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Phonation into tubes is used for voice training and therapy. In the present study, the
formant frequencies were estimated from measurements of the acoustic pressure and the
acoustic input impedance for a plexiglass model of the vocal tract (VT) prolonged by a
glass tube. Similar transfer function measurements were performed with a human VT

legitimacy of assuming rigid walls in mathematical simulations of the acoustic char-
acteristics of an artificial VT model prolonged by a tube. However, this study also proved a
considerable influence from soft tissues in the yielding walls of human VT cavities on the
first formant frequency, F1. The measured F1 for the VT model corresponded to the
computed value of 78 Hz. The experiments in a human instead resulted in a much higher
value of F1: about 200 Hz. The results confirm that a VT model with yielding walls must be
considered for mathematical modelling of the occluded or semi-occluded human vocal
tract, e.g. prolonged by tubes or straws. This is explained by an acoustic-structural
interaction of the vocal tract cavities with a mechanical low-frequency resonance of the
soft tissue in the larynx.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The human voice plays an important role in society, serving as the major carrier for human speech interpersonal
communication. Understanding the basic principles of voice production is important for better interpretation of clinical
findings, detection of laryngeal cancers or other pathologies, and for treatment of voice disorders.

Phonation is a complex physiological process that involves several basic factors such as airflow coming from the lungs,
vocal-fold vibration and acoustic resonances of the cavities of the vocal tract. The vocal folds, excited by the air flow,
generate a primary laryngeal tone whose fundamental frequency corresponds to the vibration frequency of the vocal folds.
In the airways above the vocal folds, i.e. in the vocal tract, the acoustic resonant phenomena modify the spectrum of the
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primary laryngeal tone, especially the higher harmonics. The so-called formant is a result of the acoustic resonance of the
vocal tract, which occurs as a peak in the voice spectrum. The formants in human voice define vowels and cause differences
in the voice quality. The formants have three characteristics: frequency; amplitude and bandwidth. The formant frequencies
are given by the size and shape of the acoustic resonance cavities that can be varied, for instance, by changing the position of
the tongue or by mouth opening. The amplitude of the formant is related to (1) the proximity of the harmonic frequency to
the resonance frequency, (2) strength of the harmonics of the voice source, and (3) the proximity of the adjacent formants.
The first two formants, which are necessary for distinguishing the individual vowels, are mainly determined by the position
of the tongue and the mouth opening. The higher formants cause differences in the voice timbre; see [1–3].

Voice disorders negatively influence quality of life, and patients generally see a laryngologist or phoniatrician to find the
cause of a disorder and receive treatment. Phoniatricians often see patients with various voice disorders of a functional or
organic origin. An integral part of voice therapy is “voice re-education,” which involves utilization of a proper, healthy voice
technique. In addition to an optimal breathing and vocal fold adjustment in relation to the amount of subglottic pressure, a
very important factor is a correct utilization of the resonant spaces above the vocal folds. Knowledge of the exact space
relations and of the ways to influence the acoustic voice quality by small shape changes in the vocal tract can improve the
re-education techniques and contribute to voice therapy.

Voice training and therapy often involve semi-occlusions, i.e. sounds during which the vocal tract is either narrowed, as
in the production of closed vowels [i, y, u]; constricted, as in voiced fricatives, e.g. [β, z], or nasals, e.g. [m, n]; completely
closed in a rapid succession, as in a lip or tongue trill; or artificially lengthened, as when one phonates into a tube or a straw;
e.g. see [4]. Phonation into a small diameter hard-walled “resonance tube” has been used especially in Scandinavia; see [5].
For voice therapy purposes, the outer end of this tube is placed in water (“water resistance therapy”), although, in voice
training of normally voiced subjects, the outer end of the tube is kept in the air. During the semi-occlusion exercises, the
trainee/patient is instructed to aim at ease of phonation and maximal vibratory sensations in the front part of the vocal tract
and the facial structures. The goal of the semi-occlusion exercises is an effortlessly produced, well-resonating voice; see
[4,6], for example.

One reason for the use of semi-occlusions in voice training and therapy lies in the fact that they slow down the airflow in
the vocal tract and increase the supraglottal air pressure. Consequently, the intraglottal air pressure also increases. This
reduces the vocal fold collision pressure and, hence, the mechanical load related to voice production. Aiming at maximal
vibratory sensations in the vocal tract is supposed to help in optimizing the glottal and vocal tract setting for maximal sound
energy transfer from the glottis to the outer space. Increased supraglottal air pressure aids the trainee in this optimization as
it intensifies the sensations of resonatory vibrations; see [7,8]. Furthermore, semi-occlusions lower the formant frequencies,
especially F1 [9]. If F1 comes sufficiently close to f0 of phonation, the inertive reactance of the vocal tract may mechanically
assist vocal fold vibration by reducing the phonation threshold pressure, i.e. the lowest subglottic pressure needed to start
and maintain vocal fold vibration; e.g. see [10].

The effect of a particular semi-occlusion is, thus, related to two things: the amount of flow resistance it offers and the
amount of inertive reactance within the fundamental frequency range of phonation. Obviously, the narrower a constriction
in the vocal tract is, the longer and narrower the tube one phonates into, or the deeper in water the outer end of the tube is
inserted, the higher the flow resistance will be. The amount of inertive reactance, in turn, is related to the resonances that
will be created in the vocal tract of a subject phonating into a particular tube. To the best of our knowledge, no information
on formant frequencies measured directly during phonation into tubes can be found in the literature. Such information
would be needed in order to shed further light on the basis for the exercise and to be able to choose the best suited tube for
the trainee/patient.

Applying a mathematical model of voice production, Story et al. [9] estimated the effects of various vocal tract config-
urations on the acoustic input impedance of the vocal tract, which is defined as the ratio of the input pressure (seen from
the glottal end) to the acoustic volume velocity. According to their results, the frequency of the lowest maximum of the
impedance, i.e. the first acoustic resonance (formant frequency, F1) lowers with a semi-occlusion of the vocal tract (VT). The
acoustic input reactance (imaginary part of the impedance) of the vocal tract increases in the fundamental frequency range
of speech, which could explain the beneficial experience of using semi-occlusions in vocal exercises, since a higher reactance
of the vocal tract lowers the phonation threshold pressure and may alter the voice source waveform in such a way that a
slightly higher sound pressure level (SPL) and stronger voice overtones (louder and brighter voice quality) are obtained [11].

According to the calculations by Story et al. [9], F1 was approximately in the range of 200–300 Hz for phonation into
hard-walled tubes of 10 cm and 30 cm in length (inner diameter 8 mm). The vocal tract wall was considered to be yielding,
having a low mechanical resonance frequency of its own. The parameters of such a VT model were set to the values sug-
gested by Sondhi and Schroeter [12]. The present paper aims to experimentally verify the existence of this low-frequency
eigenmode, which originates from the vibration of a soft tissue structure in the human vocal tract, as proposed by Sondhi
[13]. The motivation to write this paper resulted from our numerical experiment. When applying the model described in
[14], with the assumption of a hard-walled vocal tract, we obtained the result that F1 decreases even below 100 Hz in
phonation into a tube of 26.4 cm in length (inner diameter 6.8 mm). The main purpose of the paper is to prove that a hard-
walled model of VT with a tube lowers the first formant frequency as compared to a soft-walled model.

The present study investigated the influence of phonation into a resonance tube on the lowest vocal tract resonances.
The study consisted of the following: (1) acoustic analysis of recordings of a female subject phonating into the tube,
(2) measurement of the transfer function (the frequency-dependent ratio of the acoustic pressure at the outlet of the tube to
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the acoustic volume velocity at the glottis) when the vocal tract was externally excited by using a random noise in vivo for
the female subject and in vitro for a plexiglass model of the vocal tract, (3) measurement of the acoustic input impedance for
the vocal tract model using a commercial instrument analysis system, and (4) comparison of the experimental results (from
(1) to (3)) with the theoretical results obtained by applying a mathematical model of VT acoustics.
2. Methods

2.1. Investigation of human speech phonation into a tube

A female subject with no voice or hearing problems who had extensive experience in voice training and in using
resonance tubes volunteered as a subject for the experiment. The subject was one of the authors (A-M L) and fully aware of
the aims of the study and acquainted with the methodology applied. No other medical research methods were used except
for the ordinary videoendoscopy used in phoniatric clinics. The investigation has thus been carried out in accordance with
The Code of Ethics of the World Medical Association (Declaration of Helsinki).

The subject phonated the vowel [u] first without the tube and then into the resonance tube (made of glass, 26.4 cm in
length, 6.8 mm in inner diameter, 10 mm in outer diameter) using a normal (neither breathy nor pressed) speaking voice at
a comfortable pitch and loudness. The frequency spectrum of the signal was measured outside the tube using a sound-level
metre (B&K type 2239, frequency range 8 Hz to 16 kHz). An acoustic analysis was done in Matlab by averaging the Fast
Fourier Transform (FFT) frequency spectra computed by using a Hanning time window of 0.5 s with a 75 percent overlap.
The resulting averaged (filtered) spectra were obtained by using frequency bands (windows) that were equal to the fun-
damental phonation frequency f0 and shifting them by a frequency step Δf. The maxima of these “filtered spectra” can be
considered formants.

2.2. Measurement of the transfer functions

2.2.1. Experimental setup
A transfer function of the vocal tract prolonged by a tube was measured using pressure signals recorded at two different

positions. The acoustic pressure at the lips’ position was measured by a special B&K 4182 microphone probe (range 1 Hz to
20 kHz), and the acoustic pressure at the open outlet of the tube was registered by a B&K 4138 miniature microphone (range
6.5 Hz to 140 kHz); see the schema in Fig. 1. Signals were recorded by a PC-controlled B&K PULSE 10 measurement system
using a 32.8 kHz sampling frequency. The acoustic system was excited by a white noise signal (range 0–6.4 kHz) using a
loudspeaker (an MTC 5 1/4″, 4 Ω woofer) located outside. The glass resonance tube was connected to the vocal tract at the
lips. There was no special impedance matching between the speaker and the tube.

The same measurement setup was used for both the subject and for a physical model of the vocal tract. For in vivo
experiments, the subject kept her vocal folds tightly together, i.e. the glottis closed, while her vocal tract simulating pho-
nation of the vowel [u:] was excited by the external loudspeaker. The subject was examined using a videoendoscopy system
during phonation and when the glottis was closed without phonation (see Fig. 2): an Olympus videoendoscopy system that
included a Xenon light source (Elvis Exera III, CLV 190, Olympus, Finland) and a fiberscope ENF-VH HD Distal chip fiberscope
(ENF-VH, Olympus, Finland). The picture of the glottal closure while holding breath without phonation shows that the
glottis was fully closed and the false vocal folds were somewhat adducted.

A vocal tract model used for in vitro measurement was made of plexiglass (see Fig. 3). Its geometrical configuration was
based on a 3D volume model obtained from magnetic resonance images [15] for the vowel [u:]. This vowel was chosen
because in previous investigations the subject used the articulation of [u:] during tube phonation. The channel of the VT
model was variable in its height, whereas the width (thickness) was kept constant (see Figs. 3 and 4b). The input of the VT
model at the glottis end was closed with a rigid plexiglass plate. Rectangular cross-sectional areas of the plexiglass model
from the glottis to the lips were set to be the same as in the study [15], where it was shown that the difference between the
first four resonance frequencies of the 1D and 3D mathematical models of the VT for the vowel [u:] is negligible (less than
2 percent).
Fig. 1. A layout of the experimental setup for measuring transfer functions in vivo and in vitro.



Fig. 2. Videoendoscopic investigation of the subject's glottis: (a) during phonation into the resonance tube and (b) while holding the tube between lips
without phonation. The outlet of the laryngeal tube is marked with a solid black line.

Fig. 3. Geometry of the plexiglass VT model.
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2.2.2. Processing and interpretation of experimental data from transfer function measurements
The data recorded both in vivo and in vitro experiments were processed using the following matrix equations in a

frequency domain (see the derivation in Appendix A):

pL
UL

" #
¼ TVT U

pG
UG

" #
¼

AVT BVT

CVT DVT

" #
U
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UG

" #
; (1)

and
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" #
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U

pL
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" #
; (2)

where p and U are the acoustic pressure and volume velocity respectively, TVT is a transfer matrix of the vocal tract, TTB is a
transfer matrix of the tube, and the indices G, L, T respectively mean the position of glottis, lips and open tube end.

The volume velocity is zero (UG¼0) at the closed VT end at the glottis position, and thus we can eliminate UL from Eq. (1):

UL ¼ CVT=AVT UpL; (3)

and putting Eq. (3) into Eq. (2) yields the transfer function for the pressure between the input and the end of the tube:

pLðωÞ=pT ðωÞ ¼ AVT= ATBAVT þBTBCVTð Þ: (4)

Generally, the transfer function UT/UG of the complete system (VTþtube) between the acoustic volume velocity at the
glottis position and the tube end can be expressed as (see Eq. (A.13) in Appendix A):

UT ðωÞ=UGðωÞ ¼ 1= ATBAVT þBTBCVTð Þ: (5)

This equation is valid regardless of the boundary conditions at the glottis when the radiation impedance ZT,RAD at the tube
output, defined as the ratio of output pressure to output volume velocity, is omitted. Because the denominator in Eq. (4) is
the same as in Eq. (5), resonance frequencies (peaks) of the measured transfer function pLðωÞ=pT ðωÞ should be approxi-
mately equal to the peaks of the transfer function UT ðωÞ=UGðωÞ of the complete system.

The numerator AVT(ω) in Eq. (4) is the same as a denominator in the transfer function ULUG of the vocal tract alone (see
Eq. (A.16) in Appendix A):

ULðωÞ=UGðωÞ ¼ 1=AVT : (6)

Again, when omitting the radiation impedance ZL,RAD at the lips, Eq. (6) is generally valid regardless of the boundary
conditions at the glottis. Antiresonance frequencies (spectral dips) of the transfer function (4) then should be very close to
the peaks of the transfer function (6) of the vocal tract without a tube.



Fig. 4. (a) A layout of the measuring head of the BIAS 6 system [16] (reproduced with permission of Prof. Gregor Widholm) and (b) experimental setup for
measuring the acoustic input impedance on a plexiglass model of the vocal tract prolonged by a tube and installed in the measuring head of the system
BIAS 6 at the position of the vocal folds.
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2.3. Measurement of the acoustic input impedance

2.3.1. Experimental setup
A measurement of the acoustic input impedance was only carried out on the plexiglass model of the vocal tract using the

Brass Instrument Analysis System (BIAS 6) controlled by a PC. A layout of the measuring head of the system is shown in
Fig. 4a. The input of the VT model at the position of vocal folds was fixed to the measuring head and sealed (see Fig. 4b). The
VT model was excited by a sweep pulse in the frequency range of 20–4000 Hz. The acoustic input impedance, ZIN, was then
evaluated by the BIAS software, and the data that consisted of the frequency-dependent magnitude and phase of ZIN were
recorded by a PC at the frequency step of 0.5 Hz.

2.3.2. Processing and interpretation of experimental data from input impedance measurements
The VT input impedance ZIN, calculated as the ratio of the input pressure to the input acoustic volume velocity, is given by

the expression (see Eq. (A.17) in Appendix A):

ZIN ¼ pG
UG

¼DUZT ;RAD�B
A�C UZT ;RAD

; (7)

where A, B, C, D are the components of the transfer matrix of the complete system (VTþtube) and ZT,RAD is the radiation
impedance at the open end of the tube. The transfer matrix of the complete system relates the input variables with the
output variables by the equation (see Eqs. (A.9) and (A.10) in Appendix A):

pT
UT

" #
¼ TTB UTVT U

pG
UG

" #
¼ A B

C D

� �
U

pG
UG

" #
: (8)

Let us consider the situation that the input is closed by a rigid wall (UG¼0) and the output loaded by the impedance
ZT,RAD. After substituting these boundary conditions, denoted as C-OZRAD (closed input, open loaded output) in Eq. (8), it can
easily be derived that the denominator of the input impedance in Expression (7) is equal to the frequency equation of the
complete system (VTþtube) with the boundary conditions C-OZRAD. Thus the peaks (resonance frequencies) of |ZIN (ω)|
represent resonances or natural acoustic frequencies of the systemwith boundary conditions C-OZRAD. These resonances are
identical to resonance frequencies obtainable from a commonly used transfer function (A.13) of the complete system.

Considering the input is open (pG¼0), and the output is loaded by the impedance ZT,RAD, the substitution of these
boundary conditions denoted as O-OZRAD (open input, open loaded output) in Eq. (8) indicates that the numerator of Eq. (7)
is the same as the frequency equation of the system with the O-OZRAD boundary conditions. It means that the spectral dips
(antiresonances) of |ZIN (ω)| represent natural acoustic frequencies of the complete system with the boundary conditions O-
OZRAD.
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2.4. Input parameters of mathematical models

A vocal tract channel with yielding walls was modelled according to [9,12] as a system of 43 cylindrical elements of 4 mm
in length except for the first and last element, whose length was 2 mm, giving the total length of the present subject's vocal
tract of 16.8 cm measured during previous experiments [17]. The following formant frequencies estimated from the acoustic
recording of the vowel [u:] for the female subject (without a tube) were prescribed to the VT mathematical model:
F1¼367 Hz, F2¼730 Hz, F3¼2518 Hz, F4¼3735 Hz (see [17]). Through a tuning procedure [14] carried out by changing the
vocal tract shape, i.e. the area of the cylindrical cross-sections, the best-fitting vocal tract configuration was obtained. When
connecting the tube to the vocal tract, the diameter of the last element of the VT model was increased to 10 mm (the outer
diameter of the tube) and the penultimate element's diameter was recalculated as an average of the two of its neighbouring
elements. The resulting model is shown in Fig. 5.

A mathematical model of the vocal tract acoustics with rigid walls is described in Appendix A. Its length as well as the
length of the plexiglass VT model was 18.9 cm. The tube was modelled as one element with rigid walls.

The following values of fluid density, dynamic air viscosity, and speed of sound were used as input for the models:
ρ0¼1.2 kgm�3, μ¼1.8 �10�5 kgm�1s�1, c0¼343 ms�1 (considering the temperature in the laboratory) for the artificial

VT and c0¼353 ms�1 for the human VT.
3. Results

3.1. Measurements compared to mathematical modelling of human phonation into the tube

Fig. 6 shows results from the acoustic analysis of samples recorded of our female subject phonating into the tube.
Average FFT spectra were computed for f0¼152 Hz, with a frequency step of Δf¼10 Hz. No formant frequency (maxima in
the filtered spectrum) could be detected in the frequency range of 0–500 Hz. A peak at 28 Hz in the FFT spectrum may have
been caused by a mechanical resonance of the yielding vocal tract walls.

A transfer function was calculated from the glottis to the point inside the tube located 2 mm from its open outlet, both
considering the radiation impedance ZT,RAD (thick line) and omitting ZT,RAD (thin line). The results can be seen in Fig. 7a. The
results for the input impedance, obtained following the same constraints, are shown in Fig. 7b. The curves in Fig. 7b are
nearly identical, suggesting that ZT,RAD had no effect on the magnitude of the input impedance.

The resonance frequencies obtained by mathematical modelling were F1¼208 Hz, F2¼602 Hz, F3¼694 Hz, F4¼1304 Hz,
F5¼1945 Hz, F6¼2473 Hz, F7¼2588 Hz and F8¼3223 Hz. These values correspond well to the resonances measured (see
thick lines in Figs. 6 and 7a), except for the first resonance frequency, F1, as mentioned above. If F1 was really 208 Hz, it
would suggest that phonation into the resonance tube is assisted by reactance of the vocal tract at fundamental frequencies
generally used in speech (i.e. f0 below 200 Hz).

Fig. 7b shows the computed results for the input impedance of the human vocal tract. The three lowest resonances are
clearly visible: F1¼208 Hz, F2¼602 Hz and F3¼694 Hz; however, the resonances F4, F5, F7 and F8 are not identifiable in
Fig. 5. Geometry of the VT model prolonged by the tube.

Fig. 6. Spectra of the acoustic signal measured outside the human vocal tract during phonation into the tube. Thick and thin lines respectively denote the
“filtered spectrum” and the FFT spectrum.



Fig. 7. Results of mathematical modelling of the human vocal tract: (a) the magnitude of the transfer function pT/UG between the glottis position and the
cross-section of the tube, located 2 mm from its open outlet, both considering the radiation impedance ZT,RAD (thick line) and omitting it (thin line) and
(b) the magnitude of the acoustic input impedance pG/UG considering the radiation impedance ZT,RAD (thick line) and omitting it (thin line).

Fig. 8. Computed acoustic mode shapes of the human vocal tract prolonged by the tube for the resonance frequencies F4¼1318 Hz (solid line), F5¼1965 Hz
(dashed line) and F6¼2479 Hz (dotted line) for the geometry of the VT model shown in Fig. 5. (The wall compliance and radiation impedance were
omitted.).

Fig. 9. A measured transfer function between the lips and the open tube end for the human vocal tract prolonged by the tube and excited by random noise
from the loudspeaker.
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Fig. 7b. The reason consists of the fourth, fifth and sixth acoustic mode shapes shown in Fig. 8. The resonances F4 and F5 are
associated with the acoustic mode shapes in which the dominant vibration amplitudes are inside the resonance tube, and
the pressure at the glottis is very small: i.e. the input impedance in Fig. 7b does not have clear resonance peaks at the
frequencies of F4 and F5. In contrast, the resonance F6 is clearly visible in the computed input impedance in Fig. 7b because
the associated acoustic mode has a high amplitude at the glottis; see Fig. 8.

3.2. Measurements compared to mathematical modelling of the human and artificial vocal tracts prolonged by the tube and
excited by the loudspeaker

The transfer function |pL(ω)/pT(ω)| measured in vivo for the human vocal tract prolonged by the tube is shown in Fig. 9.
The first resonance frequency can be identified at about F1ffi190 Hz. However, due to a strong damping effect of the soft
tissues, no sharp peak appears in the spectrum. Most likely, this is also the reason why there are no recognizable



V. Radolf et al. / Journal of Sound and Vibration 366 (2016) 556–570 563
antiresonances in the measured spectrum. Higher resonances, which are clearly visible in Fig. 9 at frequencies F2ffi630 Hz,
F3ffi1262 Hz and F4ffi1889 Hz, approximately correspond to the formant frequencies obtained from human phonation (see
Fig. 6), even though the glottis was permanently closed during the external excitation from the loudspeaker. A steep
increase of the transfer function near the zero frequency can be caused by a more prominent acoustic structural interaction
of the vocal tract with vibrating yielding walls.

The measured and the computed magnitudes of the transfer function |pL(ω)/pT (ω)| for the artificial VT model prolonged
by the tube can be seen in Fig. 10. The computation was performed according to Eq. (4) assuming hard walls of the vocal
tract. First resonance peaks occur at frequencies 73 Hz and 78 Hz for the measured and computed results, respectively. The
first two antiresonances, which according to Eq. (6) are the resonance frequencies of the vocal tract alone (without a tube),
can be well recognized in the spectra at about 400–500 Hz and 900–1000 Hz.

Fig. 11 shows the measured and the computed magnitudes of the acoustic input impedance for the artificial VT model
prolonged by the tube. The computation was performed according to Eq. (7), assuming hard walls of the vocal tract. The
radiation impedance, ZT,RAD, at the tube output was omitted in this mathematical model. The first resonance peak obtained
from the measurement occurs at the frequency of F1¼99 Hz, whereas the computed value F1¼78 Hz is equal to the first
resonance frequency of the computed transfer function (see Fig. 10), as expected by comparing Eqs. (4) and (7).

3.3. Summary of the results

Tables 1 and 2 summarize the measured and computed resonance frequencies and their relative differences both for the
transfer function and the input impedance of the artificial VT. Similarly, Table 3 compares the measured and computed
acoustic resonance frequencies obtained for the human vocal tract. The values marked by “x” could not be identified in the
measurements of the human VT. Table 4 compares formant bandwidths obtained from the measured transfer functions
(TF) |pL(ω)/pT(ω)| of the artificial vocal tract and of the human vocal tract, both prolonged by the tube. The formant
bandwidth was measured as the frequency difference between the two points 3 dB below the peak level of the solid lines in
Figs. 9 and 10. The formant bandwidth values were not identifiable in the case of F1 (190 Hz) for the human vocal tract
(Fig. 9) and in the case of the two close formants (resonances) measured in the model (560 and 672 Hz; see Fig. 10).
4. Discussion

4.1. Discussion of the results

The first six acoustic resonance frequencies resulting from the computed transfer function |pL(ω)/pT(ω)| for the artificial
VT differed only slightly from the measured results (see Fig. 10 and Table 1). The maximum relative difference was
6.8 percent for the first resonance (formant), F1. A relatively large difference of 21.2 percent in F1 between the measured and
Fig. 10. A comparison of measured (solid line) and computed (dashed line) transfer functions pL/pT between the lips and the open tube end for the
plexiglass vocal tract prolonged by the tube. Resonances were excited by random noise using the external loudspeaker, see Fig. 1.

Fig. 11. A comparison of measured (solid line) and computed (dashed line) magnitudes of the input impedance pG/UG for the artificial plexiglass vocal tract
model prolonged by the tube.



Table 1
Measured and computed resonance frequencies (Hz) evaluated from the transfer functions (TF) of the artificial vocal tract prolonged by the resonance tube.

F1 F2 F3 F4 F5 F6

VT model: measured TF 73 560 672 1153 1729 2313
VT model: computed TF 78 555 684 1142 1735 2347
Difference (%) 6.8 �0.9 1.8 �1.0 0.3 1.5

Table 2
Measured and computed resonance frequencies (Hz) evaluated from the input impedance ZIN of the artificial vocal tract prolonged by the resonance tube.

F1 F2 F3 F4 F5

VT model: measured ZIN 99 546 673 1926 2564
VT model: computed ZIN 78 555 684 2039 2792
Difference (%) �21.2 1.6 1.6 5.9 8.9

Table 3
Formant frequencies (Hz) obtained from the acoustic spectra of phonation into the resonance tube and from the measured and computed transfer
functions (TF) of the human vocal tract prolonged by the tube (x: unidentified values).

F1 F2 F3 F4 F5 F6

Human VT: phonation x 680 x 1280 1930 2530
Human VT: measured TF 190 630 x 1262 1889 x
Difference (%) x �7.4 x �1.4 �2.1 x
Human VT: computed TF 208 602 694 1304 1945 2473

Table 4
Formant bandwidths (Hz) obtained from the measured transfer functions of artificial and human vocal tracts prolonged by the resonance tube (x: uni-
dentified values).

B1 B2 B3 B4 B5

VT model: measured TF 12 17 26 21 21
Human VT: measured TF x 16 x 22 23
Difference (%) x �5.9 x 4.8 9.5
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computed input acoustic impedance ZIN (Fig. 11 and Table 2) was probably caused by porosity of a microphone and capillary
tubes of the measuring head (see Fig. 4), contrary to the rigid wall boundary condition (UG¼0) applied to the mathematical
model. The first resonance frequency, F1, for the artificial VT model with hard walls was found to be between 73 and 99 Hz,
which is much lower than the frequency F1ffi190–208 Hz resulting from measurements of transfer functions for the human
vocal tract and confirmed by computations (see Figs. 7, 9 and Table 3). Fig. 2 shows that the size of the epilaryngeal tube of
the subject was approximately 50 percent smaller when holding the breath without phonation than during phonation. The
effect of such a change on F1 can be estimated to be only about 3–4 percent, based on the results of Titze and Story [11], who
calculated that F1 was about 10 percent higher when the cross-sectional area of the laryngeal tube was six times smaller.

The second resonance frequency F2 for the artificial VT model with hard walls was found to be between 5and 560 Hz, and
the agreement between the measured and computed resonance was very good, i.e. less than 1.6 percent (see Tables 1 and 2).
The measured formant frequency F2 for the human vocal tract was found to be higher, i.e. between 630 and 680 Hz (see
Figs. 6 and 9 and Table 3). We should note that the artificial VT was 2.1 cm longer than the model of the human VT. It means
that the relative difference in the total length (VTþtube) of these models was about 5 percent. Therefore, we can expect that
resonance frequencies of the artificial VT are approximately 5 percent lower than resonances of the human VT. Moreover,
the geometry (area function) of the two models was not exactly the same, which could also cause shifts of formant fre-
quencies. Yet, another factor affecting the results was the difference in the speed of sound, which was 343 m/s for the
temperature in the laboratory and 353 m/s in the human VT. The higher speed of sound increases resonances of the human
VT by 2.9 percent.

The two close resonance frequencies between 500 and 1000 Hz, F2 and F3, were clearly distinguishable in the results of
physical and mathematical modelling (see Figs. 7, 10 and 11). In contrast, they were not identified as two peaks in the
measured characteristics of the human vocal tract (see Figs. 6 and 9). This discrepancy between the results from modelling
and those obtained from the human may stem in the fact that the frequency resolution of the mathematical models was
quite high, given by the frequency step of 1 Hz. Another reason could be a higher damping of the acoustic modes in the
human vocal tract due to the interaction of acoustic waves with soft tissues of the VT walls.
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A potential error in the input impedance introduced by omitting the radiation impedance ZT,RAD at the tube output is
insignificant. This is demonstrated in Fig. 7b, where there is practically no difference between the curves for ZT,RAD40 and
ZT,RAD¼0. Even though the transfer function is affected by the omission of ZT,RAD, the effect mainly concerns the level of the
curve, and just minor shifts in the resonance frequencies can be detected (see Fig. 7a).

The comparison between Figs. 10 and 11 shows that the first three clearly visible resonance frequencies of the artificial
vocal tract that resulted from the measured and computed transfer functions fit well with the corresponding resonances
that were detectable in the input impedances. However, the higher peaks in the computed ZIN spectrum above 1900 Hz in
Fig. 11 were suppressed in the computed transfer function curve by adjacent antiresonances around 2000 Hz and 2800 Hz;
see the dashed line in Fig. 10.

Similarly, resonances around 1100 Hz and 1700 Hz that can be seen in Fig. 10 practically vanished in the ZIN spectrum (see
Fig. 11) as a result of very tightly adjacent antiresonances. These antiresonances that are around 275 Hz, 574 Hz, 1008 Hz (cf.
Fig. 11), 1141 Hz, 1730 Hz, 2326 Hz and 2348 Hz could be computed exactly from the frequency equation given by the
numerator of Eq. (7), which is equal to zero as explained in Section 2.3.2. These values represent natural frequencies of the
system (VTþtube) when the glottis is not closed (pG¼0).

We should note that the frequency range studied here (0–3.5 kHz) fits the domain of validity of 1D mathematical model
of the VT for the vowel [u:]. As the maximumwidth of the mouth cavity was 62 mm for the artificial VT, and the maximum
diameter of the mathematical model of the human VT was 41 mm, it can be calculated that the first transversal acoustic
mode could exist above 2.77–2.85 kHz.

Since the estimated formant bandwidths B2, B4, and B5 for the formant frequencies F2 to F5 are practically the same for
the VT model and for the human VT (the difference is less than 10 percent: see Table 4), it can be concluded that the
compliance of the human walls for higher formant frequencies does not influence the acoustic damping of the human VT
cavity prolonged by the tube. The values of the measured bandwidths appear to be narrower than the values found in the
literature for ordinary phonation without a tube: e.g. see [18]. An explanation can be found in the different methods of
measurement. Here we used the transfer function measured between the lips and the open tube end, whereas the spectrum
envelope is usually used as it is described, e.g. in [18]. We should also note that the glass tube used in this study has less
damping than the human vocal tract itself and, depending on the acoustic mode shape, it can influence the resulting
damping of the coupled system (VTþtube).

The computed results shown in Fig. 12 suggest that, for phonation with a resonance tube in the air, F1 does not go lower
than roughly 200 Hz. Thus, it would offer the beneficial effect of increased reactance below this level, i.e. at the fundamental
frequencies typically found in speech. To optimize the effect of vocal tract reactance on phonation, males would probably
need to use longer or narrower tubes, as suggested by the Story's results [9]. When the tube is long or narrow enough, the
effective mechanism eventually changes from acoustic reactance to the magnitude of flow resistance.
4.2. Physical background for the influence of yielding walls on the acoustic resonances of the human vocal tract

Following our previous studies of acoustic structural interaction (see, for example, [19,20]), we can explain the influence
of yielding walls in the vocal tract cavity on the acoustic frequencies by using a simplified model of a coupled mechanical–
acoustical system. Similarly, Rabiner and Schaffer [21] considered the effect of yielding walls on acoustical resonances in a
simple cylindrical cavity (compliant shell) simulating the vocal tract. However, they did not include the mechanical reso-
nance of the structure in their model.

Let us consider the coupled system shown in Fig. 13, consisting of a simplified vocal tract cavity (1) and a tube (2) with
cross-section areas S1 and S2 and lengths L1, L2. The glottis is closed by a yielding wall having a mass M and vibrating with a
displacement w(t) on a spring of stiffness K. The resonance frequencies of such a coupled system are given in the solution of
Fig. 12. First resonance frequency of the human VT prolonged by tubes of different lengths and diameters (d), calculated according to Story [9,12].



Fig. 13. Simplified model of the vocal tract prolonged by a tube and closed with a yielding wall.

Fig. 14. Natural frequencies of the simplified model of the vocal tract prolonged by the tube and closed with the yielding wall.
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the following transcendent frequency equation derived in Appendix B:

ω2þωρ0c0S1
M

U
S2 sin ðkL1Þ cos ðkL2ÞþS1 cos ðkL1Þ sin ðkL2Þ
S2 cos ðkL1Þ cos ðkL2Þ�S1 sin ðkL1Þ sin ðkL2Þ

�ω2
0 ¼ 0; (9)

where k¼ω/c0 is the wavenumber, ω is the angular frequency and ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
is the eigenfrequency of the mechanical

system.
The numerical solution of the frequency Eq. (9) was found for the parameters ρ0¼1.2 kgm�3, c0¼353 ms�1, L1¼16.2 cm,

L2¼26.4 cm, S1¼3.52 cm2, S2¼0.36 cm2 in correspondence with the parameters used above for the acoustical system. The
mechanical resonance frequency was kept constant at 15 Hz as in [12], ω0¼2π �15. The resulting first three natural fre-
quencies are shown in Fig. 14 for the mass M varying from 0 to 3 g.

The results are in agreement with a general analysis of the solution of Eq. (9) presented in Appendix B for two extreme
cases in which the mass M goes to zero or to infinity. The lowest natural frequency Fstruct corresponds to the mechanical
resonance ω0 and varies from Fstruct-0 Hz for M-0 to Fstruct-15 Hz for Mffi3 g. The second natural frequency of the
coupled system corresponds to the first acoustic resonance F1, which is strongly influenced by coupling with the vibrating
wall when the mass M decreases below about two grams. The higher acoustic resonance F2 is influenced by the vibrating
wall in a much smaller range of the mass M¼0–0.2 g. Similarly, a small influence of the yielding wall on the second acoustic
resonance, F2, was found by Hanna et al. [22].

The acoustic resonances of the system for M-0 are equal to frequencies F1¼507 Hz and F2¼710 Hz, corresponding to
the acoustic system with both ends opened: see Eq. (B.16) in Appendix B. The acoustic resonances for M43 g are equal to
the acoustical resonances F1¼84 Hz and F2¼661 Hz, corresponding to the case when the vocal tract is closed by a rigid wall
at the glottis: see Eq. (B.17). The frequency F1 in this case corresponds to the artificial model of the vocal tract used in the
experiments, in which the first resonance frequency was found to be in the range of 73–99 Hz; see Tables 1 and 2.

Titze et al. [23] presented an empirical relation for the vibrational thickness of a female vocal fold as

TVF ¼
10:63 mm

1þ1:69 ðf 0=190 HzÞ; (10)

which results in TVF¼4.2 mm for speaking frequency range f0¼150–160 Hz of our subject. Larsson and Hertegård [24]
measured the length and width of the vocal folds at the speaking fundamental frequency for mezzo-soprano as LVF¼8.4–
11.3 mm and WVF¼3.4–4.6 mm. Considering the simplicity of the triangular shape of female vocal folds [25] and density of
the tissue ρVF¼1020 kgm�3, we can calculate that the vocal folds’ mass Mffi0.2 g. Following the solid line in Fig. 14, we find
that the first acoustical resonance frequency corresponding to 0.2 g is F1¼206 Hz. This value corresponds to F1¼190–208 Hz
found for the human VT; see Table 3. Similarly, the second acoustical resonance frequency F2¼665 Hz corresponds to the F2
measured in humans; see Table 3, in which F2¼630–680 Hz.

We can conclude that the substantial difference in F1 caused by the inclusion of soft walls in the vocal tract model is in
principle given by the acoustic-structural interaction of the acoustic cavity, semiocluded by the tube, with the yielding wall
that can, for example, be created by the soft tissue in the larynx.
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5. Conclusions

The in vitro experiments confirmed the legitimacy of assuming rigid walls in mathematical modelling of the acoustical
resonance properties of the artificial models of a human VT with hard walls. However, similar in vivo experiments carried
out in a real human VT showed a substantial difference between the first resonance (formant) frequency F1 of the rigid wall
VT model and the F1 of real human VT acoustic cavities covered by soft tissues. The differences between the human data and
the data from the rigid-wall VT model were negligible in the case of higher formants. The results of the present study
confirmed the approach of Story et al. [9] by showing that a VT model with yielding walls is necessary when considering
mathematical modelling of human vocal tracts prolonged by tubes. Finally, it was shown that the physical background for
the system behaviour is in principle given by the acoustic-structural interaction of the semi-occluded vocal tract with a
dynamical system originating from a low-frequency mechanical resonance of soft tissue at the glottis, for example the vocal
fold tissue in the larynx.
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Appendix A. A mathematical model of the vocal tract acoustics

A mathematical model of the vocal tract acoustics is based on an analytical solution of a 1D wave equation for acoustic
wave propagation in the vocal tract cavity [9,12,26]:

∂2ϕ
∂x2

þ1
S
U
∂S
∂x

U
∂ϕ
∂x

� 1
c20

U
∂2ϕ
∂t2

þc0 UrN U
∂ϕ
∂t

� �
¼ 0 (A.1)

where ϕ is the flow velocity potential related to the acoustic pressure p and the acoustic volume velocity U by equations

p¼ �ρ0∂ϕ=∂t�c0ρ0rNϕ; U ¼ S∂ϕ=∂x (A.2)

x is the longitudinal coordinate along the vocal tract measured from the vocal folds to lips; t is time; rN is the specific
acoustic resistance per a unit length; S(x) is the cross-sectional area of the cavity; c0 is the speed of sound; and ρ0 is the fluid
density.

The relationship between the acoustic pressure p and the volume velocity U at the input and output of each conical
acoustic element can be described by the transfer matrix as (see [26])

pOUT
UOUT

" #
¼ a b

c d

� �
U

pIN
UIN

" #
; (A.3)

where the elements of the transfer matrix are

a¼ ξ0
ξ0þLe

U cosh γ Le
� �þ 1

γ ξ0
U sinh γ Le

� �� �
;

b¼ �c0ρ0 rNþ j kð ÞUξ0
SIN Uγ ξ0þLe

� � U sinh γ Le
� �

;

c¼ SOUT U
1�γ2ξ0 ξ0þLe

� �� �
U sinh γ Le

� ��γ LU cosh γ Le
� �

γ ξ0þLe
� �2

Uc0ρ0 rNþ j kð Þ
;

d¼ SOUT
SIN

ξ0
ξ0þLe

U cosh γ Le
� �� 1

γ ξ0þLe
� �U sinh γ Le

� � !
;

Le is the length of the conical acoustic element; SIN and SOUT are the respective cross-sectional areas of the element input
and output; γ is a complex exponent given by the formulas

γ ¼ αþ jβ; (A.4)

α¼ rNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rN=k
� �2qr ; β¼ k

2
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rN=k
� �2qr

;

where k¼ω/c0 is the wavenumber; ω is the angular frequency of the harmonic signal and j¼
ffiffiffiffiffiffiffiffi
�1

p
is the imaginary unit.
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The coefficient ξ0 is defined by the input (RIN) and output (ROUT) radii of the element

ξ0 ¼
RIN

ROUT �RIN
UL; (A.5)

and the frequency-dependent viscous losses were considered as

rN ¼ 2
ROUT �RIN

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kμ=c0ρ0

q
; (A.6)

where μ is the dynamic air viscosity.
The acoustic properties of the vocal tract can be described in matrix form as

pL
UL

" #
¼ TVT U

pG
UG

" #
; (A.7)

where TVT is a transfer matrix obtained by multiplying transfer matrices of all elements from the vocal folds to lips

TVT ¼
AVT BVT

CVT DVT

" #
¼ TN UTN�1 U :::UT2 UT1; (A.8)

and N is the number of conical elements. The transfer matrix of the tube assumed to be one cylindrical element with rigid
walls is given by Eq. (A.3) when ξ0-1. The complete system (VTþtube) is described by the transfer matrix T given by the
multiplication of transfer matrices of the VT and the tube:

T¼ TTB UTVT ¼
ATBAVT þBTBCVT ATBBVT þBTBDVT

CTBAVT þDTBCVT CTBBVT þDTBBVT

" #
¼ A B

C D

� �
: (A.9)

The matrix T describes the relationship between the variables at the glottis and the open tube end:

pT
UT

" #
¼ TU

pG
UG

" #
: (A.10)

The output pressure at the open tube end can be written as the output volume velocity by introducing the radiation
impedance (see [7], for example):

pT ¼ ZT ;RAD UUT : (A.11)

Putting Eq. (A.11) into Eq. (A.10), eliminating pG and taking into account the known property of the transfer matrices (see
e.g. [26]), i.e.

det Tð Þ ¼ AD�BC ¼ 1; (A.12)

yields the expression for the transfer function of the complete system,

UT ðωÞ=UGðωÞ ¼ 1= A�C UZT ;RAD
� �

; (A.13)

or a more frequently used transfer function:

pT ðωÞ=UGðωÞ ¼ ZT ;RAD= A�C UZT ;RAD
� �

: (A.14)

Similarly, considering the vocal tract without a tube and loaded by the radiation impedance at the lips,

pL ¼ ZL;RAD UUL; (A.15)

yields the expression for the transfer function of the vocal tract

ULðωÞ=UGðωÞ ¼ 1= AVT �CVT UZL;RAD
� �

: (A.16)

To derive the acoustic input impedance, let us insert again Eq. (A.11) into Eq. (A.10). After eliminating UT, we can express
the ratio of the input pressure to input acoustic volume velocity as

ZIN ¼ pG
UG

¼DUZT ;RAD�B
A�C UZT ;RAD

: (A.17)

If the vocal folds were open during the measurement of the transfer function in vivo, the pressure at the glottis would be
approximately zero (pG¼0). Then we can eliminate UL from Eq. (1),

UL ¼DVT=BVT UpL; (A.18)

and putting Eq. (A.18) into Eq. (2) yields the measured transfer function

pLðωÞ=pT ðωÞ ¼ BVT= ATBBVT þBTBDVTð Þ: (A.19)

The denominator in Eq. (A.19) is identical to the frequency equation of the system with O-OZRAD boundary conditions as
mentioned in Section 2.3.2 when omitting ZT,RAD. Thus, the resonances of the measured transfer function pLðωÞ=pT ðωÞ would
be approximately equal to the resonances of the complete system with the vocal folds open.



V. Radolf et al. / Journal of Sound and Vibration 366 (2016) 556–570 569
We assumed the output loaded by the acoustic radiation impedance of a vibrating circular plate with a radius, R, placed
in an infinite wall (see e.g. [14]) to be

ZRAD ¼ c0ρ0

πR2 U 1� J1 2kRð Þ
kR

þ j
H1 2kRð Þ

kR

� �
; (A.20)

where J1 is the Bessel function of the first kind of order 1 and H1 is the Struve function of order 1.
Appendix B. A mathematical model of acoustic-structural interaction

Considering the coupled mechanical–acoustical system shown in Fig. 13, the equation of motion for the mass M vibrating
on a spring of stiffness K reads

M €w ðtÞþK w ðtÞ ¼ FðtÞ; (B.1)

wherew is the translation of the mass, €w denotes the second derivative of wwith respect to time t and F is the force loading
the mass by the pressure in the vocal tract:

FðtÞ ¼ �S1 Up1ðx1 ¼ 0; tÞ: (B.2)

In the simplest case, when omitting the losses, wave Eq. (A.1) can be written as

∂2ϕ
∂x2

� 1
c20

U
∂2ϕ
∂t2

¼ 0: (B.3)

Considering a harmonic signal of an angular frequency ω, the solution for the velocity potential can be found in the form

ϕ1ðx1; tÞ ¼ϕ01ðx1ÞUejω t ; ϕ01ðx1Þ ¼ α1ejkx1 þβ1e
� jkx1 ; (B.4)

ϕ2ðx2; tÞ ¼ϕ02ðx2ÞUejω t ; ϕ02ðx2Þ ¼ α2ejkx2 þβ2e
� jkx2 ; (B.5)

where indices 1 and 2 correspond respectively to the vocal tract and the tube.
The displacement, w, of the wall is given by

wðtÞ ¼w0 Uejω t : (B.6)

The unknown constants α1, β1, α2, β2 can be obtained from the following boundary and continuity conditions for the
pressure, p, and the acoustic volume velocity U:

_w¼U1ðx1 ¼ 0; tÞ=S1; (B.7)

p2ðx2 ¼ L2; tÞ ¼ 0; (B.8)

p1ðx1 ¼ L1; tÞ ¼ p2ðx2 ¼ 0; tÞ; (B.9)

U1ðx1 ¼ L1; tÞ ¼U2ðx2 ¼ 0; tÞ: (B.10)

Using Eq. (A.2), i.e. p¼ �ρ0∂ϕ=∂t and U ¼ S∂ϕ=∂x, conditions (B.7)–(B.10) yield a system of equations:

α1�β1 ¼ c0w0 (B.11)

α2ejkL2 þβ2e
� jkL2 ¼ 0 (B.12)

α1ejkL1 þβ1e
� jkL1 ¼ α2þβ2 (B.13)

S1 α1ejkL1 �β1e
� jkL1

	 

¼ S2 α2�β2

� �
(B.14)

The solution of Eqs. (B.11)–(B.14) results in complicated relations for constants α1, β1, α2, β2. After putting them into Eqs.
(B.4) and (B.5), deriving the acoustic pressure p1ðx1; tÞ and inserting it into (B.2) and (B.1), we finally get the frequency
equation

ω2þωρ0c0S1
M

U
S2 sin ðkL1Þ cos ðkL2ÞþS1 cos ðkL1Þ sin ðkL2Þ
S2 cos ðkL1Þ cos ðkL2Þ�S1 sin ðkL1Þ sin ðkL2Þ

�ω2
0 ¼ 0; (B.15)

where ω2
0 ¼ K=M is a squared angular mechanical resonance frequency.

A brief analysis of frequency Eq. (B.15) can be done for two extreme cases. When the mass, M, goes to zero (and so does
the stiffness, K, because we assumeω0 to be constant), then the numerator of the second element must be zero and thus, we
obtain the solution ω¼0 and the frequency equation for the open–open system:

S2 sin ðkL1Þ cos ðkL2ÞþS1 cos ðkL1Þ sin ðkL2Þ ¼ 0: (B.16)
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If the mass, M, goes to infinity (and so does K), then ω¼ω0 or the denominator must be zero, which yields the frequency
equation for the closed–open system:

S2 cos ðkL1Þ cos ðkL2Þ�S1 sin ðkL1Þ sin ðkL2Þ ¼ 0: (B.17)
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