
(6.1)

really is the best that one can hope in order to show the existence of entire
bounded non-constant solutions for the minimal graph equation. The article
[D] consists of two parts, namely, the first part deals with non-existence type
results and the latter with existence on rotationally symmetric manifolds. In
order to prove these non-existence results we assume that the manifold has
only one end and asymptotically non-negative sectional curvature, that is
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Definition 6.2. Manifold M has asymptotically non-negative sectional cur-
vature (ANSC) if there exists a continuous decreasing function λ : [0,∞) →
[0,∞) such that ∫ ∞

0

sλ(s) ds <∞,

and that KM(Px) ≥ −λ(d(o, x)) at any point x ∈M .

The main theorem of the first part is the following.

Theorem 6.3 ([D, Theorem 1.1]). Let M be a complete Riemannian mani-
fold with asymptotically non-negative sectional curvature and only one end. If
u : M → R is a solution to the minimal graph equation that is bounded from
below and has at most linear growth, then it must be a constant. In partic-
ular, if M is a Cartan-Hadamard manifold with asymptotically non-negative
sectional curvature, the asymptotic Dirichlet problem is not solvable.

It is worth pointing out that we do not assume, differing from previous re-
sults into this direction, the Ricci curvature to be non-negative; see e.g. [77],
[33], [30], [31]. In terms of concrete curvature bounds, our theorem gives imme-
diately the following corollary that answers the question about the optimality
of (6.1).

Corollary 6.4 ([D, Corollary 1.2]). Let M be a complete Riemannian manifold
with only one end and assume that the sectional curvatures of M satisfy

K(Px) ≥ −
C

r(x)2
(

log r(x)
)1+ε

for sufficiently large r(x) and for some C > 0 and ε > 0. Then any solution
u : M → [a,∞) with at most linear growth to the minimal graph equation must
be constant.

The proof of Theorem 6.3 is based on an application of a gradient estimate
Proposition 6.11 that enables us to prove a global Harnack’s inequality for
u−infM u. By well-known methods, see [46, Theorem 6.6], the global Harnack’s
inequality can be iterated to yield Hölder continuity estimates and a Liouville
(or Bernstein) type result when the solution has controlled growth. More
precisely, we obtain the following corollary.

Corollary 6.5 ([D, Corollary 1.3]). Let M be a complete Riemannian manifold
with asymptotically non-negative sectional curvature and only one end. Then
there exists a constant κ ∈ (0, 1], depending only on n and on the function λ
in the (ANSC) condition such that every solution u : M → R to the minimal
graph equation with

lim
d(x,o)→∞

|u(x)|
d(x, o)κ

= 0

must be constant.

Before turning to the latter part of [D], we point out that our results differ
from the theorems of Greene and Wu [41] (besides the methods) mentioned in
Section 3.5 since we do not assume the existence of a pole or the manifold to be
simply connected, and the (ANSC) condition allows the sectional curvature to
change a sign. Moreover, in Theorems 6.7 and 6.8 we will see that, in order to
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get the result [41, Theorem 2], it is necessary to assume lim infs→∞ s
2k(s) = 0

for all of the sectional curvatures and not only for the radial ones (recall formula
(2.1)).

The goal of the latter part of [D] is to prove the solvability of the asymptotic
Dirichlet problem, and hence also the existence of entire bounded non-constant
solutions, for the minimal graphic and p-harmonic equations assuming the
optimal curvature upper bound (6.1). The main idea is to assume∫ ∞

1

(
f(s)β

∫ ∞
s

f(t)αdt
)
ds <∞, (6.6)

with an appropriate choice of α and β, and then use this condition to construct
barriers at infinity. This results to very elementary proofs when compared to
the proofs in the general case that was considered for example in [18], [17], [A]
and [B].

Noticing that, on manifold Mf , the condition (6.6) implies the desired cur-
vature upper bound, we obtain the following results.

Theorem 6.7 ([D, Corollary 4.2]). Let Mf be a rotationally symmetric n-
dimensional Cartan-Hadamard manifold whose radial sectional curvatures out-
side a compact set satisfy the upper bounds

K(Px) ≤ −
1 + ε

r(x)2 log r(x)
, if n = 2

and

K(Px) ≤ −
1/2 + ε

r(x)2 log r(x)
, if n ≥ 3.

Then the asymptotic Dirichlet problem for the minimal graph equation is solv-
able with any continuous boundary data on ∂∞Mf .

Theorem 6.8 ([D, Corollary 4.4]). Let Mf be a rotationally symmetric n-
dimensional Cartan-Hadamard manifold, n ≥ 3, whose radial sectional curva-
tures satisfy the upper bound

K(Px) ≤ −
1/2 + ε

r(x)2 log r(x)
. (6.9)

Then the asymptotic Dirichlet problem for the p-Laplace equation, with p ∈
(2, n), is solvable with any continuous boundary data on ∂∞Mf .

We point out that the case p = 2 in Theorem 6.8 reduces to the case of usual
harmonic functions and was covered by March [66].

Finally, in the last section of [D], we show that in Theorem 6.8 the assump-
tion p < n on the range of p is also optimal. Note also that (ANSC) implies
global Harnack’s inequality for A-harmonic functions ([49, Examples 3.1]).

Theorem 6.10 ([D, Theorem 5.1]). Let α > 0 be a constant and assume that
M is a complete n-dimensional Riemannian manifold whose radial sectional
curvatures satisfy

KM(Px) ≥ −
α

r(x)2 log r(x)

for every x outside some compact set and every 2-dimensional subspace Px ⊂
TxM containing ∇r(x). Then M is p-parabolic
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(a) if p = n and 0 < α ≤ 1; or
(b) p > n and α > 0.

6.2.1. Gradient estimate for minimal graphic functions. It is well-known that
the (ANSC) assumption implies a volume doubling condition and a Poincaré
inequality (see [D] for short discussion) and these can be used to prove a local
Harnack’s inequality for uniformly elliptic operators. Then the assumption
that M has only one end yields a global Harnack’s inequality, see e.g. [1], [60]
and [49, Examples 3.1]. Therefore the question reduces to interpreting the
minimal graph operator as a uniformly elliptic operator

1

A(x)
div
(
A(x)∇u

)
,

where

A(x) =
1√

1 + |∇u|2
.

Note that if |∇u| is uniformly bounded, then there exists a constant c such

that c ≤
√
A ≤ 1. This uniform gradient bound can be obtained from the

following proposition, whose proof is based on the method due to Korevaar.

Proposition 6.11 ([D, Proposition 3.1]). Assume that the sectional curvature
of M has a lower bound K(Px) ≥ −K2

0 for all x ∈ B(p,R) for some constant
K0 = K0(p,R) ≥ 0. Let u be a positive solution to the minimal graph equation
in B(p,R) ⊂M . Then

|∇u(p)| ≤
(

2√
3

+
32u(p)

R

)
(6.12)

·

(
exp

[
64u(p)2

(
2ψ(R)

R2
+

√
4ψ(R)2

R4
+

(n− 1)K2
0

64u(p)2

)]
+ 1

)
,

where ψ(R) = (n− 1)K0R coth(K0R) + 1 if K0 > 0 and ψ(R) = n if K0 = 0.

In order to allow at most linear growth for u in [D, Corollary 3.2], we apply
Proposition 6.11 to points p ∈ M \ B(o,R0), for some R0 > 0 large, and use
the fact that (ANSC) implies

K(Px) ≥ −
c

d(x, o)2

for all x ∈M \B(o,R0/2).

6.2.2. Optimal curvature upper bound on the rotationally symmetric case. In
order to obtain barriers from (6.6) we first define a function

η(r) = k

∫ ∞
r

f(t)α
∫ t

1

f(s)β dsdt, (6.13)

k > 0, and then consider the function η +B, where B : M \ {o},
B
(

exp(rϑ)
)

= B(r, ϑ) = b(ϑ), ϑ ∈ Sn−1 ⊂ ToM,

is a radial extension of the boundary data function b : Sn−1 → R. In the case of
the minimal graph equation we choose α = −n+1 and β = n−3, as in [66], and
for the p-Laplacian we choose α = −(n−1)/(p−1) and β = (n−2p+1)/(p−1).
Note that in both cases α + β = −2 and hence they correspond to the same
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curvature bound. Then a straightforward computation shows that η + B is a
supersolution in M \B(o,R0) for R0 > 0 large enough and we can define global
super- and subsolutions that work as barriers.

6.2.3. p-parabolicity when p ≥ n. To be more precise we recall that

Definition 6.14. Riemannian manifold N is p-parabolic, 1 < p <∞, if

capp(K,N) = 0

for every compact set K ⊂ N . Here the p-capacity of the pair (K,N) is

capp(K,N) = inf
u∈C∞

0 (N)
u|K≥1

∫
N

|∇u|p.

In order to prove Theorem 6.10, and to show that the curvature bound (6.9)
in Theorem 6.8 is optimal and the upper bound p < n necessary, we apply
Bishop-Gromov volume comparison together with (6.9). The proof is a direct
application of the following condition that, for p = 2, was proved by Varopoulos
[88] and Grigor’yan [42, 43]. Keselman and Zorich [90] proved the case p = n
and their proof applies also to other values of p, see also [49], [28], [51].

Proposition 6.15. A complete Riemannian manifold M is p-parabolic if∫ ∞( t

V (t)

)1/(p−1)

dt =∞. (6.16)

We point out that converse of this proposition is not always true, namely,
there exists a manifold such that the integral of (6.16) is finite but M is p-
parabolic, see [88].
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Sem. Mat. Univ. Politec. Torino, (Special Issue):95–120 (1990), 1989. Conference on
Partial Differential Equations and Geometry (Torino, 1988).
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