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Abstract

One of the last steps in a genome assembly project is filling the gaps between

consecutive contigs in the scaffolds. This problem can be naturally stated as finding

an s-t path in a directed graph whose sum of arc costs belongs to a given range (the

estimate on the gap length). Here s and t are any two contigs flanking a gap. This

problem is known to be NP-hard in general. Here we derive a simpler dynamic

programming solution than already known, pseudo-polynomial in the maximum

value of the input range. We implemented various practical optimizations to it,

and compared our exact gap filling solution experimentally to popular gap filling

tools. Summing over all the bacterial assemblies considered in our experiments, we

can in total fill 76% more gaps than the best previous tool and the gaps filled by

our method span 136% more sequence. Furthermore, the error level of the newly

introduced sequence is comparable to that of the previous tools. The experiments

also show that our exact approach does not easily scale to larger genomes, where

the problem is in general difficult for all tools.

Keywords: gap filling, de novo assembly, graph algorithms, dynamic program-

ming
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1 Introduction and Related Work

As high throughput sequencing has become a cheap and commonplace technology in

modern biology, the genome of the studied organism has also become a fundamental

resource for biological research. Even though the number of sequenced genomes has

increased, many published genomes are in draft stage, meaning that the published se-

quence contains numerous gaps whose sequence is unknown. These gaps may correspond

to important parts of the sequence, and can limit the usability of the genome.

High-throughput sequencing technology cannot read the genome of an organism from

the start to the end, but rather produces massive amounts of short reads. Genome

assembly is the problem of reconstructing the genome from these short reads. In a typical

genome assembly pipeline, the reads are first joined into longer contiguous sequences,

called contigs. Using paired-end and mate pair reads, contigs are then organized into

scaffolds, which are linear orderings of the contigs with the distance between consecutive

contigs known approximately. In this work we study the last stage in this pipeline, gap

filling, where the gaps between consecutive contigs in scaffolds are filled by reusing the

reads.

Many genome assemblers, like Allpaths-LG (Gnerre et al. (2011)), ABySS (Simpson

et al. (2009)) and EULER (Pevzner and Tang (2001)), include a gap filling module. There

are also standalone gap filling tools available, e.g. SOAPdenovo’s GapCloser (Luo et al.

(2012)) and GapFiller (Boetzer and Pirovano (2012)). All these tools attempt to identify

a set of reads that could be used to fill the gap, and then perform local assembly on

these reads. The local assembly methods vary from using overlaps between the reads in

Allpaths-LG, to using k-mer based methods in GapFiller, or building a de Bruijn graph of

the reads in SOAPdenovo’s GapCloser. Some of these methods attempt to greedily find

a filling sequence whose length approximately equals the gap length estimate, whereas

others discard the length information. In order to identify the set of reads potentially

filling the gap, these tools use the paired-end and mate pair reads having one end mapping

to the flanking contigs. However, if the gap is long, paired-end reads might not span to

the middle of the gap, while the coverage of mate pair reads may not be enough to close

the gap. In a more theoretical study (Wetzel et al. (2011)), the gap between two mates

is considered as reconstructible if the shortest path in the assembly graph between the

two flanking contigs is unique.
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In this work we formulate the gap filling problem as the problem of finding a path

of given length between two vertices of a graph (also called the exact path length (EPL)

problem (Nykänen and Ukkonen (2002))). With respect to previous solutions, such a

formulation allows us, on the one hand, to use all reads that are potentially useful in

filling the gap, even if their pair does not map to one of the two flanking contigs. On the

other hand, by solving this problem exactly, we do not lose paths which may have been

ignored by a greedy visit of the graph.

The EPL problem is NP-hard in general, and we show that this is also the case with

our variation for the gap filling problem. Moreover, the EPL problem is known to be

solvable in pseudo-polynomial time. We also show that the assembly graph instances

are particularly easy, by implementing a new and simpler dynamic programing (DP)

algorithm, and engineering an efficient visit of the entire assembly graph. This is based

on restricting the visit only to those vertices reachable from the source vertex by a

path of cost at most the upper-bound on the gap length. Moreover, our DP algorithm

also counts the number of solution paths, information which might address some issues

raised by Wetzel et al. (2011). We implemented the method in a tool called Gap2Seq

and compared it experimentally to other standalone gap fillers on bacterial and human

chromosome 14 data sets from GAGE (Salzberg et al. (2012)) (thus, implicitly, also to

the gap filling modules built into the assemblers). In total on the bacterial assemblies,

we can fill 76% more gaps than the best of the previous tools and the gaps filled by our

method span 136% more sequence. Moreover, the error level of the newly introduced

sequence is comparable to the previous tools. Our experiments on the GAGE assemblies

of human chrromosome 14 show that our exact approach does not seem to scale easily to

larger genomes. Even though more greedy approaches perform better on some assemblies,

all tools have overall mixed results, underlining the difficulty of the problem on these

instances.

Gap2Seq is freely available at www.cs.helsinki.fi/u/lmsalmel/Gap2Seq/.
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2 Gap Filling as Exact Path Length Problem

2.1 Problem formulation

Let R = {R1, . . . , Rn} be the set of all sequencing reads. From these reads, and a pair

of consecutive contigs S and T , one can build an assembly graph, and then try to find a

path between the two contigs. This reconstruction phase can be guided by the constraint

that the path length should match the gap length estimated in the scaffolding step. This

problem is called gap filling. Figure 1 illustrates the setting.

To state this problem more precisely, consider the formalism of the overlap graph G

of R. This graph has a vertex i for every Ri, and for every overlap between some Ri and

Rj, we add an arc (i, j). This arc is associated with the cost c(i, j) = |Ri| − `i,j, where

`i,j is the length of the longest suffix-prefix overlap between Ri and Rj. In other words,

c(i, j) is the length of the prefix of Ri obtained by removing the longest overlap with Rj.

Observe that we can assume that there are no 0-cost arcs in G, since this would indicate

a read included in another read, which can be removed without changing the solution. In

this paper we allow paths to have repeated vertices, and we denote a path from a vertex

u to a vertex v as an u-v path.

A path v1, v2, . . . , vk in G spells a string of length
∑k−1

i=1 c(vi, vi+1) + |Rvk |, obtained

by concatenating, for i from 1 to k − 1, the prefixes of length c(vi, vi+1) = |Rvi | − `vi,vi+1

of Ri, followed by the last read Rvk .

Given a path P = v1, v2, . . . , vk, with source s = v1 denoting start contig S and sink

t = vk denoting end contig T , we say that the cost of P is cost(P ) =
∑k−1

i=1 c(vi, vi+1),

namely, the cost of P is equal to the length of the string spelled by P starting with the

string S, until the position immediately preceding T .

We formulate the gap filling problem below, by requiring that the cost of a solution

path belongs to a given interval [d′, d]. In practice, d′ and d should be chosen such that

the midpoint (d′+d)/2 reflects the same distance as the length of the gap between S and

T , estimated from the scaffolding step.

Problem 1 (Gap Filling) Given a directed graph G = (V,E), a cost function on its

arcs c : E → Z+, and two of its vertices s and t, for all x in a given interval of path costs
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[d′, d], decide if there is a path P = v1, v2, . . . , vk such that v1 = s, vk = t, and

cost(P ) =
k−1∑
i=1

c(vi, vi+1) = x,

and return one such path if the answer is positive.

We denote by #Gap Filling the corresponding counting problem, which, for all x

in the given interval of path costs [d′, d], counts the number of s-t paths of cost x.

2.2 Complexity and the pseudo-polynomial algorithm

The problem of finding a path P in a directed graph with integer arc costs, such that

the cost of P equals an integer d given in input was studied by Nykänen and Ukkonen

(2002). In fact, Nykänen and Ukkonen (2002) considered the more general version in

which the arc costs can also be negative. They showed this problem to be NP-hard, even

when restricted to DAGs, and only with non-negative costs. Their reduction is from the

Subset Sum problem (also called 0/1 Knapsack problem) (Garey and Johnson (1979);

Karp (1972)), consisting of a DAG with some 0-cost arcs. With a simple modification, we

adapt it below to show that both the Gap Filling problem (with only positive costs)

and its counting version are hard.

Theorem 2 The Gap Filling problem is NP-hard, and the #Gap Filling problem

is #P-complete, even when restricted to DAGs without parallel arcs.

Proof. As in (Nykänen and Ukkonen (2002)), given an instance A = {w1, . . . , wn}

and d to the Subset Sum problem (for deciding whether there is a subset of A of sum

exactly d) we construct the DAG having {v0, . . . , vn, u1, . . . , un} as vertex set, and choose

s = v0, t = vn (see Fig. 2). For each i ∈ [1, n], we add the arcs (vi−1, vi), with cost wi + 2,

and (vi−1, ui) and (ui, vi), with cost 1. We have that the Subset Sum problem admits a

solution of cost d if and only if the Gap Filling problem has an s-t path of cost in the

interval [d + 2n, d + 2n]. Since the #Subset Sum problem is #P-complete (Dyer et al.

(1993)), this implies that also the #Gap Filling problem is #P-complete.�

Nykänen and Ukkonen (2002) also gave a pseudo-polynomial time algorithm running

in time O(W 2n3 + |d|min(|d|,W )n2), where n is the number of vertices of the graph and

W is the maximum absolute value of the arc costs. (This algorithm is called pseudo-
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polynomial because if the input integers W and d are assumed to be bounded by a

polynomial in the input size, then it runs in polynomial time.)

However, the Gap Filling problem is easier, since the costs are only positive. As

such, we can derive a much simpler algorithm, with running time O(dm) where m is the

number of arcs in the graph. This algorithm is based on the classical pseudo-polynomial

dynamic programming for the Subset Sum problem. We present this algorithm for the

counting version of the problem, and then show how it can be easily adapted for Gap

Filling.

Let N−(v) denote the set of in-neighbors of v in V (G), that is, N−(v) = {u | (u, v) ∈

E(G)}. We define, for all v ∈ V (G), and ` ∈ [0, d],

a(v, `) = number of s-v paths of cost exactly `.

We initialize a(s, 0) = 1, a(v, 0) = 0 for all v ∈ V (G) \ {s}, and a(v, `) = 0, for all

v ∈ V (G) and ` < 0. The values a(·, ·) can be computed by dynamic programming using

the recurrence

a(v, `) =
∑

u∈N−(v)

a(u, `− c(u, v)) (1)

The values a(·, ·) can be computed by filling a table A[1, |V |][0, d] column-by-column. Let

m denote the number of arcs of the graph. This DP computation can be done with O(dm)

arithmetic operations, since for each ` ∈ [0, d], each arc is inspected only once. The gap

filling problem admits a solution if there exists some ` ∈ [d′, d] such that a(t, `) ≥ 1. One

solution path can be traced back by repeatedly selecting the in-neighbor of the current

vertex which contributed to the sum in Equation (1).

Observe that, since there are O(md) s-t paths of length d, then the numbers a(·, ·)

need at most d logm bits, and each arithmetic operation on such numbers takes time

O(d logm). Therefore, we have the following result.

Theorem 3 The #Gap Filling problem can be solved using O(d2m logm) bit opera-

tions, where m is the number of arcs of the graph, and d is the maximum path cost.

For the Gap Filling problem itself, instead of storing counts, one can just fill in the

binary information that tells whether there is a path of given length (and by replacing

the summation operation by the ‘or’ operation in Equation (1)). This simplified solution

leads to the following result.
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Theorem 4 The Gap Filling problem can be solved in time O(dm), where m is the

number of arcs of the graph, and d is the maximum path cost.

Remark 5 Observe that, in practice, the maximum gap length estimate d is in fact

smaller than the total number of reads, that is n. For this reason, both dynamic program-

ming algorithms do run in time polynomial in n.

Remark 6 The above dynamic programming algorithms can be easily extended to the

more general problem considered by Nykänen and Ukkonen (2002) which allows negative

arc costs. Then, just like in the Bellman-Ford algorithm (Bellman (1958)), we need to

add another parameter to the dynamic programming recurrence, namely the number of

arcs on an s-v path of the specified length. Since now an s-t path can use at most md

arcs, then this leads, for example for the Gap Filling problem, to an algorithm working

in time O(d2m2).
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3 Engineered Implementation

In this section we describe an efficient implementation of the above gap filling algorithm.

In particular, we show how to reduce the above complexity O(dm), where m is the number

of arcs of the entire assembly graph, down to O(dm′), with a meet in the middle strategy

such that m′ can be much smaller than m. Namely, m′ is now the number of arcs of the

assembly graph on the union of all paths starting at s and of cost at most d/2 and of all

paths starting at t and of cost at most d/2 on the graph with reversed arcs. A similar

meet in the middle approach has been proposed by Jackman et al. (2015).

We first describe a simplified variant of our actual implementation, that achieves the

same complexity but is easier to describe in detail. Then we sketch how our implemen-

tation differs from this.

We use a de Bruijn graph (DBG) as assembly graph. The DBG of a set of reads is a

graph where each k-mer occuring in the reads is a vertex and there is an arc between two

vertices if the k-mers overlap by k − 1 bases. Conceptually, a DBG can be thought of as

a special case of an overlap graph where the reads are of length k and an arc is added

only for overlaps of length k − 1. We implemented DBGs using the Genome Assembly

and Analysis Tool Box (GATB) (Drezen et al. (2014)) which includes a low memory

implementation. By default, we set k = 31 which works well for bacterial genomes, but

for larger genomes a larger k should be chosen.

We build the DBG of the whole read set. To leave out erroneous k-mers, only k-mers

that occur at least r times in the reads are included (by default r = 2). The computation

for each gap will then be performed on the appropriate subgraph of this DBG.

The gap filling subroutine takes as input the bounds on the length of the gap, d′

and d, and the left and right k-mers flanking the gap which will be the source and

target vertices in our computation. We start a breadth-first search from the target vertex

backward towards the source vertex to discover vertices that can reach the target within

the allowed maximum gap length divided by two. We mark all vertices reached in this

initial backward traversal. Then we continue with another breadth-first search from the

source vertex forward towards the target vertex to discover vertices that are reachable

from the source within the allowed maximum gap length divided by two. After reaching

this limit, we continue the forward traversal only on the marked vertices; we then know

that unmarked vertices do not belong to an s-t path of length at most d.
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We note that this latter search traverses the vertices in an order which corresponds to

the column-by-column filling of the DP table A defined in the previous section. Therefore

the computations can be interleaved, resulting in an outer loop on the distance from the

source vertex, and an inner loop on vertices at a specific distance from the source.

We use a hash table to link the reachable vertices to their DP table rows. The rows

of the DP table may be sparse, since not all path lengths are necessarily feasible. For

example, in the S. aureus test data with scaffolds constructed by SGA (Simpson and

Durbin (2012)) 92% of the entries in the entire table were zero. We exploit this sparsity

simply by listing all non-zero entries in every row. Because of the breadth-first search, the

entries are added so that the lists will be sorted by the distance from the source vertex.

Since we use a DBG, we always use the current distance minus one when accessing the

table A, so we are only accessing the two last elements in the list. Therefore, this access

can be implemented in constant time resulting in the O(dm′) complexity of the algorithm

as claimed above. However, for tracing back the solution, one needs to binary search the

corresponding elements. Hashing could be used for avoiding the binary search, but since

tracing back is a negligible part of the total running time, this optimization was not

implemented.

It is possible that there are several paths between the source and the target vertices.

We then need to choose one of them to recover the sequence that will close the gap.

We first choose paths whose length is closest to the estimated gap length. If there are

still multiple possible paths, our current implementation chooses a random feasible in-

neighbor when tracing back in the DP table.

Sometimes the k-mers immediately flanking gaps are erroneous (Boetzer and Pirovano

(2012)). To be more robust, we allow paths to start or end at up to e of the k-mers that

flank the gap (by default e = 10). This can be easily implemented by counting the length

of a path always from the leftmost allowed starting k-mer. In the first e rounds of the

breadth first search we add the appropriate starting k-mer to the reachable set with the

number of paths equal to 1 at that distance. The searched path lengths can now be 2e

bases longer and we need to search for the ending right k-mer among the first e k-mers

after the gap.

Observe that instead of just marking the reached vertices on the backward traversal,

one can readily fill a DP table corresponding to the reverse paths. Then the forward
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traversal and DP computation can be stopped at level d/2, and the results of these two

DP tables can be combined. This is the variant we actually implemented. Note that

this approach is analogous to the standard dynamic programming technique known as

forward and backward algorithms in HMM parameter estimation (Durbin et al. (1998)).

Our implementation allows parallel gap filling on the scaffold level. We also utilize

a limit on the memory usage of the DP table. If this limit is exceeded before a path is

found, we abandon the search.
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4 Experimental setup

We evaluated our tool Gap2Seq against GapFiller (Boetzer and Pirovano (2012)) and

SOAPdenovo’s (Luo et al. (2012)) stand alone tool GapCloser. For the experimental

evaluation we used the GAGE (Salzberg et al. (2012)) data sets Staphylococcus aureus,

Rhodobacter sphaeroides, and human chromosome 14 (hereafter named staph, rhodo, and

human14, respectively) using a wide range of assemblers. The details of the read sets

available to gap fillers are shown in Table 1. For details of the different assemblies we

refer the reader to GAGE (Salzberg et al. (2012)). Since gaps tend to be introduced in

complex areas (e.g., repeated regions or low coverage areas), it is important to evaluate

the quality of the sequence inserted by a tool, in addition to the number and length of

gaps filled. The quality of the scaffolds on the original assembly as well as of the gap-

filled scaffolds was assessed using QUAST (Gurevich et al. (2013)). QUAST evaluates

assemblies by parsing nucmer (Kurtz et al. (2004)) alignments computed between the

assembly and the reference sequence.

Gap2Seq v1.0, GapFiller v1.10 and GapCloser v1.12 were run with default parameters

on a 32 GB RAM machine equipped with 8 cores. Table 2 summarizes the parameters

used by Gap2Seq. GapFiller v1.10 is coupled with BWA (Li and Durbin (2009)) v0.5.9

and with Bowtie (Langmead et al. (2009)) v0.12.5. We used both aligners in the eval-

uation. To better evaluate the gap filling results, we modified the output produced by

QUAST v2.3 w.r.t. the classification of “misassemblies” and local “misassemblies”. Con-

sider a scaffold ABC (consisting of subsequences A, B and C) where sequence B is

misplaced. Originally, QUAST would give in this case two breakpoints (between AB and

BC respectively), thus two misassemblies would be reported. If both the length of B,

and the distance between A and C, are shorter than Nbp (suggesting a local erroneous

inserted sequence), we instead classify it as one local misassembly and compute its length.

We chose N = 4000, since it is a rough upper bound of the insert size of the mate pair

libraries. Thus, gaps are not expected to be longer than this. This change implies that

we can measure in more detail the size of the erroneous sequences, instead of simply

classifying them as misassembly errors.

For each assembly, we used our modified version of QUAST to compute:

1. Misassemblies: The number of misassembled sequences in a scaffold that are
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larger than Nbp.

2. Erroneous length: Total length of erroneous sequence: the sum of lengths of all

mismatches, indels and local misassemblies (mismatches have length 1).

3. Unaligned length: The total length of the unaligned sequence in an assembly.

4. NGA50: NG50 is the size of the longest scaffold such that the sum of the lengths

of all scaffolds longer than it is at least half of the (known) reference genome size.

NGA50 is the NG50 after scaffolds have been broken at every position where a local

misassembly or misassembly has been found.

5. Number of gaps: The number of sites with one or more unknown position(s)

(that is, labeled ‘N’).

6. Total gap length: The sum of all lengths of the sites with one or more ‘N’s.
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5 Discussion

5.1 Bacterial data sets

Tables 3 and 4 present the gap filling performance for the bacterial data sets provided by

GAGE. With the evaluation metrics introduced in the previous section, Gap2Seq produces

favorable results. Gap2Seq is able to close more and longer gapped sequence in almost

all cases. For example, on the ABySS, ABySS2, Allpaths-LG, SOAPdenovo assemblies,

Gap2Seq closes more than 90% of the total gap length, which is a large improvement

over GapCloser and GapFiller. In the rhodo data set, Gap2Seq closes on average 25% of

the total gap length, but it performs in general more than twice as well as the other two

tools. Moreover, for both datasets there is no general increase in misassembled sequence.

In fact, in total Gap2Seq also has the highest NGA50 on both genomes. We see that the

results on these data sets supports a general gain in quality from gap filling and thus,

the motivation for using Gap2Seq.

We believe that the good performance of Gap2Seq is due to solving the problem

exactly with dynamic programming and using all the reads for filling the gap, instead of

only reads whose pair maps on the contigs flanking the gap. In fact, as we will discuss in

the next section, using all available reads does not seem to be computationally feasible

in the case of larger genomes and less correct scaffolds.

Figures 3 and 4 show runtime and peak memory usage of the gap fillers. On the staph

dataset, Gap2Seq and SOAPdenovo’s GapCloser are the fastest, while SOAPdenovo’s

GapCloser is the fastest on the rhodo data set. Gap2Seq is the most memory consuming

on the rhodo data set, and SOAPdenovo’s GapCloser is the most memory consuming on

the staph data set.

5.2 Human chromosome 14 data set

The performance of any gap filler depends on the quality of the previous contig assem-

bly and scaffolding phases. Accordingly, we categorized the different assemblies in the

human14 GAGE data sets according to their number of misassemblies: conservative as-

semblies are those with at most 10 misassemblies (and NGA50 at most 10000); moderate

assemblies are those with at most 100 misassemblies (and NGA50 at most 100000); ag-

gressive assemblies are those with more than 1000 misassemblies.
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As a general comment, we observe that the resulting erroneous sequence after filling

the gaps with Gap2Seq is always the smallest, or close to the smallest, independent

of the quality of the original assembly. This is most clearly seen on the conservative

and moderate assemblies, where Gap2Seq exhibits the best trade-off between resulting

erroneous length and filled gap length. While on the aggressive assemblies GapCloser

performs the best with respect to most of the metrics, there is no clear best tool in the

other two assembly categories. For example, GapFiller-bwa appears to be the best on the

CABOG assembly, and GapFiller-bwa and Gap2Seq appear to be the best on the ABySS

assembly.

We also investigated how the length of the gap influences Gap2Seq’s performance. We

chose the assembly where it performs best as compared to the other gap fillers, ABySS

(a conservative assembly), and an assembly where it performs worst as compared to the

other gap fillers, SOAPdenovo (an aggressive assembly). We then computed the number

of gaps that are filled, where there was no path whose length would fall in the required

interval, and where Gap2Seq abandoned the search because it exceeded the memory

limit. We plot these numbers in Fig. 5. In the ABySS assembly, Gap2Seq generally fills

the gaps or reports that no path exists. This is contrary to the SOAPdenovo assembly,

where Gap2Seq abandons many longer gaps because it exceeds the memory limit. On the

one hand, this implies that aggressive assemblies exhibit a too complex behavior to be

handled by an exact algorithm running on the graph of all available reads. On the other

hand, when the graph between the two flanking contigs does have a manageable size,

then such an exact algorithm seems to produce indeed better results than the competing

strategies.

Figure 6 shows the runtime and peak memory usage of the gap fillers on the human14

assemblies. GapCloser is the fastest of the methods, while GapFiller-bwa and GapFiller-

bowtie are the most memory efficient ones. For Gap2Seq we see that the memory limit

of 20 GB excluding the DBG is indeed reached in most cases and except for the ABySS

assembly this also translates to a long runtime.
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6 Conclusion

In this work we have shown that Gap2Seq has a good performance on bacterial data

sets in terms of the quality of the results, with moderate computational requirements.

However, such performance does not seem to scale easily to eukaryotic genomes. In fact,

our experiments on moderate and aggressive assemblies of human chromosome 14 indicate

that many gaps are left unfilled because of running out of resources (cf. Fig. 5). Gap2Seq

does generally have the smallest erroneous length of the resulting sequence, but since

many gaps are left unfilled we cannot draw a general conclusion about the robustness of

our problem formulation. Moreover, all tools exhibit varying behaviors with respect to

the number of misassemblies and the number or length of the gaps closed, highlighting

the difficulty of the problem in larger genomes.

For cases with many solutions to the gap filling problem, our current traceback routine

could be improved as follows. Using forward and backward computation as in hidden

Markov models, one can compute for each vertex v and gap length d, the number of

s-t paths of length d passing through that vertex. With one more forward sweep of the

algorithm, taking the maximum of these counts, one can traceback a most robust path

(see (Durbin et al., 1998, Chapter 4) for an analogous computation) that involves vertices

most often seen in paths of the correct length.

We note that our definition of gap filling, and hence also the algorithms presented

here, are directly applicable to other related problems. For example, the method applies

to finding a sequence to span the gap between the two ends of paired-end reads (Nadalin

et al. (2012)). However, the practical instances for this problem tend to be easier, since

paired-end reads are randomly sampled from the genome, whereas in gap filling the easy

regions of the genome have already been reconstructed by the contig assembler, and thus

only the hard regions are left. Nevertheless, one should be more conservative in filling

such gaps, as errors in this phase will be cumulated to later phases of the assembly.

Another example is in variant analysis (Pabinger et al. (2014)). In projects with

known reference genome, one can sequence the donor and map the reads to the reference.

If there is a long insertion in the donor, paired-end read mapping anomalies and drops

in read coverage can predict where an insertion is located in the reference and how long

that is. Running gap filling on the unmapped reads can be used to discover this inserted

sequence.
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Figure 2: Reduction of a Subset Sum instance to a Gap Filling instance.
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Figure 3: staph: run time in minutes (above), and peak memory usage in GB (below)
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Figure 5: Classification of gaps as reported by Gap2Seq: filled, no path found, or memory

limit exceeded. Left: the human14 ABySS assembly. Right: human14 SOAPdenovo

assembly. Bins of size 200 bp have been used in generating the histograms. The longest

gap in the human14 SOAPdenovo assembly is 34745 bp but the x axis has been cut at

2900 bp for easier comparison with the human14 ABySS assembly where the longest gap

is 2758 bp.
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Tables

Table 1: Read data sets used in the evaluation.

Organism Library Mean insert size SD of insert size Read length Coverage

staph short frag 180 30 101 45x

staph long frag 3500 300 37 45x

rhodo short frag 180 30 101 45x

rhodo long frag 3500 300 101 45x

human14 short frag 155 20 101 42x

human14 long frag 2500 381 101 26x
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Table 2: Parameters of Gap2Seq.

Parameter Default Description

-k < k > 31 The length of k-mers in the DBG. The default value is

good for bacterial data but for larger genomes a larger

value should be used. We used k = 61 for the human

chromosome 14 data.

-solid < r > 2 The threshold for the number of times a k-mer has to oc-

cur in the input reads to be included in the DBG. Some

gaps in scaffolds are due to low coverage of sequencing.

Therefore we chose to set this parameter low.

-dist-error < (d− d′)/2 > 500 The maximum error in gap length estimates in bp. We

consider 500 bp to be a safe maximum error but for

assemblies with very poor gap length estimates this pa-

rameter may need to be increased.

-fuz < e > 10 The maximum number of nucleotides that can be ig-

nored by the path search on the flanking contigs. One

should consider increasing this parameter for assemblies

with poor quality on the contig flanks. However, increas-

ing this parameter also increases the length of the gap

to be spanned by path search which in turn increases

the complexity of filling the gap. Therefore we decided

to keep the value of this parameter low.

-max-mem < m > 20 The maximum memory used for the DP tables by all

threads. Note that increasing the available memory can

also make Gap2Seq slower because it takes longer to run

out of resources on particularly difficult gaps.

-nb-cores < p > 0 The number of threads launched. The default value 0

allows Gap2Seq to use all available cores.
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Table 3: Quality of original and of the gap-filled assemblies on staph. The results shown

are relative differences with respect to the results of the original assembly. The bottom

section of the table (TOTAL) is obtained by summing up the results of each gap filler

for all assemblies. For each row, the best result is bolded and the worst result is shown

in italics.

Tool Original GapCloser GapFiller-bowtie GapFiller-bwa Gap2Seq

A
B
y
S
S

Misassemblies 5 +0% +0% -40% +60%
Erroneous length 10587 +27.5% -3.5% +12.5% +70.5%
Unaligned length 7935 -19.8% -10.2% -10.2% -43.0%
NGA50 31079 +0% +0% +0.3% +0.3%
Number of gaps 69 -15.9% -13.0% -30.4% -87.0%
Total gap length 55885 -25.3% -9.5% -23.3% -94.5%

A
B
y
S
S
2

Misassemblies 5 +20% +0% +60% +40%
Erroneous length 10312 -4.7% +0.5% -28.7% -27.4%
Unaligned length 0 +0 +0 +0 +0
NGA50 106796 +15.1% +0% +0% +29.0%
Number of gaps 35 -25.7% -11.4% -37.1% -80%
Total gap length 9393 -63.3% -29.9% -58.6% -94.5%

A
ll
p
a
th

s-
L
G

Misassemblies 0 +0 +1 +1 +0
Erroneous length 5991 -22.7% -5.9% -14.0% +9.7%
Unaligned length 0 +0 +0 +0 +0
NGA50 110168 +2.7% +35.9% +69.6% +48.5%
Number of gaps 48 -47.9% -31.2% -41.7% -70.8%
Total gap length 9900 -74.4% -23.1% -41.1% -94.7%

B
a
m
b
u
s2

Misassemblies 0 +1 +0 +0 +0
Erroneous length 24570 -23.0% -4.4% +16.5% -1.4%
Unaligned length 0 +0 +0 +0 +0
NGA50 40233 +39.0% +1.6% +7.3% +17.2%
Number of gaps 99 -68.7% -14.1% -19.2% -69.7%
Total gap length 29205 -77.1% -23.9% -39.5% -84.1%

M
S
R
-C

A

Misassemblies 10 -30% -30% -30% -20%
Erroneous length 17276 -2.7% -0.3% +1.7% -4.0%
Unaligned length 0 +0 +0 +0 +0
NGA50 64114 +50.3% +20.4% +20.4% +50.3%
Number of gaps 81 -51.9% -19.8% -30.9% -56.8%
Total gap length 10353 -75.6% -24.5% -39.4% -70.5%

S
G
A

Misassemblies 2 +0% +0% +0% -50%
Erroneous length 13811 -42.7% -19.9% -29.8% -10.6%
Unaligned length 0 +0 +0 +0 +0
NGA50 9541 +148.1% +8.9% +10.3% +221.4%
Number of gaps 654 -74.8% -20.8% -37.5% -80.1%
Total gap length 300607 -53.8% -5.7% -10.3% -72.1%

S
O
A
P
d
en

o
v
o Misassemblies 2 +0% +0% +0% +0%

Erroneous length 35433 -1.3% +1.2% +0.7% -1.5%
Unaligned length 4055 -100% -100% -100% +3.9%
NGA50 69834 +0% +0% +0% +0%
Number of gaps 9 -22.2% -22.2% -33.3% -55.6%
Total gap length 4857 -61.4% -24.0% -38.2% -94.2%

V
el
v
et

Misassemblies 25 +8% +0% +4% +8%
Erroneous length 24160 -32.1% -2.2% -19.6% -36.3%
Unaligned length 1270 -49.4% -20.5% -21.3% -49.4%
NGA50 46087 +19.1% +26.0% +49.0% +73.3%
Number of gaps 128 -46.9% -30.5% -39.8% -68.8%
Total gap length 17688 -59.6% -37.9% -47.6% -81.2%

T
O
T
A
L

Misassemblies 49 +2.0% -4.1% +0% +8.2%
Erroneous length 142140 -13.5% -3.3% -4.7% -4.6%
Unaligned length 13260 -47.2% -38.7% -38.7% -29.2%
NGA50 477852 +18.8% +13.8% +24.4% +37.4%
Number of gaps 1123 -62.7% -20.9% -35.4% -76.0%
Total gap length 437888 -53.2% -10.3% -18.1% -77.3%
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Table 4: Quality of original and of the gap-filled assemblies on rhodo. The results shown

are relative differences with respect to the results of the original assembly. The bottom

section of the table (TOTAL) is obtained by summing up the results of each gap filler

for all assemblies. For each row, the best result is bolded and the worst result is shown

in italics.

Tool Original GapCloser GapFiller-bowtie GapFiller-bwa Gap2Seq

A
B
y
S
S

Misassemblies 20 +0% +0% +0% +5%
Erroneous length 140634 +0.7% -2.5% -0.8% -0.4%
Unaligned length 23522 -9.8% +100.9% +83.1% -10.0%
NGA50 6538 +0.7% +0.6% +0.2% +4.4%
Number of gaps 323 -6.5% -8.7% -20.7% -45.8%
Total gap length 114587 -5.0% -0.3% -3.8% -19.6%

A
B
y
S
S
2

Misassemblies 12 +16.7% +0% +0% +133.3%
Erroneous length 15750 +31.5% -0.4% +0.5% +38.5%
Unaligned length 8230 -1.1% -1.9% -36.1% +0%
NGA50 31197 +13.7% -0.0% +3.8% +11.1%
Number of gaps 292 -4.1% -1.4% -5.8% -19.9%
Total gap length 62627 -15.3% +2.6% -8.6% -38.7%

A
ll
p
a
th

s-
L
G

Misassemblies 5 +20% +0% +0% +0%
Erroneous length 11738 +97.1% -2.6% -2.0% +3.4%
Unaligned length 0 +0 +0 +0 +0
NGA50 79634 +11.5% +2.0% -0.0% +12.8%
Number of gaps 170 -3.5% -3.5% -3.5% -9.4%
Total gap length 21409 -13.4% +8.0% +0.9% -25.0%

B
a
m
b
u
s2

Misassemblies 5 +0% +0% +0% +0%
Erroneous length 106359 +0.6% -0.6% -0.8% +0.5%
Unaligned length 4716 -0.7% -2.7% -5.5% -100%
NGA50 15043 +0% +0% +0% +1.3%
Number of gaps 85 -10.6% -5.9% -7.1% -35.3%
Total gap length 57041 -11.0% -9.6% -14.1% -31.9%

C
A
B
O
G

Misassemblies 15 +0% +0% -13.3% -13.3%
Erroneous length 16750 +43.2% +0.3% +0.3% -1.9%
Unaligned length 0 +0 +0 +0 +0
NGA50 26819 +3.5% +11.4% +11.4% +3.9%
Number of gaps 193 -4.1% -2.1% -4.7% -9.3%
Total gap length 21547 -17.9% +5.7% -3.9% -22.5%

M
S
R
-C

A

Misassemblies 10 +20% +0% +0% +270%
Erroneous length 22522 -7.1% +2.6% +8.4% +19.7%
Unaligned length 1377 +0% +0% +0% +0%
NGA50 75776 -6.5% +19.0% +20.0% +13.9%
Number of gaps 356 -12.6% -7.3% -10.4% -26.4%
Total gap length 32628 -20.2% +3.4% -6.5% -67.1%

S
G
A

Misassemblies 2 +0% +0% +0% +1600%
Erroneous length 58135 -5.0% -2.9% -5.1% +33.9%
Unaligned length 69266 -0.7% -12.5% -13.3% -41.0%
NGA50 2601 +6.3% +1.2% +5.2% +98.0%
Number of gaps 938 -9.1% -3.9% -7.7% -37.1%
Total gap length 1145600 -2.4% -0.3% -2.7% -23.3%

S
O
A
P
d
en

o
v
o Misassemblies 3 +0% +0% +0% +33.3%

Erroneous length 56228 +8.5% -0.1% +0.2% -7.1%
Unaligned length 0 +0 +0 +0 +0
NGA50 27434 +0% -1.2% -1.2% +0%
Number of gaps 38 +0% +0% +0% -10.5%
Total gap length 10461 -8.4% +2.4% +0.2% -20.2%

V
el
v
et

Misassemblies 19 +10.5% +0% -15.8% +10.5%
Erroneous length 40419 -5.2% -4.5% +3.8% -5.4%
Unaligned length 28344 -2.9% -5.9% -7.6% -17.4%
NGA50 54238 +0.3% -9.8% -0.9% +0%
Number of gaps 427 -12.4% -5.4% -9.1% -21.5%
Total gap length 86815 -10.4% -0.0% -6.3% -26.3%

T
O
T
A
L

Misassemblies 91 +7.7% +0% -5.5% +84.6%
Erroneous length 468535 +5.0% -1.6% -0.3% +5.1%
Unaligned length 135455 -2.8% +9.7% +3.7% -29.8%
NGA50 319280 +3.1% +4.2% +5.9% +8.9%
Number of gaps 2822 -8.5% -4.7% -9.0% -28.6%
Total gap length 1552715 -4.6% -0.2% -3.7% -25.1%
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Table 5: Human14, conservative assemblies. The formatting is the same as in Table 3.

Tool Original GapCloser GapFiller-bowtie GapFiller-bwa Gap2Seq

A
B
y
S
S

Misassemblies 3 +133.3% +33.3% +0% +100%

Erroneous length 190458 +18.2% +7.6% +6.1% -9.4%

Unaligned length 262068 -16.6% -28.9% -34.2% -8.4%

NGA50 1320 +1.0% +0.5% +0.7% +1.3%

Number of gaps 1061 -5.9% -28.9% -32.5% -33.4%

Total gap length 585628 -24.5% -23.4% -27.6% -25.5%

S
G
A

Misassemblies 8 +375% +37.5% +112.5% +287.5%

Erroneous length 1580489 +21.1% -18.4% -14.6% -24.6%

Unaligned length 1160159 -83.9% -82.8% -86.5% -38.6%

NGA50 2644 +244.2% +206.6% +238.0% +149.1%

Number of gaps 21459 -56.7% -46.3% -49.9% -51.5%

Total gap length 12840408 -53.5% -50.0% -55.4% -30.2%

T
O
T
A
L

Misassemblies 11 +309.1% +36.4% +81.8% +236.4%

Erroneous length 1770947 +20.8% -15.6% -12.3% -23.0%

Unaligned length 1422227 -71.5% -72.8% -76.9% -33.0%

NGA50 3964 +163.2% +138.0% +159.0% +99.9%

Number of gaps 22520 -54.3% -45.5% -49.1% -50.7%

Total gap length 13426036 -52.2% -48.8% -54.2% -30.0%
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Table 6: Human14, moderate assemblies. The formatting is the same as in Table 3.

Tool Original GapCloser GapFiller-bowtie GapFiller-bwa Gap2Seq

A
B
y
S
S
2

Misassemblies 99 +18.2% +2.0% +3.0% +5.1%

Erroneous length 555099 +15.9% +1.5% +3.3% +3.5%

Unaligned length 157759 -21.4% -28.8% -36.4% -15.4%

NGA50 11869 +4.1% +1.5% +3.1% +2.4%

Number of gaps 2820 -14.5% -29.5% -38.5% -23.9%

Total gap length 949137 -34.9% -10.6% -25.3% -36.8%

A
ll
p
a
th

s-
L
G

Misassemblies 95 -6.3% +5.3% +10.5% +14.7%

Erroneous length 667229 +34.5% -0.6% +6.6% -3.0%

Unaligned length 36941 -14.3% -11.1% -11.5% +26.8%

NGA50 34534 +48.3% +20.7% +22.5% +23.3%

Number of gaps 4307 -35.1% -19.3% -20.6% -29.8%

Total gap length 3227193 -37.9% -16.0% -17.3% -16.0%

C
A
B
O
G

Misassemblies 91 +16.5% +7.7% +5.5% +7.7%

Erroneous length 615239 +19.0% -2.2% -0.2% -3.5%

Unaligned length 2506 +0% +0% +0% +0%

NGA50 46665 +16.2% +58.8% +64.7% +8.9%

Number of gaps 3043 -18.9% -46.5% -51.9% -13.8%

Total gap length 231078 -50.3% -34.9% -42.0% -22.6%

T
O
T
A
L

Misassemblies 285 +9.5% +4.9% +6.3% +9.1%

Erroneous length 1837567 +23.7% -0.5% +3.4% -1.2%

Unaligned length 197206 -19.8% -25.1% -31.3% -7.3%

NGA50 93068 +26.6% +37.3% +41.2% +13.4%

Number of gaps 10170 -24.6% -30.3% -34.9% -23.4%

Total gap length 4407408 -37.9% -15.9% -20.3% -20.9%
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Table 7: Human14, aggressive assemblies. The formatting is the same as in Table 3.

Tool Original GapCloser GapFiller-bowtie GapFiller-bwa Gap2Seq

B
a
m
b
u
s2

Misassemblies 1584 +3.1% +2.3% +4.4% +2.1%

Erroneous length 11114542 -9.6% -0.2% +0.6% -0.6%

Unaligned length 161358 -42.7% -35.8% -37.8% +2.5%

NGA50 3045 +34.8% +12.0% +16.8% +1.8%

Number of gaps 11809 -16.4% -2.3% -2.4% -6.6%

Total gap length 10370362 -45.6% -18.9% -27.1% -4.6%

M
S
R
-C

A

Misassemblies 1110 +14.5% +9.9% +17.6% +6.8%

Erroneous length 5412965 +2.8% +3.9% +9.6% -6.1%

Unaligned length 318421 -30.5% -28.8% -30.6% -13.1%

NGA50 5704 +73.3% +65.9% +78.2% +32.9%

Number of gaps 30622 -34.9% -42.4% -47.8% -27.8%

Total gap length 6097928 -49.3% -37.8% -45.4% -18.1%

S
O
A
P
d
en

o
v
o

Misassemblies 1250 +17.1% +3.5% +6.1% +11.7%

Erroneous length 8449941 -1.3% +1.1% +3.1% -0.5%

Unaligned length 1306173 -28.8% -24.4% -27.2% -14.1%

NGA50 6592 +17.4% +3.6% +4.1% +4.0%

Number of gaps 8544 -25.2% -4.5% -5.2% -18.8%

Total gap length 10255930 -21.3% -11.3% -15.9% -6.3%

V
el
v
et

Misassemblies 9308 +26.3% +24.8% +31.1% +13.3%

Erroneous length 12531431 -10.4% +32.3% +41.1% -0.5%

Unaligned length 23484076 -58.4% -54.9% -64.5% -20.7%

NGA50 1793 +104.4% +49.6% +62.2% +27.0%

Number of gaps 51567 -43.4% -24.1% -26.0% -26.6%

Total gap length 63559964 -22.8% -14.7% -19.2% -4.2%

T
O
T
A
L

Misassemblies 13252 +21.7% +18.9% +24.4% +11.3%

Erroneous length 37508879 -6.2% +11.6% +16.0% -1.3%

Unaligned length 25270028 -56.4% -52.9% -62.0% -20.1%

NGA50 17134 +48.2% +30.6% +37.1% +15.6%

Number of gaps 102542 -36.2% -25.4% -28.1% -24.0%

Total gap length 90284184 -27.1% -16.4% -21.5% -5.5%
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