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Introduction
Ghana is a sub-Saharan African country with a medium-level human development 
index, placing it above the regional average (United Nations Development Programme 
2013). In Ghana, children can be from vastly different cultures, and have very different 
backgrounds experiences. Quality education for all students has been the main objective 
of most policymakers; however, years of research have shown that family socioeconomic 
status indicates the available educational opportunities (e.g., Aikens and Barbarin 2008; 
Parker et al. 2012; Siegler 2009). For instance, according to UNESCO’s Education for All 
Global Monitoring Report 2015, one in six children in low- and middle income coun-
tries will not complete primary school in 2015 (UNESCO 2015). In Ghana, for exam-
ple, 87% of students from low socioeconomic homes enter primary school, but only 72% 
graduates, compare to 100% enrolment for children from high socioeconomic homes, of 
which 80% graduates. Moreover, 60% of children from low socioeconomic homes enter 
primary school at least two years older than the official age, compared to 32% of children 
from high socioeconomic homes (UNESCO 2013).
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Research on the link between achievement and Socio-economic status (hereinafter 
SES) has consistently indicated that students from high socioeconomic backgrounds 
have higher academic achievement than their peers from low socioeconomic back-
grounds (Bofah 2015; Erberber et al. 2015; Jurdak 2014; Sirin 2005; Wang et al. 2014). 
The association between higher SES and achievement is universal across nations, school 
subjects (e.g., mathematics and science), and grades (e.g., from primary to second-
ary education) (Bofah 2015; Erberber et al. 2015; Martin et al. 2012; Mullis et al. 2012; 
OCED 2011).

Although it is well documented that students from low-SES backgrounds perform 
below expectation, studies have shown that some are academically successful despite 
their challenging backgrounds (Erberber et al. 2015; OCED 2011). For example, in the 
Trends in International Mathematics and Science (TIMSS 2011) study, Ghana reported 
the highest percentage of students from low-income homes, of whom 4% scored above 
the Intermediate International mathematic Benchmark (475) (Erberber et al. 2015).

Using latent class analysis (LCA) (Goodman 1974; Lazarsfeld and Henry 1968), we 
classify students into socioeconomic groups based on their responses to questions con-
cerning 11 household items from the TIMSS 2011 study. Due to the impact of socioeco-
nomic background on educational achievement, our study draws on theories from other 
academic discipline, and focuses on a question of broad importance: To what extent can 
home possessions be used to profile students’ SES?

Background
SES has been the most widely used latent construct for measuring family background. 
The SES concept encompasses many variables (Filmer and Pritchett 1999; Hauser and 
Warren 1996; Hauser 1994; Ormrod 2011; Schulz 2005), but the most common indica-
tors of SES include parental education, parental occupation; family income/wealth, and 
prestige; home literacy resources; and certain activities such as participation in social, 
cultural, or political life (Buchmann 2002; Hauser and Warren 1996; House 1981; Muel-
ler and Parcel 1981; Schulz 2005). Other indicators include tangible possessions such as 
houses, cars, boats, appliances, and digital equipment (Hauser and Warren 1996; Park 
2008; Xu and Hampden-Thompson 2012).

High-SES background is positively associated with educational outcomes in addition, 
subtraction, ordinal sequencing, and numeracy, as well as mathematics word problems 
(Coley 2002; Siegler 2009), cognitive development (Paxson and Schady 2007; Yeung 
and Conley 2008), language development (Fernald et al. 2013; Hoff 2003), educational 
choices (Parker et al. 2012), achievement (Bofah 2015; Erberber et al. 2015; Jurdak 2014; 
Kupari and Nissinen 2013; Michaelowa et al. 2001; Mullis et al. 2012; Sirin 2005; Wang 
et al. 2014; Williams and Williams 2010), mathematics-related affect (Bofah 2015, 2016; 
Hannula et al. 2014; Williams and Williams 2010) and attainment (Filmer and Pritchett 
1999; Teachman 1987; UNESCO 2013).

Studies have shown that SES shapes children’s language learning environments and 
their language development (Fernald et al. 2013; Hoff 2003). Hoff (2003) found that lan-
guage development such as lexical richness of speech produced in conversation differ by 
SES, and that SES shapes children’s language learning environments and influences the 
development of their language. Fernald and colleagues, found a significant disparities 
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in vocabulary and language processing efficiency to be already evident at 18  months 
between infants from higher- and lower-SES families, and by 24 months there was a six-
month gap between SES groups in processing skills critical to language development.

Moreover, lower parental involvement (e.g., parent–child communication and par-
ent–child discussion) (McNeal 1999; Park 2008), school absenteeism, enrollment and 
dropout (Langhout et al. 2009; McKenzie 2005; National Center for Education Statistics 
2008; Zhang 2003), as well as poor teacher quality (Akiba et al. 2007) are associated with 
students from low-SES families. This is explained by such families often having limited 
financial resources, which restrict their ability to provide their children with learning 
materials such as books and computers (Orr 2003), and consequently a cognitively stim-
ulating learning environment (Klebanov et al. 1994; Orr 2003; Yeung et al. 2002).

The relationship between parental involvement and SES has been found to be cultur-
ally specific (Desimone 1999; McNeal 1999; Park 2008). For instance, in some countries 
high-SES students’ may benefit from parent–child communication, while in others they 
may benefit from other forms of parental involvement such as help with homework. In 
Ghana, a common phenomenon among high-SES parents who wish to support their 
children education is to hire a private home-tutor or send the child to extra lessons after 
the normal school day. However, the literature indicates that middle- and high-SES par-
ents are more likely to participate in their children’s educational activities compared to 
their peers from low-SES backgrounds (e.g., Coley 2002; Teachman et al. 1997). McNeal 
(1999) found that parental-child discussion was significantly lower in low-SES than high-
SES homes. Park (2008) found that parent–child communication is greater for high-
SES than low-SES students. Moreover, “this greater parental participation, support and 
investment in their children’s education is driven by the recognition that educational 
success is the main route for reproducing their class status” (Perry 2012, p. 22).

Children who live and are educated in vicinities with well-financed schools are more 
likely to have higher educational aspirations (Madarasova Geckova et al. 2010; Teach-
man and Paasch 1998), and numerous studies have indicated that family SES influences 
the educational aspirations of the children (Bowden and Doughney 2009; Teachman 
1987). For instance, Bowden and Doughney (2009) found that students from high-
SES backgrounds have greater educational aspirations than their peers from low-SES 
backgrounds.

Summing these together, the research on SES have provided an insight into inequality 
associated with educational outcomes.

Questionnaires have typically been used to obtain data on students’ socio-economic 
backgrounds and majority of SES measures is known to be obtained through interviews 
or surveys with parents (Ensminger and Fothergill 2003). Other less frequent sources 
of SES information is self-report from the youth (Ensminger and Fothergill 2003). The 
three variables normally asked about and used for measuring student/family SES in 
educational research (either as single indicators or in combinations) are as follows: (1) 
parental education, (2) parental occupation and (3) household resources or possessions 
(Schulz 2005).

Investigating the ways that SES is utilized and measured in research over a ten year 
period in North American Journals on children and adolescents, Ensminger and Fother-
gill (2003) found that overall, education was the most common indicator of SES, it was 
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used 45% of 359 articles with SES included. Income was used in 28% of the articles, 
occupation was used in 14% of the articles, and participation in various means tested 
programs was used in 12% of the articles. Home resources or possession was not as a 
measure. However, home possession data collected from young children have been 
found to be much more reliable compared to information children provide about their 
parents’ education, jobs, and income (Buchmann 2002; Keeves and Saha 1997; Postleth-
waite 1999; Yang and Gustafsson 2004). For instance as Buchmann (2002, pp. 181–182) 
argues:

[A] careful assessment of the reliability and validity of home possessions as a meas-
ure of SES within countries and as a construct that holds cross-nationally may 
determine that home possessions data can provide better and more comparable 
measures of socioeconomic status than parental education and occupation.

Moreover, using PIRLS 2006 data, Caro and Cortés (2012) found that parental occu-
pational status was a better indicator of SES in the wealthier societies, whereas home 
possessions was a stable and reliable measure of SES in poorer societies. Irrespective 
of home possession, “home possessions play a less important role in measuring SES for 
wealthier societies” (Caro and Cortés 2012, p. 26).

In this study, we used data on home amenities to profile students’ SES. We chose this 
approach because in addition to the above reasoning, student response when report-
ing parental education and occupation in educational research has been associated with 
high levels of non-response patterns and also a lack of comparability across countries 
(Schulz 2005). For instance, in TIMSS 2011 high percentage of Ghanaian students were 
unaware of their parents’ education (IEA 2012). Moreover, home possessions indicate a 
family’s lifestyle and socio-economic well-being, and more often than not are not influ-
enced by a sudden change in income, education, or occupation (Yang and Gustafsson 
2004). Furthermore, home support and demographic variables have been found to sig-
nificantly reduce the effect of poverty on literacy development and children’s academic 
growth (Entwistle et al. 1997; Lee and Croninger 1994).

The present study
The purpose of this study is to profile students’ SES on the basis of their reported home 
resources, based on the TIMSS 2011 study. The following hypotheses guide the study: 
more than one student SES profile exists, and membership in the different profile groups 
is associated with several demographic home resources. The study also assumes that if 
we want to compare the distribution of educational achievement across/within society, 
a sound measurement of the SES of a person, group, or geographical region is important 
so as to capture and understand changes to the structure of a society, to understand the 
level of stratification or inequality in or between societies, and to understand the inter-
generational change of social status over time (Oakes n.d.; Oakes and Rossi 2003; Wong 
1998).

This paper extends the literature on SES because indigenous research and theorizing 
are integral part of establishing a more useful and universal theories. Moreover, cultural 
differences in SES can challenge the foundations of current theories and provide new 
ways of looking at the relationship between SES and educational outcomes. This paper 
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uses TIMSS 2011 data, which is a more representative sample of developing country 
under study.

However, a deeper understanding of the complex interplay between home resources/
possesses is paramount for helping society formulate policies that will assist children 
from disadvantaged home in particular. Moreover, there is a paucity of SES studies in the 
Ghanaian context.

Design
Participants

The study focuses on Ghanaian eighth graders who participated in the TIMSS 2011. The 
sample consists of 7323 students (47% girls, average age of 15.81) involving 161 schools/
classrooms. Participation coverage was 100 percent, with school-level exclusions con-
sisting of special education schools and small schools with fewer than 10 students (Mar-
tin and Mullis 2012).

Weighting and clustering

The analysis was based on TIMSS TOTWGT, which ensures that the weighted sample 
corresponds to the actual sample size. Another reason for using the sampling weights 
was to avoid bias (Bosker and Snijders 2011). Because class was used to uniquely identify 
the sampled classrooms in the data, it was used as the clustering variable.

Measures

The SES measures involve survey questionnaire concerning 11 household resources 
from the TIMSS 2011 (Table 1). The 11 items were used in the LCA, and were selected 
on the basis of responses from students on a number of general household items. The 
question was “Do you have any of these things at your home?” The items are shown in 
Table 1. Items 1–5 were common to all participating countries but items 6–11 were spe-
cific to Ghanaian students.

Table 1  Variables used in the study

Yes No

A: Socio-economic measure

Do you have any of these things at your home? 1 2

(1) Computer 1 2

(2) Study desk/table for your use 1 2

(3) Books of your very own (do not count your school books) 1 2

(4) Your own room 1 2

(5) Internet connection 1 2

(6) Calculator 1 2

(7) Dictionary 1 2

(8) Electricity 1 2

(9) Car/motorbike/bicycle 1 2

(10) Tap water 1 2

(11) Chalk/blackboard 1 2

B: Gender

1. Female 2. male
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Data analysis strategy
The analysis proceeded as follows. First, LCA was used to classify students into groups 
based on their reported 11 home resources (see Table 1: socioeconomic measures). We 
used a discriminant analysis to verify the degree to which groups were accurately classi-
fied (Hair et al. 2010). Measurement invariance of item thresholds and class probabilities 
across gender were evaluated. We used IBM SPSS version 22 (IBM Corp 2013) for the 
discriminate analysis. For other analysis, we used the statistical package Mplus, Version 
7.2 (Muthén and Muthén 1998–2012).

For the LCA, the analysis was based on the Mplus robust maximum likelihood esti-
mator (MLR) with robust standard errors. Mplus complex mixture data analysis was 
employed to account for the clustering (hierarchical structure) of the data. For the LCA, 
2000 random sets of start values and 100 initial stage iterations were used, to address 
any problem of local maxima, (Geiser 2013; Muthén and Muthén 1998–2012; Ueber-
sax 2000). In the LCA process, missing data were treated using the Mplus feature of full 
information maximum likelihood (FIML) (Asparouhov and Muthén 2010; Rubin 1987; 
Schafer and Graham 2002; Schafer 2010).

Once the best LCA model was obtained, we then tested for the gender invariance of 
class proportions and probabilities. An acceptable invariance model meant that male 
and female students have been sampled from the same population, have similar class 
proportions and conditional probabilities, and have responded similarly to the items.

Discriminant function analysis was used to determine which variables discriminated 
between the groups and how accurately individuals were classified into groups on the 
basis of selected variables (Tabachnick and Fidell 2001). Thus, the purpose of the discri-
minant function analysis was to evaluate the validity of the SES groups.

Classifying students into socio‑economic profiles and goodness of fit

The first step in an LCA is to determine the number of groups, which should be well 
defined by well-differentiated profiles (Marsh et  al. 2009; Pastor et  al. 2007). In LCA 
research, the literature advises against using goodness-of-fit as a “golden rule” in iden-
tifying the number of latent class (Markland 2007; Marsh et al. 2004, 2009). Opinions 
differ on best to arrive at the appropriate number of groups in LCA analysis. Consist-
ent with the LCA norm, in this study, solutions with varying numbers of classes/groups 
were estimated, and the one that make sense in relation to substantive theory, common 
sense, the nature of the groups, and group interpretability was used (Collins and Lanza 
2010). In addition, the goodness-of-fit indexes and tests of statistical significance were 
taken into account (Collins and Lanza 2010; Marsh et al. 2009).

To compare the models’ fit with the different number of classes; a Vuong–Lo–Men-
dell–Rubin (VLMR) (VLMR: Lo et  al. 2001) test in addition to Bayesian information 
criterion (BIC) and sample-size-adjusted BIC (SSA-BIC) were used. These have been 
shown to help identify the correct number of latent profiles/classes (Nylund et al. 2007; 
Tofighi and Enders 2008). The VLMR test is based on the same principle as the LR dif-
ference test. The significant values of the VLMR test show that the estimated model fits 
significantly better than the model with one class less (Nylund et al. 2007).

Moreover, the latent class probabilities (Table  3), which indicates how individuals 
are assigned to their respective classes, were used for the class profiling. Furthermore, 
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the average latent class assignment probabilities were accessed with values on the main 
diagonal being equal to or greater than 0.80 (Geiser 2013). As a guideline, the size of the 
smallest group of an acceptable solution should at least exceed 5% of the sample (Chow 
et al. 2012; Marsh et al. 2009). Table 2 lists the fit information for the models with one 
through five groups/classes. The BIC and the SSA-BIC indexes continue to decrease 
across the range of models considered, suggesting no specific number of groups. This 
may be due to the large sample size, as BIC is sample size dependent (Marsh et al. 2009). 
The VLMR results were inconsistent, being highly significant (p < .001) for the two-class 
solution but only marginally significant (p < .05) for the three-class solution. The VLMR 
results for the three-class solution were the best because the four-class solution was not 
as interpretable as the three-class solution. Average latent class probabilities for the most 
likely latent class membership were above the accepted cut-off mark (>0.70).

Moreover, an inspection of the log likelihood values indicated a sharp decrease from 
the 2-class solution to the 3-class and a very smooth decrease thereafter. The four-class 
solution contained a boundary estimate (two response probabilities were estimated to 
be exactly 0). The three-class solution had the highest entropy estimate (0.633 vs. 0.569 
for the 3- and 4-class models, respectively), suggesting greater classification uncertainty 
with the extraction of one additional class. In addition, the log likelihood increased 
smoothly to reach a stable maximum in the 3-class solution compared to the 4-class 
model. The three-class solution was identified as the most optimal, because it appeared 
to provide a more reasonable representation of the data. The three-class solution was 
easy to interpret (and more parsimonious), and was further confirmed by the unique 
characteristics across the groups of the three-class model. Table 3 shows the latent class 
probabilities and Fig.  1 the estimated probability plots for both responses. The group 
membership information on each student was saved and used for further statistical 
analysis.

Results
The latent class analysis

Table  3 contains the response probabilities—the probability of being in a particular 
latent class and responding yes or no to the 11 latent class indicators obtained in the 
3-class model. The first column (class 1) shows approximately 24% of the sample having 
a high item response. The students in this class have higher probabilities endorsement 

Table 2  Indices for the latent class analysis

BIC Bayesian information criterion, SSA-BIC sample-size-adjusted Bayesian information criterion, VLMR Vuong–Lo–Mendell–
Rubin, p Number of parameter estimates

Class p log likelihood (L) BIC SSA-BIC Entropy VLMR Average latent class 
probabilities

1 2 3

1 11 −47,836.032 95,769.878 95,734.922 0.850 0.003 0.147

2 23 −44,162.136 88,528.793 88,455.704 0.710 0.000 0.002 0.862 0.135

3 35 −43,715.660 87,742.546 87,631.324 0.633 0.035 0.104 0.104 0.793

4 47 −43,584.907 87,587.747 87,438.391 0.569 0.460

5 59 −43,470.071 87,464.782 87,277.293 0.614 0.414
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for all items (electricity [0.943], dictionary [0.880], books [0.865], calculator [0.795], tap 
water [0.704], study desk [0.744], computer [0.686], car/motorbike/bicycle[0.662], chalk/
blackboard [0.640] own room [0.478], internet [0.314],). For “own room” and “internet” 
the probabilities were lower than expected but not surprising for the sample per say. Yet, 
this class still had the highest probability endorsement. Due to this class’s unique charac-
teristics, it was named the ‘high-SES’.

In the second column (class 2) approximately 45% (4-items) have a high probabilities 
endorsement (i.e. books [0.792], electricity [0.709], study desk [0.626], dictionary [0.528], 
and calculators [0.456]). Other items had a moderate endorsement probability except 
having a computer and internet access. Given this modest endorsement, the class was 
named ‘middle-SES’. In the third column (class 3), approximately 30% of the sample fell 
within this category and had very low item response endorsement probabilities. The two 
highest probabilities across this class were electricity [0.445] and books [0.359]. Due to 
the pattern of endorsement, the class showed a pattern of students with a very low-SES, 
and was thus named ‘low-SES’. Most students fell within the middle-SES class, followed 
by low-SES and high-SES. The class profile plot (Fig. 1) shows how the classes differ from 
one another.

Discriminant analysis

The LCA was followed by a discriminant analysis, used to determine which variables 
discriminated between the groups and to verify the degree to which groups were accu-
rately classified. The discriminant analysis revealed two discriminant functions. Because 
there were three groups, only two discriminant functions were possible. The discrimi-
nant analysis based on the eleven household items was able to correctly classify 92.2% 
of the individual students into their appropriate SES group (based on the three LCA 
groupings). The two discriminant functions were statistically significant. However, the 
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first one account for 89.73% of the between-group (explained) variance while the second 
accounts for the remaining between-group variance (i.e., 10.27%). The squared canonical 
correlations, and the effect sizes for the discriminant functions, were 0.823 and 0.347, 
respectively.

The stability of the classification procedure was checked by a cross-validation run. 
Approximately 25% of the cases were withheld from the calculation of the classification 
function in this run. For 75% of the cases from which the functions were derived there 
was a 92.2% correct classification rate. For the cross-validation cases, correct classifica-
tion was 92.1%. This indicates a high degree of consistency in the classification scheme. 
The discriminant function plot (Fig. 2) shows that the first function differentiated stu-
dents in the high-SES from those in the low-SES group, and the second function differ-
entiated the middle-SES group from the two other groups. In other words, it took both 

Table 3  Latent class probabilities for the three SES classes

Items Class 1
High-SES
24.3%

Class 2
Middle-SES
45.4%

Class 3
Low-SES
30.3%

Computer

Yes 0.686 0.074 0.096

No 0.314 0.926 0.904

Study desk

Yes 0.744 0.626 0.157

No 0.256 0.374 0.843

Books

Yes 0.865 0.792 0.359

No 0.135 0.208 0.641

Own room

Yes 0.478 0.364 0.149

No 0.522 0.636 0.851

Internet

Yes 0.312 0.065 0.014

No 0.688 0.935 0.986

Calculator

Yes 0.795 0.456 0.059

No 0.205 0.544 0.941

Dictionary

Yes 0.880 0.528 0.097

No 0.120 0.472 0.903

Electricity

Yes 0.943 0.709 0.445

No 0.057 0.291 0.555

Car/motor/bicycle

Yes 0.662 0.375 0.091

No 0.338 0.625 0.909

Tap water

Yes 0.704 0.375 0.109

No 0.296 0.625 0.891

Chalkboard

Yes 0.564 0.347 0.064

No 0.436 0.653 0.936
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discriminant functions to separate the three groups from each other. This finding sup-
ports the validity of the three groups derived from the LCA. Most of the variance could 
be explained in terms of two discriminant functions.

Test of invariance across students’ gender

The gender invariance of the class probabilities was tested to ascertain if the class prob-
abilities (Table  3) were the same across students’ gender and to help generalize the 
findings. Two models were tested, one freely estimating item thresholds and class proba-
bilities across students’ gender (M1) and another freely estimating item thresholds across 
the groups, fixing class probabilities and classes across the groups (M2) to be invariant. 
The entropy (M1 vs. M2: 0.793 vs. 0.791), BIC (M1 vs. M2: 97,865.560 vs. 97,864.250), 
and L2 (M1 vs. M2: −48,617.107: scaling correction factor 2.971 vs. −48,625.344: scaling 
correction factor 2.870) were much the same.

The difference between the unconstrained (M1) and constrained model (M2) was not 
significant, ∆L2 (2) =  2.553, p =  .279, suggesting the constraints did not significantly 
affect the model fit. The two models were therefore not significantly different. The mod-
els indicated that the three SES classes were the same across students’ gender. We can 
then generalize that in Ghana students socio-economic background can be categorized 
into low, middle and high, based on students’ home resources.

Discussion
The reality of profiling SES is a complex enterprise far beyond TIMSS and other large 
scale studies. Using TIMSS 2011, we first use LCA to profile students into various SES 
based on their reported home resources. We then used discriminant analysis to verify 
the degree to which these groups are accurately classified and gender invariance was 
used to test if the class probabilities were the same across gender. It can be concluded 
from the results of the present research, that students’ reported household resources 

Fig. 2  Centroids of the three socio-economic profiles on the two discriminant functions derived from the 
data set
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provide comprehensive data on family background. We think the approach considered 
here will serve as a practical guide for educational researchers seeking to construct a 
reliable SES measure in low-income societies and in studying educational inequalities 
related to family background when using large scale international studies.

The analysis identified three classes of students based on reported home resources 
namely: high-SES, middle-SES, and low-SES. These classifications accord with the litera-
ture (e.g., Sirin 2005). The discriminant analysis was able to correctly classify 92.20% of 
the individual students into their appropriate SES group. A cross-validation run was car-
ried out and the classification was 92.10%, which indicating a high degree of consistency 
in the classification scheme.

High-SES students’ were those with access to all the listed home amenities. The items 
that differentiated students from the high- and middle-SES backgrounds were access to 
computers and the internet, and having electricity at home. Those in the low-SES class 
were students with a high probability having none or very limited access to the listed 
household items. Students’ from low-SES homes lacked basic access to educational 
materials (e.g. books). This finding is in line with the literature in that low-SES families 
have limited financial resources, which restricts their ability to provide their children 
with learning materials (e.g., Orr 2003). We need to recognize that access to these amen-
ities is an element of students’ SES, which is also affected by parents’ financial resources.

The most significant limitation of the study is that all measures are self-reports and 
thus subject to desirability biases. Another limitation is that in developing countries 
such as Ghana, goods are frequently purchased through nonmonetary systems, which 
makes it difficult to validate respondents’ claims about home possessions. However, 
the meaning of home possessions differs across cultures even within a country. More-
over, the home resources used as a measure of SES were in this study not exhaustive 
enough, although the resources listed were sufficiently broad to allow for a differentia-
tion of living standards across all households. For example, items such as tablets should 
be included in the next round of the survey. One practical problem, however, is the cur-
rent lack of standardization across countries with respect to the core group of house-
hold items in the TIMSS data set. For instance, in the TIMSS 2011, six of the 11 home 
resources were country-specific whereas five were common to all participating coun-
tries. However, in most cultural settings different meaning are attached to these com-
mon household items. To adopt the SES approach universally, large scale international 
studies and survey developers should consider defining a set of socioeconomic variables 
that can be collected evenly across countries. The strength of the study is that the data 
set is a country representation and the robust methodology allows for a generalization of 
the results to Ghanaian grade eight students.

This study serves as a practical reference for education researchers and policy-makers 
in their efforts to better understand the SES composition in Ghana and to provide equal 
educational opportunities for all. Organizations may also use the findings of the study as 
a tool for understanding student composition in order to form better educational policy. 
For instance, to help improve schools in low-SES vicinities, governments and policy-
makers should focus on teaching and learning, creating a positive school culture, and 
seeking external support and resources (Muijs et al. 2005).
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In accordance with awareness of the educational and achievement disparities between 
different SES groups, the present findings can help educators and policy-makers make 
informed decisions and provide the right incentives to under privileged families. The 
findings can also help researchers explore other factors that might have an influence 
on students’ SES. Most importantly, the study makes an important contribution to the 
field, because where reliable measures of SES are not available; as the case of our present 
data set (e.g., parental education and parental occupation), home resources are the most 
practical alternative. Moreover, the variables chosen embody strong theoretical consid-
eration (Filmer and Pritchett 1999; Schulz 2005), and a most robust method was used to 
explore these findings.
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