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Abstract

Simulation-based forecasting methods for a non-Gaussian noncausal vector autore-

gressive (VAR) model are proposed. In noncausal autoregressions the assumption

of non-Gaussianity is needed for reasons of identifiability. Unlike in conventional

causal autoregressions the prediction problem in noncausal autoregressions is gen-

erally nonlinear, implying that its analytical solution is unfeasible and, therefore,

simulation or numerical methods are required in computing forecasts. It turns

out that different special cases of the model call for different simulation proce-

dures. Monte Carlo simulations demonstrate that gains in forecasting accuracy

are achieved by using the correct noncausal VAR model instead of its conven-

tional causal counterpart. In an empirical application, a noncausal VAR model

comprised of U.S. inflation and marginal cost turns out superior to the best-fitting

conventional causal VAR model in forecasting inflation.

Keywords: Noncausal vector autoregression, forecasting, simulation, importance

sampling, inflation.

1. Introduction

The conventional vector autoregressive (VAR) model has become a standard

tool in various fields of applications. In economics and finance the VAR model is

typically used in structural analysis to study the dynamics and interrelationships
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between variables of interest. Another application of the VAR model is forecasting.

For instance, economic decision makers, such as central banks and investors in

financial markets, aim to forecast key macroeconomic and financial time series to

assess the future state of the economy and investment opportunities.

The conventional causal VAR model has a moving average representation in

terms of its present and past error terms. A characteristic feature of this model

is that its error terms are not predictable by past values of the involved time se-

ries. In contrast, the moving average representation of the non-Gaussian noncausal

VAR model recently considered by Davis and Song (2010) and Lanne and Saikko-

nen (2013) also involve future error terms that are predictable by past values of

the considered time series. In addition to theoretical advancements these authors

demonstrate the practical usefulness of the noncausal VAR model in economic

and financial applications. As discussed by Lanne and Saikkonen (2013), an im-

portant economic application of the noncausal VAR model is checking the validity

of widely used test procedures based on the causal VAR model in testing economic

hypotheses, especially in models involving expectations.

As yet, the development of the noncausal VAR model is at its early stages

and even the literature of univariate noncausal autoregressive models is scant (see

Breidt et al. (1991), Rosenblatt (2000), Davis and Song (2010), Lanne and Saikko-

nen (2011, 2013) and the references therein). As demonstrated in this previous

literature, noncausal autoregressions can be distinguished from their causal coun-

terparts only when the data generation process is non-Gaussian. In noncausal

autoregressions non-Gaussianity can therefore be seen as a necessary identifica-

tion condition. The object of this paper is to devise forecasting techniques for the

non-Gaussian noncausal VAR model of Lanne and Saikkonen (2013). In addition

to computing forecasts these techniques are also needed in computing impulse re-

sponse functions, and hence in conducting structural analysis within the noncausal

VAR model. Thus, our contribution should widen the applicability of the noncausal

VAR model in empirical research.

In the causal VAR model, forecasting is simple in that explicit formulas are
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available. In the noncausal VAR model the situation is different because the pre-

diction problem is, in general, nonlinear and, consequently, forecasts cannot be ob-

tained without resorting to numerical methods. Further discussion on this point is

provided by Lanne, Luoto, and Saikkonen (2012b) who develop a simulation-based

forecasting method for the univariate noncausal AR model proposed by Lanne and

Saikkonen (2011). It turns out that forecasts of the noncausal VAR model consid-

ered in this paper can be computed analogously only when a suitable condition on

the structure of the model holds. One case where the required condition always

holds is the purely noncausal VAR model whose moving average representation

only involves present and future error terms. In general, the required condition

states that a certain parameter matrix involving the autoregressive coefficients of

the model is nonsingular. Due to estimation errors this nonsingularity always holds

in practice but, to avoid potential problems with nearly singular cases, we develop

a forecasting technique which does not depend on the structure of the model. To

achieve this robustness, more demanding computations based on importance sam-

pling are needed. A somewhat similar technique has recently been used by Breidt

and Hsu (2005) in forecasting non-Gaussian and potentially noninvertible (univari-

ate) moving average processes (for a general discussion of importance sampling,

see, e.g., Geweke (1996)).

We examine the properties of our forecasting techniques by means of Monte

Carlo simulations which also provide guidance for some user-chosen quantities

needed in the application of these techniques. The simulations conducted demon-

strate that our forecasting techniques perform well and that the correct noncausal

VAR model outperforms its causal counterpart in forecast accuracy.

Although empirical experience of noncausal VAR models is still very limited,

the findings of Lanne, Nyberg, and Saarinen (2012c) based on applying univariate

autoregressions to a large economic data set suggest that noncausality is quite

prevalent among economic time series (see also Lof (2013)). The related work of

Lanne, Luoma, and Luoto (2012a) and Lanne et al. (2012b) complement these

findings by demonstrating that the univariate noncausal AR model outperforms
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its conventional causal counterpart in forecasting U.S. inflation. Our empirical

application to inflation forecasting is partly motivated by the work of these previous

authors. We consider a bivariate system consisting of inflation and the real marginal

cost that has often been employed in monetary economics, especially in studies

related to the New Keynesian Phillips Curve (see, e.g., Gali and Gertler (1999),

Nason and Smith (2008), and the references therein). Our results are similar to

those obtained by Lanne et al. (2012a, 2012b). We find that a noncausal VAR

model provides the best in-sample fit and outperforms the best-fitting causal VAR

model in out-of-sample forecasting.

The rest of the paper is structured as follows. Section 2 describes the non-

causal VAR model of Lanne and Saikkonen (2013) and briefly discusses statistical

inference. Section 3 develops the forecasting techniques of the paper, while Sec-

tion 4 illustrates their performance by Monte Carlo simulations. Section 5 presents

the empirical application. Section 6 concludes. Finally, some technical details are

collected in four appendices.

2. Noncausal VAR model

In this section, we first describe the noncausal VAR model of Lanne and Saikko-

nen (2013) and then discuss briefly parameter estimation and statistical inference.

Unless otherwise indicated, all vectors will be treated as column vectors and, for

notational convenience, we shall write x = (x1, ..., xn) for the (column) vector x

where the components xi may be either scalars or vectors (or both).

2.1. Model

Following Lanne and Saikkonen (2013) we consider the n-dimensional stochastic

process yt (t = 0,±1,±2, ...) generated by

Π (B)Φ
(

B−1
)

yt = ǫt, (1)

where ǫt (n × 1) is a sequence of independent, identically distributed random vec-

tors with zero mean and finite positive definite covariance matrix, and Π (B) =

In − Π1B − · · · − ΠrB
r and Φ (B−1) = In − Φ1B

−1 − · · · − ΦsB
−s are n × n
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matrix operators with B the usual backward shift operator, that is, Bkyt = yt−k

(k = 0,±1, ...). Moreover, the determinants of the matrix polynomials Π (z) and

Φ (z) (z ∈ C) have their zeros outside the unit disc, so that

det Π (z) 6= 0, |z| ≤ 1, and det Φ (z) 6= 0, |z| ≤ 1. (2)

These conditions guarantee the validity of various moving average representations

to be used in our subsequent developments.

If Φj 6= 0 for some j ∈ {1, .., s}, equation (1) defines a noncausal vector au-

toregression referred to as purely noncausal when Π1 = · · · = Πr = 0 (or r = 0).

When Φ1 = · · · = Φs = 0 (or s = 0) the conventional causal model is obtained.

Then the former condition in (2) guarantees the stationarity of the model. In the

general set-up of model (1) the same is true for the process

ut = Φ
(

B−1
)

yt. (3)

Specifically, there exists a δ1 > 0 such that Π (z)−1 has a well defined power series

representation Π (z)−1 =
∑

∞

j=0 Mjz
j = M (z) for |z| < 1 + δ1. Consequently, the

process ut has the causal moving average representation

ut = M (B) ǫt =

∞
∑

j=0

Mjǫt−j , (4)

where M0 = In and the coefficient matrices Mj decay to zero at a geometric rate

as j → ∞.

Write Π (z)−1 = det (Π (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint polyno-

mial matrix of Π (z). Then, det (Π (B)) ut = Ξ (B) ǫt and, by the definition of ut

in (3),

Φ
(

B−1
)

wt = Ξ (B) ǫt,

where, setting det (Π (z)) = a (z) = 1 − a1z − · · · − anrz
nr,

wt = det (Π (B)) yt = a(B)yt. (5)

Note that Ξ (z) is a matrix polynomial of degree at most (n − 1) r and, because

Π (0) = In, we also have Ξ (0) = In. By the latter condition in (2) one can find a
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0 < δ2 < 1 such that Φ (z−1)
−1

Ξ (z) has a well defined power series representation

Φ
(

z−1
)

−1
Ξ (z) =

∞
∑

j=−(n−1)r

Njz
−j = N

(

z−1
)

for |z| > 1 − δ2. (6)

Thus, the process wt has the moving average representation

wt =
∞
∑

j=−(n−1)r

Njǫt+j , (7)

where the coefficient matrices Nj decay to zero at a geometric rate as j → ∞.

Using the equalities in (6) one can solve these matrices recursively as functions of

the parameters Πj (j = 1, ..., r) and Φj (j = 1, ..., s) (see Appendix A.1). Finally,

from (2) one obtains the moving average representation

yt =
∞
∑

j=−∞

Ψjǫt−j , (8)

where Ψj (n × n) is the coefficient matrix of zj in the Laurent series expansion of

Ψ (z)
def
= Φ (z−1)

−1
Π (z)−1 which exists for 1 − δ2 < |z| < 1 + δ1 with Ψj decaying

to zero at a geometric rate as |j| → ∞. The representation (8) implies that yt is a

stationary and ergodic process with finite second moments.

Model (1) is referred to as the VAR(r, s) model. In the conventional causal

case the abbreviation VAR(r) is also used. In the next section, we present the

joint distribution of an observed time series generated by the VAR(r, s) process.

This joint distribution is needed in the development of our forecasting methods and

it also facilitates our discussion on parameter estimation and statistical inference.

2.2. Joint distribution of the VAR(r, s) process

As discussed in the Introduction, causal and noncausal autoregressions cannot

be distinguished by second-order properties or the Gaussian likelihood. Therefore,

it is necessary to assume that the error term ǫt is non-Gaussian. The theoretical

results of Lanne and Saikkonen (2013) assume that the distribution of ǫt is of

a fairly general elliptical form. However, an inspection of the arguments used in

Section 3.1 of that paper reveals that this assumption is not needed to derive

the distribution of the observed data and, therefore, it is not necessary for our
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forecasting methods. Thus, unless otherwise indicated we only assume that the

(non-Gaussian) distribution of ǫt is continuous with density function f (·), whose

possible dependence on (unknown) parameters is not made explicit.

A detailed derivation of the joint distribution of the observed data can be found

in Lanne and Saikkonen (2013), so here we only describe the final result. To this

end, define the n × 1 vectors

vk,T−s+k = wT−s+k −
−k
∑

j=−(n−1)r

NjǫT−s+k+j, k = 1, ..., s, (9)

where the sum is interpreted as zero when k > (n − 1) r, that is, when the lower

bound exceeds the upper bound (this convention will also be used elsewhere). Note

also that, by (1) and (5), vk,T−s+k can be expressed as a function of the observed

data y1, ..., yT and that, by (7), the representation vk,T−s+k =
∑

∞

j=−k+1 NjǫT−s+k+j

holds, showing that vk,T−s+k, k = 1, ..., s, are independent of ǫt, t ≤ T − s. We also

introduce the vector z = (z1, z2, z3) where z1 = (u1, ..., ur), z2 = (ǫr+1, ..., ǫT−s),

and z3 = (v1,T−s+1, ..., vs,T ) are independent in view of the preceding discussion

and (4). These vectors can be expressed as functions of the observed data (and

parameters), and in what follows we use a tilde to make this functional dependence

explicit. Thus, the components of the vectors z̃1 and z̃2 are ũt = Φ (B−1) yt,

t = 1, ..., r, (see (3)) and ǫ̃t = Π (B) Φ (B−1) yt, t = r + 1, ..., T − s, (see (1)),

respectively, whereas the components of z̃3, ṽk,T−s+k, are defined by replacing

wT−s+k and ǫT−s+k+j on the right hand side of (9) by a (B) yT−s+k (see (5)) and

ǫ̃T−s+k+j, j = − (n − 1) r, ....,−k, k = 1, ..., s, respectively.

It is shown in Section 3.1 of Lanne and Saikkonen (2013) that the random vector

z is related to the data vector y = (y1, ..., yT ) according to z = H3H2H1y, where

H1, H2, and H3 (T ×T ) are nonsingular transformation matrices that depend on

the parameters Πj (j = 1, ..., r) and Φj (j = 1, ..., s) with H2 and H3 having unit

determinant. Thus, it follows that the joint density function of the data vector y

is given by (assuming T large enough)

p (y) = hz1
(z̃1) ·

T−s
∏

t=r+1

f (ǫ̃t) · hz3
(z̃3) · |det (H1)| , (10)
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where hz1
(·) and hz3

(·) signify the density functions of the random vectors z1 and

z3, respectively. For our subsequent developments the explicit expression of the

matrix H1 is not relevant because the determinant term |det (H1)| will vanish from

our forecasting formulas. In the purely noncausal case the joint density function

p (y) can be simplified by replacing the first factor hz1
(z̃1) by unity, setting r = 0

and ǫ̃t = Φ (B−1) yt in the second factor, and z̃3 = (yT−s+1, ..., yT ) in the third

factor.

We shall now briefly discuss parameter estimation and statistical inference in

the VAR(r, s) model (1). Following Lanne and Saikkonen (2013) we here assume

that the error term ǫt has an elliptical distribution and use the second factor of

the right hand side of (10) to obtain a computationally feasible approximation for

the likelihood function. Maximizing this function over the permissible parameter

space yields an (approximate) maximum likelihood (ML) estimator. Lanne and

Saikkonen (2013) show that, under appropriate regularity conditions, the result-

ing (local) ML estimator is consistent and asymptotically normally distributed

and that conventional methods to compute standard errors for estimators and to

construct likelihood-based tests apply.

The preceding discussion assumes that the orders r and s of the VAR(r, s)

model (1) are known. As in Lanne and Saikkonen (2013) we specify these orders

as follows. First, using least squares or Gaussian ML we find a causal VAR(p) model

that adequately describes the autocorrelation structure of the data with the order

p determined by using conventional procedures such as model selection criteria

and diagnostic checks. Then we check the residuals of this causal VAR(p) model

for Gaussianity and, only when we detect deviations from Gaussianity, we consider

noncausal VAR models. Next we choose a non-Gaussian error distribution, such as

the multivariate t–distribution used in Lanne and Saikkonen (2013), and estimate

all causal and noncausal VAR(r, s) models with the orders r and s summing to

the selected order p. Finally, of these alternative models we choose the one that

maximizes the likelihood function and evaluate its adequacy with conventional

diagnostic tools.

8



3. Forecasting

In this section, we consider forecasting future observations yT+h (h ≥ 1) and,

unless otherwise stated, we shall assume that the model is not causal and not uni-

variate, so that s > 0 and n > 1. We let ET (·) signify the conditional expectation

operator given the observed data y = (y1, ..., yT ).

Our starting point is equation (7) which we make operational by approximating

the infinite sum therein by a finite sum. Specifically, from equations (5) and (7)

we obtain the approximation

ET (yT+h) ≈ a1ET (yT+h−1) + · · ·+ anrET (yT+h−nr) + ET





M−h
∑

j=−(n−1)r

NjǫT+h+j



 ,

(11)

where M > 0 is supposed to be “large”. As ET (yT+h−j) = yT+h−j for j ≥ h, (ap-

proximate) forecasts can be computed recursively starting from h = 1 if the last

conditional expectation on the right hand side of (11) can be computed for every

h ≥ 1. In the univariate case (n = 1) considered by Lanne et al. (2012b) this

conditional expectation depends on the error terms ǫT+1, ..., ǫT+M only. However,

except for the purely noncausal case (r = 0) this does not happen in our mul-

tivariate case, where the error terms ǫT+1−(n−1)r, ..., ǫT are also involved and the

fact that ǫT−s+1, ..., ǫT (s > 0) cannot be expressed as functions of the observed

data (see (1)) causes complications. In the purely noncausal case these error terms

vanish from the right hand side of (11), simplifying the situation and allowing a

straightforward extension of the forecasting method of Lanne et al. (2012b). There-

fore, and also to help understand the difficulties in the general case (r > 0, s > 0),

we shall first consider forecasting in the purely noncausal case. The general case

requires a more delicate treatment provided in Section 3.2.

3.1. Purely noncausal case

In the purely noncausal case (r = 0) the approximation (11) reduces to

ET (yT+h) ≈ ET

(

M−h
∑

j=0

NjǫT+h+j

)

, N0 = In. (12)
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To compute the conditional expectation on the right hand side we follow Lanne et

al. (2012b) and derive the conditional density of ǫ+ = (ǫT+1, ..., ǫT+M) given the

data vector y. Recall that now ǫ̃t = Φ (B−1) yt and z̃3 = (yT−s+1, ..., yT ). Using

the expression of the density function p (y) in (10) and the preceding discussion

one can check that the joint density function of (y, ǫ+) can be written as

p (y, ǫ+) =
T−s
∏

t=1

f (ǫ̃t) · hz3,ǫ+
(y3, ǫ+) · |det (H1)| , (13)

where hz3,ǫ+
(y3, ǫ+) is the joint density function of (z3, ǫ+) and y3 = (yT−s+1, ..., yT )

(in this section we replace z̃3 by the more typical notation y3). From (10) (spe-

cialized to the present case) and (13) we find that the conditional density function

of ǫ+ given y is

p (ǫ+ | y) =
hz3,ǫ+

(y3, ǫ+)

hz3
(y3)

=
hz3,ǫ+

(y3, ǫ+)
∫

hz3,ǫ+
(y3, ǫ+)dǫ+

.

The right hand side of (12) can thus be written as

ET

(

M−h
∑

j=0

NjǫT+h+j

)

=

∫
∑M−h

j=0 NjǫT+h+j · hz3,ǫ+
(y3, ǫ+)dǫ+

∫

hz3,ǫ+
(y3, ǫ+)dǫ+

. (14)

As in Lanne et al. (2012b), we now derive a feasible approximation for the

density function hz3,ǫ+
(y3, ǫ+). As yt =

∑

∞

j=0 Njǫt+j and N0 = In, we have the

approximate relation



































In N1 · · · · · · · · · · · · NM+s−1

0
. . .

. . .
...

...
. . . In N1 · · · · · · NM

...
. . . In 0 0

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · 0 In






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




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











































ǫT−s+1

...

ǫT

ǫT+1

...

ǫT+M





























≈





























yT−s+1

...

yT

ǫT+1

...

ǫT+M





























,

or briefly Bǫ++ ≈ υ. As the matrix B is nonsingular with unit determinant this

yields ǫ++ ≈ B−1υ or

(ǫT−s+1, ..., ǫT , ǫT+1, ..., ǫT+M) ≈ (ǫ̃T−s+1 (ǫ+) , ..., ǫ̃T (ǫ+) , ǫT+1, ..., ǫT+M) ,
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where ǫ̃T−s+1 (ǫ+) , ..., ǫ̃T (ǫ+) (n × 1) are the first s (vector) components of the

vector B−1υ, and hence dependent on yT−s+1, ..., yT . Thus, it follows that the

density function hz3,ǫ+
(y3, ǫ+) can be approximated as

hz3,ǫ+
(y3, ǫ+) ≈

s
∏

j=1

f (ǫ̃T−s+j (ǫ+)) ·

T+M
∏

t=T+1

f (ǫt) . (15)

As in Lanne et al. (2012b), we can use this approximation to compute approx-

imations for the two integrals on the right hand side of (14). More generally, for

any function of ǫ+, say q (ǫ+), we can use (15) to obtain

ET (q (ǫ+)) ≈

∫

q (ǫ+) ·
∏s

j=1 f (ǫ̃T−s+j (ǫ+)) ·
∏T+M

t=T+1 f (ǫt) dǫ+
∫
∏s

j=1 f (ǫ̃T−s+j (ǫ+)) ·
∏T+M

t=T+1 f (ǫt) dǫ+

.

(Here as well as in similar subsequent instances existence and finiteness of the

stated expectations are assumed.) The numerator on the right hand side can be

interpreted as the expectation of the product of the first two factors in the in-

tegrand with respect to the distribution of ǫ+ = (ǫT+1, ..., ǫT+M), whereas the

denominator can be interpreted as the expectation of
∏s

j=1 f (ǫ̃T−s+j (ǫ+)) with

respect to the same distribution. Using Monte Carlo simulation, we can therefore

approximate ET (q (ǫ+)) by

ÊT (q (ǫ+)) =
1
m

∑m

i=1 q(ǫ
(i)
+ ) ·

∏s

j=1 f(ǫ̃T−s+j(ǫ
(i)
+ )

1
m

∑m

i=1

∏s

j=1 f(ǫ̃T−s+j(ǫ
(i)
+ ))

, (16)

where ǫ
(i)
+ = (ǫ

(i)
T+1, ..., ǫ

(i)
T+M), i = 1, ..., m, are mutually independent simulated

realizations from the distribution of ǫ+ so that ǫ
(i)
T+1, ..., ǫ

(i)
T+M are independent

random vectors for every i. As m → ∞, the right hand side of (16) converges

almost surely and provides an approximation for ET (q (ǫ+)) that can be made

arbitrarily accurate by choosing m and M large enough.

To obtain forecasts for yT+h (h ≥ 1) one needs to compute values of the right

hand side of (16) with q (ǫ+) =
∑M−h

j=0 NjǫT+h+j (see (14)). Specifically, we have

the following forecasting procedure.

Step 1. Generate ǫ
(i)
+ = (ǫ

(i)
T+1, ..., ǫ

(i)
T+M), i = 1, ..., m, as described below (16).

Step 2. Compute the forecasts ÊT (yT+h), h = 1, 2, ..., by choosing q (ǫ+) =
∑M−h

j=0 NjǫT+h+j in (16).
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For m and M large enough, the resulting forecasts approximate the true forecast

ET (yT+h) arbitrarily closely. Appendix A.1 shows how to compute the coefficient

matrices Nj recursively as functions of the parameters Πj (j = 1, ..., r) and Φj

(j = 1, ..., s). Choosing the values of the integers m and M will be discussed in

Section 4.

Proceeding as in Lanne et al. (2012b) we can also obtain interval forecasts and

forecasts for the conditional distribution of the components of yT+h (h ≥ 1). Let

1 (·) stand for the indicator function and ιa = (0, ..., 0, 1, 0, ..., 0) (n × 1) the ath

unit vector. Then a forecast for the conditional cumulative distribution function

of ya,T+h = ι′ayT+h, the ath component of yT+h, at point x ∈ R is obtained as (see

(5) and (7))

ET (1 (ya,T+h ≤ x)) ≈ ET

(

1

(

M−h
∑

j=0

ι′aNjǫT+h+j ≤ x

))

,

where the right hand side can be approximated by using (16) with q (ǫ+)

= 1

(

∑M−h

j=0 ι′aNjǫT+h+j ≤ x
)

. Thus, choosing a grid x1, ..., xK with a large enough

value of K, one can obtain a forecast of the whole conditional cumulative distribu-

tion function of ya,T+h, and using appropriate quantiles from the lower and upper

tails of this forecast an interval forecast for ya,T+h can be constructed for any h ≥ 1.

3.2. General case

As already indicated, the general noncausal case seems to require techniques

more burdensome than those in the purely noncausal case (or in the general uni-

variate noncausal case). To demonstrate this, consider the joint density of the

augmented data vector (y, ǫ+) and conclude from the discussion leading to the

density function p (y) in (10) that the joint density of (y, ǫ+), and hence the con-

ditional density of ǫ+ given y, involves the joint density of (z3, ǫ+). For simplicity,

suppose that s = 1 so that z3 = v1,T =
∑

∞

j=0 NjǫT+j and z3 ≈
∑M

j=0 NjǫT+j for

M large (see (9) and the subsequent discussion). In the purely noncausal case we

have N0 = In, but this does not hold in the general case and it is even possible

12



that the matrix N0 is singular. This happens, for example, when r = s = 1 and

Π1 =





0 0

−3/4 3/4



 and Φ1 =





2/3 2/3

0 0



 .

When the matrix N0 is singular the random vectors z3 and ǫ+ = (ǫT+1, ..., ǫT+M)

are approximately linearly dependent so that, apart from the approximation error,

the joint distribution of z3 and ǫ+ is singular. This makes the conventional use of

the joint density of z3 and ǫ+, employed in the purely noncausal case, inappropri-

ate.

To overcome the difficulty described above we first develop a procedure that

is generally applicable but requires the use of importance sampling not needed in

the purely noncausal case considered in the preceding section. In Section 3.2.2,

we show how a simpler technique, similar to that derived in the purely noncausal

case, can be obtained when a suitable condition about the structure of the model

holds. When s = 1 this condition requires that the matrix N0 is nonsingular.

3.2.1. Importance-sampling-based forecasting

For our subsequent discussion it appears convenient to write the approximate

forecasting formula (11) as

ET (yT+h) ≈ a1ET (yT+h−1) + · · · + anrET (yT+h−nr) +
−s−h
∑

j=−(n−1)r

Nj ǫ̃T+h+j

+ET

(

−s−h+sn
∑

j=−s−h+1

NjǫT+h+j

)

+ ET

(

M−h
∑

j=−s−h+sn+1

NjǫT+h+j

)

,(17)

where we have divided the sum involving the error terms into three components

of which the first one depends on the data and the second one contains the error

terms that will be treated in a special manner.

Our subsequent developments make use of the sn × n matrices

N j =











Nj

...

Nj−s+1











, j = 0, 1, ... .

13



It is demonstrated in Appendix A.1 that the matrix [N 0 · · · N sn−1] (sn × sn2) is

of full row rank, implying that we can find a matrix [K0 · · · Ksn−1] (sn (n − 1) × sn2)

such that the matrix

Q =





N 0 · · · N sn−1

K0 · · · Ksn−1



 , sn2 × sn2, (18)

is nonsingular. One possibility that always applies is to choose the rows of [K0 · · · Ksn−1]

as basis vectors of the orthogonal complement of the space spanned by the rows

of [N 0 · · · N sn−1]. A simpler choice that applies when the matrix [N 0 · · · N s−1]

(sn× sn) is nonsingular will be discussed in the next section. Using the matrix Q

introduced in (18) we define the vector





ζ1

ζ2



 =





N 0 · · · N sn−1

K0 · · · Ksn−1















ǫT−s+1

...

ǫT−s+sn











, sn2 × 1, (19)

where ζ1 is sn× 1, ζ2 is sn (n − 1)× 1, and the error terms on the right hand side

are the ones in the penultimate term on the right hand side of (17). Furthermore,

as z3 = (v1,T−s+1, ..., vs,T ) with vk,T−s+k =
∑

∞

j=−k+1 NjǫT−s+k+j (see the discussion

following (9)) the definition of N j shows that z3 =
∑

∞

j=0 N jǫT−s+1+j . Hence, we

have ζ1 = z3 −
∑

∞

j=sn N jǫT−s+j+1, which will be used below.

Now, use equations (18) and (19) to write the sum in the penultimate term on

the right hand side of (17) as

−s−h+sn
∑

j=−s−h+1

NjǫT+h+j = P h





ζ1

ζ2



 ,

where P h = [N−s−h+1 · · · N−s−h+sn] Q
−1. Thus, using the approximation ζ1 ≈

z3 −
∑M+s−1

j=sn N jǫT−s+j+1 we obtain

ET

(

−s−h+sn
∑

j=−s−h+1

NjǫT+h+j

)

≈ P h





ET

(

ζ̃1(e+)
)

ET (ζ2)



 , (20)

where ζ̃1(e+) = z̃3 −
∑M+s−1

j=sn N jǫT−s+j+1 with e+ = (ǫT−s+sn+1, ..., ǫT+M) and

ζ2 =
∑sn−1

j=0 KjǫT−s+j+1 (see (19)). From this and the approximation (17) it follows

14



that to obtain forecasts for yT+h (h ≥ 1) we should be able to obtain forecasts

for (functions of) e+ and ζ2. To this end, we consider the extended data vector

(y, ζ2, e+) and derive the conditional density of (ζ2, e+) given y.

It is shown in Appendix A.2 that, for M large, the conditional density of

(ζ2, e+) given y can be approximated by using the joint density of the independent

random vectors (ζ1, ζ2) and e+ or, specifically,

p ((ζ2, e+) | y) ≈
hζ1,ζ2

(ζ̃1(e+), ζ2) ·
∏T+M

t=T−s+sn+1 f (ǫt)
∫ ∫

hζ1,ζ2
(ζ̃1(e+), ζ2) ·

∏T+M

t=T−s+sn+1 f (ǫt) dζ2de+

. (21)

Here the notation is as follows. First, ζ̃1(e+) is as in (20) with the (n × 1 vector)

components ζ̃1,k(e+) = ṽk,T−s+k −
∑M+s−1

j=sn Nj−k+1ǫT−s+j+1 (k = 1, ..., s). Second,

hζ1,ζ2
(ζ1, ζ2) is the joint density function of ζ1 and ζ2, and defined as

hζ1,ζ2
(ζ1, ζ2) =

sn
∏

j=1

f

(

s
∑

k=1

Rj,kζ1,k +

sn
∑

k=s+1

Rj,kζ2,k

)

· |det (R)| , (22)

where ζ1,k and ζ2,k signify the kth (n × 1 vector) components of ζ1 and ζ2, and

R = [Rj,k] = Q−1 (j, k = 1, ..., n) with the partitions Rj,k of order n × n.

Now, as discussed below (20), to obtain forecasts for yT+h (h ≥ 1) we should be

able to compute (an approximation for) the conditional expectation ET (q(ζ2, e+))

with q(ζ2, e+) a function of q(ζ2, e+). From (21) we find that

ET (q(ζ2, e+)) ≈

∫ ∫

q(ζ2, e+) · hζ1,ζ2
(ζ̃1(e+), ζ2) ·

∏T+M

t=T−s+sn+1 f (ǫt) dζ2de+
∫ ∫

hζ1,ζ2
(ζ̃1(e+), ζ2) ·

∏T+M

t=T−s+sn+1 f (ǫt) dζ2de+

,

(23)

where hζ1,ζ2
(ζ̃1(e+) is obtained from (22) by replacing ζ1,k by ζ̃1,k(e+).

Numerical solutions for the integrals on the right hand side of (23) can be

obtained but techniques more complicated than in the preceding section or in

Lanne et al. (2012b) seem to be required. As in Breidt and Hsu (2005), where

an analogous forecasting procedure for (univariate) noninvertible moving average

models is developed, one can employ an importance sampling technique (see, e.g.,

Sec. 4.3 of Geweke (1996)). To this end, let ϕ (·) be an sn (n − 1)-dimensional

density function whose support contains the support of the distribution of ζ2, and

define

W (ζ̃1(e+), ζ2) =
hζ1,ζ2

(ζ̃1(e+), ζ2)

ϕ(ζ2)
. (24)

15



Then, the numerator in (23) can be written as

∫ ∫

q(ζ2, e+) · W (ζ̃1(e+), ζ2) · ϕ(ζ2) ·
∏T+M

t=T−s+sn+1
f (ǫt) dζ2de+ (25)

and the denominator in (23) can similarly be written as

∫ ∫

W (ζ̃1(e+), ζ2) · ϕ(ζ2) ·
∏T+M

t=T−s+sn+1
f (ǫt) dζ2de+. (26)

Clearly, the integral in (25) is the expectation of q(ζ2, e+) · W (ζ̃1(e+), ζ2) with

respect to a distribution with density ϕ× f ×· · ·× f (M − sn+ s copies of f) and

the integral in (26) is the expectation of W (ζ̃1(e+), ζ2) with respect to the same

distribution. Thus, the conditional expectation in (23) can be approximated via

Monte Carlo simulation as

ÊT (q(ζ2, e+)) =
1
m

∑m

i=1 q(ζ
(i)
2 , e

(i)
+ ) · W (ζ̃1(e

(i)
+ ), ζ

(i)
2 )

1
m

∑m

i=1 W (ζ̃1(e
(i)
+ ), ζ

(i)
2 )

, (27)

where (ζ
(i)
2 , e

(i)
+ ) = (ζ

(i)
2 , ǫ

(i)
T−s+sn+1, ..., ǫ

(i)
T+M), i = 1, ..., m, are mutually indepen-

dent simulated realizations from a distribution with density ϕ×f×· · ·×f (regard-

ing ζ̃1(e
(i)
+ ), see equation (20)). Thus, ζ

(i)
2 (sn (n − 1) × 1) is drawn from a distribu-

tion with density ϕ and ǫ
(i)
T−s+sn+1, ..., ǫ

(i)
T+M (n × 1) are drawn independently of ζ

(i)
2

from a distribution with density f and, similarly to ǫT−s+sn+1, ..., ǫT+M , the random

vectors ǫ
(i)
T−s+sn+1, ..., ǫ

(i)
T+M are independent for every i. Finally, W (ζ̃1(e

(i)
+ ), ζ

(i)
2 ) is

computed by using (22) and (24).

Approximate forecasts, which can be made arbitrarily accurate by choosing m

and M large enough, can be obtained recursively as follows.

Step 1. Generate (ζ
(i)
2 , e

(i)
+ ) = (ζ

(i)
2 , ǫ

(i)
T−s+sn+1, ..., ǫ

(i)
T+M), i = 1, ..., m, as described

below (27).

Step 2. For h = 1, 2, ..., apply (27) recursively with (see (17) and (20))

q(ζ2, e+) = P h





ζ̃1(e+)

ζ2



+
M−h
∑

j=−s−h+sn+1

NjǫT+h+j
def
= qh(ζ2, e+),

and compute

ÊT (yT+h) = a1ÊT (yT+h−1)+· · ·+anrÊT (yT+h−nr)+
−s−h
∑

j=−(n−1)r

Nj ǫ̃T+h+j+ÊT (qh(ζ2, e+)),
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where ÊT (yT+h−k) = yT+h−k for k ≥ h and Nj = 0 for j < − (n − 1) r. Thus,
∑

−s−h

j=−(n−1)r Nj ǫ̃T+h+j = 0 for s + h > (n − 1) r and the first term in the definition

of qh(ζ2, e+) vanishes when h + s − sn > (n − 1) r.

In addition to choosing values for the integers m and M (to be discussed in

Section 4) the application of the preceding procedure requires two choices. First,

one has to choose the matrix [K0 · · · Ksn−1] (sn (n − 1) × sn2) whose rows we

here assume to be formed of the basis vectors of the orthogonal complement of the

space spanned by the rows of [N 0 · · · N sn−1]. Second, one has to choose the sn(n−

1)-dimensional auxiliary density function ϕ(ζ2). As ζ2 =
∑sn−1

j=0 KjǫT−s+1+j , a

potentially reasonable choice might be based on the chosen error distribution. In

the bivariate special case with s = 1 the random vector ζ2 is also bivariate, and

one could choose ϕ (ζ2) as the density function of the error term ǫt. In general, as

the dimension of ζ2 is s(n−1) times the dimension of ǫt, one could similarly choose

ϕ(ζ2) as the density function of (ǫT−s+1, ..., ǫT−s+sn), that is, f×· · ·×f (sn (n − 1)

copies). This choice is probably not optimal but, due to its simplicity, will be

used in our subsequent numerical illustrations where the error term is assumed to

have a multivariate t–distribution. Breidt and Hsu (2005) use a somewhat similar

importance sampler in their forecasting procedure.

As in the purely noncausal case, it is also possible to obtain interval forecasts

and forecasts for the conditional distribution of the components of yT+h (h ≥

1). We illustrate this below in the case of one-step-ahead forecasts (h = 1) and

provide details of the more complex general case (h ≥ 1) in Appendix A.4. Using

the notation introduced at the end of Section 3.1 the optimal forecast for the

conditional cumulative distribution function of the ath component of yT+1, at

point x ∈ R is (see (5) and (7))

ET (1 (ya,T+1 ≤ x)) ≈ ET



1





nr
∑

j=1

ajι
′

ayT+1−j +
M−1
∑

j=−(n−1)r

ι′aNjǫT+1+j ≤ x







 .
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Decomposing the latter sum inside the indicator function as in (17) we have

ET (1 (ya,T+1 ≤ x)) ≈ ET

(

1

(

−s−1+sn
∑

j=−s

ι′aNjǫT+1+j +
M−1
∑

j=−s+sn

ι′aNjǫT+1+j ≤ x − ι′aκ̃T,1

))

≈ ET



1



ι′aP 1





ζ̃1(e+)

ζ2



+
M−1
∑

j=−s+sn

ι′aNjǫT+1+j ≤ x − ι′aκ̃T,1







 ,

where the latter approximation is based on the discussion leading to (20) and, for

brevity,

κ̃T,1 =
nr
∑

j=1

ajyT+1−j +
−s−1
∑

j=−(n−1)r

Nj ǫ̃T+1+j .

Note that κ̃T,1 depends on the observed data and is treated as fixed, and the

same applies to z̃3 which appears in the vector ζ̃1(e+) (see (20)). Thus, to obtain

(an approximation for) ET (1 (ya,T+1 ≤ x)) we need to compute the conditional

expectation of ET (q(ζ2, e+)) with

q(ζ2, e+) = 1



ι′aP 1





ζ̃1(e+)

ζ2



+
M−1
∑

j=−s+sn

ι′aNjǫT+1+j ≤ x − ι′aκ̃T,1



 . (28)

Using this choice of q(ζ2, e+) in (27) and the subsequent Steps 1 and 2 yields a

forecast for the conditional cumulative distribution function of ya,T+1 at point x.

A forecast of the whole conditional cumulative distribution function and interval

forecast for ya,T+1 can be obtained as described at the end of the preceding section.

3.2.2. Forecasting without importance sampling

It is possible to simplify the preceding simulation method if suitable knowledge

of the structure of the matrix [N 0 · · · N sn−1] is available. In particular, as will

be seen below, it is possible to avoid the use of importance sampling if the matrix

[N 0 · · · N s−1] (sn × sn) is nonsingular, for then we can choose

Q =





N 0 · · · N sn−1

K0 · · · Ksn−1





def
=





Q11 Q12

0 Isn(n−1)



 ,

where Q11 = [N 0 · · · N s−1], Q12 = [N s · · · N sn−1] and [K0 · · · Ksn−1] =
[

0 : Isn(n−1)

]

. In the purely noncausal case considered in Section 3.1, this choice

is always possible because then Nj = 0, j < 0, and N0 = In, implying that the
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matrix Q11 is upper triangular with unit diagonal elements. However, in general

the preceding choice of [K0 · · · Ksn−1] may be inappropriate because the nonsin-

gularity of the matrix Q11 may fail (see the example at the beginning of Section

3.2 where s = 1 and Q11 = N 0 = N0 is singular). On the other hand, in prac-

tice the matrix Q11 is unknown and has to replaced by an estimate which, due

to estimation errors, is necessarily nonsingular (with probability one). Moreover,

a simulated example provided in the next section suggests that, even when the as-

sumed nonsingularity does not hold, the forecasting procedure to be derived in this

section performs well compared to its robust but computationally more demanding

alternative developed in the previous section. Note also that in practice one can

assess the possible singularity of Q11 by examining, for example, the eigenvalues

or determinant of its estimate.

When the matrix Q is as defined above, we have ζ2 = (ǫT+1, ..., ǫT−s+sn) (see

(19)) and R = Q−1 is of the same form as Q or, specifically,

R =





R11 R12

0 Isn(n−1)



 =





Q−1
11 −Q−1

11 Q12

0 Isn(n−1)



 .

Thus, in this case the joint density function of ζ1 and ζ2 becomes (see (22))

hζ1,ζ2
(ζ1, ζ2) =

s
∏

j=1

f

(

s
∑

k=1

Rj,kζ1,k +

sn
∑

k=s+1

Rj,kǫT−s+k

)

·

sn
∏

j=s+1

f (ǫT−s+j) · |det (R)| ,

so that the approximate relation (23) can be written as

ET (q(ζ2, e+)) ≈
∫ ∫

q (ζ2, e+) ·
∏s

j=1 f
(

∑s

k=1 Rj,kζ̃1,k(e+) +
∑sn

k=s+1 Rj,kǫT−s+k

)

·
∏T+M

t=T+1 f (ǫt) dζ2de+

∫ ∫
∏s

j=1 f
(

∑s

k=1 Rj,kζ̃1,k(e+) +
∑sn

k=s+1 Rj,kǫT−s+k

)

·
∏T+M

t=T+1 f (ǫt) dζ2de+

,

where ζ̃1,k(e+) is defined below (21). Thus, as now (ζ2, e+) = (ǫT+1, ..., ǫT+M), the

integral in the numerator is the expectation of

q (ζ2, e+) ·

s
∏

j=1

f

(

s
∑

k=1

Rj,kζ̃1,k(e+) +

sn
∑

k=s+1

Rj,kǫT−s+k

)

with respect to a distribution with density f × · · · × f (M copies) whereas the
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integral in the denominator is the expectation of

s
∏

j=1

f

(

s
∑

k=1

Rj,kζ̃1,k(e+) +
sn
∑

k=s+1

Rj,kǫT−s+k

)

with respect to the same distribution.

The preceding discussion shows that, instead of (27), we can approximate the

conditional expectation ET (q (ζ2, e+)) via Monte Carlo simulation as

ÊT (q (ζ2, e+)) =

1
m

∑m

i=1 q(ζ
(i)
2 , e

(i)
+ ) ·

∏s

j=1 f
(

∑s

k=1 Rj,kζ̃1,k(e
(i)
+ ) +

∑sn

k=s+1 Rj,kǫ
(i)
T−s+k

)

1
m

∑m

i=1

∏s

j=1 f
(

∑s

k=1 Rj,kζ̃1,k(e
(i)
+ +

∑sn

k=s+1 Rj,kǫ
(i)
T−s+k

) ,

(29)

where (ζ
(i)
2 , e

(i)
+ ) = (ǫ

(i)
T+1, ..., ǫ

(i)
T+M) = ǫ

(i)
+ , i = 1, ..., m, are independent draws from

a distribution with density f × · · · × f (M copies). Forecasts can be obtained by

modifying the two steps in the forecasting procedure of the previous section as

follows

Step 1. Generate (ζ
(i)
2 , e

(i)
+ ) = (ǫ

(i)
T+1, ..., ǫ

(i)
T+M) = ǫ

(i)
+ , i = 1, ..., m, as described

below (29).

Step 2. For h = 1, 2, ..., apply (29) recursively with q(ζ2, e+) and ÊT (yT+h) as

defined in Step 2 of the previous section.

This simulation procedure is similar to that derived in the purely noncausal

case in Section 3.1 to which it, in fact, reduces in that special case (for a detailed

discussion of this issue, see Appendix A.3).

The simulation procedure described above can also be used to obtain inter-

val forecasts and forecasts for the conditional distribution of components of yT+h

(h ≥ 1). In the case of one-step-ahead forecasts the approximation derived for

ET (1 (ya,T+1 ≤ x)) at the end of the preceding section still applies and implies

that a forecast for the conditional cumulative distribution function of ya,T+1 at

point x can be obtained by choosing q(ζ2, e+) as in (28) and applying the pre-

ceding Steps 1 and 2. A forecast of the whole conditional cumulative distribution

function and, furthermore, interval forecast for ya,T+1 can be obtained as described

at the end of Section 3.1. The general case of obtaining interval forecasts and fore-

casts for the conditional distribution of the components of yT+h with h ≥ 1 is
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discussed in Appendix A.4.

4. Simulation study

4.1. Simulated processes

In this section, we examine the performance of our forecasting techniques by

using Monte Carlo simulations and data generation processes (DGPs) based on

bivariate models estimated for real data. The same data, comprised of quarterly

U.S. inflation and the real marginal cost, is also used in the next section to provide

an illustration of our forecasting techniques. As mentioned in the Introduction,

inflation and the real marginal cost are variables extensively studied in the previous

literature, although instead of the real marginal cost other variables have also been

considered along with inflation (see, e.g., Gali and Gertler (1999), Canova (2007),

Nason and Smith (2008), Gefang, Koop, and Potter (2012), and the references in

therein).

Our quarterly data set, from the Federal Reserve Bank of St. Louis FRED

databank, covers the period from 1955:1 to 2010:3. Inflation is computed as the

log-difference of the seasonally adjusted GDP implicit price deflator and the real

marginal cost is approximated by the real unit labor cost (for details, see Lanne and

Luoto (2013)). We use the period from 1955:1 to 1989:4 to estimate VAR(r, s) mod-

els that will serve as DGPs in the subsequent Monte Carlo simulations. Throughout

this paper, GAUSS 10 and its BHHH optimization routine in the CMLMT package

are employed in estimation, simulation, and forecasting.

To specify a potentially noncausal VAR model we proceed along the lines dis-

cussed in Section 2.2 and first consider a Gaussian VAR(p) model. The conventional

model selection criteria AIC and BIC as well as autocorrelation functions of the

residuals suggested the order p = 2. However, the assumption of Gaussian errors

could be rejected by the Q–Q plots of the residuals and, given uncorrelated residu-

als, by the clear autocorrelation in the squared residuals of the inflation equation.

Thus, we consider second-order models, that is, VAR(r, s) models with r + s = 2

and, to capture the fat tails of the residual distribution, we choose the (bivariate)
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t–distribution for the errors.

In the previous literature, the typical reaction to autocorrelation in squared

residuals of a conventional causal VAR model has been to augment the model with

GARCH errors. However, as theoretically demonstrated by Lanne and Saikkonen

(2013, Sec. 2.3), one can expect to find autocorrelation in squared residuals when

a causal VAR model is fitted to data generated by a (non-Gaussian and) non-

causal VAR process (the same applies to a noncausal VAR model whose orders are

misspecified). Thus, a potentially viable alternative to augmenting a causal VAR

model with GARCH errors is to consider a noncausal VAR model.

Of the second-order models the VAR(0, 2) model maximizes the likelihood func-

tion but only marginally compared to the VAR(1, 1) model, whereas in terms of

residual diagnostics the VAR(1, 1) model performs slightly better, as the residu-

als of the VAR(0, 2) model appear conditionally heteroskedastic. In the VAR(1, 1)

model, the estimates of the parameters Π1,12 and Φ1,12 appear small compared to

their standard errors and the same applies to the estimates of the parameters Φ1,12

and Φ2,12 in the VAR(0, 2) model (we use Φk,ij to signify the (i, j) element of the

matrix Φk with a similar notation used for Πk). Restricting these parameters to

zero also seems reasonable according to the likelihood ratio test (p–values 0.271

and 0.083 in the VAR(1, 1) and VAR(0, 2) models, respectively) and, in the case

of the VAR(0, 2) model, their imposition considerably improves the rather im-

precise estimation of the degrees-of-freedom parameter of the t–distribution. The

restrictions has no marked effect on the residual diagnostics of the two models

but, interestingly, the maximum value of the likelihood function of the restricted

VAR(1, 1) model turns out to be slightly greater than that of the VAR(0, 2) model.

All in all, both of these restricted models perform reasonably well and will be used

as DGPs in our simulation experiments and in the forecasting exercise of Section

5. The estimation results are presented in Table 1. Below, we shall also consider

the conventional causal VAR(2) model for comparison and, to see how our fore-

casting procedures work in a higher order case, a fourth-order model will be briefly

discussed.
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Table 1: Estimation results of the VAR(0,2) and VAR(1,1) models for the U.S. inflation and real

marginal cost.

Panel A: VAR(0,2) model

0.618 0 0.271 0 1.260 0.152

Φ1 (0.094) (-) Φ2 (0.090) (-) Σ (0.209) (0.091)

0.064 0.999 -0.142 -0.065 0.152 0.609

(0.063) (0.088) (0.061) (0.086) (0.091) (0.101)

λ 5.801 logL -371.741

(1.743)

Panel B: VAR(1,1) model

-0.347 0 0.915 0 1.178 0.581

Π1 (0.088) (-) Φ1 (0.032) (-) Σ (0.202) (0.311)

-0.257 0.929 0.562 0.041 0.581 0.868

(0.119) (0.033) (0.253) (0.089) (0.311) (0.317)

λ 5.305 logL -371.222

(1.619)

Notes: The numbers in the parentheses are standard errors based on the Hessian of the log-

likelihood function. In the table, λ is the degrees-of-freedom parameter of the multivariate t-

distribution and logL is the value of the maximized log-likelihood function.

It may be worth noting that the restrictions employed in the noncausal models

in Table 1 are imposed on purely statistical grounds. As they imply that neither

leads nor lags of the marginal cost (y2t) appear in the equation of inflation (y1t), one

might think that the marginal cost has no effect on inflation forecasts. However,

one should be cautious about making such an interpretation. To see the reason for

this, consider the VAR(0, 2) model whose moving average representation is such

that y1t (inflation) depends on ǫ1,t+j , whereas y2t (marginal cost) depends on both

ǫ1,t+j and ǫ2,t+j (j ≥ 0). Thus, as ǫ1,t+j affects both inflation and the marginal cost,

one cannot rule out the possibility that the marginal cost can help forecast ǫ1,t+j

and thereby inflation (see the (approximate) forecasting formula (12)). A similar

argument applies to the VAR(1, 1) model.
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4.2. Simulation set-up

We simulate 10 000 realizations of length T + 8 from DGPs corresponding

to the two estimated models in Table 1 (100 observations are discarded from

the beginning and end of the simulated series to eliminate the impact of ini-

tialization effects). We estimate a causal VAR(2) model as well as the correct

noncausal VAR(1, 1) or VAR(0, 2) model from the first T observations in each

realization. Note that the estimated models are unrestricted, i.e., the restrictions

Φ1,12 = Φ2,12 = 0 and Π1,12 = Φ1,12 = 0 discussed above are not taken into ac-

count. The sample size T is set to 300, and the number of simulated realizations

m employed in the noncausal forecasting procedures ranges from m = 10 000 to

m = 500 000. Results of some robustness checks with the sample size T = 100

will also be reported. Based on the findings of Lanne et al. (2012b), the value of

the truncation parameter M is set at 50 (essentially the same results are obtained

with M = 30 and M = 100).

Point forecasts 1–8 periods ahead are constructed as described in Section 3.

When the forecasts are based on the noncausal VAR(1, 1) model and importance

sampling is used we have to choose the auxiliary density function ϕ (ζ2). Following

the discussion at the end of Section 3.2.1, our choice is the density function of

(ǫT , ǫT+1) with the independent ǫT and ǫT+1 having the bivariate t–distribution

shown in Table 1 (Panel B). In the case of the forecasting procedure derived in

Section 3.2.2 the assumed nonsingularity boils down to the nonsingularity of the

matrix N0 (see the beginning of Section 3.2.2 and note that now n = 2 and s = 1).

Using the estimates in Table 1 and formulas in Appendix A.1 we find that the

determinant of N0 is 0.173, showing that the required nonsingularity holds.

4.3. Results

Table 2 presents the determinants of the mean-squared forecast error (MSFE)

matrices (cf., e.g., Athanasopoulos and Vahid (2008)) obtained by simulating the

VAR(0, 2) and VAR(1, 1) processes discussed in the preceding section with forecast

horizons ranging from 1 to 8 periods. Results obtained for the MSFEs of the

two individual forecasts are qualitatively very similar and available upon request.
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Table 2: Determinants of the mean-squared forecast error matrices of the VAR(0,2) and VAR(1,1)

models described in Table 1.

Horizon 1 2 3 4 5 6 7 8

m VAR(0,2)

10 000 1.774 4.974 9.724 14.397 19.816 24.650 29.779 33.178

100 000 1.751 4.927 9.643 14.276 19.700 24.512 29.576 32.884

200 000 1.751 4.936 9.623 14.269 19.712 24.487 29.592 32.959

500 000 1.749 4.921 9.626 14.273 19.681 24.453 29.555 32.860

m VAR(1,1), importance sampling (Section 3.2.1)

10 000 1.809 4.994 9.005 14.083 18.445 23.296 28.711 32.970

100 000 1.741 4.915 8.835 13.833 18.199 22.881 28.253 32.433

200 000 1.753 4.922 8.878 13.872 18.222 22.864 28.129 32.389

500 000 1.748 4.903 8.826 13.846 18.150 22.741 28.079 32.271

m VAR(1,1), without importance sampling (Section 3.2.2)

10 000 1.734 4.939 8.879 13.941 18.271 22.870 28.103 32.263

100 000 1.716 4.882 8.802 13.801 18.075 22.729 28.057 32.224

200 000 1.719 4.881 8.802 13.784 18.082 22.700 28.025 32.219

500 000 1.716 4.881 8.801 13.795 18.066 22.701 28.045 32.224

Notes: The entries are based on 10 000 replications. The sample size is T=300 and m is the

number of simulated realizations (see Section 3). The truncation parameter M is set at 50 (see,

e.g., (11)). In importance sampling, the auxiliary density function ϕ(ζ
2
) is chosen as discussed

in Section 4.2. In the first panel, the DGP is the VAR(0,2) process while in the other two cases

it is the VAR(1,1) process (see Table 1). The noncausal (VAR(0,2) and VAR(1,1)) models are

estimated without taking the zero restrictions in the DGP into account.

Overall, the results show that there is a clear improvement in forecast accuracy

when the number of simulated realizations m increases from 10 000 to 100 000

or 200 000. The improvement is much smaller when m increases from 200 000 up

to 500 000. Whether importance sampling is used (Section 3.2.1) or not (Section

3.2.2) has only a minor effect on the results obtained for the VAR(1, 1) model.

By and large, forecasts based on the correct assumption of the nonsingularity of

the matrix N0 are slightly more accurate. Altogether the results suggest that, in

practice, m = 200 000 is a reasonable choice. This is much more than needed in
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Table 3: Relative mean-squared forecast errors (MSFEs) of the VAR(1,1) and VAR(0,2) models

described in Table 1 compared to the Gaussian causal VAR(2) model.

Model Horizon

1 2 3 4 5 6 7 8

MSFE, y1t

VAR(1,1), IS 0.987 0.990 0.992 0.986 0.985 0.989 0.989 0.988

VAR(1,1) 0.971 0.986 0.987 0.983 0.982 0.985 0.987 0.986

VAR(0,2) 0.964 0.985 0.987 0.991 0.997 0.997 0.995 0.999

MSFE, y2t

VAR(1,1), IS 1.002 1.005 1.001 1.003 1.002 0.999 0.996 0.997

VAR(1,1) 0.999 1.000 0.999 1.000 0.999 0.997 0.996 0.995

VAR(0,2) 1.000 1.003 1.004 1.004 1.002 0.996 0.996 0.997

Det

VAR(1,1), IS 0.990 0.994 0.995 0.989 0.987 0.987 0.985 0.986

VAR(1,1) 0.970 0.986 0.986 0.983 0.979 0.980 0.982 0.981

VAR(0,2) 0.966 0.989 0.993 0.996 1.001 0.995 0.992 0.997

Notes: See the notes to Table 2. Entries below unity indicate the superiority of the noncausal

models. IS refers to importance-sampling-based forecasts. The number of simulated realizations

is m=200 000.

the univariate case where Lanne et al. (2012b) found the choice m = 10 000 to be

sufficient.

Table 3 shows the determinants of MSFE matrices and the individual MSFEs

of the (correct) VAR(0, 2) and VAR(1, 1) models relative to a (misspecified) causal

VAR(2) model with Gaussian errors (using t–distributed errors instead of Gaus-

sian errors yields very similar results). In the case of the VAR(1, 1) model both

the importance-sampling-based forecasts (indicated by IS) and those based on the

(correct) assumption of the nonsingularity of the matrix N0 are considered. The

number of simulated realizations is m = 200 000. The relative determinants of the

MSFE matrices are always below unity, implying that gains in the overall forecast

accuracy of the two variables can be achieved by using the correct noncausal model

instead of its causal representation. However, an inspection of the individual MS-

FEs indicates that the gains are mainly due to forecasting the first variable (y1t),
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whose relative MSFEs are below unity, whereas those of the second variable (y2t)

lie around unity ranging between 0.995 and 1.004.

As a robustness check of our forecasting procedures we also examined DGPs

obtained by estimating the parameters of the two models in Table 1 without im-

posing the zero restrictions in the simulated DGPs. The results were very similar

to those reported in Tables 2 and 3, so that removing zero restrictions from the

DGPs had no essential effect on forecasting accuracy (detailed results are available

upon request).

Next we discuss results obtained with the smaller sample size T = 100. With-

out showing detailed results we first note that choosing the number of simulated

realizations as m = 200 000 was still found appropriate, and is used to obtain

Table 4 which presents results similar to those in Table 3 for T = 100. The re-

sults of Table 4 show that the relative MSFEs between the noncausal models and

the Gaussian VAR model are somewhat larger than reported in Table 3. This is

most likely due to the fact that the use of the smaller sample size has increased

the estimation uncertainty, thereby resulting in less accurate forecasts. Support for

this perception is obtained by considering the MSFEs based on the true parameter

values of the VAR(0, 2) and VAR(1, 1) models instead of their estimates. For T

= 100 the use of the true parameter values gave, on average, about 10% smaller

relative MSFEs for the individual forecasts than reported in Table 4. In the case

of the determinant of the MSFE matrix the average differences were even close to

20%. For the larger sample size T = 300 these differences were only about 5% at

maximum, implying that the effect of estimation uncertainty on forecast accuracy

is considerably larger for the smaller sample size T = 100.

As a small illustration of the potential consequences of (incorrectly) using the

forecasting procedure of Section 3.2.2 when the matrix N0 is singular we consider

the bivariate VAR(1, 1) model with the coefficient matrices given at the beginning

of Section 3.2. Table 5 reports the relative MSFEs between the two forecasting

procedures with the number of simulated realizations m = 200 000 and with the

sample sizes T = 100 and T = 300 (note that the simulation results are based on
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Table 4: Relative mean-squared forecast errors (MSFEs) of the VAR(1,1) and VAR(0,2) models

compared to the Gaussian causal VAR(2) model when T=100.

Model Horizon

1 2 3 4 5 6 7 8

MSFE, y1t

VAR(1,1), IS 1.014 1.014 1.005 1.002 0.996 0.994 0.982 0.989

VAR(1,1) 1.011 1.004 0.998 0.997 0.991 0.990 0.981 0.984

VAR(0,2) 0.974 1.008 1.007 1.008 1.008 1.001 1.006 1.004

MSFE, y2t

VAR(1,1), IS 1.014 1.014 1.005 1.002 0.996 0.994 0.982 0.989

VAR(1,1) 1.016 1.022 1.018 1.015 1.008 1.004 1.000 1.003

VAR(0,2) 1.042 1.019 1.014 1.010 1.008 1.001 0.997 0.992

Det

VAR(1,1), IS 1.061 1.053 1.036 1.029 1.014 1.010 0.995 1.005

VAR(1,1) 1.024 1.024 1.014 1.011 0.998 0.994 0.982 0.987

VAR(0,2) 1.015 1.032 1.026 1.023 1.022 1.008 1.007 1.000

Notes: See the notes to Tables 2–3. The sample size is T=100 and the number of simulated

realizations is m=200 000.

using estimates of N0 which are nonsingular, as discussed in Section 3.2.2). The

results show that the differences between the two procedures are minor (the figures

range between 0.997 and 1.005 for T = 100 and 0.993 and 1.003 for T = 300). This

admittedly very limited simulation experiment suggests that, at least in the case

r = s = 1, falsely relying on the nonsingularity assumption and employing the

forecasting procedure of Section 3.2.2 is not critical. More evidence on this matter

is needed, however, before any far-reaching conclusions can be drawn.

We also examined a fourth-order model to see how the two forecasting proce-

dures derived in Section 3.2 perform in a higher-order case. The results are reported

in Table 6 (due to heavier computations the number of replications is 5000 in these

simulations). The DGPs were again estimated from the same data (AIC suggested

order four for causal models with t–distributed errors). Of the fourth-order models,

a VAR(1, 3) model maximized the likelihood function. However, according to esti-

mation results, this model appeared overparameterized and did not perform well
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Table 5: Relative mean-squared forecast errors (MSFEs) of the VAR(1,1) model obtained with

importance sampling and incorrectly assuming the nonsingularity of the matrix N0.

Horizon

1 2 3 4 5 6 7 8

T=100

MSFE, y1t 1.001 1.000 1.001 1.002 1.001 1.001 1.001 1.001

MSFE, y2t 1.004 0.998 0.997 0.999 1.001 1.000 1.001 1.002

Det 1.005 0.998 0.999 0.999 1.001 1.001 1.003 1.003

T=300

MSFE, y1t 0.996 0.993 0.995 0.996 0.996 0.995 0.997 0.999

MSFE, y2t 1.003 1.003 0.998 0.996 0.997 0.997 0.995 0.997

Det 0.999 0.998 0.995 0.994 0.995 0.994 0.995 0.996

Notes: The values of the autoregressive coefficients are given at the beginning of Section 3.2. The

error term has a t-distribution with covariance matrix





1 0.5

0.5 1



 and the value of the degree-of-

freedom parameter 5.00. The entries above unity indicate larger MSFEs for importance-sampling-

based forecasts. The number of simulated realizations is m=200 000 and the sample size is T=100

or T=300.

in terms of residual diagnostics. As the parameters Π1,12 and Φj,12, j = 1, 2, 3, were

rather imprecisely estimated we restricted them to zero. These restrictions corre-

spond to those used in the VAR(0, 2) and VAR(1, 1) models above, and when they

were imposed a reasonable fit was obtained. Thus, we use this restricted VAR(1, 3)

model as a DGP in the higher-order case. The auxiliary density function ϕ (ζ2)

needed in importance sampling was chosen as described at the end of Section

3.2.2 (in this case, four times the density function of the bivariate t–distributed

error term ǫt). Qualitatively the simulation results in Table 6 are similar to those

obtained for the VAR(1, 1) model in Table 3. In particular, whether importance

sampling is used or not has no substantial effect on the forecast accuracy, and

compared to the causal VAR(4) model the forecasts are more accurate.
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Table 6: Relative mean-squared forecast errors (MSFEs) of the VAR(1,3) model compared to the

Gaussian causal VAR(4) model.

Model Horizon

1 2 3 4 5 6 7 8

MSFE, y1t

VAR(1,3), IS 1.015 1.013 0.990 0.988 0.998 1.011 1.007 1.003

VAR(1,3) 0.977 0.990 0.984 0.984 0.994 1.005 1.002 1.000

MSFE, y2t

VAR(1,3), IS 0.963 0.966 0.979 0.975 0.983 0.988 0.990 0.990

VAR(1,3) 0.956 0.963 0.974 0.973 0.980 0.986 0.988 0.987

Det

VAR(1,3), IS 0.982 0.981 0.975 0.967 0.983 0.999 0.997 0.994

VAR(1,3) 0.940 0.956 0.962 0.961 0.977 0.992 0.990 0.987

Notes: See the notes to Tables 2–3. The sample size is T=300 and the number of simulated

realizations is m=200 000. The results are based on 5 000 replications.

5. Empirical illustration

In this section, we consider out-of-sample forecasting with the bivariate causal

and noncausal VAR models introduced in Table 1. An issue of special interest is

whether U.S. inflation forecasts can also in the VAR framework be improved by

allowing for noncausality, in accordance with the findings of Lanne et al. (2012a,

2012b) based on univariate AR models. Their results may reflect the fact that

omitted factors predictable by lagged values of inflation are contained in the error

term of a univariate AR model and the error term of the noncausal AR model

is predictable unlike its causal counterpart. As the real marginal cost included in

our bivariate model could be such an omitted factor, it is of interest to see how

inflation forecasts behave when the real marginal cost is explicitly included in the

model.

We compute forecasts by using an expansive window of observations such that

the models are re-estimated at each date with the estimation period augmented

by one observation. Following Lanne et al. (2012b), the starting point of the out-

of-sample forecasting period is set to 1990:1 and the last forecasts are computed
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for 2010:3, so that forecasts are computed for 83 quarters. Based on the simulation

results of the previous section, the number of simulated realizations m used in

forecasting with noncausal VAR(r, s) models (s ≥ 1) is set at m = 200 000.

Based on the model selection results of the previous section we consider second-

order models. Table 7 presents the individual MSFEs and determinants of the

MSFE matrices for the causal VAR(2) models with Gaussian (VAR(2)-N) and

t–distributed (VAR(2)-t) errors, and for the noncausal VAR(1, 1) and VAR(0, 2)

models. Note that now the restrictions Φ1,12 = Φ2,12 = 0 and Π1,12 = Φ1,12 = 0

are imposed on the VAR(1, 1) and VAR(0, 2) models, respectively. In the causal

VAR(2) model no restrictions are employed, as in model selection reasonable re-

strictions were not found (this particularly applies to the restrictions Π1,12 =

Π2,12 = 0).

First consider the inflation forecasts that we are mostly interested in. Table 7

shows that the VAR(1, 1) model yields the smallest MSFEs except for the two-

quarter horizon where it is slightly outperformed by the VAR(0, 2) model. More-

over, irrespective of the forecast horizon, the VAR(1, 1) model outperforms the two

causal VAR(2) models of which the VAR(2)-N model performs better and it also

performs quite well in comparison with the VAR(1, 1) model when the forecast

horizon is short. However, when the forecast horizon is four quarters or more the

VAR(1, 1) model is clearly superior. According to the test of Diebold and Mari-

ano (1995) and West (1996) the differences in the forecast accuracy between the

VAR(1, 1) and Gaussian VAR(2) models for inflation are statistically significant in

most cases, even at the 1% significance level. In line with the simulation results of

the previous section, the differences between the two forecasting methods in the

case of the VAR(1, 1) model are negligible.

As far as forecasting the marginal cost is concerned, especially the Gaussian

VAR(2) model performs slightly better than the noncausal models with the excep-

tion of one-quarter forecasts where the VAR(0, 2) yields the smallest MSFEs. The

differences are not statistically significant, however, and the determinants of the

MSFE matrices reported in Table 7 show that the noncausal models produce the
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Table 7: Mean-squared forecast errors (MSFEs) of the second-order causal and noncausal

VAR(r, s) models for the U.S. inflation and marginal cost data.

Model Forecast horizon (quarters)

1 2 3 4 5 6 7 8

MSFE, inflation

VAR(2)-N 1.073 1.426 1.694 2.075 2.769 3.379 3.969 4.387

VAR(2)-t 1.080 1.455 1.756 2.168 2.908 3.554 4.209 4.655

VAR(1,1), IS 1.068 1.373* 1.499*** 1.777*** 2.365*** 2.800*** 3.188*** 3.436***

VAR(1,1) 1.066 1.371** 1.518** 1.789*** 2.371*** 2.817*** 3.216*** 3.464***

VAR(0,2) 1.077 1.368** 1.675 2.123 2.806 3.372 3.882 4.290

MSFE, marginal cost

VAR(2)-N 0.838 1.346 2.210 3.053 4.414 5.921 7.463 9.286

VAR(2)-t 0.849 1.351 2.234 3.106 4.518 6.103 7.744 9.698

VAR(1,1), IS 0.849 1.384 2.319 3.223 4.622 6.173 7.675 9.482

VAR(1,1) 0.844 1.383 2.316 3.218 4.631 6.170 7.686 9.491

VAR(0,2) 0.831 1.397 2.335 3.259 4.675 6.248 7.804 9.607

Det

VAR(2)-N 0.887 1.779 2.984 4.731 8.709 13.358 18.990 24.595

VAR(2)-t 0.904 1.817 3.088 4.916 9.113 13.960 20.026 25.856

VAR(1,1), IS 0.902 1.779 2.829 4.302 7.877 11.650 16.062 20.435

VAR(1,1) 0.896 1.771 2.868 4.290 7.869 11.682 16.190 20.542

VAR(0,2) 0.883 1.765 3.066 5.008 9.039 13.580 19.075 24.634

Notes: The entries are the MSFEs and determinants of the MSFE matrices of causal VAR(2) and

noncausal VAR(1,1) and VAR(0,2) models. N and t denote Gaussian and t-distributed errors,

respectively, and IS refers to importance-sampling-based forecasts. The number of simulated

realizations is m=200 000. The stars *,** and *** signify statistically significant differences at

10%, 5% and 1% levels in the test of Diebold and Mariano (1995) and West (1996) used to

test for equal forecast accuracy between the noncausal model (VAR(1,1) or VAR(0,2)) and the

causal Gaussian VAR(2)-N model for inflation and marginal cost.

best overall forecasts. In particular, in terms of this criterion, the purely noncausal

VAR(0, 2) model yields the most accurate forecasts for one and two quarters ahead

whereas the VAR(1, 1) model is the best when the forecast horizon is longer.

As an illustration of obtaining interval forecasts we consider the one-step-ahead
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Figure 1: The conditional cumulative distribution function of inflation for the first quarter of the

year 2008 predicted by the VAR(1,1) model. The dashed lines depict the lower and upper bounds

of the 90% interval forecasts.

interval forecast of inflation. Figure 1 depicts a one-quarter-ahead forecast of the

conditional cumulative distribution function of inflation for the first quarter of

2008. The forecast is formed by using the VAR(1, 1) model with the importance-

sampling-based forecasting technique (see Section 3.2.1). Any interval forecast can

be read off the forecast of the conditional cumulative distribution function. The

dotted lines show the lower (-0.15%) and upper (3.50%) bounds of the 90% interval

forecasts when the point forecast is 1.87% and the realized value is 1.77%. Thus,

the 90% forecast interval contains the observed inflation rate.

To sum up, the results show that the noncausal models produce more accurate

forecasts for U.S. inflation than their causal alternatives, and this also holds for

the bivariate system consisting of inflation and the marginal cost. However, causal

models, especially the Gaussian model, perform slightly better than the noncausal
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models in forecasting the marginal cost.

6. Conclusion

In this paper, we have developed forecasting methods for the noncausal VAR

model of Lanne and Saikkonen (2013). To our knowledge, this is the first attempt

to make forecasting in noncausal VAR models practically feasible. Due to the

nonlinear nature of the prediction problem explicit formulas to compute forecasts

are not available and, therefore, our forecasting methods exploit simulation-based

techniques. The needed techniques turned out to be more complex than in the

univariate case of Lanne et al. (2012b) with the extent of complexity depending

on the structure of the model. However, according to the simulation experiments

conducted, the proposed forecasting methods perform quite well even in the most

complicated case, where importance sampling is employed. They also appear fea-

sible in practice, as illustrated by our empirical application where noncausal VAR

models performed well in comparison with their causal counterparts.

By making forecasting in the noncausal VAR model of Lanne and Saikkonen

(2013) feasible in practice this paper has paved the way for developing meth-

ods for structural analysis within these models, including the computation of im-

pulse response functions. Lanne and Saikkonen (2013) have also pointed out that

noncausality is closely related to possible nonfundamental solutions of theoretical

economic and financial models such as Dynamic Stochastic General Equilibrium

(DSGE) models. As nonfundamentalness implies dependence on future error terms,

it would be interesting to use the noncausal VAR model instead of the causal

VAR model as a benchmark in assessing forecasting ability of DSGE models (cf.

Rubaszek and Skrzypczynski, 2008).

Appendix: Technical details

A.1: Structure of the matrices Nj in (7)

In this appendix, we demonstrate that the matrix [N 0 · · · N sn−1] (sn × sn2)

is of full row rank sn. First, conclude from the identity Φ (z−1)
−1

Ξ (z) = N (z−1)
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that, as Ξ (z) = In − Ξ1z − · · · − Ξ(n−1)rz
(n−1)r,

N−(n−1)r = −Ξ(n−1)r

N−(n−1)r+1 = Φ1N−(n−1)r − Ξ(n−1)r−1

...

N−(n−1)r+s = Φ1N−(n−1)r+s−1 + · · ·+ ΦsN−(n−1)r − Ξ(n−1)r−s

...

N−1 = Φ1N−2 + · · ·+ ΦsN−1−s − Ξ1.

Here, as well as elsewhere, Nk = 0 for k < − (n − 1) r. Furthermore, the matrices

Nk, k ≥ 0, satisfy

N0 = Φ1N−1 + · · ·+ ΦsN−s + In

Nk = Φ1Nk−1 + · · · + ΦsNk−s, k ≥ 1.

Note that in the pure noncausal case only the matrices Nj , j ≥ 0, are relevant

and the preceding equations apply with Nj = 0, j < 0. Because the matrices

Ξj , j = 1, ..., (n − 1) r, are functions of the parameters Π1, ..., Πr the preceding

equations show how the coefficient matrices Nj can be computed as functions of

the autoregressive parameters.

Define the matrix

Φ =























Φ1 Φ2 · · · Φs−1 Φs

In 0 0

0
. . .

. . . 0
...

. . .
. . .

. . .
...

0 · · · 0 In 0























(sn × sn) .

Then, using the definition of the matrix N k (see the beginning of Section 3.2.1)

we have

N k = ΦN k−1 = Φ
kN 0, k ≥ 1.

First we demonstrate that the rows of the infinite dimensional matrix [N 0 N 1 · · · ]

are linearly independent. As the spectral density matrix of yt is positive definite
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there can be no exact linear dependences between the components of the data

vector y. Thus, as the vector z is obtained from y by a nonsingular linear trans-

formation (see the discussion preceding (10)) it follows that there can be no exact

linear dependences between the components of z. Hence, the same is true for

z3 = (v1,T−s+1, ..., vs,T ) and, as vk,T−s+k =
∑

∞

j=−k+1 NjǫT−s+k+j, we have











v1,T−s+1

...

vs,T











= [N 0 · · · N s−1 N s · · · ]























ǫT−s+1

...

ǫT

ǫT+1

...























.

From this it follows that the rows of the infinite dimensional matrix [N 0 N 1 · · · ]

are linearly independent.

Now we can proceed as in Hannan and Deistler (1988, p. 44-45). By the Caley-

Hamilton theorem, the matrix Φ satisfies its characteristic equation det (µIsn − Φ) =

0, which is of degree sn, so that Φ
sn = c1Isn + c2Φ + · · · + csn−1Φ

sn−1 for

some scalars c1, ..., csn−1. Thus, as N k = Φ
kN 0, k ≥ 1, we also have N sn =

c1N 0+c2N 1 + · · ·+csn−1N sn−1, implying that the columns of the matrix N sn can

be expressed as linear combinations the columns of the matrix [N 0 · · · N sn−1].

This fact can be extended inductively to the columns of any N k, k ≥ sn. Thus, the

matrix [N 0 · · · N sn−1] must be of full row rank sn because otherwise we could

find a vector c (sn × 1) such that c′ [N 0 N 1 · · · ] = 0.

Note that the preceding discussion also shows that the matrix N 0 must be

nonzero because otherwise we would have Nk = 0 for all k ≥ 0, implying that the

matrix [N 0 · · · N sn−1] is zero.

A.2: Joint density in (21)

In this appendix, we justify the approximate expression given for the condi-

tional density function p ((ζ2, e+) | y) in (21). Recall that ζ2 =
∑sn−1

i=0 K iǫT−s+1+i

(see (19)) and e+ = (ǫT−s+sn+1, ..., ǫT+M). Now, conclude from the expression of the

density function of y in equation (10) and the discussion preceding that equation
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that the joint density function of (y, ζ2, e+) is

p(y, ζ2, e+) = hz1
(z̃1) ·

(

T−s
∏

t=r+1

f (ǫ̃t)

)

· hz3,ζ2,e+
(z̃3, ζ2, e+) · |det (H1)| ,

where ǫ̃t = Π (B)Φ (B−1) yt and hz3,ζ2,e+
(z̃3, ζ2, e+) signifies the joint density

function of z3, ζ2, and e+ (note that here independence of (z1, z2) and (z3, ζ2, e+)

has also been used). Dividing both sides of the preceding equation by the density

function of y (see (10)) shows that the conditional density function of (ζ2, e+)

given y is

p ((ζ2, e+) | y) =
hz3,ζ2,e+

(z̃3, ζ2, e+)

hz3
(z̃3)

=
hz3,ζ2,e+

(z̃3, ζ2, e+)
∫ ∫

hz3,ζ2,e+
(z̃3, ζ2, e+)dζ2de+

.

Thus, we need to derive the joint density of z3 = (v1,T−s+1, ..., vs,T ) and (ζ2, e+).

It is shown below that this problem can be reduced to the derivation of hζ1,ζ2
(ζ1, ζ2),

the joint density function of ζ1 and ζ2. Specifically, we have

hz3,ζ2,e+
(z̃3, ζ2, e+) ≈ hζ1,ζ2

(ζ̃1(e+), ζ2) ·

T+M
∏

t=T−s+sn+1

f (ǫt) , (30)

where ζ̃1(e+) = z̃3 −
∑M+s−1

j=sn N jǫT−s+j+1 is as in (21). As R = [Rj,k] = Q−1

(sn2 × sn2) is the matrix of the linear transformation (ζ1, ζ2) → (ǫT−s+1, .., ǫT−s+sn)

(see (19)) it follows that the density function hζ1,ζ2
(ζ1, ζ2) is as given in (22).

We still need to demonstrate the approximation (30). First recall that ζ1 =

z3−
∑

∞

j=sn N jǫT−s+j+1 (see the discussion following equation (19)). Thus, as e+ =

(ǫT−s+sn+1, ..., ǫT+M), we get the approximate relation










ζ1

ζ2

e+











≈ C











z3

ζ2

e+











,

where

C =





























Isn 0 −N sn −N sn+1 · · · −NM+s−1

0 Isn(n−1) 0 0 · · · 0

0 0 In 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 0 · · · · · · 0 In





























.
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The matrix C is clearly nonsingular with unit determinant. Thus, it follows that,

to a close approximation, the joint density function of z3 and (ζ2, e+) is as given

in (30) (note that here independence of (ζ1, ζ2) and e+ = (ǫT−s+sn+1, ..., ǫT+M) is

also used).

A.3: Simulation procedure in Section 3.2.2 when r = 0

In this appendix, we demonstrate that in the purely noncausal case (r = 0) the

forecasting technique derived in Section 3.2.2 reduces to that derived in Section

3.1. To simplify notation, we give details in the case s = 1 only.

When s = 1 one can readily check that (see the beginning of Section 3.2.2)

R = Q−1 =























In −N1 −N2 · · · −Nn−1

0 In 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 In























.

This implies that det (R) = 1 and, as now R1,1 = In and R1,k = −Nk (k = 2, ..., n),

the density function hζ1,ζ2
(ζ1, ζ2) employed in Section 3.2.2 takes the form

hζ1,ζ2
(ζ1, ζ2) = f

(

ζ1,1 −

n
∑

k=2

NkǫT−1+k

)

n
∏

j=2

f (ǫT−1+j) .

Here we need to replace ζ1,1 by ζ̃1,1(e+) = ṽ1,T −
∑M

j=n NjǫT+j with ṽ1,T = yT (see

the definition of ζ̃1,k(e+) below (21), (5), and (9)). Thus, consider the expression

f

(

ζ̃1,1(e+) −

n
∑

k=2

NkǫT−1+k

)

= f

(

yT −

M
∑

j=1

NjǫT+j

)

= f (ǫ̃T (ǫ+)) ,

where the latter equality is obtained by specializing the definition of ǫ̃T (ǫ+) to the

case s = 1 (see the arguments leading to (15) in Section 3.1). As now (ζ2, e+) = ǫ+,

the Monte Carlo approximation (29) in Section 3.2.2 can be expressed as

ÊT (q (ζ2, e+)) =

∑m

i=1 q(ǫ
(i)
+ )f(ǫ̃T (ǫ

(i)
+ ))

∑m

i=1 f(ǫ̃T (ǫ
(i)
+ ))

,

which with q (ζ2, e+) =
∑M−h

j=0 NjǫT+h+j equals the expression obtained for ÊT (yT+h)

in Section 3.1 in the case s = 1. This shows the desired result.
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When s > 1 the matrix Q is of the form

Q =





Q11 Q12

0 Isn(n−1)



 ,

where Q11 is upper triangular with unit diagonal elements. Computing the inverse

of Q and using arguments similar to those above one can again show the desired

result. Details are omitted.

A.4: Multiperiod interval forecasts for the general VAR(r, s) model

Using equations (5) and (7) we first consider the approximate relation

yT+h ≈ a1yT+h−1 + · · ·+ anryT+h−nr +

M−h
∑

j=−(n−1)r

NjǫT+h+j , h ≥ 1,

and, following Lanne et al. (2012b), write it in companion form as

Y T+h ≈ AY T+h−1 + J

M
∑

j=−(n−1)r

NjǫT+h+j,

where Y T+h = (yT+h, ..., yT+h−nr+1) (n2r × 1),

A =























a1In a2In · · · anr−1In anrIn

In 0 0

0
. . .

. . . 0
...

. . .
. . .

. . .
...

0 · · · 0 In 0























(

n2r × n2r
)

and J =

















In

0
...

0

















(

n2r × n
)

.

Using repetitive substitution we can write the preceding approximation as

Y T+h ≈ AhY T +

h−1
∑

i=0

AiJ

M
∑

j=−(n−1)r

NjǫT+h−i+j

= AhY T +
h−1
∑

i=0

AiJ
−s−h+i
∑

j=−(n−1)r

NjǫT+h−i+j

+

h−1
∑

i=0

AiJ

−s+sn−h+i
∑

j=−s+1−h+i

NjǫT+h−i+j +

h−1
∑

i=0

AiJ

M−h+i
∑

j=−s+sn−h+i+1

NjǫT+h−i+j,
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where the equality is based on the decomposition used in (17). Furthermore, the

first two terms in the last expression are functions of the data, whereas the third

one can be approximated as

h−1
∑

i=0

AiJ
−s+sn−h+i
∑

j=−s+1−h+i

NjǫT+h−i+j ≈
h−1
∑

i=0

AiJP h−i





z3 −
∑M+s−1

j=sn N jǫT−s+j+1

ζ2



 ,

where P h−i = [N−s+1−h+i · · · N−s+sn−h+i]Q
−1 and, as before, Nk = 0, k <

− (n − 1) r. The argument used to obtain this approximation is the same as the

one leading to (20). As yT+h = J ′Y T+h, the preceding discussion implies that

ET (yT+h) ≈ J ′AhY T +

h−1
∑

i=0

J ′AiJ

−s−h+i
∑

j=−(n−1)r

Nj ǫ̃T+h−i+j

+ET





h−1
∑

i=0

J ′AiJP h−i





ζ̃1(e+)

ζ2









+ET

(

h−1
∑

i=0

J ′AiJ

M−h+i
∑

j=−s+sn−h+i+1

NjǫT+h−i+j

)

,

where ζ̃1(e+) = z̃3 −
∑M+s−1

j=sn N jǫT−s+j+1 as before.

Our forecast for the conditional cumulative distribution function of the ath

component of yT+h is obtained as

ET (1 (ya,T+h ≤ x)) ≈ ET











1











∑h−1
i=0 ι′aJ

′AiJP h−i





ζ̃1(e+)

ζ2





+
∑h−1

i=0 ι′aJ
′AiJ

∑M−h+i

j=−s−h+sn+i+1 NjǫT+h−i+j ≤ x − ι′aκ̃T,h





















,

where

κ̃T,h = J ′AhY T +
h−1
∑

i=0

J ′AiJ
−s−h+i
∑

j=−(n−1)r

Nj ǫ̃T+h−i+j

is a function of the data and, similarly to z̃3 in ζ̃1(e+), is treated as fixed. The

conditional expectation on the right hand side of the preceding approximation is

of the form ET (q(ζ2, e+)) with q(ζ2, e+) defined by the indicator function therein.

Thus, we can use this choice of q(ζ2, e+) in (27) and the subsequent Steps 1 and

2 in Section 3.2.1 to obtain an approximate forecast for the conditional cumula-

tive distribution function of ya,T+h (h ≥ 1) at point x. A forecast of the whole
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conditional cumulative distribution function and interval forecast for ya,T+h can

be obtained as described at the end of the Section 3.1. Furthermore, when the

approach of Section 3.2.2 is applicable the same choice of q(ζ2, e+) and Steps 1

and 2 of that section based on the simulation procedure (29) apply and can be

used to obtain a forecast of the conditional cumulative distribution function and

interval forecast for ya,T+h (h ≥ 1).
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