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ABSTRACT 

BACKGROUND 

Recent studies have reported the potential of near infrared (NIR) spectral analyzers for 

monitoring the ripeness of grape berries alternatively to wet chemistry methods. This study 

covers various aspects regarding the calibration and implementation of predictive models of 

total soluble solids (TSS) in grape berries using laboratory and in-field collected NIR spectra.  

RESULTS 

The performance of the calibration models obtained under laboratory conditions indicated 

that at least 700 berry samples are required to assure enough prediction accuracy. A 

statistically significant error reduction (οRMSECV=0.1 ºBrix) with p<0.001 was observed when 

measuring berries without epicuticular wax, which was negligible from a practical point of view. 

Under field conditions, the prediction errors (RMSEP=1.68 ºBrix, SEP=1.67 ºBrix) were close to 

those obtained with the laboratory dataset (RMSEP=1.42 ºBrix, SEP=1.40 ºBrix).  

CONCLUSION 

This work clarifies several methodological factors to develop a protocol for in-field assessing 

TSS in grape berries using an affordable, non-invasive, portable NIR spectral analyzer. 

 

KEYWORDS LIST 

NIR spectroscopy; precision viticulture; non invasive sensor; chemometrics; total soluble 

solids content  

 

INTRODUCTION 

Monitoring the ripening of grape berries at several timings during three to four weeks prior to 

harvest is a current practice in the wine industry worldwide. Among the ripeness variables, total 

soluble solids (TSS) accumulation in the berries is a prerequisite for the subsequent alcohol 

content after fermentation in the wine, but in-field sampling and subsequent laboratory analysis 

of the must obtained from the crushed berries is needed. Although widely adopted in the grape 
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and wine industry, two main concerns accompany this method. The first and most critical one is 

the representativeness of the berry sample (usually 100 to 200 berries, or 15-25 whole clusters) 

from a given vineyard plot. Secondly, the destructive and time consuming nature of the analysis 

(conducted in the laboratory), which may prevent it from being replicated as many times as 

needed along the season. To overcome these issues, the use of non-invasive sensors in the 

field, to assess grape composition parameters is a matter of great interest in recent years for 

the wine industry.  

Near infrared (NIR) spectroscopy is a powerful, non-invasive technique that is being 

increasingly applied in food industry thanks to the development of cheaper, faster and more 

accurate sensors.1 It has come to the market as a rapid and affordable technology to replace 

the manual classification or other tedious wet chemistry analyses. Some of the NIR applications 

already implemented in industry include on-line quality control systems2, 3 or multi-function 

sensors to monitor product properties at once4. 

In the wine industry, so far, several works on the application of NIR spectroscopy to wine 

and grapes have already been carried out with promising results. In grape musts, different 

parameters were measured: total soluble solids (TSS),5 phenolic compounds,6-8 pH,5, 9 or 

titratable acidity10 among others. Initial studies assessed maturity with spectra collected from 

must after crushing and mixing different grapes during the ripening process.11, 12 Although 

accurate estimations were obtained, the potential of NIR technology had not been fully 

exploited, as sample preparation was still required. The presentation mode of the berry samples 

was simplified in subsequent works by collecting spectra directly on individual picked grapes 

without crushing the berries10, 13-22 under controlled laboratory conditions. The ultimate step was 

to acquire NIR spectra in vineyards, directly on-the-vine, using portable equipment. Very few 

exploratory studies have addressed this approach,23-25 significantly hindered by the varying 

conditions of field measurements. In the work of Larraín et al. 24 the validation models showed 

R2 varying from 0.87 to 0.93 with size ranges of 144 and 740 samples in Carmenere and 

Chardonnay cultivars, when a portable spectrometer operating between 700 to 1100 nm was 

used. However, no discussion on the suitable number of samples or the TSS range was 

reported. A different device, working in the range of 1600 to 2400 nm, was used by González-

Caballero et al. 23, but due to the limited number of samples, the leave-one-out cross-validation 
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was used, and no results from the obtained models were reported. Neither the influence of 

naturally-occurring substances attached to the berry skin, like the epicuticular wax, has been 

fully addressed. Nevertheless some test were undertaken by Larraín et al. 24 to measure the 

influence of the dust on the quality of the measurements. In the line of the work conducted by 

Mukhtar et al. 26 with plums, a more exhaustive research is still required to characterize the 

epicuticular wax influence in NIR-based predictions. 

From a practical application of portable NIR devices under field conditions, to monitor berry 

ripening from veraison to harvest, several factors such as the minimum number of berry 

samples to build the model, the range of the parameter to be assessed, the influence of the 

epicuticular wax, have not been fully addressed 

Besides, as far as the equipment used for spectra collection is concerned, most of the cited 

studies are based on the use of non-portable laboratory equipment such as diode-array10, 17, 18 

or monochromators,8, 9 which hinders the extrapolation of this methods under field conditions. 

When used to scan samples directly on-the-vine, some authors adapted the laboratory devices 

to the field or they even manufactured their own prototypes of portable NIR spectrometers.15, 24, 

25 All these devices did not hold the required properties for a day-to-day ripening monitoring 

process. On the other hand, new portable NIR devices based on micro-electro-mechanical 

systems (MEMS) technology are nowadays being manufactured at lower cost to ease their 

implementation in industrial applications. However, as reported by Sánchez et al. 27, limited 

information is available on the agricultural and food sector in regard to NIR-MEMS technology. 

Only few authors have addressed the use of MEMS technology in real case studies with several 

types of fruit3, 27, 28 in general, and with grapes13, 23 in particular. There is still a need to clarify all 

the aforementioned aspects regarding the calibration models using this type of portable devices, 

and to develop a practical and handy methodology to boost the in-field implementation of 

portable, low-cost NIR spectroscopy based on MEMS by wineries. 

The present work provides a comprehensive comparison of the different possibilities and 

methodologies to use these portable NIR sensors working in the range of 1600 to 2500 nm 

under field conditions to non-invasively monitor the ripening status of grape berries by means of 

the TSS to meet industrial applications. The goal is to evaluate the influence of various 

methodological factors and to define several practical and methodological guidelines to 
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implement NIR technology under field conditions by analyzing the following aspects: (1) number 

of samples required to calibrate the model, (2) influence of the TSS range of the grape berries 

in the calibration process, (3) impact of the spectral pre-processing techniques in the accuracy 

of predictions, (4) influence of the epicuticular wax on spectra acquisition, and (5) selection of 

an adequate procedure to implement the technology under field conditions without picking 

berries. 

 

MATERIALS AND METHODS 

Samples 

A database of NIR (1600-2400 nm) reflectance data obtained from collected spectra and 

total soluble solids content of Tempranillo (Vitis vinifera L.) berries was created under laboratory 

conditions. Sixty-eight clusters were manually harvested between September and October 2013 

at different locations of Rioja wine appellation in Spain. For each cluster, 25 berries were 

randomly picked for spectra collection, resulting in a final database of 1600 samples. All spectra 

were acquired with a NIR portable spectral analyzer (microPHAZIR™, Thermo Fisher Scientific 

Inc., Waltham, MA). Afterwards, the same berries were individually hand-crushed for total 

soluble solids (TSS, expressed in ºBrix) measurement, which was performed using a digital 

refractometer (model WM-7, Atago CO., LTD, Tokyo, Japan).  

A subset of 100 additional berries was created to study the influence of the epicuticular wax 

covering the berry skin26 on spectra collection. For this purpose, grape berries with virtually 

intact epicuticular wax were selected. Two spectra were collected for each berry. The first one 

was obtained on parts of the berry with intact epicuticular wax. The surface of the whole berry 

was then cleaned with a kimwipe, and the second spectrum was acquired. To maintain similar 

conditions in spectra acquisition, the second shot was roughly taken in the same parts of the 

berry as those used for the first one. 

For the in-field dataset, Tempranillo (Vitis vinifera L.) berries were measured in the field with 

the NIR portable spectral analyzer (microPHAZIR, Thermo Fisher Scientific Inc., Waltham, MA, 

USA) while they were still on the hanging clusters of the grapevines of a commercial vineyard in 

Logroño (La Rioja, 42º26’51’’N, 2º30’06’’O), Spain.  This database of 43 samples was built up 
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with these in field measurements to externally validate the models calibrated with the laboratory 

database. All berries were measured within a single day throughout different vines of the field. 

After spectra acquisition, each berry was promptly placed inside a numbered plastic bag and 

transported to the laboratory under refrigerated conditions (10ºC). Prior to TSS measurement, 

berries were allowed to stabilize at room temperature. 

Spectra collection 

An integrated handheld NIR spectral analyzer (microPHAZIR™, Thermo Fisher Scientific 

Inc., Waltham, MA), designed to analyze diffuse reflection, was used for spectra collection in 

reflectance mode ሺ��� ͳȀܴሻ both in the laboratory and in the field. The analyzer covers the 

wavelength range from 1595.7 to 2396.3 nm in intervals of 8.7 nm (100 bands). Sensor 

integration time was 600 ms. The device was equipped with quartz protection to prevent dirt 

accumulation. Three spectra were obtained per sample and the average spectrum was used 

thereafter. Samples of laboratory database were presented as whole berries. Each individual 

berry extracted from the cluster was placed in contact to the analyzer reflection window (Fig. 

1a). The window was cleaned between measurements to avoid contamination between 

samples. Under field conditions (Fig. 1b), the same presentation mode was replicated but 

berries were not detached from the hanging cluster on the vines for spectrum acquisition. 

Berries were measured when the reflection window of the NIR device was fully touching one 

specific berry of the cluster.  

All spectra were retrieved from the device, saved in ASCII format and imported to R 

software29 for the subsequent analysis. 

Model calibration under laboratory conditions 

The statistical R software was used for the chemometric analysis with packages 

hyperSpec,30 prosprectr,31 pls32 and vegan.33 Before calibration, data were analyzed through 

principal component analysis (PCA).34 In order to improve outlier detection with PCA, a multiple 

scatter correction (MSC)35, 36 filter was used prior to data projection. Outliers were identified 

based on the 95 % confidence ellipse.37 In a further step, additional samples were discarded by 

optimizing the predicting models based on the residuals.1, 38 
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After outlier detection, the influence of the following factors on the quality of predictions was 

evaluated:  

• Size of the calibration set: the predictive models were trained with 18 different 

calibration sets, comprised by a variable number of samples. Spectra were mean 

centered and the calibration set size varied from 50 to 900 samples in intervals of 50 

samples.  

• Influence of TSS range. A benchmark composed by 13 calibration sets was created. 

The TSS range in the different calibration sets varied from 10.3 to 21.6 ºBrix. Calibration 

sets were obtained by performing a proportional stratified sampling between a minimum 

and a maximum value of TSS. The maximum was kept constant and equal to the 

highest TSS value in the laboratory database (29 ºBrix) while the minimum was shifted 

from 4 to 16 ºBrix in 1 ºBrix intervals. Data were mean centered and the number of 

samples was set to 700.  

• Spectral pre-processing techniques.39, 40 The following spectral pre-processing 

techniques were compared; a) mean centering (MC); b) multiple scatter correction 

(MSC); c) standard normal variate (SNV);41 d) de-trending (DT) using first, second and 

third order polynomials,41 and e) the zero first and second order Savitzky-Golay (SG) 

filter using 7 points of smoothing and a second order polynomial.42, 43 A calibration set of 

700 samples was used. 

• Influence of the epicuticular wax. Spectra from intact and cleaned berries were mean 

centered and tested with the calibrated models. Results obtained were statistically 

compared using the parametric paired t-test.44 The Shapiro-Wilk test was prior used to 

test the normality of distributions.45 

In all situations, partial least squares (PLS) regression was the predictive technique 

chosen.46, 47 The whole spectral range was used as inputs for all calibrated models. Besides, in 

the majority of cases and for the calibration of the final predictive model, the pre-processing 

technique mean centering and a calibration set of 700 samples were used according to the 

results obtained after analyzing these factors separately. The prediction errors of models were 

estimated by k-fold Cross-Validation (CV).48 The final k value used was 10 in order to balance 

the bias and computational efficiency on the basis of the size of the calibration set. The number 
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of latent variables (LV) was sequentially increased until reaching the first relative minimum in 

the root mean squared error of cross validation (RMSECV). Hence, models with a minimum 

number of LV were developed avoiding over-fitting.49 An external validation set was used to test 

model prediction capabilities. The size of the external validation set was the 30 % of the 

corresponding calibration set used. To assess the effect of the presence of the epicuticular wax 

on the berries, external validation was not implemented due to the low number of available 

samples. Instead, the 10 CV procedure was repeated 100 times (100 x 10 CV) to perform a 

proper statistical comparison.50 For each predictive model, the statistics computed were: 

coefficient of determination (R2), root mean square error (RMSE), standard error (SE) and bias. 

All of them were obtained for calibration (C), cross validation (CV) and prediction (P) sets. 

Besides, the residual predictive deviation (RPD),51 which is defined as the ratio between the 

standard deviation of the prediction set (SD) and the standard error of prediction (SEP), was 

calculated. A RPD higher than 3 is widely associated to a good predictive ability of calibration 

models for screening processes.52 

External validation against field data 

Outlier detection in the field database was performed using PCA. First, the 95% confidence 

ellipse was computed and displayed over the PC score plot of laboratory samples. Then, field 

samples were added to the PC score plot using the PC loadings obtained with the laboratory 

samples. Field samples that fell out of the ellipse were automatically discarded. The best 

calibration model trained using laboratory data was tested with field data and the statistics listed 

above for the calibration process were again computed. 

  

RESULTS 

Figure 2 shows the NIR spectra of both, laboratory (Fig. 2.a) and field (Fig. 2.b) acquisitions. 

All field spectra fell within the interval of laboratory spectra, enabling the implementation of a 

model calibrated with the laboratory spectra under field conditions. A strong peak was observed 

around 1950 nm due to OH absorption, reflecting mainly water.8 Looking at the interquartile 

range (shadow area), a constant variation was observed in the range scanned, shrinking only in 

the region before the OH peak. As shown in Table 1, TSS values in the general laboratory set 
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ranged from 4.6 to 29.9 ºBrix, as sample picking extended from incipient veraison to harvest. 

The TSS ranged from 9.8 to 26.7 ºBrix in the subset of 100 samples selected for analyzing the 

influence of the epicuticular wax. Based on the 95% confidence interval, 30 samples of the 

general set and 4 of the epicuticular wax subset were removed. Additionally, 10% of the 

remaining samples were discarded based on the residuals plot. This procedure led to a general 

set of 1323 samples and an epicuticular wax subset of 85 samples. Calibration and prediction 

sets for each experiment (Table 1) were created by proportional stratified sampling from the 

original cleaned general set throughout the whole TSS range. 

Size of the calibration set 

Figure 3.a shows the evolution of R2 and RMSE in the predictive models trained with 18 

different calibration sets of different number of samples. A significant variation of both, R2 and 

RMSE, was observed for a number of samples, n, lower than 250. Calibration and CV errors 

stabilized when the size of the calibration set, n, surpassed 250 samples. However, RMSEP 

and R2P still exhibited substantial oscillations for calibration sets between 250 and 700 samples 

(250<n<700). As expected, they both improved as the size increased; however, prediction 

errors did not stabilized until the size of calibration set reached 700 samples (n>700). 

Range of the dependent variable in the calibration database 

Figure 3.b depicts the evolution of the absolute and relative errors for different ranges of the 

dependent variable in the calibration set, that is, RMSE and R2 respectively. Thirteen different 

calibration sets were used with different values of TSS range: 10.3, 11.3, 12.3, 13.2, 14.3, 15.3, 

16.3, 17.3, 18.2, 19.3, 20.2, 21 and 21.6 ºBrix. Results showed that all RMSEs slightly improved 

when models were trained with lower values of TSS range. RMSEP went from 1.51 to 1.31 ºBrix 

for calibration ranges from 21.6 to 10.3 ºBrix. However, the relative error (R2) substantially 

declined when the TSS range in the calibration set diminished. The value of R2P dropped from 

0.90 to 0.73 for calibration ranges of 21.6 and 10.3 ºBrix, respectively. 

Pre-processing techniques  

Eight pre-processing techniques were compared using the whole spectrum and a calibration 

set of 700 samples. The option of no pre-processing the spectra was also included in the study 

and labeled as raw. Models were optimized based on their internal validation results, but the 
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performance of each pre-processing technique was evaluated using the external validation set. 

In all situations, the training errors (C) were close to the expected generalization errors (CV) 

and real generalization errors (P). This proved an absence of over-fitting during the training 

process. As shown in Table 2, the techniques with the lowest prediction errors were SG0 using 

13 latent variables (RMSEP=1.46 ºBrix, SEP=1.52 ºBrix), DT1 using 12 latent variables 

(RMSEP=1.47 ºBrix, SEP=1.53 ºBrix), MC using 16 latent variables (RMSEP=1.42 ºBrix, 

SEP=1.40 ºBrix) and the option of no pre-processing, with 15 latent variables (RMSEP=1.45 

ºBrix, SEP=1.52 ºBrix). Moreover, most of the calibrations showed a RPD > 3 which confirmed 

the good performance of the models.  

MC exhibited the best predictive capacity with a RPD = 3.36 with 16 latent variables, which 

accounted for the 99 % of variance in X and 95 % of variance in Y. The number of latent 

variables was selected by optimizing the RMSECV. PLS loading weights of the four first latent 

variables of this model are shown in Figure 4.b. The first LV remained relatively constant 

throughout the whole range of wavelengths, which revealed the importance of the integral 

component as a predictor. However, the next loading showed a significant variation within the 

range of 1800 - 2100 nm, where the absorption peak due to water occurred. The regression 

coefficients depicted in Figure 4.a also remarked the importance of the range highlighted 

before. 

Influence of the epicuticular wax on spectra acquisition 

Boxplots in Figure 5 depict the RMSECV and R2V distribution after performing a 100 x 10 CV 

with the subset for epicuticular wax analysis. The RMSECV for intact berries ranged from 1.32 

to 1.47 ºBrix with an average of 1.40º Brix, whereas this range was extended from 1.22 to 1.43 

ºBrix with a mean RMSECV of 1.31 ºBrix after cleaning the berries. The differences between 

means of RMSECVs and R2CVs in models trained with cleaned and intact berries were 

evaluated using the parametric paired t-test. Prior the use of the t-test, data normality was 

checked by Saphiro-Wilk test (p-value > 0.05). The test yielded p-values for cleaned and intact 

berries of 0.498 and 0.487 for both RMSECV distributions and 0.309 and 0.567 for R2CV, 

enabling the use of the paired t-test. Statistically significant differences were found in both 

parameters between the intact and cleaned berries datasets (p-value < 0.001).  
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Model implementation under field conditions 

TSS values for grape berries in field data ranged from 15 to 23.5 ºBrix, which was within the 

range of the laboratory set used for calibration (Table 1). This field set was used to externally 

validate the best model calibrated with laboratory samples, i.e. a PLS model trained with mean 

centered data and calibration set of 700 samples. For outlier detection, field samples were 

plotted over the principal components (PC) score plot of the laboratory data used to train the 

predictive model (Fig. 6). No outliers were identified with this procedure as all field points fell 

within the 95% confidence ellipse of laboratory data. 

Predictions obtained with the laboratory model in field data were plotted against the real field 

values in Figure 7. These results were compared against the predictions obtained with same 

model in the laboratory prediction (P) set. Under field conditions, a RMSEP=1.68 ºBrix and a 

SEP=1.67 ºBrix were obtained; close to the errors obtained with the external validation set from 

the laboratory (RMSEP=1.42 ºBrix and SEP=1.40 ºBrix). However, the R2P under field 

conditions (R2P=0.38) was considerably lower than the one obtained in the laboratory 

(R2P=0.91). This was a consequence of the influence of the distribution of data in the coefficient 

of determination, as this statistic evaluates the quantity of variance (SD2) explained by the 

model. This variance was substantially higher in the laboratory prediction set (SD2=22.03 ºBrix2) 

than in the field set (SD2=4.61 ºBrix2) because field samples were collected within a single day. 

Therefore, and in order to facilitate an even comparison of the results, all statistics were again 

computed in a subset of the laboratory prediction set where similar conditions to those of the 

field prediction set were simulated. This new subset was sampled from the laboratory prediction 

set (n=175) with the same size (n=43) and a similar range and variance (SD2=4.21 ºBrix2) than 

the field set. In this sampled subset, the RMSEP remained roughly constant (RMSEP=14.8 

ºBrix) but the R2P drastically decreased (R2P=0.47), as it occurred with the field prediction set. 

 

DISCUSSION 

The viability of monitoring the grape ripening status using NIR technology without the 

necessity of crushing grapes prior to measurements has already been proved by several 

authors.10, 13, 14, 18, 19, 24 However, more research on how to translate these results to in-situ 

vineyard monitoring was needed to evaluate the potential of NIR portable systems. For this 
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purpose, the present work was designed to investigate into several methodological factors to 

apply NIR technology under field conditions for industrial application, rather than outperforming 

the existing studies in terms of accuracy. Hence, a PLS model was trained with a calibration set 

built under laboratory conditions, with the aim of having higher quality spectra, and 

subsequently tested with in-field collected spectra, directly on-the-vine. In terms of accuracy, the 

errors obtained with our calibration set (R2CV=0.89, RMSECV=1.51 ºBrix, R2P = 0.91; RMSEP 

= 1.41 ºBrix) were similar to those reported by Guidetti et al. 25 (RMSEP = 1.48 ºBrix), 

Bellincontro et al. 13 (RMSEP = 0.72 ºBrix; R2P = 0.92), Barnaba et al. 19 (RMSEP = 0.93 ºBrix, 

R2P = 0.94), González-Caballero et al. 10 (R2CV =0.91) and Cao et al. 14 (RMSEP = 0.93 ºBrix; 

R2P = 0.91). In these studies, spectra were directly collected from intact berries under controlled 

laboratory conditions but with more costly and complex analyzers, operating in different 

wavelength ranges, mainly designed for indoor spectra acquisition.  

Among the methodological factors to be studied, the size of the calibration dataset was the 

first one attempted, as the number of samples required to calibrate the model was a key 

parameter. Similar works, where the intact berries were used, displayed some discrepancies 

regarding this factor; from the 251 samples used by González-Caballero et al. 18, through 108 

used by González-Caballero et al. 10, 96 used by Barnaba et al. 19, 450 used by Bellincontro et 

al. 13 to the 3,135 samples used by Kemps et al. 17. Although it might seem evident a priori that 

the larger the number of samples the more accurate and stable predictions could be obtained, 

the effort required to create these calibration sets must also be taken into account. Our results 

showed that a calibration set with less than 250 samples was clearly insufficient. Acceptable 

results in terms of stability were obtained with calibration sets between 250 and 700 samples, 

and no further improvement was appreciated beyond 700 samples. Consequently, a minimum 

of 250 samples is required to perform any reliable exploratory analysis, while 700 or more 

samples would be sufficient to develop a robust model for practical applications of the model as 

an on-line sensor.  

Another important factor when building the calibration set was the TSS range of the grape 

berries sampled. In this regard, the value of R2 significantly increased along the TSS range. For 

a virtually constant absolute error (RMSE), the relative error (R2) varied due to the change on 

variance caused by the different values of the TSS range. These results suggest that 
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comparison between models trained with different datasets, even if the same spectral range is 

covered, must be cautiously done. In order to ensure a fair comparison, the same calibration 

conditions must be followed, i.e, same variety, similar number of samples and same TSS range. 

Therefore, results of the present study, which included Tempranillo berries throughout the whole 

industrial ripening process up to 29.9 ºBrix, cannot be properly compared with other studies in 

which even raisins have been sampled.10, 18 

The potential noise introduced by the epicuticular wax in the spectra was the last factor 

discussed regarding calibration. Statistically significant lower prediction errors were found after 

cleaning the berries’ surface (p<0.001), but this improvement was overlooked under a normal 

use of TSS values. The increase in accuracy in terms of RMSE was 0.1 ºBrix, which does not 

compensate for the effort put in cleaning the berries. Moreover, the removal of this protective 

layer accelerates the water loss of the berry and worsens its visual appearence.26 

Consequently, authors agree with the preliminary trials conducted by Larraín et al. 24, who 

reported that no statistical difference was observed between sampling grape berries with or 

without dust, which ultimately had a similar effect as the epicuticular wax in spectra acquisition. 

The lack of necessity of berry cleaning prior to NIR spectra acquisition with the portable device 

is an important outcome that can facilitate the application of this non-invasive technology under 

field conditions. 

Once the optimally sized calibration set was determined and other methodological aspects 

clarified, the next step was to perform a chemometric analysis. After outlier removal, different 

pre-processing techniques were evaluated. Previous studies have utilized a wide variety of 

these techniques and even combinations of them. Several authors reported that the best 

predictions were obtained with SNV plus detrending,10 first order derivative,17, 20 mean 

centering,13 mean centering plus SNV19 or even no pre-processing.14, 24 According to our 

results, the best performing techniques were Savitzky-Golay filter of zero order, detrending 

using a first order polynomial, mean centering and the option of no pre-processing (raw). 

Following an approach based on the parsimony principle,53 in which the simplest method should 

be selected when several are equivalent in terms on accuracy and precision, no pre-processing 

could have been selected a priori. However, MC was the chosen option because more stable 

predictions were obtained with PLS regression when data were MC and presented as variations 
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around the mean.1 This increase on stability was clearly appreciated with a bias reduction in the 

prediction set from -0.22 to 0.04 when MC was used. In fact MC spectra is almost similar to the 

not pre-processed data, as MC is just a requirement when using PLS. Hence, our findings 

agree with the results obtained by Bellincontro et al. 13, Larraín et al. 24, who reported that not 

significant improvement was observed using various pre-processing techniques. In this way, 

Nicolai et al. 38 also stated that there did not seem to be a large advantage of either 

transformation method compared to the untransformed data, and the acquisition of spectra of 

upmost quality was stressed.  

The best calibration model with the laboratory database was used to predict the TSS 

contents in grape berries using their spectra collected directly on-the-vine under field conditions. 

A small difference in terms of RMSEP and SEP between laboratory and field errors proved the 

suitability of NIR spectroscopy to perform in-field measurements of TSS directly on-the-vine. 

The low R2P obtained was a direct consequence of collecting all field samples within a single 

day, which led to low variance (SD2=4.61 ºBrix2) compared to the one of the real population 

(SD2=22.03 ºBrix2). This fact was demonstrated by simulating the existing conditions in the field 

set in a subset sampled from the laboratory prediction set. In this new subset, R2P drastically 

dropped to 0.47 despite the initial value of 0.91 computed using the whole laboratory prediction 

set. Conversely, RMSEP did not experience a significant variation (RMSEP = 1.42 vs. RMSEP 

= 1.48 ºBrix). This proved that low R2 values, such as those obtained using field data, do not 

necessarily imply a bad fit of the model. It is important to note that R2 is only a valid statistic 

when a dataset with range and variance close to the true variance and range of the real 

population studied is available. Besides, and in line with the results of the TSS range analysis, 

all of this suggests that absolute errors such as RMSE can provide a more appropriate level of 

assertiveness than R2 when evaluating models performance through different datasets.48 

Consequently, the RMSE is preferable than R2 when evaluating the quality of predictions 

obtained in a short period of time. 

Our results demonstrate the suitability of portable NIR spectroscopy operating in the range 

of 1600 to 2500 nm, to be used under field conditions to assess the TSS in grape berries. 

Additionally, this type of portable NIR sensors may be used to characterize the spatial variability 

of sugar accumulation at any time prior to harvest if used in combination with a GPS system, 
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which could allow the georeferencing of the measurements. This information can also be of 

great importance in the frame of the application of precision viticulture strategies aimed at 

performing selective harvesting to increase the profitability and quality of the wines. Overall, the 

proficiency of NIR portable spectroscopy under field conditions to assess the TSS in the berries 

was proved and practical and methodological aspects to ensure a proper use of this technology 

were studied. 

 

CONCLUSIONS 

Results obtained in the present study entail an additional step for the use of portable NIR 

spectral analyzers as non-destructive sensors to monitor the total soluble solid content in grape 

berries under field conditions. A deeper understanding of various methodological aspects for the 

assessment of TSS using non-invasive portable NIR devices was provided. In this regard, a 

minimum of 700 intact berry samples, covering a TSS range of 18 ºBrix was recommended to 

build a robust calibration spectral set. Of the different spectral pre-processing techniques, the 

simplest options, which were mean centering and no-pre-process, were those showing the best 

accuracy performance. The presented results are of special interest for the grape and wine 

industry as the use of this non-invasive technology enables the monitorization of sugar 

accumulation across the ripening process at many points as needed to ensure their 

representativeness at no expense of yield reduction and time consumption.  
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TABLES 

Table 1. Statistical parameters of laboratory and in-field sets for total soluble solids (ºBrix) evaluation.   
 Set N Min Mean Max SD
Laboratory  Total  1600 4.60 18.39 29.91 5.11 

Size of the calibration set Calibration 50 - 900 5.90 - 4.60 18.63 - 18.65 25.50 - 26.40 4.67 - 4.62 

 Prediction 13 - 225 4.60 - 4.80 18.65 - 18.66 27.90 - 27.90 4.63 - 4.68 

Influence of the TSS range Calibration 700 4.60 - 16.10 18.53 - 20.75 26.90 - 26.40 4.67 - 2.44 

 Prediction 175 4.60 - 16.10 18.48 - 20.77 26.90 - 26.90 4.75 - 2.48 

Spectral pre-processing techniques Calibration 700 4.80 18.63 26.90 4.63 

  Prediction 175 4.60 18.53 26.10 4.71 

Epicuticular wax analysis Total  100 9.82 20.47 26.70 3.15 

 Calibration 85 13.22 20.29 26.70 2.94 

 Prediction - - - - - 

In-field Total  43 15.00 19.63 23.50 2.15 

 Calibration - - - - - 

 Prediction 43 15.00 19.63 23.50 2.15 

Number of samples (N), minimum (Min), maximum (Max) and standard deviation (SD). The "total" set includes all recorded samples prior outlier detection while "calibration" 
and "prediction" sets were the ones used for model training and testing respectively after outlier detection and subsampling. 
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Table 2. Results of calibration, internal validation and prediction of PLS regression using laboratory dataset with different pre-processing techniques applied 

to whole-spectrum.  
 

Pre-processing 
method 

Calibration (C) Cross-Validation (CV) Prediction (P)
R2C RMSEC SEC Bias LV R2CV RMSECV SECV R2P RMSEP SEP Bias RPD

RAW 0.92 1.30 1.30 0.00 15 0.90 1.48 1.48 0.91 1.45 1.52 -0.22 3.10 

MC 0.92 1.28 1.28 0.00 16 0.90 1.49 1.49 0.91 1.42 1.40 0.04 3.36 

MSC 0.90 1.52 1.52 0.00 11 0.88 1.69 1.69 0.87 1.74 1.73 0.05 2.72 

SNV 0.91 1.47 1.47 0.00 13 0.88 1.66 1.66 0.89 1.58 1.53 0.15 3.08 

DT1 0.91 1.34 1.34 0.00 12 0.89 1.54 1.54 0.90 1.47 1.53 -0.17 3.08 

DT2 0.90 1.40 1.40 0.00 11 0.87 1.59 1.59 0.89 1.53 1.53 0.00 3.08 

DT3 0.90 1.45 1.45 0.00 11 0.87 1.66 1.66 0.87 1.65 1.60 0.19 2.94 

SG0 0.91 1.36 1.36 0.00 13 0.90 1.47 1.46 0.90 1.46 1.52 -0.17 3.10 

SG1 0.91 1.39 1.39 0.00 9 0.89 1.48 1.48 0.88 1.58 1.56 0.07 3.02 

SG2 0.91 1.36 1.36 0.00 20 0.88 1.57 1.58 0.87 1.65 1.68 -0.08 2.80 

 

Pre-processing techniques: Mean centering (MC), multiple scatter correction (MSC), standard normal variate (SNV), de-trending using first (DT1), second 

(DT2) and third order polynomials (DT3) and Savitzky-Golay filter of zero (SG0), first (SG1) and second order (SG2). 

Performance measurements: coefficient of determination of calibration (R2C), cross validation (R2CV) and prediction (R2P), root mean square error of 

calibration (RMSEC), cross validation (RMSECV) and prediction (RMSEP), standard error of calibration (SEC), cross validation (SECV) and prediction (SEP), 

number of latent variables (LV) and residual predictive deviation (RPD). 
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