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Abstract

Aims Although oxygen is commonly used to treat various

medical conditions, it has recently been shown to worsen

vascular function (arterial stiffness) in healthy volunteers

and even more in patients in whom vascular function might

already be impaired. The effects of oxygen on arterial

function in patients with type 1 diabetes (T1D) are

unknown, although such patients display disturbed vascular

function already at rest. Therefore, we tested whether

short-term oxygen administration may alter the arterial

function in patients with T1D.

Methods We estimated arterial stiffness by augmen-

tation index (AIx) and the pulse wave velocity

equivalent (SI-DVP) in 98 patients with T1D and 49

age- and sex-matched controls at baseline and during

hyperoxia by obtaining continuous noninvasive finger

pressure waveforms using a recently validated

method.

Results AIx and SI-DVP increased in patients (P\ 0.05)

but not in controls in response to hyperoxia. The increase

in AIx (P = 0.05), systolic (P\ 0.05), and diastolic

(P\ 0.05) blood pressure was higher in the patients than in

the controls.

Conclusions Short-term oxygen administration deterio-

rates arterial function in patients with T1D compared to

non-diabetic control subjects. Since disturbed arterial

function plays a major role in the development of diabetic

complications, these findings may be of clinical

relevance.
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Abbreviations

SBP Systolic blood pressure

DBP Diastolic blood pressure

PP Pulse pressure

MAP Mean arterial pressure

AIx Augmentation index

AIxHR Heart rate-adjusted augmentation index

AER Albumin excretion rate

T1D Type 1 diabetes

SI-DVP An index of large artery stiffness (SIDVP)

derived from the digital volume pulse

(DVP)
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1 Folkhälsan Institute of Genetics, Folkhälsan Research Center,
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Introduction

Arterial stiffness does not only associate with but also

predicts cardiovascular disease (CVD) in different patient

populations [1, 2]. In patients with type 1 diabetes (T1D),

the augmentation index (AIx), a measure of wave reflec-

tions, is increased, and correlates with CVD, diabetic

nephropathy, diabetic retinopathy [3], and autonomic

neuropathy [4]. Interestingly, the stiffening of the arteries

seems to be present before clinically detectable signs of

micro- or macrovascular disease [5].

Exposure to 60 min of pure oxygen increased blood

pressure and AIx in healthy subjects [6]. Oxygen also

decreased the coronary blood flow in patients with and

without coronary artery disease [7]. Notably, in patients with

T1D, 3–5 min inhalation of a hyperoxic gas mixture impaired

retinal arteriolar function indicating early retinal changes [8].

These short-term changes in vascular function indicate

functional arterial abnormalities. However, the mechanisms

of these changes are not fully known. One player might be

preexisting tissue hypoxia in patients with diabetes [9].

Hypoxia seems at least to be involved in the pathogenesis of

diabetic vascular complications by disturbing the neural and

the vascular function [10, 11]. Another possible player is an

increase in the harmful reactive oxygen species [12].

Finally, oxygen is widely used in the treatment of a variety

of different medical conditions and often administered

empirically without even knowing the levels of oxygenated

hemoglobin in the blood. A recent review reported possible

negative effects of oxygen, not only in normoxia, but possibly

even in the presence of moderate hypoxia due to its vaso-

constrictive action [13]. As the effect of hyperoxia on arterial

function in patients with T1D is not known, we compared the

effects of acute oxygen administration on the arterial function

in patients with T1D and in healthy control subjects.

Research design and methods

All subjects took part in the IDEAL (IDentification of

EArly mechanisms in the pathogenesis of diabetic Late

complications) study, as part of the nationwide Finnish

Diabetic Nephropathy (FinnDiane) study earlier described

[14]. The study protocol was in accordance with the Dec-

laration of Helsinki as revised in 2000 and was approved

by the local ethics committee. Informed written consent

was obtained from each participant.

Hyperoxia

Hemodynamic recordings (blood pressure, heart rate,

arterial function, and oxygen saturation) were obtained

during spontaneous breathing (in ambient air) for 10 min of

normoxia and thereafter, oxygen was administered at the

rate of 5 l/min via a nasal cannula. Signal recordings

started after the first 5 min of oxygen administration to

allow stabilization of oxygen saturation and ventilation.

Then a recording was obtained for 10 min during sponta-

neous breathing. Pulse oxymetry and carbon dioxide were

monitored from the fingertips throughout the study

(Cosmo, Novametrix, Wallingford, CT, USA). ECG was

recorded using a bipolar precordial lead.

Arterial function by finger plethysmograph

The effect of hyperoxia on arterial function was investi-

gated by measuring blood pressure curves with a digital

plethysmograph from the tip of the finger (Finapres 2300,

Ohmeda, Louisville, CO, USA) to investigate whether

hyperoxia alters the peripheral pressure waveforms. We

have recently validated a methodology whereby arterial

function [wave reflections (AIx) and pulse wave velocity

(PWV)] can be obtained by noninvasive continuous non-

invasive finger pressure waveforms [15].

In brief, continuous finger pressure waveforms were

monitored with a digital plethysmograph (Finapres�) from

all subjects from the middle finger of the right arm held at

heart level. Recorded signals were digitized with a 12-bit

resolution at a sampling rate of 200 Hz using a data acqui-

sition system (WinAcq; Absolute Aliens, Turku, Finland).

The pressure wave was analyzed in a beat-to-beat manner.

Using the ECG R-wave peak as a reference frame, we

obtained an average pulse profile for each studied subject.

From the finger pressure waveforms, two different approa-

ches were used to characterize the arterial function. Wave

reflections were estimated as the AIx and also from the

comparison of the simple averaged and normalized periph-

eral pressure profile, whereas the PWV was calculated as its

equivalent index (SI-DVP) derived from the digital volume

pulse (DVP), as earlier described and validated [15]. Pulse

pressure (PP) was calculated as the difference between the

systolic (SBP) and the diastolic (DBP) blood pressures.

Biochemical analyses

After a light breakfast, venous blood samples were drawn for

the determination of lipids, HbA1c, and serum creatinine.

Serum lipids were measured by automated enzymatic

methods (Cobas Mira analyzer; Hoffman-La Roche, Basel,

Switzerland), and HbA1c was analyzed by immunotur-

bidimetry (MedixBiochemica, Kauniainen, Finland). Blood

glucose and hemoglobin concentrations were determined

using HemoCue (AB Leo Diagnostics, Helsinborg, Swe-

den). Serum creatinine was analyzed by routine enzymatic

methods. Urinary albumin excretion rate (AER) was asses-

sed from two overnight and one 24-h urine collection by
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immunoturbidimetry. Normal AER was defined as values

persistently \20 lg/min or \30 mg/24 h, microalbumin-

uria as AER C 20\ 200 lg/min or C30\ 300 mg/24 h,

and macroalbuminuria as AER C 200 lg/min or C300 mg/

24 h in at least two out of three timed urine collections.

Statistics

Baseline characteristics are presented as means ± standard

deviation (SD) for normally distributed values and as med-

ian with (interquartile) range for non-normally distributed

values or percentages. Normally distributed variables

between groups were tested with the Student́s t test and non-

normally distributed variables with Mann–Whitney U and

Wilcoxon tests. To detect differences within and between

the groups in response to hyperoxia, a paired samples t test or

a two-waymixed-designANOVA (repeatedmeasures to test

for the effect of oxygen and factorial design to test for dif-

ferent groups) was used. A significant interaction term

indicated a different response to oxygen in the two groups.

Correlation coefficients were determined using Pearson’s or

Spearman’s correlation coefficients as appropriate.

Results

The clinical characteristics of the subjects are shown in

Tables 1 and 2. The studied groupswere age and sexmatched.

Hemodynamic data during steady state conditions

Figure 1 shows an example of the peripheral (measured)

and central (reconstructed) arterial pressure profiles. From

these reconstructed central pressure profiles, the AIx was

calculated. Heart rate-adjusted AIx, heart rate, or pulse

pressure did not differ between patients with T1D and

healthy subjects at baseline (Table 2). However, SI-DVP,

SBP, DBP, and MAP were increased in patients with T1D

compared to healthy subjects (Table 2). Similarly, oxygen

saturation was lower in patients with T1D at baseline

(97.2 ± 1.0 vs. 97.7 ± 0.8 %, P B 0.05).

Figure 1 (panel A) shows the average systolic profile of the

peripheral blood pressure in the two groups. No difference

between patients with T1D and healthy subjects was observed

at baseline (normoxia) analyzed in a point to point manner.

Effect of oxygen on hemodynamic data

Indices of blood pressure increased during hyperoxia in

patients with T1D (n = 98), whereas no change was

observed in healthy subjects (n = 49) (Table 2). In contrast,

heart rate decreased and oxygen saturation increased in both

groups. No changes/differences were seen in carbon

dioxide.

The differences in the hemodynamic indices in response

to hyperoxia between the groups are shown in Table 3. The

increase in SBP, DBP, and PP were larger in patients with

T1D than healthy subjects and increased more in response

to hyperoxia (Table 3). The interaction terms between

groups and conditions were significant for oxygen satura-

tion, SBP, DBP, and MAP (data not shown). After strati-

fying the data according to HbA1c levels (below vs. above

mean) in patients with T1D, the increase in blood pressure

(SBP, DBP, and MAP), in response to hyperoxia, was

higher (P\ 0.05) in those with an HbA1c above mean

compared to subjects with an HbA1c below mean. How-

ever, no change in the AIx elevation between the groups

was observed. Moreover, there was no difference in blood

pressure increase in subjects on antihypertensive treatment

compared to those without.

Effect of oxygen on arterial function

Figure 1 illustrates in parallel the registered finger pressure

waveforms and the reconstructed central pressure wave-

form both at baseline and hyperoxia from one representa-

tive subject. The figure indicates an increase in the

reflected waves, which is even evident in the reconstructed

central pressure profile.

Oxygen increased AIx in both T1D and controls

(Table 2). Furthermore, SI-DVP increased in patients with

T1D (P\ 0.05) but not in healthy subjects in response to

hyperoxia. The response in AIx to oxygen was steeper in

patients with T1D than in controls, as indicated by a sig-

nificant interaction term between groups and conditions

(F = 5.1, P\ 0.05). After correcting AIx for heart rate, it

increased in response to hyperoxia in patients with T1D but

not in healthy subjects. The correction for mean arterial

blood pressure did not change the results in either group

observed as no correlations between the change in AIx in

response to hyperoxia and mean arterial blood pressure

(r = 0.20 for patients with T1D vs. r = 0.21 for healthy

subjects). Furthermore, after including antihypertensive

drugs or smoking status into the analysis, no difference in

the change in arterial stiffness in response to hyperoxia was

observed. Additionally, no correlation between hemoglobin

or blood glucose and the change in arterial stiffness in

response to hyperoxia was found in patients with T1D.

The differences in the hemodynamic indices in response

to hyperoxia between the groups are shown in Table 3. The

increase in AIx was larger in patients with T1D than

healthy subjects. The interaction terms between groups and

conditions were significant for AIx, but not for SI-DVP.
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Table 1 Clinical characteristics

patients with type 1 diabetes and

healthy control subjects at

baseline

Data obtained in 23 control subjects* Type 1 diabetes Controls P value

N 98 49

Sex (men/women) 56/42 22/27 NS

Age (years) 31.9 ± 6.5 32.7 ± 8.9 NS

Duration of diabetes (years) 13.5 ± 4.9 –

Age at onset (years) 17.9 ± 5.2 –

Body Mass Index (kg/m2) 25.4 ± 4.9 23.7 ± 3.9 NS

Waist/Hip ratio 0.87 ± 0.07 0.86 ± 0.08 NS

Blood glucose (mmol/l) 8.4 (4.5–13.0) 4.6 (3.9–5.0) \0.001

Hb (g/l) 147 ± 12 –

HbA1c (%) 8.06 ± 1.15 5.24 ± 0.21* \0.001

HbA1c (mmol/mol) 65 ± 7 31 ± 1 \0.001

Total cholesterol (mmol/l) 4.54 ± 0.81 4.34 ± 0.75* NS

HDL-cholesterol (mmol/l) 1.62 ± 0.0.50 1.64 ± 0.50* NS

Triacylglycerol (mmol/l) 1.02 (0.76–1.30) 0.78 (0.57–1.01)* \0.05

Urinary AER (mg/24 h) 5 (2–8) 6 (4–7)* NS

Serum creatinine (lmol/l) 69 ± 12 72 ± 13* NS

Insulin per body weight (IU/kg) 0.77 ± 0.3 –

Antihypertensive treatment n (%) 22 (24) 0 \0.001

Duration of antihypertensive treatment (years) 6.0 ± 3.7 0 \0.001

ACE inhibitor or ARB, n (%) 19 (19) 0 \0.001

Other antihypertensive drug, n (%) 3 (3) 0 \0.05

Laser-treated retinopathy, n (%) 6 (7) –

Normoalbuminuria, n (%) 88 (93) –

Microalbuminuria, n (%) 6 (6) –

Macroalbuminuria, n (%) 1 (1) –

Current smokers, n (%) 16 (17) 3 (6) \0.05

Data are mean ± SD, median (interquartile range), or percent

Other antihypertensive drug = Calcium channel blocker, beta blocker or diuretic

AER albumin excretion rate

Table 2 Hemodynamic

variables during baseline and

hyperoxia in patients with type

1 diabetes and healthy controls

Type 1 diabetes Controls subjects

Normoxia Hyperoxia P value Normoxia Hyperoxia P value

SBP (mmHg) 131 ± 15� 137 ± 15� \0.001 121 ± 15 122 ± 16 NS

DBP (mmHg) 63 ± 9� 67 ± 9� \0.001 57 ± 9 57 ± 9 NS

PP (mmHg) 67 ± 12 70 ± 12 0.002 64 ± 12 65 ± 13 NS

MAP (mmHg) 86 ± 10� 91 ± 10� \0.001 79 ± 10 79 ± 11 NS

Heart rate (beats/min) 65 ± 10 61 ± 11 \0.001 65 ± 10 61 ± 9 \0.001

O2 Saturation (%) 97.2 ± 1.0* 98.7 ± 0.7 \0.001 97.7 ± 0.8 98.8 ± 0.8 \0.001

AIx (%) 14.1 ± 8.5* 17.6 ± 8.4* \0.001 10.9 ± 11.2 12.3 ± 9.3 0.046

AIx75 (%) 12.1 ± 7.3 14.1 ± 7.0* \0.001 9.9 ± 7.8 10.4 ± 7.7 NS

SI-DVP (m/s) 5.6 ± 0.3� 5.8 ± 0.8� 0.04 5.1 ± 0.6 5.2 ± 0.5 NS

Data are presented as mean ± SD

SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, MAP mean arterial pressure

AIx, Augmentation index; AIx75, Heart rate-adjusted augmentation index

* P\ 0.05; �P\ 0.001 for the difference between the patients with T1D and control subjects during

normoxia and during hyperoxia, respectively
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The changes in peripheral blood pressure profile induced

by oxygen are shown in Figs. 1 and 2. The simple analysis

of the peripheral blood pressure profile (Fig. 2) indicated

minor changes in the profile in healthy subjects in response

to oxygen (panel C), whereas the change was much more

evident in patients with T1D, particularly in the late sys-

tolic profile (panel B, and panel D vs. panel C). Panel B

(Fig. 2) shows significant interaction terms between groups

and conditions, indicating that the increase in the reflected

waves in the late systole, in response to oxygen, was sig-

nificantly greater in T1D than in controls.

Conclusions

The novel finding of this study was the observation that in

patients with T1D acute oxygen administration caused

worsening of the arterial function. Oxygen increased AIx

(wave reflections) more in patients with T1D, than in

healthy controls. Similarly, the hyperoxia-induced changes

in blood pressure, earlier observed in healthy subjects,

were enhanced in patients with T1D. Furthermore, PWV,

measured as SI-DVP increased in patients with T1D but

not in healthy subjects in response to hyperoxia. Finally,

although heart rate decreased equally in both groups, the

increase in oxygen saturation was more evident in patients

with T1D in response to oxygen.

Waring et al. [6] showed in eight healthy subjects an

increase in AIx during hyperoxia. They could equally

observe an increase in blood pressure as well as a decrease

in heart rate. Although the period of hyperoxia was shorter

in this study compared to the one by Waring et al., the

changes in blood pressure, heart rate, and the AIx could be

observed. Notably, Ganz et al. [7] showed already in the

70s that the coronary artery blood flow decreased due to an

increase in coronary resistance in response to oxygen

treatment in healthy subjects as well as in patients with

coronary artery disease. Similar data are also available

from studies on experimental animals [16, 17]. We now

extend the oxygen-induced vascular findings to patients

with T1D in a much larger study sample and also broad-

ened the arterial function evaluation by also including the

PWV. These results showing that patients with T1D are

more sensitive to oxygen administration than healthy sub-

jects may have implications for the clinical practice.

Hyperoxia has been reported to be harmful in the

treatment of various acute vascular conditions such as

ischemic heart disease, ischemic stroke, and resuscitated

patients, but rigorous randomized controlled trials are still

lacking [18–20]. Sjöberg et al. [13] recently provided an

interesting overview of the present knowledge of the

effects of oxygen in the treatment of different acute ill-

nesses. They summarized that oxygen administration is

beneficial in subjects with definite hypoxia, but not in

Fig. 1 Examples of central aortic pressures (red curve) reconstructed

from the peripheral pulse pressure (blue curve, by Finapres) at

baseline (normoxia) and during hyperoxia in one patient with T1D

(color figure online)

Table 3 Differences in

hemodynamic variables in

response to hyperoxia between

groups

Type 1 diabetes Control subjects P value

DSBP (mmHg) 6.7 ± 12.1 1.2 ± 14.1 0.02

DDBP (mmHg) 3.6 ± 7.4 -0.2 ± 7.8 0.004

DPP (mmHg) 3.0 ± 9.5 1.4 ± 9.6 NS

DMAP (mmHg) 4.7 ± 8.1 0.3 ± 9.3 0.003

DHeart rate (beats/min) -4.4 ± 3.8 -3.8 ± 4.0 NS

DO2 Saturation (%) 1.5 ± 1.0 1.1 ± 0.8 0.03

DAIx (%) 3.4 ± 4.8 1.5 ± 5.1 0.03

DAIx75 (%) 2.0 ± 4.4 0.5 ± 4.5 0.05

SI-DVP (m/s) 0.2 ± 0.8 0.01 ± 0.8 NS

Data are presented as mean ± SD. Data are presented as mean ± SEM

SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, MAP mean arterial pressure

AIx, Augmentation index; AIx75, Heart rate-adjusted augmentation index
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normoxic subjects even under acute illness. The authors,

therefore, questioned the use of oxygen in moderate

hypoxia. Although the T1D patients in this study where

hypoxic, they were not severely hypoxic, and showed an

increase in arterial stiffness in response to hyperoxia in line

with their theory [13].

AIx and the direct analysis of blood pressure profile

showed an increase in response to hyperoxia in this study.

The changes in PWV (assessed as SI-DVP) occurred in the

same direction, but we could not find a significant inter-

action between groups and intervention. Notably, it has

earlier been stated that AIx and PWV provide different

information and should therefore not be used inter-

changeably. In a population study from the UK (Anglo-

Cardiff Collaborative Trial), AIx and PWV were compared

in different age groups [21]. The AIx increased steeply

with age in younger individuals (\50 years), whereas

aortic PWV in older people ([50 years). Hence, AIx was

suggested to be a better marker of arterial function in

younger, and aortic PWV in older people, although it was

stressed that both indexes should be assessed to obtain a

complete description of the arterial function.

The rapidity of the change in AIx favors a functional

underlying mechanism. Structural changes in turn are

caused by progressive transformation of elastic fibers into

collagen fibers as well as arterial calcification and obvi-

ously develop over a longer period of time [22]. Acute

modification of AIx might be caused by acute changes in

the endothelial function and its interplay with the smooth

muscle cells in the arterial wall, as well as by changes in

sympathetic tone of the smaller arteries. The results may

therefore indicate that the observed changes occurred

rather in the peripheral vascular bed (AIx), known to be

affected by diabetes, than in the large arteries (PWV)

[23]. Notably, Franklin recently suggested that aortic

PWV may be a better technique to measure changes over

long periods of time, whereas AIx may be especially

useful in short-term alterations in response to various

interventions [24].

Rhee et al. [25] showed a rise in arterial stiffness after

5 min of cigarette smoking in male smokers. Unfortu-

nately, oxygen saturation was not measured in this study.

Heart rate in turn increased in parallel with arterial stiffness

suggesting a sympathetic response. Conversely, we

observed a decrease in the heart rate in both groups

indicative of cardiac parasympathetic activity, in line with

earlier findings on the effects of oxygen on autonomic

function [26, 27]. Whether the parasympathetic response is

an effect of hyperoxia or a secondary response to increased

blood pressure is not known.

Fig. 2 The averaged peripheral

pressure waves (Finapres)

between the groups during

baseline (panel A) and

hyperoxia (panel B), as well as

in response to hyperoxia in

controls (panel C) and patients

with type 1 diabetes (panel D).

*P\ 0.05, **P\ 0.01,

***P\ 0.001 for difference

between the groups (panel B)

versus response to hyperoxia

(panels C and D) during time

points. �P\ 0.05; ��P\ 0.01

for the interaction term between

groups and conditions (panel C)

for each time point. T1D type 1

diabetes; Control, healthy

subjects
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Although a lower resting oxygen saturation in patients

with T1D was observed, it should be noted that hypoxia at

the tissue level may not directly be paralleled by a reduc-

tion in the arterial oxygen tension [28]. Nevertheless, the

reduced oxygen content in the tissues of patients with

diabetes was addressed already a long time ago. Ewald

et al. [29] showed delayed postischemic hyperemia as

monitored by transcutaneous measurement of PO2 (tcPO2)

in children with T1D without signs of vascular disease. In

contrast, Haitas et al. found lower tcPO2 in diabetic

patients with proliferative retinopathy [30], though tcPO2

was normal in newly diagnosed T1D with absence of

retinopathy.

The enhanced hyperoxia-induced response may also be

due to oxidative stress, a phenomenon that has been tightly

linked to diabetes and its complications [11]. Oxidative

stress and increased AIx have both been shown to be

present in children and adolescents with T1D [31, 32].

Furthermore, as the patients with T1D are already exposed

to an increased amount of oxygen free radicals at baseline,

the hyperoxia could probably lead to an increased gener-

ation of ROS that exceeds the antioxidant capacity of the

tissue [33]. However, also hypoxia is a known source of

oxygen free radicals [34]. Accordingly, the role of oxida-

tive stress on arterial function needs confirmation, since

Thompson et al. did not find any evidence on such an effect

in healthy subjects [35].

In the present study, we used the finger pressure wave-

form recordings (Finapres) in order to measure arterial

function. It is of note that we did not compare noninvasive

with invasive data that may be a limitation. However, as we

recently showed in a validation study, the association

between the pressure waveforms measured by arterial

tonometer (considered to be the gold standard of arterial

stiffness) [36] and continuous noninvasive finger pressure

waveforms was very strong [15]. Moreover, this method

enables long periods of recordings under unstable condi-

tions such as hyperoxia. Furthermore, the AIx was also

corrected for heart rate although it did not modify the

changes observed.

A possible change in electrolyte and blood glucose

concentrations may have had an impact on oxygen satu-

ration or arterial stiffness. However, this data were not

available as this study setting did not include blood sam-

pling during hyperoxia. Anyhow, it is very unlikely that the

electrolyte or blood glucose concentrations would have

changed during the period of short-term hyperoxia in

individual subjects and thus affected the results on arterial

stiffness. Furthermore, earlier studies on a short-term

hyperoxia intervention did not report such results. Thus, a

study on the effect of short-term hyperoxia on metabolic

changes in the blood is certainly warranted [6–8, 35].

Moreover, it is of note that a lower effect of hyperoxia on

blood pressure and AIx during higher insulin concentra-

tions (possibly mediated by nitric oxide secretion) cannot

be excluded in this study.

This paper does not give a definitive answer to the

question whether oxygen has a causal relationship to vas-

cular complications in patients with T1D. However, con-

sidering the oxygen dissociation curve, it is known that

even a modest change in oxygen saturation markedly alters

the partial oxygen pressure in tissues that may not be a

player to be neglected in this perspective. Certainly, this

study gives an incentive for further long-term studies to

prove the association between hyperoxia and arterial

complications in T1D.

To summarize, we report that short-term oxygen

administration deteriorates arterial function in patients

with T1D compared to non-diabetic control subjects.

Since disturbed arterial function, together with autonomic

damage, plays a major role in the development of diabetic

complications, these findings may be of clinical

relevance.
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