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Thiswork aimsat the development and validation of a zeroth order radiative transfer (RT) approach to describe the
visible band (555 nm) reflectance of conifer-dominated boreal forest for the needs of remote sensing of snow. This
is accomplished by applying airborne andmast-borne spectrometer data sets together with high-resolution infor-
mation on forest canopy characteristics. In case of aerial spectrometer observations, tree characteristics determined
from airborne LIDAR observations are applied to quantify the effect of forest canopy on scene reflectance. The re-
sults indicate that a simple RT model is feasible to describe extinction and reflectance properties of both homoge-
neous and heterogeneous forest scenes (corresponding to varying scales of satellite data footprints and varying
structures of forest canopies). The obtained results also justify the application of apparent forest canopy transmis-
sivity to describe the influence of forest to reflectance, as is done e.g. in the SCAmodmethod for the continental scale
monitoring of fractional snow cover (FSC) fromoptical satellite data. Additionally, the feasibility of the zeroth order
RT approach is compared with the use of linear mixing model of scene reflectance. Results suggest that the non-
linear RT approach describes the scene reflectance of a snow-covered boreal forestmore realistically than the linear
mixing model (in case when shadows on tree crowns and surface are not modeled separately, which is a relevant
suggestion when considering the use of models for large scale snow mapping applications).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The appearance of seasonal snow cover and itsmelting dominate the
annual hydrological and climatic patterns in vast regions of boreal
forests and tundra in the Northern Hemisphere. Spatial and temporal
changes in global snow cover are strongly connected to changes in
Earth surface albedo and permafrost, and they, in turn, can have large
effects on global carbon cycling, radiation balance and climate condi-
tions (Barnett, Adam, & Lettenmaier, 2005; Betts & Ball, 1997; Brown
& Mote, 2009). The Northern Hemisphere snow cover extent has
decreased since the mid-1900, in particular in spring, due to climate
change (Brown & Mote, 2009; Choi, Robinson, & Kang, 2010;
Robinson, Dewey, & Heim, 1993; Vaughan et al., 2013). Long-term
time series of satellite data estimates on seasonal snow cover extent
(and its albedo) are needed for constructing climate data records
(CDR) essential for climate research whereas near-real-time observa-
tions are needed for hydrological forecasting and water resource
stitute, P.O. Box 503, FI-00101

. This is an open access article under
management; see e.g. Hall and Riggs (2007) and Vaughan et al.
(2013). Currently, the available optical satellite data records for the
Northern Hemisphere snowmonitoring reach back for several decades;
nearly 50 years (Robinson et al., 1993; Vaughan et al., 2013). Various al-
gorithms for different sensors are summarized and evaluated by Dietz,
Kuenzer, Gessner, and Dech (2012), Frei et al. (2012) and Nolin
(2010). The usefulness of satellite data based results is strongly depen-
dent on the quality of the interpretation (Hall & Riggs, 2007; Rittger,
Painter, & Dozier, 2013). Imprecise remote sensing retrievals used as
inputmay cause uncertainties to climate change predictions and hydro-
logical modeling results (Rittger et al., 2013; Robinson et al., 1993;
Vaughan et al., 2013). Despite the several feasible approaches to snow
mapping there are defects that decrease their performance, e.g. the
presence of cloud cover (Dietz, Wohner, & Kuenzer, 2012; Hall &
Riggs, 2007). Lower accuracy in snow mapping is also typical in the
transitional snowmelt areas and especially in the case of forested re-
gions (Dietz, Kuenzer, et al., 2012; Hall & Riggs, 2007; Rittger et al.,
2013). The effect of forest cover to the satellite observations applied to
snow monitoring is the topic of this study.

The binary (two classes: snow-covered or snow-free)methods, such
as the National Oceanic and Atmospheric Administration (NOAA)
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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multisensor snow mapping method or the National Space Administra-
tion (NASA) Global Moderate Resolution Imaging Spectroradiometer
(MODIS) snow map production, are mostly effective in large scale
snow detection yielding products with good spatial and temporal reso-
lution (Hall, Riggs, Salomonson, DiGirolamo, & Bayr, 2002; Helfrich,
McNamara, Ramsay, Baldwin, & Kasheta, 2007; Ramsay, 1998). Howev-
er, there are extensive areas in the northern latitudes with seasonal
snow (annual accumulation and ablation of snow), where relatively
large satellite data pixels are not fully snowcovered or snow-free.More-
over, the satellite footprint often contains both forested and non-
forested proportions in regions with seasonal snow causing wide-
ranging problems in snow mapping when optical methods are used
(Hall & Riggs, 2007; Hall, Foster, Salomonson, Klein, & Chien, 2001,
Hall, Foster, Verbyla, Klein, & Benson, 1998; Klein & Barnett, 2003;
Klein, Hall, & Riggs, 1998; Nolin, 2004; Parajka & Blöschl, 2006).
Metsämäki et al. (2012) showed that MODIS baseline algorithm for
FSC mapping (Salomonson & Appel, 2004, 2006) tends to strongly un-
derestimate snow cover, in particular under dense canopy. The trees
prevent visibility to snow covered or snow-free forest floor, whereas
the crown layer and the related shadows contribute to the satellite ob-
servations. Apart from that, the proportion of (snow covered or snow-
free) forest floor visible to the satellite sensor varies according to the
sensor view zenith angle (Liu et al., 2008; Nolin, 2004). The inevitably
erroneous binary mapping results for the boreal forest zone impair the
further exploitation of the snow mapping retrievals; this includes the
obtained often artificially narrow continental scale snowline instead of
the actual wider transitional patchy snow zone.

Further approaches have been developed to obtain the fraction of
snow covered area i.e. the fractional snow cover (FSC) within a pixel
(Painter, Dozier, Roberts, Davis, & Green, 2003, Painter et al., 2009;
Salomonson & Appel, 2004, 2006; Vikhamar & Sohlberg, 2002,
Vikhamar & Solberg, 2003). Nonetheless, majority of the developed lin-
ear unmixingmethods assume that the tree crowns are opaque (Painter
et al., 2003, 2009; Vikhamar & Sohlberg, 2002, Vikhamar & Solberg,
2003). Several studies indicate that the other FSC retrieval algorithms
also have problems in discerning snow beneath forest canopies
(Metsämäki, Vepsäläinen, Pulliainen, & Sucksdorff, 2002; Nolin, 2010;
Rittger et al., 2013; Salomonson & Appel, 2004). To compensate the ad-
verse influence of the forest canopy to snow algorithm performance,
Table 1
Methods for the forward modeling of forest effects in optical remote sensing of snow and rela
methods applied to forested regions are also included.

Author Forward (forest) model Related (snow)

GO (geometrical optics)
Li & Strahler (1985)a (Linear) spectral mixing –

Painter et al. (2003, 2009) -II- (Linear) spectra
Dozier, Green, Nolin, & Painter (2009) -II- (Linear) spectra
Vikhamar and Sohlberg (2002),
Vikhamar and Solberg (2003)

-II- (Linear) spectra

Salminen et al. (2009) -II- –

GO + RT (hybrid)
Schlerf and Atzberger (2006) INFORM –

Rosema et al. (1992) FLIM –

Niemi et al. (2012) – –

Li et al. (1995) GORT –

Liu et al. (2008) GORT –

RT radiative transfer
Metsämäki et al. (2005, 2012) Zeroth order RT Analytical inver
Klein et al. (1998) GeoSAIL –

Salomonson and Appel (2004, 2006) – Empirical
Hall et al. (2002) – -II-

a Later spectral mixing models are based on Li and Strahler (1985) that consider shadows a
b Reflectance of the opaque tree canopy can be calculated for MODSCAG using the RT mode
c For partially non-opaque forest canopy.
d Airborne LIDAR data-aided model parameterization.
e MODIS fractional method.
f MODIS binary method based on Klein et al. (1998).
these effects have to be reliably modeled. Often, snow mapping algo-
rithms are founded on an inverse solution of a forward model that de-
scribes the satellite observation. The success of the method over
forested regions is dependent on how well the model represents the
forest canopy effect. So far, there are three methods for the forward
modeling of forest effects in optical remote sensing of snow (Table 1).
In the case of boreal forests, trees are apparently not opaque (see e.g.
Painter et al., 2003, 2009 and Schlerf & Atzberger, 2006). Therefore, al-
gorithms that treat forest canopy as a partially transparent layer have
been developed and also implemented for operational use. An example
of such approach is the SCAmod method for the mapping of FSC
(Metsämäki, Anttila, Huttunen, & Vepsäläinen, 2005). SCAmod has
been applied to a hemispheric scale in ESA DUE-GlobSnow (Luojus
et al., 2010; Metsämäki et al., 2012). In SCAmod, forested areas are con-
sidered as a single forest canopy layer (permeable to light), character-
ized by a canopy transmissivity and reflectance according to the
zeroth order radiative transfer theory. The apparent forest transmissiv-
ity in SCAmod is related to the fraction of forest floor visible from above
and the penetration of light through the canopy. Basically, more ad-
vanced methods can be constructed by combining radiative transfer
for considering trees and physical optics to account for openings be-
tween the trees (Li, Strahler, & Woodcock, 1995; Liu et al., 2008;
Rosema, Verhoef, Noorbergen, & Borgesius, 1992; Schlerf & Atzberger,
2006). This kind of models can be called as hybrid models.

Table 1 summarizes the three basic modeling approaches for forest
canopy effects to scene reflectance; geometrical optics (GO) with
opaque trees, radiative transfer (RT) and hybridmodeling. Additionally,
some typical empirical snow retrieval algorithms are listed in Table 1.
These empirical algorithms are often based on the employment of
NDSI (with thresholding) (Hall et al., 2002; Salomonson & Appel,
2004, 2006). Apart from using NDSI, NDVI (derived during summer)
can be useful in snow algorithms to estimate vegetation density when
the goal is the reduction of disturbances due to forests (Nolin, 2004). Al-
ternatively, static maps of land cover or forest properties could be con-
sidered as input to snow algorithms but they suffer from infrequent
updating. Hall et al. (1998), Klein et al. (1998) and Nolin (2004) sug-
gested the estimation of forest properties by using satellite observations
on fully snow covered forests. These can be considered preliminary to
the SCAmod that has operationally applied this approach. The SCAmod
ted snow parameter retrieval algorithms. Selected examples of empirical snow mapping

inversion approach Comments

GO considers tree canopy opaque
Forest stand model

l unmixing MEMSCAG, MODSCAG (RT)b for FSC
l unmixing FSC, Albedo
l unmixing SnowFor for snow-covered forest, SnowFrac for FSC

No shadowed/sunlit canopy components considered

Hybrid considers tree canopy non-opaque, otherwise as GO
More sophisticated/complex to FLIM
Simplified model similar to INFORM
Simplified model similar to FLIM and INFORM
Spectral mixing forward modelc

Viewable (forest) Gap Fraction (VGF) estimatedd

RT considers tree canopy non-opaque (turbid medium)
se solution SCAmod for FSC

Thresholds for MODIS binary algorithm
Linear regression algorithm (using NDSI) for FSCe

Snow binary classification using NDSI and NDVIf

nd directly illuminated background.
l (Liu et al., 2008; Painter et al., 2009).



Fig. 1. Scots pine-dominated northern boreal forests at the Sodankylä site.
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algorithm is an example of an approach that attempts to compensate for
the effects of forest cover based on the use of the zeroth order RT ap-
proach for the forward modeling of the influence of forest canopy
(Metsämäki et al., 2005, 2012). In practice, this is carried out with the
aid of forest canopy transmissivity estimated from the optical satellite
data that represents full snow cover conditions. More complicated hy-
brid forward modeling approaches have been also investigated in case
of boreal forests, e.g. by applyingmast-borne spectrometer observations
where shadowing effects and gaps between trees have been considered
(Niemi et al., 2012). This Niemi et al. (2012)model can be considered as
a simplification of the approach used by Schlerf and Atzberger (2006).
However, hybrid approaches are complicated and thereby difficult to
apply to the satellite data inversion. Thus, the topic of this paper is con-
cernedwhether a simple zeroth order RT approach – that considers for-
ests of a satellite pixel as a single layer of turbid medium – is valid for
boreal forests and whether this approach applies to different scales.
This is also a central issue concerning the basis of the SCAmod algorithm.

Earlier investigations of forest canopy effects in boreal forest zone
have indicated that the assumption of opaque canopy does not hold,
as discussed above. This is also apparent from the earlier work with
data from the Sodankylä site (the experimental region of this investiga-
tion), as the hybrid approach in Niemi et al. (2012) indicated better
agreement with observations than the (simplified) GO approach
(Salminen, Pulliainen, Metsämäki, Kontu, & Suokanerva, 2009). Thus,
the hybrid approaches are arguably physically most accurate for boreal
forests. However, physical approaches are difficult for inversion pur-
poses due to the model complexity. Therefore, a simpler RT approach
is thoroughly investigated and validated here. This is accomplished by
quantifying the effect of forest canopy on scene reflectance using tree
characteristics determined from airborne LIDAR observations of high
spatial accuracy. These data are compared with the predictions by the
zeroth order RT modeling. The investigations are carried out at the con-
dition of full thick snow cover on ground and with snow free canopy,
which enables the separation of the effect of trees from that of soil/un-
derstory vegetation. The RT model performance is further compared
with simplified linear GO approach (analogous to Li & Strahler, 1985),
in order to find outwhether the RT approachwith a single forest canopy
layer (in a footprint) explains the observations better than the simpli-
fied GO approach. The investigated and compared forward modeling
approaches are such that they are feasible for the continental scale sat-
ellite data inversion, i.e. to be used for snow covermonitoring if detailed
information on tree distribution are not available for a pixel scale (in-
stead only bulk characteristics such as mean tree height, stem volume,
canopy cover or apparent forest canopy transmissivity were available).

The investigation is carried out in Sodankylä region, northern
Finland, which is a typical example of a classical boreal forest site. The
airborne imaging and mast-borne forest plot monitoring spectrometer
data sets provide uniquematerial to investigate (a) the spatial behavior
of scene reflectance at boreal forests and (b) the temporal variability of
forest scene reflectance due to varying illumination geometries. The re-
sults shown here focus on thewavelength channel of 555 nm as this re-
gion is essential for the remote sensing of snow, and since earlier
investigations for the Sodankylä site (Heinilä et al., 2014) demonstrated
the results for other wavelength regions. The investigation is also re-
stricted to the case of near-nadir observations due to the applied exper-
imental data sets.

2. Materials

2.1. Test area, land cover and forest information

The test area in Sodankylä, northern Finland, represents a typical
conifer-dominated northern boreal forest. The dominant species in the
Sodankylä region are Scots pine and Norway spruce. Pine-dominated
forests comprise 92% of the total forest area of the southern part of Finn-
ish Lapland (METLA, 2010). Birches including dwarf birches are typical
at wetlands. Fig. 1 shows the scenery of typical pine forests of the
area. The detailed forest canopy characteristics corresponding to the air-
borne reflectance data acquisition are summarized in Table 2. In addi-
tion to the region of airborne surveys, the multi-temporal mast-borne
spectrometer experiments were carried out for a single forest plot coin-
ciding one of the flight lines. This particular plot represents pine forest
on mineral soil with a canopy cover C = 40%. Fig. 2 shows the land
cover map of the study area with flight lines of airborne spectrometer
observations (see also Fig. 4 in Heinilä et al. (2014)).

The forests of the Sodankylä test area are also inventoried using Air-
borne Laser Scanning (ALS), i.e. LIDAR observations. Tree characteristics
determined from these datawere applied asmain reference data on for-
est properties of the site. The ALS data, with a point density of at least
one point per 2 m2, were provided by the National Land Survey (NLS)
of Finland. These observations were used to create canopy cover per-
centage (C) and tree height (H) maps for a spatial ground resolution
of 10 m. The first step in processing the LIDAR data was to create vege-
tation height (H) gridswith a pixel size of 1m for the C retrieval and 2m
for the H retrieval. The vegetation height grids were generated first by
subtracting the ground level height (Digital Terrain Model) from the
top of the vegetation height (Digital Surface Model) and then, by
converting the resulted point cloud to grids of 1 m and 2 m pixel size.
The second step was to generate the C map from the 1 m H grid and
the Hmap from the 2 m H grid. The Cwas generated first by classifying
1mby 1m-sized pixels to either tree or no tree based on the height (the
limit being 1.5 m) derived to ALS observation of that pixel. Then, the
ratio between tree pixels and all pixels inside a grid cell of 10 × 10 m
was calculated. The H map was generated by 1) removing low vegeta-
tion and water; 2) applying a circle shaped dilation (maximum) filter
with a radius of 2 pixels (equivalent to 4 m on the ground) and; 3) cal-
culating themean height inside a grid cell of 10 × 10m. The quality con-
trol for the retrieved maps was performed (at the spatial resolution of
20 m) by evaluating the retrievedmaps against corresponding National
Forest Inventory (NFI) digital maps (Tomppo, Haakana, Katila, &
Peräsaari, 2008). For example, the correlation coefficient between NFI-
and ALS-based C was found to be r = 0.72, RMSE = 11.8%-units and
BIAS = 0.89%-units.
2.2. AISA airborne imaging spectrometer data

The employed airborne spectrometer data set was acquired on
March 18, 2010 at cloud-free conditions; see Heinilä et al. (2014) for de-
tails. Trees were snow free during the airborne campaign, and the snow
pack was dry (temperature−6 °C on average) and the air temperature
was −4 °C at 10 UTC. Further, as described in Heinilä et al. (2014),
the AISA imaging spectrometer data were radiometrically and



Table 2
Tree canopy characteristics of the Sodankylä test area at spatial scales of 10 m and 100 m
(mineral soil and peat lands).

Forest characteristic Mean Median Min/Max Standard deviation

Canopy cover, C (%)
10 m 24.4 22.5 0/100 20.3
100 m 24.7 24.9 0/59 15.1

Stem volume, V (m3/ha)
10 m 33.7 28.0 0/179 31.1
100 m 33.4 31.7 0/113 24.1

Tree height, H (m)
10 m 7.5 7.3 0/24.2 5.1
100 m 7.1 7.2 0/17.8 4.3
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geometrically corrected andmean-filtered to pixel size of 10 m. This in-
vestigation is performed using this 10 m gridded data together with
ALS-based forest parameter data processed to the same grid. Fig. 3 de-
picts an example of the gridded airborne AISA spectrometer data at
the channel of 545–565 nm used for analyses here (corresponding to
MODIS band 4).

Since the field of View (FOV) of AISA observations is 17°, the analy-
ses here are limited to near-nadir angles of observation (from 0° to 8.5°
off nadir). As indicated in Fig. 2, the flight lines have varying orienta-
tions. Additionally, they were measured during an interval of one
hour. Thus, the Sun zenith angle is close to 70° for all observations and
the azimuthal angle difference between the direction of illumination
and measurements has a relatively high range from 45° to 135°. As a
consequence, both backscattering and forward scattering geometries
are included in the airborne spectrometer data set.
Fig. 3.A close-up of 18March2010 AISAdata (above) and the corresponding canopy cover
fraction obtained by using LIDAR data.
2.3. Mast-borne and field spectrometry

The applied data sets include mast-borne ASD spectrometer obser-
vations from the day of airborne data acquisition (March 18, 2010), ac-
companied with observations from 12 days during the spring–winter of
2013 (also representing full snow cover conditions). All observations
represent the same forest plot with the same sensor azimuth and look
angle characteristics (measurement angle 11° off nadir); see Niemi
et al. (2012) and Salminen et al. (2009) for details. These data are
used for the analysis of the variability of forest scene reflectance due
to varying illumination and viewing conditions. Since several mast-
Fig. 2. AISA data from 18 March 2010 comprise four flight lines (depicted in black color).
The underlying forest canopy cover (C) fraction is derived using LIDAR data.
borne measurements were conducted for each day of observation, the
data set includes both forward and backscattering geometries (corre-
sponding to airborne data set). The Sun zenith angle varies from 59.0°
to 77.2°, and the Sun azimuth and sensor view angle difference is from
2.7° to 136.5°. All data represents dry snow conditions with thick
snow pack (tree canopy snow free).

In addition to mast-borne observations, nadir view-angle field spec-
trometrymeasurement of natural snow packs using a similar spectrom-
eter system was applied to incorporate information on average level of
dry snow reflectance (Salminen et al., 2009).
3. Methods

The scene reflectance of a (partially) snow-covered boreal forest at
the wavelength λ can bemodeled by an approach incorporating the re-
flectance contributions of snow-covered ground ρλ,snow and snow-free
ground ρλ,ground, and by considering the forest canopy as a partially
transparent reflecting layer. When the model is based on the zeroth
order solution of the radiative transfer equation (RT), the parameters
that define the effects of the tree layer are the reflectance of an opaque
forest canopy ρλ,forest and the two-way forest canopy transmissivity t2

(Metsämäki et al., 2005, 2012; Pulliainen, Heiska, Hyyppä, &
Hallikainen, 1994; Salminen et al., 2009). Additionally, analogous ap-
proaches for the canopy transmissivity, or transmittance, with a differ-
ent notation have been used e.g. by Schlerf and Atzberger (2006).
Based on this approach, if the fraction of the terrain covered by snow

image of Fig.�2
image of Fig.�3
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is denoted by FSC (ranging from 0 to 1), the model for the observed re-
flectance Rmod at the wavelength λ is obtained by

Rλ;mod FSCð Þ ¼ 1−t2λ
� �

ρλ;forest þ t2λ FSC ρλ;snow þ 1−FSCð Þ ρλ;ground

h i
: ð1Þ

If the scene has a full snow cover on ground FSC= 1, we get

Rλ;mod ¼ 1−t2λ
� �

ρλ;forest þ t2λ ρλ;snow: ð2Þ

The two-way forest canopy transmissivity t2 in Eqs. (1) and (2) is re-
lated to the extinction properties of the vegetation canopy, which is
discussed next.

3.1. Modeling of boreal forest scene reflectance based on the zeroth order
solution of the radiative transfer (RT) equation

The zeroth order solution to RT equation excludes multiple scatter-
ing. Thus, analogous to Pulliainen et al. (1994), an analytical formula
can bewritten to consider the effect of forest canopy to the reflected ra-
diance (now on, ignoring λ for simplicity):

L θsð Þ
E0 θið Þπ ¼

ZH
0

πγs θi; θs; hð Þ exp
ZH−h

0

−κe θi; θs;h
0� �

cos θið Þ dh0
0
@

1
A exp

ZH−h

0

−κe θi; θs; h
0� �

cos θsð Þ dh0
0
@

1
A

2
4

3
5dh
ð3Þ

where L is the reflected radiance [W sr−1 m−2], E0 is the incoming irra-
diance above the canopy [Wm−2], πγs is the reflectance of an infinites-
imal volume unit and κe is the canopy extinction coefficient [1/m]. The
concept of Eq. (3) illustrated in Fig. 4 shows the geometrical consider-
ation of the approach: H is the total height of the forest canopy, h is
the height within the canopy, θs is the angle of observation (scatter-
ing/reflection angle) and θi is the angle of incident radiation. According
to Eq. (3) the total two-way transmissivity of the forest canopy along
the directional path of light propagation is

t2 θi; θsð Þ ¼ exp
ZH
0

−κe θi; θs;hð Þ
cos θið Þ dh

0
@

1
A exp

ZH
0

−κe θi; θs; hð Þ
cos θsð Þ dh

0
@

1
A: ð4Þ

If κe and πγs are assumed to be constants as function of illumination
and reflection angles and the height hwithin the forest canopy (Eq. 3) is
simplified to

L θsð Þ
E0 θið Þ π ¼ πγs

κe cos−1 θið Þ þ cos−1 θsð Þ� � 1−t2 θi; θsð Þ
h i

¼ ρforest 1−t2 θi; θsð Þ
h i

; ð5Þ
Fig. 4. Geometrical consideration of the bidirectional reflectance of a forest scene. θi is the
incidence angle of incoming irradiance and θs is the angle of observation (and hence also
the scattering angle under investigation in the forest canopy). The applied RT approach
considers a forested scene (pixel) as a single turbid medium layer characterized by bulk
volume scattering and extinction properties πγs and κe; see Eq. (3).
thus, Eq. (5) provides the first term of Eq. (1), and the second term of
Eq. (1) is simply the reflection from the snow-covered ground attenuat-
ed by the two-way forest canopy transmissivity. In the case of the two-
way transmissivity t2 the assumption of a constant extinction coefficient
leads from Eq. (4) to:

t2 θi; θsð Þ ¼ exp −κeH
1

cos θið Þ þ
1

cos θsð Þ
� �� �

: ð6Þ

To summarize, if scene reflectance ismodeled for observation angles
close to nadir θs≈ 0, then cos−1(θi) + cos−1(θs)≈ cos−1(θi) + 1. Then
by denoting cos−1(θi) + 1 = 2g′(θi), Eq. (2) can be rewritten as

Rmod ¼ 1− exp −2κeg
0 θið ÞH� �� �

ρforest þ exp −2κeg
0 θið ÞH� �

ρsnow: ð7Þ

3.2. Parametrization and validation of the model using airborne
spectrometer and LIDAR data

In Eq. (7), the semi-empirical scene reflectancemodel, derived from
the zeroth order solution of RT equation, is parameterized as a function
of tree heightH [m]. Themodel can be aswell given as a function of can-
opy cover (C in %-units) or forest stem volume (V in m3/ha)which is re-
lated to the product V ~ C × H (Heinilä et al., 2014). As discussed in
Section 2.2 all canopy characteristics are derived from LIDAR observa-
tions. In the case of V, the product C×H is calibrated to volume estimate
using a regression between the LIDAR data-derived product andNFI for-
est stem volume map (available with a coarser spatial resolution of
20 m).

Thus, we can write by denoting κe= κe,H, κe= κe,C or κe= κe,Vwhen
the formula is derived for tree height (H), canopy cover (C) or stem vol-
ume (V), respectively:

Rmod;H ¼ 1− exp −2κe;Hg
0 θið ÞH

� �� �
ρforest þ exp −2κe;Hg

0 θið ÞH
� �

ρsnow ð8aÞ

Rmod;C ¼ 1− exp −2κe;Cg
0 θið ÞC

� �� �
ρforest þ exp −2κe;Cg

0 θið ÞC
� �

ρsnow 8b

Rmod;V ¼ 1− exp −2κe;Vg
0 θið ÞV

� �� �
ρforest þ exp −2κe;Vg

0 θið ÞV
� �

ρsnow: 8c

Parameters κe, ρsnow and ρforest in Eqs. (8a)–(8c) can be estimated for
certain conditions by fitting the model into an observation data set
representing certain specific measurement conditions. Here, the obser-
vational data consist of AISAmeasurements carried out at the Sodankylä
site (see Section 2.3). Thus, the assumption is that the three parameters
can be treated with their mean effective values over the image scene.
Themodelfitting is performed by the least squaresmethod by searching
the global minimum for the cost function Jwith respect to κe, ρsnow and
ρforest:

J κe;ρforest;ρsnow

� �
¼
XN
i¼1

Rmod;iðκe;ρforest;ρsnow;
Hi
Ci
Vi

8<
:

0
@

1
A−Robs;i

0
@

1
A2

ð9Þ

where sub-index i refers to anobservation casewith specific forest char-
acteristicsHi, Ci and Vi. The fitting is carried out separately forH, C and V.
That is, models by Eqs. (8a), (8b) and (8c) are fitted separately to obser-
vational data by estimating three scalars for each case.

As an outcome of the fitting procedure, the modeled response of
scene reflectance to the two forest canopy (κe, ρforest) and one surface
characteristic (ρsnow) is obtained. As shown by Eqs. (8a)–(8c) this re-
sponse is exponential. In order to assess the validity of the model fit, it
is comparedwith the statistical performances of a linear fit (two param-
eters in fitting) andof a second-degree polynomialfit (three parameters

image of Fig.�4


Fig. 5. Scene reflectance at 555 nmas a function of canopy cover (C). The scene reflectance
model (Eq. 8b) isfitted to AISA observations of the Sodankylä site by optimizing the values
of ρλ,forest, κe,forest and ρλ,snow. Spatial resolution is 10 m. The fitting was done for C class
stratified median values. Bars indicate ±standard deviation from the C class-wise mean
values.
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in the fitting as in the case of Eq. (9)). In practice, the correlation coeffi-
cient between the model prediction of reflectance and observed reflec-
tance is determined for different approaches.

Especially, the comparison of the applied radiative transfer approach
with linear modeling is essential, as the linear approach can be consid-
ered as a simpler characterization of the physical problem. In that case
we can consider that the reflectance is an areally weighted sum of re-
flectance contributions from an opaque forest canopy and from surface,
i.e. from openings between the trees:

Rmod ¼ Cρforest þ 1−Cð Þρsnow

¼ C ρforest−ρsnow

� �
þ ρsnow

¼ a1C þ a0:

ð10Þ

Note that Eq. (10) is actually a simplification of the geometric op-
tics approach introduced by Li and Strahler (1985). Thus, the com-
parison of Eqs. (8a)–(8c) and Eq. (10) with the experimental
Sodankylä data enables the analysis whether the radiative transfer
approach (Eq. 8) or geometric optics (Eq. 10) applies better to de-
scribe the reflectance observations as a function of quantitative for-
est canopy characteristics.

3.3. Assessment of spatial and viewing/illumination geometry related
characteristics of boreal forest scene reflectance

The applied airborne imaging spectrometer and LIDAR data set also
enables the investigation the effect of spatial scale to the modeling of
observations. Due to image swath and LIDAR data processing limitations
the influence of scale is here investigated from 10 m to 100 m. That is,
the model parameters are estimated separately for data processed to
the grid sizes ranging from 10 × 10m2 to 100 × 100m2. This is relevant
to the point of view of satellite data retrieval approaches. For example
SCAmod applies reflectancemodeling in the scale of the employed satel-
lite data (Metsämäki et al., 2012).

As described in Section 3.2, the analysis of aerial spectrometer
data facilitates the determination of the spatial variability of scene
reflectance as a function of forest canopy characteristics. Another
important issue is the temporal variability of forest canopy reflec-
tance, which is, ignoring bio-physical issues, sensitive to imaging ge-
ometry (Sun and instrument view angles). Since the mast-borne
spectrometer data from a forest plot (described in Section 2.4) rep-
resents variable bidirectional measurement configurations, these
data can be used to derive information on the temporal variability
of forest canopy effects to observed scene reflectance. The basis of
this consideration is the error propagation analysis of scene reflec-
tance. We can write for the total variance of observed reflectance
as a sum of contributions due to canopy extinction, snow reflectance
and reflectance of an opaque forest canopy:

var Rð Þ ¼ var Rð Þjκe
þ var Rð Þjρsnow

þ var Rð Þjρforest
: ð11Þ

When the variance contribution resulting from the temporal vari-
ability of forest canopy extinction coefficient (var Rð Þjκe

in Eq. (11)) is ap-
proximated through the Taylor-series expansion of Eq. (8b) we can re-
write Eq. (11) as

var Rð Þ≈ ∂R
∂κe

� �2

var κeð Þ þ ∂R
∂ρsnow

� �2

var ρsnowð Þ þ ∂R
∂ρforest

 !2

var ρforest

� �

¼ 2g0C ρforest−ρsnow

� �
exp −2κeg

0C
� �h i2

var κeð Þ

þ exp −2κeg
0C

� �� 	2var ρsnowð Þ

þ 1− exp −2κeg
0C

� �� 	2var ρforest

� �
:

ð12Þ
Thus, the estimate on var(κe), the variance of forest canopy extinc-
tion coefficient, can be obtained by

var κeð Þ ¼
var Rð Þ− exp −2κeg

0C
� �� 	2var ρsnowð Þ− 1− exp −2κeg

0C
� �� 	2var ρforest

� �
2g0C ρforest−ρsnow

� �
exp −2κeg

0Cð Þ
h i2

ð13Þ

where the var(R) is directly determined from themulti-temporal obser-
vations of forested terrain reflectance of the single forest plot; see Niemi
et al. (2012) and Heinilä et al. (2014). Note that the term exp(−2κeg′C)
can be derived from theAISA data analysis of this investigation,whereas
the terms ρforest, var(ρforest), ρsnow and var(ρsnow) can be derived from
the results of earlier investigations (Niemi et al., 2012; Salminen et al.,
2009).

When Eq. (13) is used to estimate the variance of the two-way forest
canopy transmissivity, we can write:

var t2
� �

≈ −2Cg0 exp −2κeg
0C

� �� 	2var κeð Þ: ð14Þ

4. Results and discussion

Fig. 5 depicts the fit of the Eq. (8b) to AISA observations from 18 of
March 2011. The fitting according to Eq. (9) is performed to median re-
flectances observed for nine canopy cover (C) classes (for eight classes
when open areas are ignored). The class-stratified data are applied for
the fitting procedure, since the random fluctuations in the observations
at the processing resolution of 10 m are high. This causes instability to
the used non-linear optimization procedure (search result dependent
on the starting value), which is avoided by the use of averaged/median
values. When the fitting is performed for the class-wise median values
the effect of occasional very high reflectance values are better removed
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than when using mean values. Note that the actual individual data
points are also shown in Fig. 5.

The effect of spatial scale to modeling is shown in Fig. 6. The dotted
line shows the model prediction (Eq. 8b) when fitting parameters
(ρforest, κe,forest and ρsnow) are estimated fromdata sets processed to a res-
olution of 10m corresponding to Fig. 5. Solid line depicts themodel pre-
diction when the same parameters are estimated from data averaged to
a resolution of 100mwith a two-dimensional box convolution function
(10 × 10 window). The individual data points in 100 m resolution are
presented by dots, and the standard deviations from class-wise aver-
ages are shown by solid bars, respectively. According to the results,
model parameters slightly change as a function of spatial resolution,
as the canopy cover (C) averaged to a scale of 100 m does not include
values exceeding 59% (refer to Table 2) unlike in the scale of 10m.How-
ever, the radiative transfer model according to Eq. (8b) well describes
the behavior of reflectance. This implies that the suggested modeling
approach is a valid methodology to describe the influence of forests
for instruments with varying spatial resolution characteristics.

The comparison of radiative transfer (RT) approach Eq. (8b) with a
linear mixing model (Eq. 10) indicates a higher validity for the RT
than for the linear mixing model. The correlation coefficient between
the reflectance predicted by Eq. (8b) is as high as R2 = 0.91 for all
data points processed to 100 m spatial resolution, whereas it is R2 =
0.87 for the linear mixing formula; see Table 3 (the corresponding be-
havior of reflectance as a function of canopy cover is shown in Fig. 6).
Table 3 presents the overall model fittings with respect to canopy
cover (C), stem volume (V) and tree height (H), as well as the compar-
ison of RT modeling performance with respect to linear mixing and
polynomialfitting indicating the better performance of the RT approach,
even though Eq. (10) applies two fitting parameters, whereas the radi-
ative transfer model requires three parameters estimated by Eq. (9).
Nevertheless, the results indicate that the behavior of reflectance is
clearly non-linear and obeys well with Eq. (8b). If a second degree poly-
nomial is fitted to data (three fitting parameters) we obtain about the
same correlation coefficient (R2 = 0.918) than with the exponential
Fig. 6. Scene reflectance at 555 nm as a function of canopy cover for data averaged to
spatial resolution of 100 m. The comparison for the model fitting at the scale of 10 m is
also shown (dotted curve). Individual data points at the scale of 100 m are depicted by
gray dots, whereas the error bars show the standard deviations from class stratified
mean values. The case C = 0% is excluded in the fitting procedure (Eq. 9).
radiative transfer approach; see Table 3. However, the use of second de-
gree polynomial lacks any physical significance, whereas both the RT
approach and linear mixing model are based on physical assumptions.

The effect of pixel (footprint) homogeneity to observed scene reflec-
tance is investigated in Fig. 7. In practice, the AISA data is processed
(block averaged) to a spatial grid of 100 m. Thereafter, each grid cell is
assigned to represent either a homogenous or a heterogeneous target
with respect to forest canopy cover (C) by analyzing the canopy cover
at four sub-grid cells of each footprint of 100 m × 100 m. A footprint is
considered as heterogeneous, if any of the four (50 m × 50 m-sized)
sub-grid cells shows a value Csub b 0.5 Cave or Csub N 2 ∙ Cave, where Cave
stands for the canopy cover of thewhole 100m×100m pixel. Addition-
ally, grid cell is considered as homogeneous, if all four sub-grid cells
show a value Csub b 1%.

Both the data and model fittings by Eq. (9) in Fig. 7 indicate that the
heterogeneity of forest cover within the pixel has an effect to the scene
reflectance as a function of canopy cover fraction C. However, the results
also show that the modeling approach of Eqs. (8a)–(8c) is appropriate
even for forested targets heterogeneous at the scale of the applied
instrument. This is also indicated by the two fit curves of Fig. 7. Addi-
tionally, Fig. 6 suggests that, if themixture of homogeneous and hetero-
geneous pixels is corresponding to that of the Sodankylä site, the
deviation of individual observations from the general fit curve is rather
small.

As demonstrated by Fig. 7, the variability of forest canopy effects to
scene reflectance is influenced by the structural heterogeneity of forest
cover. On the other hand, results of earlier investigations, e.g. Niemi
et al. (2012), suggest that variability of forest effects is related to the var-
iability of bidirectional illumination conditions (which is the case with
the applied AISA data). This is further shown in Fig. 8 that depicts the
overall variability of forest scene reflectance due to varying illumination
conditions (deep snow pack and snow-free pine canopy). The mast-
borne spectrometer observations shown in Fig. 8 are obtained for
12 days during the year 2013 from 26March to 12 April and for a single
day in 2010 (18 March corresponding to airborne AISA data acquisi-
tion). Fig. 8 indicates the strong effect of bidirectional imaging condi-
tions. For forward scattering cases the reflectance at 555 nm drops
with increasing Sun zenith angle to values as low as about 0.07. For
the backscatter, the behavior of reflectance is quite opposite; the
reflectance shows high levels up to 0.17, and may even increase with
the increasing Sun zenith angle. However, the standard deviation of
reflectance corresponds well with the reflectance variability of mast-
borne spectrometer observations carried out simultaneously with air-
borne AISA-imaging (Niemi et al., 2012).

Fig. 9 depicts the prediction of the variability of the two-way forest
canopy transmissivity t2 as a function of canopy cover (C) based on
Eq. (14). The results of Fig. 9 are determined using the value
var(κe)= 0.00083%−1 for the variance of forest canopy extinction coef-
ficient. This value is estimated by Eq. (13) using the followingparameter
values, mainly based on mast-borne spectrometer measurements car-
ried out simultaneously with AISA imaging (green data points in Fig. 8):

– κe,forestg′(θ) = 0.017%−1 (from Table 3)
– C = 40% (canopy cover fraction in the forest plot observed by the

mast-borne spectrometer (Niemi et al., 2012))
– ρforest = 0.089 (Niemi et al., 2012)
– var(ρforest) = (0.01)2 (Niemi et al., 2012)
– ρsnow = 0.98 (Salminen et al., 2009)
– var(ρsnow) ≈ 0 (observations from a single day applied)
– var(R) = (0.03)2 (observed variance for the single day measure-

ments according to Niemi et al. (2012)).

The results of Fig. 9 suggest that the relative standard deviation of
the variability of forest canopy transmissivity is 13% (due to the variabil-
ity of BRDF configuration). One should note that this variability is only a
valid estimate for cases of near-nadir observations as the sensor look
angle in mast-borne experiments is fixed to 11° off nadir. It should be
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Table 3
Fitting parameters of the RT model for reflectance at 555 nm and comparison of its performance with that of the linear mixing model and second degree polynomial fitting curve. The
spatial scale of modeling is 100 m.

Forest parameter RT model fitting parameters R2 (coefficient of determination) for different modeling approaches

ρλ,forest, κe,forestg′(θ)a ρλ,snow Radiative transfer (RT) Linear mixingb 2nd deg. polynomiala

Canopy cover, C (%) 0.054 0.017 (1/%) 0.91 0.920c 0.865 919
Stem volume, V (m3/ha) 0.112 0.015 (ha/m3) 0.86 0.878d 0.758 0.864
Tree height, H (m) 0.116 0.069 (1/m) 0.96 0.841e 0.750 0.843

a Note that g′(θ) ≈ 1.96.
b All individual data points in algorithm training and testing.
c Seven classes (excluding C = 0%) in algorithm training, all individual points in testing.
d Eleven classes (excluding V = 0 m3/ha) in algorithm training, all individual points in testing.
e Eight classes (excluding H = 0 m) in algorithm training, all individual points in testing.
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noted that Fig. 9 considers the variability of forest scene reflectance for a
single day, March 18, 2010, corresponding to airborne data acquisition
(see green symbols in Fig. 8). In that case the range in azimuthal differ-
ence between the sensor and the Sun angles is from 31° to 107° (i.e.
both forward and backscattering geometries are included as source of
transmissivity variability in Fig. 9, but sensor look angle is constant).

5. Summary and conclusions

This investigation shows that the approach using the zeroth order
solution of the radiative transfer (RT) equation to describe forest effects
to scene reflectance is valid for typical boreal forests. The results also in-
dicate that this applies both to homogeneous or heterogeneous forest
scenes (satellite/remote sensing data footprints). However, the param-
eterization of the model changes according to heterogeneity of the
sensor's footprint. The obtained results justify the appliance of apparent
forest canopy transmissivity to describe the influence of forest to reflec-
tance, as done in the SCAmodmethod for the continental scale FSCmon-
itoring. The analyses carried out here are limited to the wavelength
band of 545–565 nm as this range (MODIS band 4) is operationally fea-
sible to snowmonitoring purposes. Apart from that, Heinilä et al. (2014)
presented results using several wavelengths for comparison.
Fig. 7. Scene reflectance at 555 nmat the scale of 100m separately for pixels homogenous
or heterogeneous with respect to forest cover. Red and blue curves show the model
fittings according to Eq. (9).
The feasibility of the zeroth order RT approach is also comparedwith
the use of linear mixingmodel of scene reflectance. This analysis shows
that the non-linear RT approach describes the scene reflectance of a
snow-covered boreal forest more realistically than the linear mixing
model (in case when shadows on tree crowns and surface are not
modeled separately, which is a relevant suggestion when considering
the use of models for large scale snow mapping applications). The re-
sults also suggest that the consideration of forest canopy by estimating
the apparent canopy transmissivity from the applied satellite data, as
performed in SCAmod approach, is in practice a more feasible approach
than the use of modeled value of forest canopy extinction coefficient.
That is the case, since the modeled value of extinction coefficient is
slightly dependent on scale, as indicated in Figs. 6 and 7. When the ap-
parent canopy transmissivity is estimated from the employed satellite
data, this effect is eliminated.

The obtained results also demonstrate the variability of scene reflec-
tance due to varying illumination and bidirectional measurement ge-
ometries; see Fig. 8 for mast-borne observations. Also in the case of
the applied airborne data set, the variability of reflectance around the
curve of model prediction is in the same order, and apparently predom-
inantly caused by these factors; see Figs. 6 and 7. However, the results
show that the overall variability is quite small. This suggests that simple
Fig. 8.Bidirectional reflectance of the forest plot ofmast-borne spectrometer observations.
Red and green symbols show the geometry of actual measurements representing full
snow cover condition. The behavior of reflectance (contour plot) is interpolated from
measurements at the locations of all the symbols (red pentagrams and green asterisks).
Red pentagrams depict observations conducted for 12 days at different hours of day
during the year 2013. Measurements from 18 March 2010 coinciding airborne data
acquisition are shown by green asterisks.
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Fig. 9. Estimated variability of forest canopy transmissivity at 555 nm due to variability of
illumination conditions for near-nadir observations.
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RT approach is feasible to describe bulk extinction and reflectance
(scattering) properties of forests on average.
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