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Ovarian function is central to female fertility, and several genome-wide associ-
ation studies (GWAS) have been carried out to elucidate the genetic background
of traits and disorders that reflect and affect ovarian physiology. While GWAS
have been successful in reporting numerous genetic associations and highlight-
ing involved pathways relevant to reproductive aging, for ovarian disorders,
such as premature ovarian insufficiency and polycystic ovary syndrome,
research has lagged behind due to insufficient study sample size. Novel
approaches to study design and analysis methods that help to fit GWAS findings
into biological context will improve our knowledge about genetics governing
ovarian function in fertility and disease, and provide input for clinical tools and
better patient management.

Genetics of Ovarian Biology
The ovarian reserve (see Glossary), one of the key elements of female fertility, is influenced by
many factors, including genetics. As a result, much attention has been focused on elucidating
the genetic background of both normal reproduction and various disorders that affect and reflect
the ovarian reserve and healthy folliculogenesis. Ovarian function revolves around folliculo-
genesis, a cyclic process responsible for the maturation and release of oocytes from the ovaries.
The follicle reserve and the effectiveness of folliculogenesis affect female reproductive potential,
which directly depends on natural reproductive aging, delineated by menarche and meno-
pause–the two time-points in a woman's life that open and close the reproductive window,
respectively. However, in many women the normal course of events is disturbed by pathologies
such as premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS).
Both POI and PCOS have a significant impact on female fertility because compromised
reproduction is an inherent feature of POI, while PCOS is the most common cause of anovulatory
infertility [1]. In addition to being essential for natural conception, ovarian reserve and response
also remain the key limiting steps in assisted conception because one of the prerequisites for
successful in vitro fertilization (IVF) treatment is the availability of multiple good-quality oocytes
(Figure 1).

Normal reproductive aging has a strong genetic component, and the heritability of menopausal
age can be as high as 90% [2]. Similarly, genetic factors have been implicated both in the
pathogenesis of POI [3] and PCOS (heritability up to 70%) [4], justifying the search for genetic
determinants. Although epidemiological evidence points to a complex interplay between repro-
ductive aging and various ovary-related traits or conditions [5,6], the extent to which these
phenotypes share genetic determinants has only recently begun to be clarified.

Trends
Large population-based biobanks can
be harnessed for genetic studies in
ovary-related phenotypes to take
research efforts to the next level.

New analytical methods that use
GWAS summary statistics can be used
to identify the most likely causal genes,
pathways, underlying mechanisms,
genetic correlations, and causal rela-
tionships between phenotypes.

There is significant genetic overlap
between traits and disorders reflecting
ovarian function, such as age at natural
menopause, polycystic ovary syndrome,
and premature ovarian insufficiency.

Results from large-scale genetic
association studies can provide infor-
mation for more personalized patient
management.
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Over the past decade, advances in array-based genotyping technologies and the concurrent
development of a wide variety of software tools have led to increased interest in genome-wide
association studies (GWAS). These studies have broadened our horizon regarding the genetic
architecture of complex traits and have resulted in new discoveries concerning the genetics
governing female reproduction. This review summarizes current knowledge and addresses the
impact that GWAS have on our understanding of ovarian biology as a whole, while concomitantly
discussing potential new developments in study group selection, data analysis, and interpreta-
tion, and finally the translational potential of the findings.

Designing the Study–Biobanks or Patient-Based Cohorts?
Both hypothesis-driven candidate gene studies and hypothesis-free GWAS begin by defining
the phenotype and selecting the appropriate study group, a crucial step that defines the success
of a study [7]. Traditionally the research centers conducting the study have recruited very
precisely defined participants to ensure homogeneity of the study group. However, the power of
a study to detect genetic associations, that each have a small effect on the complex trait or
disease of interest, depends directly on the study size; the larger the study the more associ-
ations, and smaller effects are robustly identified [8]. The establishment of large population-
based biobanks that collect biological material, phenotype, and lifestyle data has made it
possible to dramatically increase the sample size for some traits. For example, recent GWAS
meta-analyses for age at menarche/menopause have included tens of thousands of women and
revealed dozens of associated loci [9–11]. However, the question remains of whether popula-
tion-based biobanks with healthcare records and questionnaire-based data can be used for
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Figure 1. Ovarian Reserve Throughout Life, Normal Ovarian Function, And the Impact of Various Pathologies.
The ovarian reserve is established before birth, and thereafter the number of follicles containing the oocytes decreases
through controlled atresia until menopause when the ovarian reserve is virtually exhausted. Normally, during the repro-
ductive lifespan ovarian follicles go through distinct developmental stages and one oocyte is released monthly. However, in
women with polycystic ovary syndrome (PCOS), hormonal disturbances result in follicular arrest and anovulation, while in
premature ovarian insufficiency (POI) the ovarian reserve is depleted prematurely. During ovarian stimulation (COS) used for
in vitro fertilization (IVF), exogenous hormones are used to stimulate the growth and release of several oocytes.
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large-scale studies on phenotypes that are usually defined using rigorous clinical criteria. One of
the main advantages of recruiting individuals for a specific study is the possibility to collect
additional biological material (urine, follicular cells, and other tissues) or information on disease-
specific sub-phenotypes, such as hormonal values or data from ultrasound scans, which are
usually not collected from individuals recruited into population-based biobanks. Biobanks
have proved to be extremely useful for studying anthropometric traits (such as height) that
can be extracted from self-reported data [12]. Several biobanks have established female health-
specific questionnaires, thereby creating valuable datasets for reproductive health-related
phenotypes which could also provide insight into ovarian biology. For example, a recent study
proposed that menstrual cycle length could be a proxy marker for ovarian reserve and oocyte
quality [13], and recently a GWAS for this trait was published, highlighting variants near the FSHB
gene that encodes the b subunit of follicle-stimulating hormone (FSH) [14]. Because
menstrual cycle length is among the phenotypes that some biobanks collect data for (relevant
questions are included in the UK Biobanki, the Estonian Biobankii, and the LifeLines Biobankiii

female health questionnaires), we will probably soon have more information about the genetics of
menstrual cycle. Moreover, phenotypes such as parity also reflect ovarian function to some
extent, and GWAS conducted thus far suggest that associated genetic variants are there to be
found with the help of larger study cohorts [15,16].

In addition, biobanks collect data on medical history and current health status and, depending
on regional legislation, also have the possibility to link with national or hospital databases,
creating the opportunity to confirm diagnoses or identify cases. An algorithm combining various
inclusion and exclusion criteria has successfully been used to extract patients with suspected
POI from a population-based biobank, to explore the prevalence and epidemiology of the
condition [17], and a similar approach could also be used in studies aimed at finding genetic
associations with POI. Furthermore, the usability of text-mining algorithms for the detection of
women with PCOS has also been explored [18], providing additional means for increasing
sample size of this phenotype.

Successful reproductive aging GWAS meta-analyses have demonstrated the value of popula-
tion-based biobanks. Whether these resources could also be used to progress genetic studies
on traits and disorders associated directly with ovarian biology remains to be established.

Analyzing the Data–Quality or Quantity?
The main concern related to using biobanks for studying various disorders is the question
whether increase in quantity comes at the price of quality. As mentioned in the previous section,
specifically recruited patients enable seemingly homogenous study groups to be put together.
For example, all three criteria used for diagnosing PCOS (Box 1) overlap to some degree, but

Glossary
Anti-Müllerian hormone (AMH): a
hormone produced by granulosa
cells of small antral follicles. AMH
levels reflect the number of small
antral follicles (oocytes) and decline
with age. Lower AMH levels may
indicate a decreased dynamic ovarian
reserve.
Antral follicle count (AFC): the
number of (2–10 mm) antral follicles
visible in the ovaries by
ultrasonography early in the
menstrual cycle.
Controlled ovarian stimulation
(COS): refers to the growth of
multiple ovarian follicles when
induced by stimulating the ovaries
with exogenous hormones.
Early menopause (EM):
menopause before the age of 45
years.
Follicle-stimulating hormone
(FSH): a pituitary-derived hormone
that stimulates the growth of ovarian
follicles. Elevated FSH levels in early
menstrual cycle may indicate a
decreased ovarian reserve.
Genome-wide association study
(GWAS): a study to test the
association between millions of
genetic markers and a phenotype of
interest. Owing to the large number
of association tests carried out, a P
value threshold of P = <5 � 10�8 is
used to avoid false-positive results.
In vitro fertilization (IVF): a
methodology used to treat infertility.
A typical IVF treatment cycle involves
COS, in vitro fertilization of the
obtained oocytes, and culture of the
embryos, which are then transferred
into the uterus.
Luteinizing hormone (LH): a
pituitary-derived hormone that
triggers ovulation.
Ovarian reserve: a term used to
describe female reproductive
potential as defined by the total
number of oocytes in the ovaries.
Polycystic ovary syndrome
(PCOS): the most common
endocrine disorder among
reproductive-aged women
(prevalence �10%) that
encompasses menstrual cycle
disturbances, hyperandrogenism, and
in some cases also obesity and
insulin resistance.
Premature ovarian insufficiency
(POI): menopause before the age of
40 years; affects about 1% of
reproductive-aged women.

Box 1. PCOS Diagnostic Criteria

Owing to the heterogeneous clinical manifestation of PCOS, which results in nearly 20 different phenotypes [71], the
diagnosis cannot be made based on a single characteristic. Over the years many different definitions have been used, but
currently three sets of criteria have been proposed for diagnosing PCOS that use in various combinations the following
characteristics: hyperandrogenism (presenting as excessive body hair, acne, or baldness), hyperandrogenemia (elevated
male sex hormone levels in blood), oligomenorrhea (less than nine menstrual periods a year), amenorrhea (no menstrual
periods), and polycystic ovaries (increased ovarian volume or at least 12 follicles measuring 2–9 mm in diameter in at least
one ovary). According to the NIH/National Institute of Child Health and Human Development (NICHD) criteria established
in 1990, PCOS is defined as the presence of hyperandrogenism and/or hyperandrogenemia and menstrual dysfunction
[72]. The so-called Rotterdam criteria proposed in 2003 state that two of the following three characteristics must be
present: hyperandrogenism and/or hyperandrogenemia, menstrual dysfunction, and polycystic ovaries visualized on
ultrasound [73]. Use of the Rotterdam criteria is also suggested by the Endocrine Society [74]. Finally, the Androgen
Excess Society Criteria published in 2009 proposed defining PCOS as the presence of both hyperandrogenism (clinical
and/or biochemical) and ovarian dysfunction (oligo- or anovulation and/or polycystic ovaries) [71]. All three criteria also
state that other conditions that might mimic these symptoms need to be excluded.
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also encompass some different characteristics, resulting in varying phenotypes under the
umbrella of PCOS diagnosis. Until now it has been suggested that all diagnostic criteria should
be treated as separate entities in genetic association studies in the interests of clinical precision
and study group homogeneity. However, no significant genetic heterogeneity across the
National Institutes of Health (NIH) and Rotterdam criteria, and in self-reported disease status,
was observed in the latest PCOS GWAS [19]. This suggests that, although important from a
clinical perspective, less-stringent clinical criteria, International Classification of Diseases (ICD)
codes, or even self-reported status can be used for some conditions to increase the power to
detect associations in large-scale studies. However, this approach needs to be validated for
each phenotype either by assessing genetic heterogeneity in comparison with clinically con-
firmed cases, or by replicating established genotype–phenotype associations [20].

In addition to larger sample size, study power can be increased by other means of expanding the
dataset, for example by taking advantage of repeated measurements [21] such as hormone
values or other quantitative traits that vary in time and have been measured at different time-
points. Repeated measurements are, for example, generated in IVF treatment cycles, where
women often undergo more than one treatment cycle, resulting in multiple data-points for
hormonal measurements and controlled ovarian stimulation (COS) outcome (the number of
oocytes retrieved in each cycle). In data analysis, usually all but one cycle is discarded; however,
more complex statistical models that make full use of the data at hand are necessary here [22].

The novel approaches to study group formation and the multi-layered structure of collected data
for certain traits discussed in this section provide a means to increase analysis power. Poten-
tially, this could lead to interesting new discoveries regarding the genetics of PCOS, POI, and
ovarian reserve.

What Have We Learned So Far about Ovarian Biology from GWAS?
The list of traits related to the ovarian function and ovarian reserve interrogated by the GWAS
approach includes not only those that are markers of ovarian reserve but also the folliculo-
genesis-related pathologies POI and PCOS as well as reproductive aging parameters, such as
age at menarche and menopause, that can provide clues about the processes governing
ovarian physiology. The primary outcome of a GWAS analysis–a list of significantly associated
variants, is a starting point to unravel the physiological mechanisms underlying a trait. Because
GWAS takes advantage of linkage disequilibrium (LD) between variants, and the majority of
GWAS hits lie in intergenic (regulatory) regions [23], the use of different approaches is necessary
to find the most likely causal genes and associated biological mechanisms. A plethora of
analytical tools have been developed to take the list of variants forward and fit them into a
larger biological picture by aiding the identification of likely causal genes and pathways, and the
dissection of underlying mechanisms and genetic correlations to other comorbidities and traits
(Box 2).

Box 2. What Can We Do with GWAS Findings In Silico?

Because the variants identified in GWAS are not always directly causal, but are instead surrogates for true causal variants,
different approaches (Figure IA) are used to fit GWAS findings into a larger biological picture and provide possible
explanations for how genetic variation could influence the phenotype, for example by modifying gene expression. We list
here some of the analytical methods that have been most used in studies related to ovarian function.

Expression quantitative trait locus (eQTL) analysis aims to find genetic variants that influence gene expression. eQTLs can
be local, near the SNP of interest (cis-eQTL), or distant. The latter are usually called trans-eQTLs and are spatially
separated from the SNP of interest, for example on another chromosome. Several freely accessible databases have been
established for various human tissues. The most comprehensive public eQTL databases are currently the whole blood
eQTL browseriv [75] and the Genotype-Tissue Expression (GTEx) databasev [76].
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’Pathway and enrichment analyses’ fit GWAS hits into a functionally more meaningful context by evaluating the joint effect
of many genes, thereby highlighting those biological processes or functional domains most affected by the associated
variants. To facilitate such analyses, tools such as Meta-Analysis Gene-set Enrichment of variaNT Associations
(MAGENTAvii) [77] and Data-driven Expression-Prioritized Integration for Complex Traits (DEPICTviii) [78] have been
developed. These programs use GWAS summary statistics (P value and chromosomal positions) as an input and
propose causal genes, find enriched biological processes/pathways, gene sets, and also tissues or cell types where
genes from associated loci show high expression.

In addition to looking for enrichment in pre-defined pathways, tissues, or functional elements, text-mining tools such as
Gene Relationships Across Implicated Loci (GRAILix) offer the possibility to prioritize genes by scanning published papers
for keywords that are similar for associated markers [79]. In addition, GWAS data can be used to explore the shared
genetic component between traits by assessing pleiotropy (one locus influences multiple phenotypes) or by using the
recently developed LD Score Regression method that takes advantage of the enrichment of heritability in particular
genomic regions that is shared across many traits [80].

From a clinical perspective, polygenic profiles generated based on the associations observed in GWAS can be used for
assessing the causal relationships between phenotypes using Mendelian randomization [81], similarly to clinical
randomization studies, only using genotype data as instruments (Figure IB). In the future, polygenic profiles could also
be used for personalized risk assessment and counseling.
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Figure I. How To Fit the GWAS Findings in a Larger Biological Picture? Various approaches (A) con-
textualizing GWAS findings, and (B) harnessing GWAS findings for translational output.
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Ovarian Reserve
The ovarian reserve can be indirectly estimated by hormonal or ultrasound markers [FSH, anti-
Müllerian hormone (AMH), antral follicle count (AFC)], and some studies have been con-
ducted to identify genes associated with these markers, resulting in several variants that
associated with AMH or early follicular phase FSH values in Caucasian and African American
women [24]. However, none of these hits were later confirmed in studies specifically aimed at
finding the genetic regulators of sex hormones, including FSH [25] and AMH [26]. Instead a
signal near FSHB that influenced FSH as well as luteinizing hormone (LH) levels was reported
in a study group consisting mainly of female Europeans [25] (Figure 2A), while variants directly in
the AMH locus were found to regulate AMH levels in males but not females [26]. In addition,
variants associated with AFC were also reported [27], several of which were also associated with
AMH levels [27], indicating an overlap between the genetic determinants for these traits.
However, the variants reported in [24] and [27] are near genes (LRRC61, GPR12, KLRAP1,
BLK, MACROD2) that have previously not been linked to female reproduction and, considering
the limited sample size in the original studies, validation in larger independent cohorts and
functional studies will be necessary to confirm their role in ovarian biology.

Another trait closely related to the ovarian reserve is the response to COS used in IVF. One very
small GWAS (n = 92) has been done on IVF-related traits (oocyte yield, the total amount of FSH
used during stimulation, the amount of FSH needed for retrieving one oocyte, embryo quality,
and likelihood of pregnancy), but likely due to power this study only yielded a few sub-significant
associations [28].

Apart from the few studies conducted for hormone levels, GWAS related to ovarian reserve
parameters have suffered from a lack of sufficiently sized study groups. Further studies,

Menarche
Key:

Menopause
PCOS
POI
FSH
LH
Menstrual cycle length

(A) (B)

Figure 2. Reported Genetic Associations and Genetic Correlations between Phenotypes. (A) Genome-wide significant loci associated with menarche,
menopause, polycystic ovary syndrome, FSH and LH levels, and menstrual cycle length; and genes associated with monogenic forms of POI. (B) Genetic correlations
between phenotypes reflecting ovarian physiology and overall health status. Data are from published studies [9,10,19] that report genetic correlations based on observed
pleiotropy between loci or LD score regression analysis. Abbreviations: AMH, anti-Müllerian hormone; FSH, follicle-stimulating hormone; LD, linkage disequilibrium; LH,
luteinizing hormone; PAI-1, plasminogen activator inhibitor type 1; PCOS, polycystic ovary syndrome; POI, premature ovarian insufficiency.
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especially for COS parameters, will be necessary to reveal the genetic determinants of ovarian
response.

Reproductive Aging
For natural reproductive aging, several GWAS have been conducted, both for the timing of
menarche [9,11,29–31] and menopause [10,32–36]. The largest studies, involving more than
180 000 and nearly 70 000 women, respectively, have identified altogether approximately 150
associated loci in women of European descent [37] (Figure 2A). Collectively, these explain
about 3–4% [9,11] and 6% [10], respectively, of the variance in menarche and menopause
timing. The reported effect sizes range from 2 weeks up to 1.25 years for menarche (largest
effect for a low-frequency variant in TACR3) [9,11], and from �4 weeks to nearly 1 year for
menopause (largest effects for common variants in MCM8 and low-frequency variants in HELB)
[10]. Several regions initially identified in one population have also shown consistent associ-
ations with menarche/menopause timing in other populations [30,31,38–41], pointing to
significant genetic overlap of reproductive timing across various populations and races. In
addition, variants associated with menarche and menopause timing are enriched in regions that
contain genes for monogenic puberty disorders [9,10]. Furthermore, menopause associations
tend to lie near genes responsible for monogenic forms of POI [10]. This again highlights not
only the genetic overlap between distinct disorders and normal variation observed in a
population but also between the two time-points that define the reproductive lifespan. Addi-
tionally, both menarche and menopause show genetic correlations with several other pheno-
types (Figure 2B). Tissue enrichment analysis with DEPICT (Box 2) and previously published loci
([9,10] and Tables S1–S4 in the supplemental information online) showed no statistically
significant enriched tissues for menarche loci (top-ranking terms included musculoskeletal
system, connective tissue cells, and central nervous system), but highlighted the endocrine,
blood, and stem cells together with the immune system and urogenital tissues (including ovary)
for menopause loci.

Biological pathways highlighted in studies include DNA repair and immune response for
menopause [10,34], and energy homeostasis, pituitary function, nuclear hormone receptor
signaling, steroidogenesis, and gene silencing for menarche [9]. Interestingly, for menopause
signals, no enrichment was seen in genes associated with ovarian function (the tested list
included 130 genes associated with POI, folliculogenesis, ovarian dysgenesis, etc.) [10]. Nev-
ertheless, several of the identified candidate genes are directly involved in processes governing
ovarian function. For example, variation in FSHB is associated with both age at menarche [9] and
menopause [10], and FSH plays a central role in folliculogenesis. MCM8, that participates in DNA
replication and is reported to have the biggest effect on menopause timing, was found to be
associated with follicle count and is also expressed in human ovarian follicles [27], and further-
more is one of the genes responsible for monogenic forms of POI [42,43]. Several of the other
known menopause loci have been associated with traits reflecting the ovarian function [44–46],
and a recent study showed that SYCP2L (encoding an oocyte centromere protein), which is
associated with menopausal age [10] and with COS and IVF outcome [44], is expressed in
oocytes, regulates primordial oocyte survival [47], and is associated with reduced fertility in aged
female mice [47]. These results demonstrate that, in addition to identifying the genetic variants
associated with reproductive aging in the general population, GWAS of these traits also offer
valuable leads for further research into ovarian biology.

Taken together, GWAS for natural reproductive aging are a perfect example of how this
approach can improve our understanding of reproductive health-associated phenotypes
because these studies have not only highlighted the mechanisms behind ovarian aging but
have also demonstrated a complex network of interactions between different (reproductive)
phenotypes.
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Premature Ovarian Insufficiency
To date, six studies using a GWAS approach have been conducted to find variants associated
with POI in various populations ([48–53], reviewed in [3]). Numerous sub-significant associations
[50–53] have been reported, and none of these associations were replicated in subsequent
studies. Furthermore, no associations were observed in regions previously associated with
monogenic forms of POI [3]. This is probably caused by the low prevalence of POI, making it
difficult to collect sufficient numbers of cases. However, there is evidence that the same variants
associated with age at normal menopause contribute to both early menopause and POI
[54–56], indicating a considerable genetic overlap between POI and (early) menopause. This
also underlines the possibility of studying the reproductive aging and ovarian insufficiency as a
continuum without setting any cut-offs for menopausal age. Nevertheless, to fully understand
the POI phenotype and its place in the reproductive aging continuum, a well-powered study for
this phenotype is also highly anticipated.

Although not within the scope of this review, in recent years another hypothesis-free approach,
namely next-generation sequencing (NGS), has identified several novel genes implicated in
idiopathic POI. NGS encompasses high-throughput DNA sequencing technologies including
whole-genome sequencing (WGS), whole-exome sequencing (WES), and other targeted NGS.
The respective findings have been reviewed in more detail previously [3,57], but of interest is the
fact that candidate genes identified by WES (including MCM8 and MCM9) are involved in
meiosis, DNA repair, and chromosome stability, mirroring the findings from reproductive aging
GWAS. Furthermore, a targeted NGS among potential POI candidate genes showed that
mutations in ADAMTS19 are associated with POI [58], confirming a previous sub-significant
finding from a POI GWAS [52]. In this respect, GWAS and NGS represent two complementary
approaches. On the one hand, NGS can determine the exact sequence of DNA, and therefore
will give information about all genetic variants, including rare variants. However, it is still not
feasible to sequence the large quantities of samples necessary for a genome-wide analysis,
hence NGS is well suited for analyzing familial cases. On the other hand, GWAS samples are
genotyped using a genome-wide array, and variants not directly genotyped are inferred or
‘imputed’ based on sequenced reference data and known haplotype structure. This makes
GWAS a more cost-effective method most suitable for the analysis of common genetic variants
because the quality of imputation is much lower for rare genetic variants (and much larger study
groups are needed for rare variant analysis).

PCOS
Recent years have seen a rapid emergence of PCOS GWAS studies and, since 2011, five
studies have been published [19,59–62]. Together, these studies have identified 16 loci that are
significantly associated with PCOS (Table 1). Moreover, four regions (THADA, C9orf3, FSHB,
and YAP1) have been replicated in more than one study, and in women of Caucasian and
Chinese Han backgrounds, suggesting common pathogenesis mechanisms across different
populations. The first two studies identified 11 loci in Chinese Han PCOS patients [59,60]. The
third PCOS GWAS conducted among Koreans did not identify any significant associations, but
reported replication of seven of the previously found PCOS associations [61]. The study by
Hayes et al. was the first PCOS GWAS among Caucasians and, as a result, two novel signals for
PCOS risk were reported [62]. The most recent study included a total of �7000 PCOS cases
(both self-reported and clinically confirmed) and reported three novel hits [19]. Notably, this
provides evidence the Erb-B pathway might be implicated in PCOS, and this pathway is involved
in primordial germ cell development in mice [63]. In addition, ERBB3 interacts with YAP1 in the
Hippo pathway, which regulates organ size by controlling cell proliferation and apoptosis, and
has been associated with primordial follicle pool in mice [64]. Taken together, these five studies
provide considerable evidence for the role of the Hippo pathway, neuroendocrine changes
(mediated by LHCGR, FSHR and FSHB), and EGFRs in PCOS pathophysiology. In addition, the
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PCOS susceptibility variants found by Day et al. and Hayes et al. were also found to be
associated with AMH, FSH, and LH levels [19,62], offering some insight into the genetics of
these traits as well. Finally, variants associated with menopause also associate with PCOS risk,
suggesting a shared genetic background for ovarian aging and PCOS [19,46], and providing an
evolutionary explanation for the high prevalence of PCOS–the primordial follicle pool is larger or
more efficiently used in PCOS patients [19].

Table 1. GWAS Loci Associated with Polycystic Ovary Syndrome

Marker Location Nearest Gene(s) Comments Refs

rs1351592 2q33.3–q34 ERBB4 (Erb-B2 receptor tyrosine
kinase 4)

PCOS susceptibility allele also
associates with higher AMH
levels in girls. Nominal
associations were found for
two other members of the
EGFR family (ERBB2/HER2
and ERBB3/HER3).

[19]

rs7563201
rs13429458

2p21 THADA (thyroid adenoma associated) PCOS susceptibility allele also
associates with higher AMH
levels in girls.

[19,59]

rs13405728 2p21 LHCGR (luteinizing hormone/
choriogonadotropin receptor)

[59]

rs2268361 2p21–p16 FSHR (follicle-stimulating hormone
receptor)

[60]

rs13164856 5q31 RAD50 (RAD50 double-strand break
repair protein)

PCOS susceptibility allele also
associates with higher AMH
levels in girls.

[19]

rs804279 8p23.1–p22 GATA4 (GATA-binding protein),
NEIL2 (nei-like DNA glycosylase 2)

[62]

rs10993397
rs3802457

9q22.32 C9orf3, FANCC (Fanconi anemia
complementation group C)

[60,62]

rs2479106 9q33.3 DENND1A (DENN domain-containing
1A)

[59]

rs11031006 11p13 FSHB (follicle-stimulating hormone b
subunit)

PCOS susceptibility allele also
associates with higher AMH
levels in girls. Marker also
associated with FSH and LH
levels.

[19,62]

rs1894116
rs11225154

11q13 YAP1 (Yes-associated protein 1) PCOS susceptibility allele also
associates with higher AMH
levels in girls.

[19,60]

rs705702 12q13 RAB5B (RAB5B, member RAS
oncogene family), SUOX (sulfite
oxidase)

[60]

rs2272046 12q15 HMGA2 (high mobility group AT-hook
2)

[60]

rs1275468 12q21.2 KRR1 [KRR1, small subunit
processome component, homolog
(yeast)]

PCOS susceptibility allele also
associates with higher AMH
levels in girls.

[19]

rs4784165 16q12.1 TOX3 (TOX high mobility group box
family member 3)

[60]

rs2059807 19p13.3-p13.2 INSR (insulin receptor) [60]

rs6022786 20q13.2 SUMO1P1 (SUMO 1 pseudogene 1) [60]
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In conclusion, the GWAS approach has proven to be relatively successful for finding genetic
susceptibility factors of PCOS. While some of the findings (such as the neuroendocrine
component) were to be expected, others are novel and warrant further studies to understand
their role in disease development.

What Can GWAS of Traits Related to Ovarian Biology Provide to the
Patients?
From a clinical point of view, additional tools facilitating disease prediction, early diagnosis,
informed interventions, or personalized treatment would substantially improve patient manage-
ment, and there is accumulating evidence that GWAS findings can provide the necessary means
for this. Addition of genetic markers to known risk factors was shown to improve the perfor-
mance of clinical breast cancer risk prediction models [65] or help to predict Parkinson's disease
progression [66], while drug mechanisms with genetic support from GWAS have better success
rates [67]. Although individual associated genetic markers identified in GWAS confer only a
modest disease risk, the combined effect of tens or thousands of markers can be sufficient to be
clinically useful. Polygenic risk scores with genome-wide data can be used to summarize the
effects of many genetic variants, and proof of concept for their use in disease prediction has
been shown in simulations [68]. Ideally, risk models should consider environmental, lifestyle, and
genetic risk factors, as well as their interactions.

In the context of ovarian biology, such risk-prediction models would be useful for the timely
detection of women at risk of PCOS [69] or early/premature menopause [54,56]. Because the most
significantly associated genetic variants identified in menopausal timing studies show potential for
predicting reproductive lifespan [54,56], it could be expected that the use of polygenic risk scores
involving more markers would also improve prediction accuracy. Furthermore, genetic variants
associated with natural menopausal timing also seem to have an impact on the onset of meno-
pause in women undergoing chemo- or radiotherapy [45]. This means that genetic risk prediction
models could provide a basis for more personalized counseling regarding family planning, lifestyle
choices, or the use of modern technologies for maintaining fertility, such as oocyte cryopreser-
vation. For PCOS, genetic risk profiles have been proposed for individualizing treatment
approaches depending on risk categories [69]; however, currently proposed genetic risk profiles
show poor predictive value [69] and cannot be used as stand-alone clinical tools.

Input for individualizing treatment can also come from Mendelian randomization analyses, which
use GWAS data to explore the causality between phenotypes. For example, the causal roles of
increased body mass index and insulin resistance in the pathophysiology of PCOS were
confirmed using this approach [19], highlighting the importance of lowering weight and reducing
insulin resistance as a part of PCOS treatment. As the causal relationships between other
phenotypes are revealed, this could highlight additional ways for more personalized patient
counseling to decrease disease risk.

Finally, a marker profile associated with ovarian stimulation outcome would be a valuable
pharmacogenomic tool for personalizing and optimizing treatment protocols because there
is evidence that individual genetic variation could be related to COS response in IVF [70].
Considering the genetic overlap between reproductive aging and other ovarian-related pheno-
types, genetic variants associated with reproductive aging could also be potential candidates for
assessing ovarian function and response in infertility treatment. Personalized COS-IVF protocols
could lower the risk of side effects from treatment (such as ovarian hyperstimulation syndrome or
poor ovarian response), and could potentially lead to more efficient treatment in terms of oocytes
received or even pregnancy rate. However, further studies will be necessary to determine how
these genetic variants associate with known markers of ovarian reserve and IVF outcome, and
how they perform individually or in combination.
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In summary, genetic markers are stable and detectable throughout life, and this supports their
use as prognostic biomarkers. The main factors currently hindering their application in the clinical
setting include the lack of information on functional significance for the majority of identified
variants, and on how genetic variants interact with each other or with environmental factors.
Hopefully the coming years will see both novel analytical methods for modeling these interactions
and also the application of genetic markers in the clinical setting.

Concluding Remarks and Future Perspectives
It is evident that, although for some phenotypes discussed in this review (such as age at
menarche and menopause) GWAS have been true success stories, for others (PCOS, POI,
ovarian reserve and response) the best is yet to come. The studies conducted so far have shown
that some findings will support what is previously known or suspected (such as the involvement
of DNA repair mechanisms in ovarian aging, or the importance of neuroendocrine mechanisms in
PCOS susceptibility), while others will prompt new investigations. As analytical methods for
finding causative genes or biological context improve, so will our knowledge on the genetics
governing ovarian physiology. However, functional studies for validating the GWAS findings and
for understanding how associated variants modify biological mechanisms largely remain an
untouched territory in the context of ovarian biology.

While many gaps in our knowledge remain (see Outstanding Questions), we hope that new and
innovative approaches to study design, valuable lessons from other phenotypes, and close
collaboration between clinicians and scientists will pave the way for new discoveries and, more
importantly, for novel means to harness GWAS findings on ovarian function for the benefit of the
patients.
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