
R
ev
ie
w
s
�
F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

Drug Discovery Today � Volume 21, Number 7 � July 2016 REVIEWS

Systems-level drug response phenotypes combined with network models offer an
exciting means for elucidating the mechanisms of action of polypharmacological agents,

including multitargeted natural products.
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Drug discovery is moving away from the single target-based approach

towards harnessing the potential of polypharmacological agents that

modulate the activity of multiple nodes in the complex networks of

deregulations underlying disease phenotypes. Computational network

pharmacology methods that use systems-level drug–response phenotypes,

such as those originating from genome-wide transcriptomic profiles, have

proved particularly effective for elucidating the mechanisms of action of

multitargeted compounds. Here, we show, via the case study of the natural

product pinosylvin, how the combination of two complementary

network-based methods can provide novel, unexpected mechanistic

insights. This case study also illustrates that elucidating the mechanism of

action of multitargeted natural products through transcriptional

response-based approaches is a challenging endeavor, often requiring

multiple computational–experimental iterations.

Introduction
Over the past few decades, drug discovery has adopted a target-based approach, searching for

compounds that target a specific disease-causing gene product [1]. Perhaps the most successful

example of the target-based approach was the discovery of imatinib, a BCR-ABL tyrosine kinase

inhibitor (TKI), for the treatment of several cancers, including Philadelphia chromosome-positive

chronic myeloid leukemia (CML) [2]. However, recently, the paradigm of searching for highly
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GLOSSARY

Batch effect the similarity of gene expression or other
molecular profiles observed for unrelated stimuli in cells
grown or processed simultaneously.
Drug network a network in which drugs are represented by
nodes and nodes are connected if two drugs are similar in a
predefined manner (here, in terms of their transcriptional
response).
Drug repositioning the discovery of new uses for approved
drugs, which have well-known safety and pharmacokinetic
profiles [23].
Gene expression profile a list of probe set identifiers, ranked
according to differential gene expression in a particular
cellular context, with the most upregulated probe sets at the
top of the list.
Mechanism of action (MoA) the set of cellular targets or
other mechanisms of a compound that produce its
pharmacological effect in a given cellular context.
Network biology systems-level modeling of biological
processes, pathways, and molecular interactions, rather than
focusing on individual players only.
Network pharmacology conceptualization of the fact that,
in certain cases, to have an effect, drugs must target multiple
pathways in a disease network and/or work synergistically
with other drugs.
Synergy the joint action of drugs that when used together
increase each other’s effectiveness. See [80] for a discussion
of the challenges of modeling synergistic interactions.
selective ligands has been questioned, because of high late-stage

clinical attrition rates, which can be largely attributed to lack of

clinical efficacy and safety [3–6]. With the recognition that many

approved drugs are in fact multitargeted, an alternative systems

biology approach to drug discovery is increasing in popularity. The

so-called ‘network pharmacology paradigm’ [7] (see Glossary)

makes use of systems-level disease models, aiming at finding

compounds (or combinations thereof) that can modulate the

activity of multiple nodes in the complex network of impaired

mechanisms and deregulated interactions underlying a disease

phenotype (i.e., the ‘disease network’), either by targeting several

pathways or by working synergistically, potentially with fewer

adverse effects [8,9].

Therefore, an essential part of the modern drug discovery

process is the elucidation of the multiple target mechanisms of

compounds to better understand their phenotypic effects, both

therapeutic and adverse. Here, computational methods offer

great potential to provide initial hypotheses for in vitro and in

vivo target validation studies. In particular, a class of computa-

tional drug-discovery methods that use comprehensive drug re-

sponse phenotypes, such as those originating from genome-wide

transcriptomic profiles, has proved particularly effective in eluci-

dating compound mechanisms of action (MoA). These methods

were initiated about a decade ago, with the advent of the Con-

nectivity Map (CMap) data resource [10]. New types of drug

response profile are continuously being produced, for example,

from community efforts such as the Library of Integrated Net-

work-based Cellular Signatures project (LINCS, http://www.

lincsproject.org/), which aims to provide a comprehensive refer-

ence data resource of cellular response signatures to a range of

small-molecule and genetic perturbations.
1064 www.drugdiscoverytoday.com
Here, we describe how the combination of two complementary

computational network pharmacology methods, namely Mode of

Action by Network Analysis (MANTRA) [11] and Group Factor

Analysis (GFA) [12], can provide novel, unexpected MoA predic-

tions. As a specific case, we illustrate the operation of these

methods in the context of multitargeted natural products. Al-

though less popular during the era of target-based drug discovery,

natural products still make a substantial contribution to current

new drugs [13–16]. Recent reviews have highlighted the largely

untapped potential of network pharmacology approaches in

natural product research [17–20]; we chose as our case study a

relatively little-researched natural polyphenol, pinosylvin (3,5-

dihydroxy-trans-stilbene). Pinosylvin has been shown to have

antiproliferative and proapoptotic efficacy on prostate cancer cells

in vitro and in vivo [21], but its MoA has so far been poorly

understood. In this study, we show that the true value of the

data-driven network-based methods is their potential to lead to

unbiased hypotheses that might not otherwise have been con-

ceived and, hence, to truly novel and even surprising findings.

Transcriptional response networks to elucidate drug
MoA
We illustrate the operation of the computational network phar-

macology methods using genome-wide gene expression response

profiles as their input. The main public resource for such data is the

CMap resource, which comprises genome-wide transcriptional

responses of various human cell lines to more than 1000 bioactive

small molecules (Table 1). Given that our example compound

pinosylvin is not included in this resource, we produced a response

profile for pinosylvin in house (Box 1). Since the advent of the

CMap resource, researchers have successfully discovered cellular

targets of compounds and identified candidates for drug reposi-

tioning by searching for commonalities in the phenotypic

responses using the simple idea that, if two drugs elicit similar

transcriptional responses, then they could share a common MoA

(hence, potentially a therapeutic application) even if directly

acting on different intracellular targets. The original CMap tool

compares transcriptional response profiles using a method similar

to Gene Set Enrichment Analysis (GSEA) [22], based on the Kol-

mogorov-Smirnov statistic. Furthermore, computational research-

ers have provided an abundance of methods for measuring the

similarity between genome-wide transcriptional responses.

For an overview of all developments over the past 10 years,

many of which represent different variations of the original GSEA

method, we refer the reader to the previous reviews by Iorio et al.

[23] and by Qu et al. [24] of in silico approaches using in vivo and in

vitro transcriptomic drug response profiles, and we comment on

the new methods that have been published subsequent to the

aforementioned reviews. A key recent development is the addi-

tion of new types of information source to the network-based

methods. For example, Jahchan et al. [25] used additional infor-

mation on the enriched pathways of the molecules that are most

similar to the compound of interest in terms of transcriptional

response, Laenen et al. [26] incorporated a functional protein

association network into their computational model and Wu et al.

[27] incorporated an adverse effect profile based on differential

expression of essential genes. Quan et al. [28] used an approach to

transcriptional response similarity assessment that utilizes the

http://www.lincsproject.org/
http://www.lincsproject.org/
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TABLE 1

Resources used during the case study

Resource URL/availability/developers Description Application in the

present study

Refs

CMap http://www.broadinstitute.org/cmap/

Publicly available; produced by the Broad

Institute of MIT and Harvard

Database of genome-wide gene

expression profiles produced upon

treatment of 1309 compounds on cancer
cell lines

Transcriptional profiles

of compounds for

comparison with the
pinosylvin profile

[10]

MANTRA http://mantra.tigem.it/; analysis done using a

web interface; publicly available

Computational tool for MoA analysis of

drugs and identification of known and

approved candidates for drug
repositioning

Used to derive

hypotheses on MoA of

pinosylvin

[11,85]

GFA http://research.cs.aalto.fi/pml/software/

GFAsparse/; analysis done using publicly

available R code of GFA

Computational approach for identifying

multiple mechanisms of a drug, while

extracting representative set of genes

Used to derive

hypotheses on MoA of

pinosylvin

[12]

KIBA Analysis done using a simple R-script based
on ChEMBL compound–target database

KIBA score summarizes potency of drug–
target interactions using multiple

bioactivity types

To obtain target profiles
for compounds used in

the analysis

[38]

ChEMBL http://www.ebi.ac.uk/chembl; publicly

available; run by the European Bioinformatics
Institute, Cambridge, UK

Database with bioactivity measurements

for almost 1.5 million distinct compounds
and over 10 000 protein targets

To obtain target profiles

for compounds used in
the analysis

[86]

Khan et al. Implementation is available on request from

the authors

Drug–target data in this article were

obtained from ChEMBL, DrugBank, DUD,

and ZINC; additionally targets were
extracted from supplementary material in

[11]. In total, 716 CMap compounds had

target information

To obtain target profiles

for compounds used in

the analysis

[84]

DrugBank http://www.drugbank.ca/; publicly available Database containing >4100 drug entries
and >14 000 protein or drug target

sequences linked to these drug entries

To obtain target profiles
for compounds used in

the analysis

[87]

DUD http://dud.docking.org/; publicly available Database of 2950 active compounds

against a total of 40 targets, originally

designed to provide decoys for
benchmarking virtual screening

To obtain target profiles

for compounds used in

the analysis

[88]

ZINC http://zinc.docking.org/; publicly available Database containing about 90 million

commercially available compounds for

structure-based virtual screening, as well
as their target information

To obtain target profiles

for compounds used in

the analysis

[89]

Pathway

Commons

http://www.pathwaycommons.org/; publicly

available

Collection of publicly available pathway

data from multiple organisms, containing

data on 31 698 pathways and 1 151 476
interactions from 18 data sources

To link targets of closest

neighbors of pinosylvin

to their underlying
pathways

[90]
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idea of drug-induced transcriptional modules [29]. Also, some

novel probabilistic methodologies are beginning to emerge

[30,31] as well as a new combined unsupervised and supervised

approach [32]. Finally, Napolitano et al. [33] conceived Drug-Set

Enrichment Analysis to investigate commonalities in the MoA of

a set of pharmacologically diverse compounds that are neverthe-

less able to induce a common phenotype. An application of a

similar method to cystic-fibrosis phenotype correctors is pre-

sented in [34].

Most recently, Woo et al. [35] introduced a method, called

DeMAND, for predicting the MoA of a compound using tissue-

specific regulatory networks and Cmap-type transcriptional profiles

in response to in vitro or in vivo compound perturbations. Specifi-

cally, they combined genome-wide gene expression profiles from

human lymphoma cells with a lymphoma-specific gene interaction

network, and used the Kullback–Leibler divergence [36] to establish

compound-mediated dysregulation of given gene nodes in the
network. Although the authors were able to experimentally prove

their MoA predictions, one limitation of this approach is the re-

quirement for high-quality, context-specific gene regulatory net-

works. However, as the authors comment, these might well be

temporary limitations, because many groups are working on reliable

methods to produce such networks for various cancer types.

Once available on a large scale, such tissue-specific models have

the potential to lead to the identification of more effective and safe

therapeutic targets [37].

Here, we focus in more detail on two recent complementary

network-based methods, namely MANTRA [11], and GFA [12], for

elucidation of compound MoA. In brief, the MANTRA method is

based on the GSEA method to measure the similarity between

transcriptional response profiles; it uses solely the transcriptional

response data, which are aggregated across the different cancer cell

lines to dilute cell line-specific effects on transcription as well as

batch effects and other confounding factors, such as multiple drug
www.drugdiscoverytoday.com 1065
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BOX 1

Production of pinosylvin gene expression response profiles
We aimed to discover the unknown MoA of pinosylvin via the comparison of its transcriptional response profile to those of compounds in
CMap of known MoA. The CMap data resource comprises genome-wide transcriptional response profiles of 1309 small molecules in human
cell lines, mainly the prostate cancer cell line PC3 and the breast cancer cell line MCF7. Given that pinosylvin is not one of the small molecules
present in CMap, in this analysis, gene expression response profiles of pinosylvin at different concentrations on PC3 and MCF7 cell lines were
produced as input into the MANTRA and GFA methods to gain further insights into the molecular mechanisms behind the effects of
pinosylvin. The MCF7 cell line is the main cell line used in the CMap data, but we also wanted to include the lesser-used PC3 cell line to
enable assessment of prostate cancer-specific action and to facilitate analysis of noncontext-specific action by combining the results over the
two cell lines (Fig. I).
Given that the optimal concentration is not known for many compounds, most of the CMap compounds were applied to cell lines at a
concentration of 10 mM. A subset of compounds was also applied at concentrations reported to be effective in cell culture or to approximate
the maximum attainable plasma concentrations after therapeutic dosing, while another subset was profiled at a range of concentrations to
explore the sensitivity of results to dose. To retain similarity in the methodology, we used a concentration of 10 mM for pinosylvin. We also
produced expression data for the dose of 40 mM because previous studies have shown this to be a physiologically relevant, therapeutically
effective, and nontoxic dose. The choice of dose for the other 1309 CMap compounds could affect the gene expression profiles and, thus,
also the results produced from their comparison.
Four batches of the three doses (0 mM, 10 mM, and 40 mM) were produced for each cell line, yielding a total of 24 samples. Unlike in the
CMap data, which was produced over a period of 1 year, here the batches for each cell line were produced and RNA extracted
simultaneously under the same conditions and, therefore, batch effect was not deemed to be an issue. Following the application of
pinosylvin to the cell lines and RNA extraction for each dose–cell line pair, the Limma statistical package in R was used to assess
differential expression with respect to the untreated hybridization. The probe-set identifiers were then ranked by the modified t-statistic.
The selected panel of differentially expressed probe set identifiers in each dose–cell line pair are called ‘gene expression signatures’. The
two gene expression profiles at dose 10 mM for MCF7 and PC3 had few probe sets with significant differential expression and, hence,
were disregarded. Thus, in the analysis, we proceeded with the two gene expression profiles at a 40 mM dose, one for each cell line
(Fig. I).
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FIGURE I

Pinosylvin was applied to a specific cancer cell line, here PC3, to elicit a transcriptional response profile that forms the input into the computational methods.
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dosages. By contrast, the GFA method is a probabilistic model that

considers cell line-specific transcriptional responses and can also

incorporate structural information about the compounds. We

hypothesized that the use of such complementary methods would

lead to a more comprehensive elucidation of MoA of multitargeted

compounds. We begin by describing the two methods and their

outputs using as an example case the natural product pinosylvin.

Finally, we demonstrate the added value of using more than one

method in providing valuable insights that single methods alone

could not predict.

Operation of the MANTRA method
As detailed in Box 2, the MANTRA method [11] produces a ranked

list of CMap compounds based on the similarity of their gene

expression profiles to that of the input compound, here pinosylvin

(Table 2). The underlying idea of this network-based approach is to
1066 www.drugdiscoverytoday.com
discover the MoA of the compound of interest via neighboring

compounds that produce a similar transcriptional response and

that have a known MoA. Such a ‘guilt-by-association’ approach

requires accurate MoA information for the most similar CMap

small molecules, something that is not necessarily easy to find. In

our case study, the target profiles for the neighboring compounds

used in the MANTRA analysis were obtained using multiple means:

we applied the KIBA method [38] to curated ChEMBL bioactivity

data; we also performed manual literature searches and combined

bioactivity data from several drug-target databases, including

DrugBank, DUD, and ZINC (Tables 1 and 2). This drives the search

for a pinosylvin MoA hypothesis towards fundamental MoA. We

begin by looking individually at the closest neighbors of pinosyl-

vin, and then continue to look at the closest neighbors as a group.

We end this section by describing a novel insight into the infor-

mation that can be gained about groups of compounds.
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Closest neighbor approach
The simple idea behind looking at the drugs with the closest

transcriptional response to pinosylvin is that two drugs with a

similar MoA [by this we mean having cellular target(s) in common

that contribute to the treatment response] will produce similar

transcriptional changes. Out of all 1309 small molecules in the

CMap data set, Chembridge 5707885 had the most similar tran-

scriptional response to pinosylvin, as measured by the MANTRA

method (Table 2). However, little is known about this compound

apart from it having a transcriptional response similar to the

natural phenol gossypol, which also occurs in the pinosylvin list,

at position ten. Gossypol has been shown to have anticancer

effects via various mechanisms [39,40], but it is difficult to pin-

point potential targets for pinosylvin from this association because

gossypol is known to act on a widerange of targets, as discussed

later. Hence, we move on, and consider the second closest neigh-

bor, trifluoperazine.

Trifluoperazine, a dopamine receptor D2 (DRD2) antagonist, is

an antipsychotic drug of the phenothiazine group. It is also an

antagonist of serotonin type 2 receptors 5-HT2A and 5-HT2C, and a

calmodulin (CaM) inhibitor (Table 2). There is also evidence of

trifluoperazine inhibiting tumor growth [41,42]. This led us to

question whether pinosylvin is a G-protein-coupled receptor

(GPCR) ligand or a CaM inhibitor and, in particular, whether

some of its anticancer effects might come via these mechanisms.

There have been numerous links between GPCR ligands and

anticancer activity [43] and CaM has an established role in cancer,

both through apoptosis and invasion [44]. However, to our knowl-

edge, the question of whether natural stilbenoids, such as pino-

sylvin, have an effect on prostate cancer via a GPCR-related

mechanism has not been posed previously.
BOX 2

MANTRA method of Iorio et al.
The MANTRA method first produces a so-called single ‘Prototype Ranke
data set. In other words, the cell line–dose level gene expression profil
compound using a rank-aggregation algorithm [81]. This ranked list aim
across doses and cell lines, and also to overcome batch-effect issues in
pinosylvin; however, we were in a balanced situation whereby we had an
hence, we could produce the merged ranked list simply by summing the
the more complicated merging algorithm. Given that we used the HG-
probe sets in our data to match the 22 283 probe sets in the CMap data
further computational analysis.
Once we had a PRL for pinosylvin to compare with the PRLs of all 1309
measure based on Gene Set Enrichment Analysis (GSEA) to output a lis
drugs with the most similar merged gene expression profiles to that of p
profiles might share MoA. Hence, the next step was to look at the MoA 

the MANTRA 2.0 tool, which is an easy-to-use web-based tool for applyin
individual non-merged MCF7 and PC3 expression profiles for pinosylvin w
the merged pinosylvin list out of all CMap PRLs.
An additional output of MANTRA 2.0 is a visualization of a drug networ
(a measure of the similarity in transcriptional response) between them is
‘community’ is defined as a group of nodes densely interconnected with
In total, 106 communities were identified using an affinity propagation a
and one of its nodes was identified as the ‘exemplar’ of the community
drugs in the community).
The top 17 nearest neighbors of the polyphenols pinosylvin, resveratro
visualization purposes and the network diagram was modified using C
First, we tested pinosylvin against a set of 46 standard GPCRs.

Although exceptionally high binding values were not obtained for

any single target, ligand competition did seem selective to 5-HT2

receptors. Building on the previous finding that 5-HT2B receptors are

expressed in PC3 cells, and that a 5-HT2B antagonist, SB-21550,

inhibits PC3 cell proliferation [45], we further tested pinosylvin

together with the known 5-HT2B agonist BW723C86 in cell viability

and cell toxicity assays. However, BW723C86 did not abolish the

antiproliferative activity of pinosylvin in PC3 cells, which suggests

that the effect of pinosylvin is not mediated by 5-HT2B receptors. So,

for now, we put a GPCR-related mechanism out of the picture for

pinosylvin, but we return to this line of enquiry later.

Second, we tested CaM inhibition using an invasion assay.

Given that pinosylvin and our model compound trifluoperazine

(a CaM inhibitor) had no effect on PC3 cell invasion, it is incon-

clusive whether pinosylvin inhibits CaM. However, our model-

based investigation did lead to the interesting side result that CaM

inhibition is not key to invasion in PC3 cells.

Looking further down the list of compounds having a similar

transcriptional response to that produced by pinosylvin, we find

compounds that produce a range of transcriptional and post-

transcriptional modifications (Table 2). For example, Cytochalasin

B affects the actin cytoskeleton [46] and so might induce broad

transcriptional changes. Gossypol induces changes in signal trans-

duction mediators involved in multiple protein expression and

activity, and interacts with cellular and mitochondrial membranes

[47]. Taken together with the fact that pinosylvin is low in the lists

of closest neighbors of trifluoperazine and celastrol (the natural

product fifth in the list of closest neighbors to pinosylvin), we

postulated that pinosylvin acts on multiple targets, specifically on

a subset of targets of trifluoperazine and celastrol.
d List’ (PRL) of genes for each of the 1309 compounds in the CMap
es for a given compound are merged into a single profile for the
s to capture the consensus transcriptional response of a compound

 the CMap data. To enable comparison, we also produced a PRL for
 equal number of compound treatments over the two cell lines and,

 rank positions for a given probe set and reranking, rather than using
U133 + PM array plate in our experiment, we reduced the 54 715

 produced on the Affymetrix GeneChipW HG-U133A array to enable

 CMap compounds (Fig. II), the comparison was done via a distance
t of closest neighbors to pinosylvin (i.e., a ranked list of those CMap
inosylvin). The idea was that compounds with similar transcriptional
of the nearest neighbors to pinosylvin. The analysis was done using
g the MANTRA method (Table 1, main text). As expected, when the
ere input into the MANTRA tool, these lists were the most similar to

k, where drugs are nodes and are joined by an edge if the distance
 below a certain threshold (here, a distance score of less than 0.8). A

 each other and with fewer connections to nodes outside the group.
lgorithm [82]; each community was coded with a numerical identifier

 (i.e., the drug whose effect best represents the effects of the other

l, and genistein were included in the network diagrams for
ytoscape [83] (Fig. II).

www.drugdiscoverytoday.com 1067



REVIEWS Drug Discovery Today � Volume 21, Number 7 � July 2016

Tetrabromobisphenol A bis HC toxin Celastrol

Methylbenzethonium_chloride
Rottlerin

Pararosaniline

Gossypol

Ivermectin

Cytochalasin B

Trifluoperazine

Chembr. 5707885

Sanguinarine

Levonorgestrel

Fenoprofen
Nilutamide

Ionomycin

Phenoxybenzamine

Irinotecan

Tyrphostin AG-825

Entinostat

Etoposide

Trifluridine

Gliclazide

Scriptaid

Piperlongumine

Parthenolide

Resveratrol

Genistein

Pinosylvin

PC3 MCF7 PRL

Mantra

CMap

Tyrphostin AG-1478

Drug Discovery Today 

FIGURE II

MANTRA 2.0 mapped the closest compounds in terms of transcriptional response to pinosylvin, genistein, and resveratrol onto a drug-network.
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Using pathway information about closest neighbors
The transcriptional response profiles for a pair of drugs might be

similar, even if their targets are not the same but if the drugs

target the same pathway upstream of the translational effects.

With this in mind, we mapped the known targets of the top five

neighbors of pinosylvin (Table 2) onto pathways using Pathway

Commons (Table 1), and found that all except trifluoperazine

point to an inhibition of nuclear factor kappa B (NF-kB) down-

stream of the epidermal growth factor receptor (EGFR) (Fig. 1).

This led to the hypothesis that the transcriptional profiles of

these four drugs are similar to that of pinosylvin because of the

ultimate inhibition of NF-kB. Subsequently, we found evidence

to support our data-derived hypothesis: Lee et al. [48] showed

that pinosylvin suppressed the production of proinflammatory

mediators through the inhibition of the NF-kB pathway, a find-

ing corroborated by Laavola et al. [49]. It is possible that this

inhibition of NF-kB by pinosylvin is responsible for the proa-

poptotic effect seen in PC-3M-luc2 cells [21], as is the case for

the polyphenol curcumin through blocking phosphorylation of

IkBa [50].
1068 www.drugdiscoverytoday.com
Although NF-kB is involved in many processes and several

signaling pathways, the example serves to highlight the idea of

using pathway information from all of the closely related com-

pounds to obtain novel MoA hypotheses. Extra support for the NF-

kB hypothesis comes from the observation that celastrol (the fifth

most similar drug to pinosylvin in terms of transcriptional re-

sponse) is a potent antioxidant and anti-inflammatory drug [51]

that has also been reported to have anticancer properties [52,53]

and to inhibit NF-kB activation through IKKb inhibition [54].

Insights for groups of compounds
So far, we have used the MANTRA method to predict the MoA for

pinosylvin. However, we end this section with a description of

how the method also has potential to add insights into a group of

compounds of the researcher’s choice. Resveratrol (trans-3,5,40-

trihydroxystilbene) is a much-researched metabolite of pinosyl-

vin, with a similar structure and many reported health benefits and

anticancer properties [55–57]. Although it is not necessarily the

case that two structurally similar compounds work in a similar

way, as can be exemplified by the two structurally similar flavones
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TABLE 2

Ranked list of the top five drugs based on the similarity of their gene expression profiles to that of pinosylvin, produced by the MANTRA
methoda

Compound MANTRA

network

distance

Information and/or targets Source of target

information

Chembridge 5707885

2-Methoxyethyl 7-(4-chlorophenyl)-

4-(2-fluorophenyl)-2-methyl-5-oxo-
4,6,7,8-tetrahydro-1H-quinoline-3-

carboxylate

0.497 No target information is available for this Chembridge drug.

The CMap drug with the closest transcriptional profile to

Chembridge 5707885 is gossypol, which has the targets below:

Protein kinase C (PKC) inhibitor [91]

Aldose reductase (ALDR1) inhibitor KIBA method
Induced myeloid cell leukemia 1 (MCL1)

Apoptosis regulator B cell lymphoma 2 (BCL2)

Trifluoperazine 0.534 DRD2 antagonist ChEMBL report card

5-HT2C receptor antagonist
5-HT2A receptor antagonist

Alpha-1a adrenergic receptor (ADRA1A) Data in [84]

Potassium-transporting ATPase (ATP4A)

Mitotic checkpoint serine/threonine-protein kinase (BUB1)
Neuron-specific vesicular protein calcyon (DRD1IP) MANTRA (Drugbank)

CaM inhibition [92]

Tyrphostin AG-1478 0.565 EGFR inhibition KIBA method

MAP kinase p38 alpha (MAPK14)
MAPK-interacting serine/threonine-protein kinase MNK1 (MKNK1)

Cytochalasin B 0.568 Src inhibition [93]

Celastrol 0.571 Inhibition of NF-kB activation through IKKb inhibition [54]

More information on the many targets of celastrol [94]
a Here we list the known targets of the drugs and the sources of this target information. The full list of closest compounds to pinosylvin in terms of transcriptional response, as produced by

the MANTRA method, can be found in Table S1 in the supplemental information online.

EGFR

AG-1478

SRC

Cyt. B

NF-κB

Transcription

PKC

IKKβ

Gossypol
MAPK/ERK

Celastrol

Ras
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FIGURE 1

Pathway diagram showing relations between the cellular targets of four of

the closest neighbors of pinosylvin. We mapped the known targets of the five

most similar compounds in terms of their transcriptional response onto
pathway diagrams using Pathway Commons (with Chembridge 5707885

replaced by the most similar drug having known targets, namely gossypol).

This mapping led to the hypothesis that the transcriptional profiles of four of

these five drugs, namely gossypol, tyrphostin AG-1478, cytochalasin B, and
celastrol, are similar to that of pinosylvin because of the ultimate inhibition of

nuclear factor kappa B (NF-kB). The target abbreviations are explained in

Table 2 (main text).
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apigenin and naringenin [58], it would be interesting to investi-

gate whether this is true for pinosylvin and resveratrol. By con-

trast, genistein (40,5,7-trihydroxyisoflavone) is a much-researched

natural polyphenol that is structurally different to pinosylvin, and

is not normally thought of as having similar mechanisms to the

stilbenes. However, genistein is in Phase II clinical trials for pros-

tate cancer (ClinicalTrials.gov Identifier: NCT01126879). There-

fore, it is interesting to investigate how similar or different the

lesser-researched polyphenol pinosylvin is to these much-

researched polyphenols, resveratrol and genistein.

To investigate similarities between pinosylvin, resveratrol, and

genistein, we mapped their closest compounds onto a network

diagram, where links between compounds correspond to signifi-

cant similarities in transcriptional response according to MANTRA

(Box 2). First, the network approach used here highlighted unex-

pected similarities between pinosylvin and genistein. In particular,

the transcriptional response that was most similar to that of

genistein, was that of pinosylvin out of all 1309 CMap com-

pounds, suggesting that a certain mode of action of pinosylvin

is also common to genistein. Second, celastrol has links to pino-

sylvin and also to resveratrol and genistein. However, pinosylvin,

resveratrol, and genistein are not among the top neighbors of

celastrol. This suggests that a certain aspect of celastrol is common

to each of these compounds. This aspect could be inhibition of NF-

kB, because celastrol, resveratrol, and genistein are all known to

inhibit NF-kB [54,59]. It is not unexpected that pinosylvin, genis-

tein, and resveratrol should have links to celastrol, given that
www.drugdiscoverytoday.com 1069
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natural polyphenols are known to have anti-inflammatory prop-

erties.

To highlight differences between compounds in a group, one

can compare the lists of closest neighbors for each compound. For

example, despite their structural similarity, resveratrol is not the

most similar compound to pinosylvin in terms of transcriptional

response; resveratrol is number 46 in the ordered list of com-

pounds that are similar to pinosylvin. Therefore, we hypothesized

that these two compounds work differently in some fundamental

way. By looking at the drugs that are solely in the list of closest

compounds to resveratrol (Table S2 in the supplemental informa-

tion online), but not in the list for pinosylvin (Table S1 in

the supplemental information online), we can search for clues

as to potential differences between these two structurally similar
BOX 3

GFA method of Khan et al.
GFA [12,95] is a recent computational approach, based on the well-estab
sets into ‘components’ (also known as factors), which in turn can be us
method uses the gene expression response of each cell line separately t
specific responses. Each component represents a distinct response in t
repressing a set of genes in one or more cell lines. Therefore, the metho
representative set of genes for each.
The GFA method uses the treatment versus control differential expressio
expression data of CMap were preprocessed to obtain a log2FC different
data of the most abundant platform in CMap, HG-U133A, a total of 11
concentrations of the drugs were combined to obtain a single reliable
processed analogously to obtain the treatment versus control differenti
genes were identified as expressed in either MCF7 or PC3 by pinosylvin t
and PC3; each comprising 1155 drugs (including pinosylvin) and 164 g
The analysis was done using the publically available R code of GFA (Ta
between MCF7 and PC3, with 13 responses specific to either of the ca
common on both MCF7 and PC3 (labeled #1), while one specific compo
and related drugs. Each of these components is characterized by a set
potentially forming hypotheses on the common action mechanisms of
components captured responses of other drugs. Fig. III shows an examp
specific component 2, named the ‘steroidal component’ because it is h

MCF7PC3

Pinosylvin

Group factor analysis
(GFA)

Connectivity
map

M
CPC3

G
F

A
 C

om
po

ne
nt

s

FIGURE III

Group Factor Analysis (GFA) decomposed the two gene expression response data
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compounds. For example, monobenzone occurs in the resveratrol

list at position 21, but does not produce a transcriptional response

similar to that of pinosylvin. Monobenzone, which is structurally

similar to resveratrol, is a drug used to treat the loss of skin color

(vitiligo). This hints that one difference between resveratrol and

pinosylvin is connected to melanin synthesis or excretion [60].

Operation of the GFA method
In contrast to MANTRA, the GFA method of Khan et al. [12]

segregates the drugs and their responses into so-called ‘compo-

nents’, which are cell line specific and group together drugs with

similar transcriptional responses over a particular subset of genes

that are learned in a data-driven fashion (Box 3). A compound can

be linked to several components, making it possible to identify
lished factor analysis scheme, that decomposes transcriptional data
ed to create hypotheses for underlying biological processes. The
o identify both the cross-cancer consensus effects as well as cancer-
he data, and can be interpreted as a set of drugs, activating or
d can identify multiple mechanisms of each drug, while extracting a

n data directly into the modeling process. To this end, the raw gene
ial response for both of the cell lines separately. Using the expression
54 drugs were found in both MCF7 and PC3 cell lines. Multiple
 profile for each drug [84]. The gene expression of pinosylvin was
al gene expression response. With a threshold of jlog2FCj > 0.5, 164
reatment. GFA was then run on the two matrices of responses, MCF7
enes.
ble 1, main text). The model identified 30 components, 17 shared
ncer types. One shared component captured a pinosylvin response
nent (labeled #2) captured the MCF7-specific response of pinosylvin

 of drugs that regulate the expression of genes in a similar fashion,
 pinosylvin and correspondingly identified drugs. The remaining
le of a component in which pinosylvin is active, namely the MCF7-
ighly enriched for steroidal compounds.
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 sets spanning the common 1155 drugs into separate components.
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multiple context-dependent MoAs for a compound. Moreover,

because responses of drugs can be unique in various cancer types,

GFA makes it possible to automatically identify which responses

are common between cancers and which are specific to any one of

the subtypes. The cell-specific responses might remain elusive

when cell lines are merged, as is the standard choice in MANTRA.

GFA also has the potential to use structural descriptors of com-

pounds, such as 3D Pentacle descriptors, to identify the chemical

properties linked to the responses. However, because there were

structurally similar compounds to pinosylvin in the CMap data
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FIGURE 2

Component 1 ‘histone deactylase (HDAC) component’ produced by the Group Fa

transcriptional responses into so-called ‘components’, where each component is ch
fashion, forming hypotheses on the common action mechanisms. Component 1 cap

component is characterized by the three HDAC inhibitors, scriptaid, vorinostat, an

indicates genes that are upregulated and blue genes that are downregulated.
(e.g., resveratrol), we did not want the structural effects to domi-

nate the findings and so did not include any structural descriptors

in our analysis.

Key GFA components
The GFA model identified 30 components from the CMap data

combined with the pinosylvin expression profiles. Seventeen of

these components were shared between MCF7 and PC3 cell lines,

and 13 captured responses specific to either of the cancer types.

Each of these components was characterized by a set of drugs that
Drug Discovery Today 
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regulate the expression of genes in a similar fashion, potentially

forming hypotheses on the common action mechanisms. Two

components were relevant to pinosylvin, labeled as components 1

and 2, while the remaining components captured responses of

other drugs.

Component 1 (Fig. 2) captured a response common on both

MCF7 and PC3. This is a histone deacetylase (HDAC) inhibitor

component characterized by the three HDAC inhibitors, scriptaid,

vorinostat, and trichostatin A. Both pinosylvin and resveratrol are

present in this component and, hence, as well as predicting a HDAC

response for pinosylvin, such a role is also suggested for resveratrol

(for which there is some prior evidence [61]). There is some evidence

that HDAC inhibitors can reprogram the NF-kB response in cancer

cells [62], linking this prediction with the NF-kB prediction above.

Component 2 (Box 3, Fig. III) captured the MCF7-specific

response of pinosylvin and related drugs. The top drug in this

component is colforsin, a water-soluble derivative of forskolin,

which increases levels of cAMP. Cyclic AMP is an important

signaling molecule in the regulation of prostate cancer [63] and

breast cancer [64] cell proliferation. This led us to hypothesize that

pinosylvin increases levels of cAMP. Interestingly, previous studies

have shown that the structurally similar resveratrol increases the

amount of cAMP by directly inhibiting cAMP-specific phospho-

diesterases [65] (including PDE4, which is one of the most abun-

dant cAMP-selective PDEs in PC3 cells [66] and also present in

MCF7 [67]). Furthermore, Liu et al. [68] showed that genistein

increases cAMP in insulin-secreting INS-1 cells, possibly primarily

via enhanced adenylate cyclase activity.

Given that there were also numerous steroidal compounds in

component 2, we hypothesized that pinosylvin also works in a

manner similar to steroids. As regards steroid receptors, nuclear

estrogen receptors (ERa and ERb) are of particular interest, because

they are known to interact with a range of steroidal and nonste-

roidal compounds. However, if interaction with estrogen receptors

was the common factor in component 2, then one would expect

genistein to also be present in this component, because it is known

to be an ERa agonist in MCF7 cells [69]. We continue this line of

enquiry in the next section by taking into account the output also

from the MANTRA method.

Taken together, the putative targets identified for pinosylvin

(HDACs, GPCRs, and cAMP) are well in line with earlier data on

the biological activities of pinosylvin, such as inhibition of cancer

cell proliferation, induction of apoptosis, sensitization to TRAIL, and

anti-inflammatory activities [21,49,70]. Further mechanistic studies

are needed to confirm the relevance of these signaling molecules in

mediating the anticarcinogenic and/or anti-inflammatory effects of

pinosylvin. However, as regards to the putative steroid-like proper-

ties, our recent data indicate that pinosylvin, unlike genistein, does

not target the classical nuclear steroid receptors ERa and the andro-

gen receptor (AR) (L. Polari, PhD thesis, University of Turku, 2015,

http://urn.fi/URN:ISBN:978-951-29-6101-6). Therefore, future stud-

ies focusing on the other steroid-related processes, such as steroid

biosynthesis, or nongenomic steroid signaling, are warranted.

Combining information from both methods leads to
novel insights
Combining the GPCR hypothesis for pinosylvin obtained from

the MANTRA method with the above observations on steroidal
1072 www.drugdiscoverytoday.com
compounds in component 2 obtained from the GFA method, led

us to question whether the common factor in component 2 could

be the G-protein-coupled estrogen receptor (GPER), also known as

GPR30, and to ask whether pinosylvin binds to GPER. Further-

more, might the antiproliferative and proapoptotic effects seen in

prostate cancer occur via this mechanism? This would fit with the

prediction, discussed in the previous section, that pinosylvin

increases cAMP, because GPER agonists have been shown to

increase cAMP production [71]. In addition, GPER belongs to

the same GPCR family as 5HT-2, which was highlighted as a

potential target by the MANTRA method. It is also known that

GPER is expressed both in MCF7 [72] and PC3 cells [73].

GPER is a challenging target to validate, because there are no

specific markers for GPER-mediated signaling. Furthermore, GPER

ligand-binding studies are far from straightforward [71]. However,

there is evidence that GPER is a relevant target in cancers, in

particular for breast cancer and castration-resistant prostate can-

cer. GPER is expressed in clinical breast and prostate cancer speci-

mens, and the GPER-selective agonist G1 modulates the growth of

breast and prostate cancer cells in vitro and in vivo xenografts

[71,73,74]. The polyphenols genistein and resveratrol have both

been shown to have a GPER-related mechanism, genistein in

certain cancer cell lines, [71] and, therefore, one can also hypoth-

esize such a role for pinosylvin. However, a multitude of MoAs has

been proposed for these two well-researched polyphenols [75,76],

and it is not clear a priori which of them apply to pinosylvin.

The current data-driven exploration highlighted GPER as a

potential target for pinosylvin, and the existing studies provided

supporting published evidence for this novel hypothesis in the

contexts of both prostate and breast cancer. In conclusion, by

combining the hypotheses from the two computational models,

we developed a hypothesis that would not have been obtained

from either method alone.

Concluding remarks and future directions
The elucidation of compound MoA is a key part of the drug

discovery process. We have provided an overview of the common

concepts in the computational network pharmacology methods,

which use transcriptional response profiles to provide hypotheses

for the MoA of compounds. The specific case study described here

highlights how the data-driven approaches can provide research-

ers with completely unintuitive hypotheses for MoA, thus poten-

tiating novel findings, once carefully validated using in vitro or in

vivo assays. In addition, our case study adds to evidence that the

network-based methods are particularly useful for natural pro-

ducts, which typically are multitargeted [20]. However, as demon-

strated over the course of the application case study, experimental

validation of the model predictions can be far from trivial, and

establishing the MoA of a compound might require several itera-

tions of the computational and experimental phases.

Using the MANTRA and GFA methods, we developed hypothe-

ses for the MoA of the less-researched natural polyphenol

pinosylvin. In particular, the MANTRA method predicted a

GPCR-related mechanism and CaM inhibition, although this

remained inconclusive following our initial experiments, and

inhibition of NF-kB, for which we found literature evidence.

The MANTRA method also hinted at commonalities between

pinosylvin and genistein, which are stronger than those between

http://urn.fi/URN:ISBN:978-951-29-6101-6
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pinosylvin and a structurally more similar polyphenol, resveratrol.

Using the GFA method, a HDAC response was predicted for pino-

sylvin, as well as an increase in levels of cAMP and steroid-like

activity. By combining the information from these two computa-

tional methods, we were able to predict a GPER-mediated role for

pinosylvin in prostate cancer. The question of whether natural

stilbenoids have an effect on prostate cancer via a GPCR-related

mechanism has not been posed previously, underscoring the po-

tential of such unbiased approaches to suggest novel hypotheses.

In the future, computational network pharmacology methods

will benefit from new phenotypic response data, for example that

being produced by the Library of Integrated Network-based Cellu-

lar Signatures project (LINCS, http://www.lincsproject.org/), as

well as high-quality, context-specific gene regulatory networks

and more reliable drug–target and pathway information. Although

novel computational methods are simultaneously being created, it

is useful to also consider novel applications and combinations of

existing methods and their extensions, as highlighted through the

current work. For example, Iorio et al. [77] recently extended the

MANTRA computational pipeline to filter out the effect of tran-

scriptional changes resulting from nonspecific secondary MoA. In

particular, they used an iterative, network-guided, semisupervised

approach to refine the gene expression signature of the compound

of interest to produce a transcriptional signature representative of

the primary MoA. They showed how the approach can be used to

disentangle the indirect mitotic arrest and general microtubule

disruption effects of paclitaxel from its primary microtubule sta-

bilization effect, and further used the method to find novel

microtubule stabilizers [77].

MANTRA and GFA are both designed to identify similarities

between drugs based on their large-scale phenotypic response

profiles. Further advances in computational approaches might

benefit cases where the goal is to illuminate differences between

two drugs. For instance, a possible future direction would be to

explore how these methods can be extended for optimally identi-

fying differences between response mechanisms of two candidate

drugs. Furthermore, future efforts to consider multiple levels of

MoA for the neighboring compounds in the MANTRA method,
beyond direct target effects to also include indirect and down-

stream signaling effects, might yield a wider understanding of the

various drug response pathways. Finally, the GFA method learns

the response similarities in an entirely data-driven fashion. Sup-

plementing the data-driven nature with prior information of

known pathway interactions and biochemical processes might

prove useful for prediction of action mechanisms.

The concept of network pharmacology not only considers single

multitargeted drugs to be of potential use to treat complex diseases,

but also combinations of compounds, the rationale being that a

combination of drugs might target nodes on compensatory path-

ways, countering problems such as emerging drug resistance. We

did not touch on approaches for predicting effective drug combina-

tions here, but computational methods that can prioritize the most

therapeutically effective combinations of compounds for experi-

mental validation are important because of the impracticality of

testing all possible drug combinations, given that the number of

combinations increases exponentially with the number of drugs to

be screened. These methods are reviewed elsewhere (e.g., [78,79]).

We hope that, through this detective story into the MoA of

pinosylvin, we have furnished researchers new to computational

network pharmacology methods with the background to carry out

similar studies for their own compounds of interest, while provid-

ing more experienced researchers in the field with novel insights

into how the methods can be applied and their results experimen-

tally validated.
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