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Here we studied whether and through which mechanisms spinal administration of histamine dihy-
drochloride (histamine) attenuates pain behavior in neuropathic animals. Experiments were performed
in rats with spinal nerve ligation-induced neuropathy and a chronic intrathecal catheter for spinal drug
delivery. Mechanical hypersensitivity was assessed with monofilaments while radiant heat was used for
assessing nociception. Ongoing neuropathic pain and its attenuation by histamine was assessed using
conditioned place-preference test. Following spinal administration, histamine at doses 0.1–10 mg pro-
duced a dose-related mechanical antihypersensitivity effect. With prolonged treatment (twice daily 10 mg
for five days), the antihypersensitivity effect of spinal histamine was reduced. In place-preference test,
neuropathic animals preferred the chamber paired with histamine (10 mg). Histamine (10 mg) failed to
influence heat nociception in neuropathic animals or mechanically induced pain behavior in a group of
healthy control rats. Histamine-induced mechanical antihypersensitivity effect was prevented by spinal
pretreatment with zolantidine (histamine H2 receptor antagonist), prazosine (α1-adrenoceptor antago-
nist) and bicuculline (γ-aminobutyric acid subtype A, GABAA, receptor antagonist), but not by pyrilamine
(histamine H1 receptor antagonist), atipamezole (α2-adrenoceptor antagonist), or raclopride (dopamine
D2 receptor antagonist). A-960656, a histamine H3 receptor antagonist alone that presumably increased
endogenous histamine levels reduced hypersensitivity. Additionally, histamine prevented central (pre-
sumably postsynaptically-induced) facilitation of hypersensitivity induced by N-methyl-D-aspartate. The
results indicate that spinal histamine at the dose range of 0.1–10 mg selectively attenuates mechanical
hypersensitivity and ongoing pain in neuropathy. The spinal histamine-induced antihypersensitivity
effect involves histamine H2 and GABAA receptors and (presumably neuropathy-induced) co-activation of
spinal α1-adrenoceptors.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The brain histaminergic system originating in the hypothalamic
tuberomammillary nucleus and acting on histamine H1, H2, H3, or
H4 receptors is involved in regulation of multiple functions such as
sleep-waking cycle, energy and endocrine homeostasis, synaptic
plasticity and learning (Haas et al., 2008; Panula et al., 2015). The
brain histaminergic innervation is also involved in central reg-
ulation of pain as suggested by the following findings. Histamine
has attenuated pain behavior following its administration in var-
ious brain areas including the somatosensory cortex (Ta-
maddonfard and Hamzeh-Gooshchi, 2014), anterior cingulate
cortex (Hamzeh-Gooshchi et al., 2015), hippocampus (Erfanparast
et al., 2010), and the midbrain periaqueductal gray/dorsal raphe
rtovaara).
(Thoburn et al., 1994). In general, suppression of pain behavior in
these studies has been associated, although not invariably, with
activation of the supraspinal histamine H2 receptor. In contrast,
intracerebroventricular administration of histamine H1 receptor
agonists has facilitated pain behavior (Farzin et al., 2002; Malm-
berg-Aiello et al., 1998). However, the direction of the histami-
nergic effect may depend on the dose, since the pain-modulatory
effect has been changed from pro- to antinociception with an in-
crease of the intracerebroventricularly administered histamine
(histamine dihydrochloride) dose from o1 μg to 45 μg (Malm-
berg-Aiello et al., 1994).

Spinal dorsal horn that is among structures receiving histami-
nergic innervation from the hypothalamus (Haas et al., 2008) is a
key relay for ascending pain signals and an important target for
descending pain modulatory pathways. A recent series of studies
has demonstrated that spinal administration of histamine at doses
800–1600 pmol (⩽0.3 μg) facilitates pain behavior in healthy
control animals (Sakurada et al., 2002; Watanabe et al., 2008), due
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to action on histamine H1 receptors, together with other factors
that include spinal glia, and tachykinin NK1 and N-methyl-D-as-
partate (NMDA) receptors (Mizoguchi et al., 2011; Watanabe et al.,
2008). In contrast, spinal administration of histamine H3 receptor
agonists has reduced pain behavior in healthy controls (Cannon
et al., 2003; Cannon et al., 2007b), which at least partly might be
due to action on histamine H3 receptors expressed by central
terminals of primary afferent nerve fibers (Cannon et al., 2007a;
Hough and Rice 2011).

In animals with an experimental neuropathy, locus coeruleus
administration of histamine or an antagonist of the histamine H3

receptor, an autoreceptor inhibiting histamine release from his-
taminergic nerve fibers (Arrang et al., 1983; De Luca et al., 2015),
have been shown to attenuate neuropathic pain hypersensitivity
(McGaraughty et al., 2012; Wei et al., 2014). However, the effect of
spinal histamine or histamine receptors on neuropathic pain is not
yet well known. Here we studied the contribution of spinal his-
tamine to control of hypersensitivity and ongoing pain-like be-
havior in a spinal nerve ligation-induced model of peripheral
neuropathy. We hypothesized that in analogy with supraspinal
actions (Malmberg-Aiello et al., 1994), spinal histamine at doses
41 μg suppresses pain behavior. To assess the receptor mechan-
isms mediating the histamine-induced effect, we attempted to
prevent the spinal histamine-induced effects with specific an-
tagonists of various neurotransmitter receptors.
2. Materials and methods

2.1. Experimental animals

The experiments were performed in adult, male Hannover–
Wistar rats (weight: 180–230 g; Harlan, Horst, The Netherlands).
The experimental protocol was accepted by the Ethical Committee
on Animal Experiments of the regional government of Southern
Finland. The experiments were performed according to the
guidelines of European Communities Council Directive 2010/63/EU
on the use of animals for scientific purposes. All efforts were made
to minimize animal suffering and to use only the number of ani-
mals necessary to produce reliable scientific data.

2.2. Drugs

Histamine dihydrochloride, pyrilamine maleate (histamine H1

receptor antagonist), zolantidine (histamine H2 receptor antago-
nist), bicuculline (γ-aminobutyric acid subtype A, GABAA, receptor
antagonist), N-methyl-D-aspartate (NMDA), raclopride (dopamine
D2 receptor antagonist), WAY-100635 (5-HT1A receptor antago-
nist) and prazosine (α1-adrenoceptor antagonist) were purchased
from Sigma-Aldrich (St. Louis, MO, U.S.A.). Histamine dihy-
drochloride was dissolved in physiological saline, titrated to a pH
between 6.0 and 6.5 with NaOH and diluted with saline (Thoburn
et al., 1994). For the sake of brevity, the word histamine is used
when referring to spinal administration of histamine dihy-
drochloride elsewhere in the text. A-960656, a histamine H3 re-
ceptor antagonist, was generously provided by Abbvie (North
Chicago, IL, U.S.A.) (Cowart et al., 2012; Hsieh et al., 2010b).
A-960656 was dissolved in a vehicle of 10% dimethylsulfoxide
(DMSO)/90% hydroxy-β-cyclodextrin. Atipamezole (α2-
adrenoceptor antagonist) was purchased from OrionPharma
(Turku, Finland). Atipamezole is selective for α2-adrenoceptors but
not their subtypes (Pertovaara et al., 2005). Physiological saline
was used as control, except that 10% DMSO/90% hydroxy-β-cy-
clodextrin was used as a control for A-960656.

The choice of doses was based on earlier studies on histamine
[1–3 mg (Wei et al., 2014)], zolantidine [10 mg (Wei et al., 2014)],
bicuculline [0.03 mg (Wei et al., 2011)], NMDA [200 ng (Wei et al.,
2011)], prazosine [30 mg (Wei et al., 2014)], atipamezole [5 mg [Wei
and Pertovaara, 2006)], raclopride [1 mg (Viisanen et al., 2012)],
and WAY-100635 [3 mg (Pertovaara and Wei, 2008)]. Preliminary
studies together with literature search were performed to choose
the doses of receptor antagonists, such as A-960656 [⩾30 mg
(Cowart et al., 2012; Hsieh et al., 2010b)] or pyrilamine [10 mg
(Chung et al., 1984)].

2.3. Techniques for producing neuropathy

There are a number of surgically induced models of peripheral
neuropathy (Honoré et al., 2011), of which we chose for this study
the spinal nerve ligation (SNL) model. The unilateral ligation of
two spinal nerves (L5 and L6) was performed under pentobarbi-
tone anesthesia (60 mg/kg intraperitoneally) as described in detail
earlier (Kim and Chung, 1992; Röyttä et al., 1999). Briefly, the left
L5 and L6 spinal nerves were isolated and tightly ligated with 6–0
silk thread. Only nerve-injured animals with tactile allodynia-like
hypersensitivity (hind limb withdrawal threshold to monofilament
stimulation in the operated side o6 g, which is below the lower
95% confidence limit of the threshold in unoperated control ani-
mals) were selected for this study. Nerve-injured animals were
tested two to three weeks after the operation. For comparison, in
one experiment a group of healthy control animals was studied.

2.4. Techniques for intrathecal drug injections

For intrathecal (i.t.) drug injections, a catheter (PE-10; Becton
Dickinson and Company, Sparks, MD, U.S.A.) was administered into
the lumbar level of the spinal cord under pentobarbitone an-
esthesia (60 mg/kg intraperitoneally) as described in detail else-
where (Størkson et al., 1996). Following recovery from anesthesia,
the correct placing of the catheter was verified by administering
lidocaine (4%, 7–10 ml followed by a 15 ml of saline for flushing)
with a 50 ml Hamilton syringe (Hamilton Bonaduz AG, Bonaduz,
Switzerland). Only those rats that had no motor impairment be-
fore lidocaine injection but had a bilateral paralysis of hind limbs
following i.t. administration of lidocaine were studied further. The
lidocaine test was performed at least 3 days prior to the start of
the drug testing sessions. For i.t. administration the drugs were
microinjected with a 50 ml Hamilton microsyringe at a volume of
5–7 ml followed by a saline flush at a volume of 15 ml.

2.5. Behavioral testing of mechanical hypersensitivity and heat
nociception

In the currently used model of peripheral neuropathy, me-
chanical hypersensitivity is common and often robust. Therefore,
the focus of this study was in the assessment of tactile allodynia-
like hypersensitivity by determining a limb withdrawal response
evoked by monofilament stimulation of the injured dermatome. To
find out whether histamine produced a more wide-spread influ-
ence on nociception, heat nociception was assessed in one
experiment.

Prior to any testing, the rats were habituated to the experi-
mental conditions by allowing them to spend 1–2 h daily in the
laboratory during 2–3 days. For assessment of tactile allodynia-like
hypersensitivity, the hind limb withdrawal threshold evoked by
stimulation of the hind paw with monofilaments (von Frey-hairs)
was determined while the rat was standing on a metal grid. At
each time point, the paw ipsilateral to the spinal nerve ligation
was stimulated five times with an ascending series of calibrated
monofilaments (in neuropathic animals 1–26 g, and in healthy
controls 1–60 g; North Coast Medical, Inc., Morgan Hill, CA, U.S.A.).
At each stimulus force, the withdrawal response frequency was
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determined. An increase in the withdrawal response rate was
considered to represent mechanical hypersensitivity effect. When
compared with the traditional determination of the withdrawal
threshold value, the currently used method has the advantage that
it allows assessing separately drug effects on withdrawal re-
sponses evoked by stimulus forces of threshold and suprathres-
hold levels. While the testing was not formally blinded, our pre-
vious study by the same experimenter showed that the drug-in-
duced mechanical antihypersensitivity effect using the same test
stimulus procedure in the rat was of identical magnitude with and
without formal blinding (Wei et al., 2012).

For assessment of thermal nociception in the plantar skin of the
hind paw, the latency of the heat-induced limb withdrawal re-
sponse was determined using a radiant heat device (Plantar test
model 7370, Ugo Basile, Varese, Italy). To avoid tissue damage, two
consecutive measurements at each time point were made at one
min intervals. The mean latency at each time point was used in
further calculations. The stimulus intensity was adjusted so that
the mean baseline latency was 8–9 s and the cut-off latency was
15 s. Neuropathy-induced changes in skin temperature may pro-
vide a confounding factor in the assessment of radiant heat-in-
duced withdrawal latencies (Luukko et al., 1994). To exclude skin
temperature-related changes as a cause of withdrawal latency
changes, hind paw skin temperature was assessed with an elec-
tronic thermometer (BAT-12, Physitemp Instruments Inc., Clifton,
NJ, U.S.A.) before and after drug administration just prior to de-
livery of each heat stimulus.

2.6. Conditioned place-preference test

Conditioned place-preference test (King et al., 2009; Sufka,
1994) was used for assessing ongoing neuropathic pain and its
attenuation by spinal administration of histamine using procedure
described in detail elsewhere (Wei et al., 2013). Briefly, rats un-
derwent a 3 day habituation, in which they were placed in auto-
mated CPP boxes (Place Preference System, San Diego Instruments,
Inc., San Diego, CA, U.S.A.) with access to all 3 chambers for 30 min
per day during the first two days. The device records time spent in
each chamber using a computer-controlled 4�16 array of photo
beams. Among differences between the test chambers was the
roughness of the floor (rough versus smooth) and the painting of
the walls (black triangles versus bars on white surface). Time spent
in each of the boxes was recorded for 15 min on day 3 (D3). Rats
that spent more than 720 s in one of the conditioning chambers
were eliminated from the study. The following day (D4), all rats
received a morning injection of saline and were placed in one of
the pairing chambers for 30 min. Four hours later, all rats received
histamine (10 μg) and were placed in the opposite chamber for
30 min. On the next day (D5), 20 h following drug pairing, animals
were placed drug-free in the place-preference boxes with access to
all chambers. The amount of time spent in each of the two
chambers (saline- and histamine-paired) was automatically re-
gistered and used to quantify the conditioning effect by drug
treatment. It was expected that if the animal had ongoing pain
that was reduced by histamine treatment, the animal preferred the
histamine-paired chamber.

2.7. Motor performance

To exclude a motor effect of histamine, motor activity of the
rats was assessed in the Rotarod test using a commercially avail-
able device (Ugo Basile). The revolution speed was 12 revolutions
per minute (rpm). The rats were put on the drum 15 min after i.t.
administration of 10 μg of histamine or vehicle on separate days in
a counterbalanced order. The time animals were able to stay on
the drum was calculated. Cut off time was 60 s.
2.8. Course of the study

Animals were tested two to three weeks after spinal nerve li-
gation and administration of the intrathecal catheter. In each acute
drug testing condition, the assessment of mechanical hypersensi-
tivity was performed before and at various time points up to
30 min following drug administrations. Each drug condition was
tested on a separate day. Mechanical and heat sensitivity were
assessed on separate days. In attempts to prevent the histamine-
induced effect, the spinal cord was pretreated with the studied
receptor antagonist before histamine administration; the delay
between administration of the compound used for the prevention
attempt and histamine administration was 3 min. The delay was
chosen based on previous behavioral investigations using the
studied compounds so that both compounds were expected to
have their maximal effects at about the same time. The effects of
drugs used in prevention attempts were tested also alone at the
same dose as in prevention attempts. The maximum effects of
treatments were chosen for further analyses. Each animal parti-
cipated in two to six acute drug testing sessions at an interval of 2–
4 days and counterbalanced order. Assessment of pre-drug re-
sponses in each acute drug testing session indicated that none of
the drug treatments had long-term effects.

Conditioned place-preference test was performed in drug-na-
ive animals as described in Section 2.6. Effects of histamine versus
vehicle on motor performance were assessed in a counterbalanced
order on separate days using Rotarod test as described in Section
2.7.

When assessing the antihypersensitivity effect of prolonged
treatment with histamine, one drug-naive group of neuropathic
animals was treated i.t. with 10 μg of histamine twice daily for five
days, while the comparison group was treated twice daily with
vehicle. In both groups, mechanical hypersensitivity was assessed
before and 15 min after the first and last administration of drug/
vehicle.

At the end of the experiments, the animals were sacrificed by
giving a lethal dose of pentobarbitone.

2.9. Statistical analyses

Statistical evaluation of the data was performed using one- or
two-way analysis of variance followed by Tukey's test, or with t-
test when comparing two groups. Po0.05 (two-tailed) was con-
sidered to represent a significant difference.
3. Results

3.1. Attenuation of pain behavior by spinally administered histamine

When administered i.t., histamine produced mechanical anti-
hypersensitivity effect that was dose-related (0.1–10 μg tested at
the stimulus force of 8 g; main effect of dose: F4,33¼4.51, P¼0.005;
Fig. 1A). Post hoc testing indicated that the lowest dose of hista-
mine producing a significant mechanical antihypersensitivity ef-
fect was 10 μg (Fig. 1A). The maximum mechanical anti-
hypersensitivity effect was reached within 15 min, and the dura-
tion of the antihypersensitivity effect was 430 min (Fig. 1B). To
assess whether the histamine-induced antihypersensitivity effect
varies with the test stimulus intensity, the effect of histamine was
determined at various test stimulus forces. The mechanical anti-
hypersensitivity effect induced by histamine (10 μg) varied with
the intensity of mechanical test stimulation (interaction between
the test stimulus force and drug treatment: F7,80¼4.77, P¼0.0002;
Fig. 1C). Post hoc testing indicated that at the lowest test stimulus
forces of 1 g and 2 g that activate selectively only
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mechanoreceptors the histamine-induced suppressive effect was
not significant. At test stimulus forces ⩾4 g (up to the force of 26 g
that was the maximum used in nerve-injured animals of the
present study) that recruited at least partly mechanonociceptors
as well as mechanoreceptors (Leem et al., 1993) the histamine-
induced antihypersensitivity effect was significant (Fig. 1C).

To find out whether the effect of histamine on mechanically
evoked pain behavior depends on the pathophysiological condi-
tion, the effect of i.t. histamine was assessed in healthy controls at
the dose of 10 μg i.t. that produced a significant anti-
hypersensitivity effect in nerve-injured animals failed to attenuate
responses to mechanical stimulation in healthy controls (main
effect of drug: F1,90¼0.52), independent of the test stimulus in-
tensity (interaction between test stimulus intensity and drug
treatment: F8,90¼0.26; Fig. 1D).

To assess whether spinal histamine attenuates ongoing pain be-
havior in neuropathy, nerve-injured rats were tested using condi-
tioned place-preference paradigm. Neuropathic animals spent sig-
nificantly more time in the test chamber paired earlier with spinal
administration of 10 mg histamine than in the chamber paired with
spinal administration of vehicle (t14¼2.16, P¼0.049; Fig. 2 A).

Radiant heat-induced paw-flick latency was used to assess
thermal nociception. Before drug treatments, the heat-evoked
response latency was significantly shorter in the nerve-injured
limb (5.4þ0.3 s;þS.E.M., n¼6) than in the contralateral limb
(6.1þ0.3 s; t5¼4.74, P¼0.005), which, however, may, at least be
partly explained by the significantly higher skin temperature of
the injured than the contralateral limb (33.2þ0.8 °C versus
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ce intervals (CIs) of the response rate change in vehicle-treated animals (n¼6). The
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Fig. 4. Roles of various monoaminergic receptors in mediation of the spinal histamine-induced mechanical antihypersensitivity effect. (A) Mechanical antihypersensitivity
effect induced by histamine (HA; 10 mg) and its attempted prevention by spinal pretreatment with atipamezole (Ati; 5 mg), an α2-adrenoceptor antagonist. (B) Prevention of
the histamine-induced mechanical antihypersensitivity effect by spinal pretreatment with prazosine (Praz; 30 mg), an α1-adrenoceptor antagonist. (C) Mechanical anti-
hypersensitivity effect induced by histamine and its attempted prevention by spinal pretreatment with WAY-100635 (WAY; 3 mg), a 5-HT1A receptor antagonist.
(D) Mechanical antihypersensitivity effect induced by histamine and its attempted prevention by spinal pretreatment with raclopride (Rac; 1 mg), a dopamine D2 receptor
antagonist. Main effect of drug was significant in all conditions (A: F3,20¼12.6, Po0.0001; B: F3,20¼18.4, Po0.0001; C: F3,20¼11.4, P¼0.0001; D: F3,20¼16.0, Po0.0001).
Veh¼vehicle. Mechanical hypersensitivity was assessed at a stimulus force of 8 g. Y-axis shows the difference in response rate when compared with the corresponding pre-
drug rate (pretreatment response rate – post-treatment response rate). A response rate difference o0 represents antihypersensitivity effect. Error bars represent S.E.M. (in
all graphs, n¼6). The dotted horizontal lines represent 95% confidence intervals (CIs) of the response rate change in vehicle-treated animals. ns¼not significant, *Po0.05,
**Po0.01, ***Po0.005 (Tukey’s test).
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F2,96¼22.95, Po0.0001; Fig. 3C). The maximum anti-
hypersensitivity effect induced by 100 μg of A-960656 was ob-
tained within 5 min and the antihypersensitivity effect stayed at
the same level at least up to 30 min (not shown). Post hoc testing
indicated that pretreatment of the spinal cord with A-960656 at a
dose of 30 μg that alone had no significant effect on mechanical
hypersensitivity failed to produce a significant reduction of the
mechanical antihypersensitivity effect induced by 10 μg of hista-
mine (main effect of drugs in the experimental condition, how-
ever, was significant: F3,18¼14.8, Po0.0001; Fig. 3D). The anti-
hypersensitivity effect induced by a high dose (100 μg) of
A-960656 was prevented by pretreatment with 10 μg of zolanti-
dine (main effect of drugs: F3,18¼16.4, Po0.0001; Fig. 3E).

3.3. Spinal monoaminergic receptors in the histamine-induced an-
tihypersensitivity effect

Blocking the spinal α2-adrenoceptors with atipamezole (5 mg)
failed to prevent the mechanical antihypersensitivity effect in-
duced by 10 mg of spinally administered histamine (Fig. 4A). In
contrast, blocking the spinal α1-adrenoceptors with prazosine
(30 mg) completely prevented the mechanical antihypersensitivity
effect induced by 10 mg of spinally administered histamine
(Fig. 4B). Blocking the spinal 5-HT1A receptors with WAY-100635
(3 mg; Fig. 4C) or spinal dopamine D2 receptors with raclopride
(1 mg; Fig. 4D) failed to prevent the mechanical anti-
hypersensitivity effect induced by 10 mg of spinally administered
histamine. At the currently used doses, atipamezole, prazosine,
WAY-100635 or raclopride failed to have a significant influence on
mechanical hypersensitivity (Fig. 4 A–D).

3.4. Spinal GABAA receptors in the histamine-induced hypersensi-
tivity effect

To assess whether spinal GABAA receptors are involved in the
histamine-induced antihypersensitivity effect, bicuculline (a
GABAA receptor antagonist) was administered i.t. at the dose of
0.03 mg that alone had no effect on hypersensitivity (Fig. 5A).
Mechanical antihypersensitivity effect induced by spinal admin-
istration of 10 m of histamine was completely prevented by bicu-
culline (Fig. 5A).

3.5. Effect of histamine on centrally induced facilitation of
hypersensitivity

To assess whether spinal histamine attenuates hypersensitivity
induced by central (presumably postsynaptic) facilitation of spinal
pain-relay neurons, 200 ng of NMDA was administered spinally.
NMDA co-administered with vehicle significantly facilitated me-
chanical hypersensitivity in nerve-injured animals as indicated by
the finding that the lower 95% confidence interval of the response
elicited in the group treated with a combination of NMDA and
vehicle was above the upper 95% confidence interval of the re-
sponse in the group treated with vehicle alone (Fig. 5 B). Co-ad-
ministration of histamine at the dose of 10 mg prevented the
NMDA-induced central facilitation of hypersensitivity (Fig. 5 B).
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Fig. 5. Interactions of the spinal GABAA and NMDA receptors with the spinal histamine-induced mechanical antihypersensitivity effect in animals with peripheral neuro-
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3.6. Antihypersensitivity effect following prolonged treatment with
histamine

To assess whether the magnitude of the antihypersensitivity
effect induced by spinally administered histamine is changed with
prolonged treatment, 10 mg of histamine was administered twice
daily for five days. Baseline hypersensitivity and the mechanical
antihypersensitivity effect of histamine was assessed on day 1 (D1)
and D5. Baseline response rates to mechanical stimulation (i.e.,
before histamine treatment) were identical on D1 and D5 (main
effect of treatment day: F1,96¼2.03; Fig. 6A). However, the me-
chanical antihypersensitivity effect induced by histamine was
significantly reduced on D5 (main effect of treatment day:
F1,96¼19.26, Po0.0001; Fig. 6B). Prolonged vehicle treatment had
no influence on baseline hypersensitivity (main effect of treatment
day: F1,60¼0.14; Fig. 6C) or hypersensitivity after vehicle admin-
istration (main effect of treatment day: F1,60¼2.65; Fig. 6D).
4. Discussion

�þ
In the present study, spinal histamine at a dose of 10 μg re-

duced pain hypersensitivity and ongoing pain in neuropathy,
while it had no effect on mechanically induced pain behavior in
healthy controls. The suppression of pain behavior in neuropathic
animals was submodality-selective, since the dose of histamine
producing an attenuation of mechanical hypersensitivity and
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ongoing pain failed to influence heat nociception. While histamine
is able to depress spinal motoneurons (Phillis et al., 1968), the
failure to influence locomotor behavior or heat nociception at a
dose that attenuated mechanical hypersensitivity indicates that
the antihypersensitivity effect was due to a selective depression of
spinal sensory rather than motoneurons.

The finding that blocking the spinal H2 but not H1 or H3 re-
ceptor prevented the spinal histamine-induced anti-
hypersensitivity effect suggests that the histamine H2 receptor was
mediating the antihypersensitivity effect in the spinal cord. Earlier
findings indicate that spinally administered histamine H3 agonist
attenuates mechanical nociception in healthy control animals
(Cannon et al., 2003), presumably due to presynaptic action on
spinal terminals of primary afferent nerve fibers (Hough and Rice,
2011). In neuropathic animals of the present study, in contrast,
intrathecal injection of the H3 receptor antagonist alone atte-
nuated hypersensitivity that could be prevented by spinal delivery
of an H2 receptor antagonist in the current study. This finding
might be explained by increased release of endogenous histamine
due to reduced autoinhibition of histaminergic nerve terminals.
Since a high dose of the histamine H3 receptor antagonist was
needed to produce a significant antihypersensitivity effect fol-
lowing spinal administration while a low dose has been effective
in the pontine locus coeruleus (Wei et al., 2014), it is possible that
diffusion to the brain contributed to the antihypersensitivity effect
induced by the spinally administered histamine H3 receptor an-
tagonist alone.

At doses considerably lower than those having an anti-
hypersensitivity effect, spinally administered histamine has pro-
duced a histamine H1 receptor-mediated facilitation of pain be-
havior in healthy controls (Mizoguchi et al., 2011; Sakurada et al.,
2002; Watanabe et al., 2008; Yoshida et al., 2005). The low-dose
histamine-induced pronociceptive mechanism is likely to be sa-
turated in neuropathic animals, since histamine at doses 0.1–
0.3 μg did not induce a further facilitation of hypersensitivity.

Spinal pretreatment with an antagonist of the α1-adrenoceptor
or the GABAA receptor at doses that themselves had no effects
prevented the spinal histamine-induced antihypersensitivity ef-
fect. However, the spinal pretreatment with an antagonist of the
dopamine D2 receptor or the α2-adrenoceptor failed to attenuate
mechanical antihypersensitivity effect induced by spinally hista-
mine. Moreover, pretreatment with an antagonist of the 5-HT1A
receptor failed to produce a significant attenuation of the hista-
mine-induced antihypersensitivity effect, although due to appar-
ent tendency to a reduction of the histamine-induced anti-
hypersensitivity effect one should be cautious with this finding.
Together these results suggest that interactions with descending
serotonergic or dopaminergic pathways do not have a critical
contribution to the spinal histamine-induced antihypersensitivity
effect, whereas the spinal GABAA receptor and the spinal α1- but
not α2-adrenoceptor are involved in the histamine-induced anti-
hypersensitivity effect.

GABAergic neurons have an important role in the attenuation
of pain-related signals in the spinal dorsal horn (Braz et al., 2014).
GABAergic neurons, at least in the septohippocampal area, are
known to be activated by a direct histamine H2 receptor-mediated
action (Xu et al., 2004). These earlier findings are in line with the
proposal that histamine H2 receptor-mediated direct activation of
inhibitory GABAergic neurons contributed to the spinal histamine-
induced antihypersensitivity effect. Additionally or alternatively,
histamine may also directly activate GABAA receptors (Saras et al.,
2008). The direct action of histamine on GABAA receptors, how-
ever, has not been specifically blocked by antagonists of the his-
tamine H2 receptor (Saras et al., 2008), unlike the histamine-in-
duced antihypersensitivity effect in the present study. Therefore, a
histamine H2 receptor-mediated activation of GABAergic neurons
may have a more important role in the antihypersensitivity effect
than a direct histaminergic action on postsynaptic GABAA re-
ceptors, although it is possible that both of these mechanisms
contributed to the antihypersensitivity effect induced by
histamine.

While spinal GABAergic neurons may attenuate pain-related
signals by a direct postsynaptic action on pain-relay neurons, they
may also presynaptically suppress central terminals of primary
afferent nerve fibers (Yuan et al., 2009). Here, a direct postsynaptic
effect of GABAergic neurons driven by histamine was likely to be
the predominant mechanism of the antihypersensitivity effect,
since histamine prevented the presumably postsynaptic increase
of hypersensitivity induced by spinally administered NMDA
equally well as it prevented hypersensitive responses evoked by
peripheral (presynaptic) stimulation.

The finding that only the α1- but not the α2-adrenoceptor an-
tagonist prevented the histamine-induced antihypersensitivity
effect was unexpected. Namely, if spinally administered histamine
increased release of noradrenaline from all spinal nerve terminals
of descending noradrenergic pathways resulting in pain attenu-
ating effect the co-existence of which was necessary for the his-
tamine-induced antihypersensitivity effect, it might have been
expected that also blocking the spinal α2-adrenoceptors had pre-
vented the histamine-induced effect, since both the spinal α1- and
α2-adrenoceptor are involved in noradrenergic suppression of
pain-related signals (see for references Pertovaara, 2013). A pos-
sible explanation for the selective contribution of the
α1-adrenoceptor is that the spinal GABAergic neuron expresses
only the α1-adrenoceptor through which descending nora-
drenergic pathways innervating the GABAergic neuron can drive it
(Baba et al., 2000 a, b; Gassner et al., 2009; Millar and Williams,
1989). While the descending noradrenergic system is only weakly,
if at all activated in healthy controls (Mansikka et al., 2004), earlier
behavioral studies suggest that even without spinal administration
of histamine peripheral neuropathy may induce a tonic drive of
descending noradrenergic pathways (Hughes et al., 2013; Wei and
Pertovaara, 2006; Xu et al., 1999). In line with this, it has been
shown that neuropathy induces an increased firing response to
peripheral stimulation (Alba-Delgado et al., 2012; Viisanen and
Pertovaara, 2007) and an increased metabolic activity in the locus
coeruleus (Brightwell and Taylor, 2009; Mao et al., 1993). More-
over, an increased spinal noradrenaline level has been described in
neuropathy (Hayashida et al., 2008; however, Song, et al., 2013). It
may be speculated that without an accompanying neuropathy-
induced facilitation of the descending noradrenergic action on the
α1-adrenoceptor, the histamine H2 receptor-driven inhibitory ac-
tion of GABAergic neurons was not strong enough to produce a
significant antihypersensitivity effect. According to this hypoth-
esis, blocking of the spinal α1-adrenoceptor alone was enough to
attenuate the histamine-induced drive of the inhibitory GABAergic
neuron below that needed to suppress pain-related signals.

The present study did not address the potential role of the
histamine H4 receptor that is expressed particularly on im-
munocompetent cells (Panula et al., 2015), but it is also present in
the dorsal root ganglion neuron and the spinal dorsal horn (Stra-
khova et al., 2009). Since systemic administration of histamine H4

receptor antagonist has reduced inflammatory and neuropathic
pain hypersensitivity (Hsieh et al., 2010a; however, Sanna et al.,
2015), it might be expected that histamine, due activation of the
histamine H4 receptor increases rather than decreases neuropathic
hypersensitivity.

It may be concluded that spinal histamine at the dose of 10 mg
selectively attenuates mechanical hypersensitivity and ongoing
pain-like behavior in neuropathy. It is proposed that the anti-
hypersensitivity effect induced by spinal histamine is at least
partly mediated by histamine H2 receptors and it is dependent on
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co-existence of (presumably neuropathy-induced) α1-
adrenoceptor-mediated drive of GABAergic neurons acting on the
spinal GABAA receptor. Since central facilitation of hypersensitivity
induced by NMDA was completely prevented by histamine, the
spinal histamine-induced attenuation of responses in spinal pain-
relay neurons was post- rather than presynaptic. The decrease in
the magnitude of the antihypersensitivity effect with prolonged
treatment suggests that spinal administration of histamine alone
may not be a promising treatment for chronic neuropathy.
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