
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-1997

Tertiary Storage in Multimedia Systems: Staging or
Direct Access?
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

DOI: https://doi.org/10.1007/s005300050070

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PANG, Hwee Hwa. Tertiary Storage in Multimedia Systems: Staging or Direct Access?. (1997). Multimedia Systems. 5, (6), 386-399.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s005300050070
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Tertiary storage in multimedia systems: staging or direct access?
HweeHwa Pang

Institute of Systems Science, National University of Singapore, Heng Mui Keng Terrace, Kent Ridge, Singapore 119597, Republic of Singapore
e-mail: hhpang@iss.nus.sg

Abstract. Multimedia applications that are required to ma-
nipulate large collections of objects are becoming increas-
ingly common. Moreover, the size of multimedia objects,
which are already huge, are getting even bigger as the res-
olution of output devices improve. As a result, many multi-
media storage systems are not likely to be able to keep all
of their objects disk-resident. Instead, a majority of the less
popular objects have to be off-loaded to tertiary storage to
keep costs down. The speed at which objects can be accessed
from tertiary storage is thus an important consideration. In
this paper, we propose an adaptive data retrieval algorithm
that employs a combination of staging and direct access in
servicing tertiary storage retrieval requests. At retrieval time,
an object that resides in tertiary storage can either be staged
to and then played back from disks, or the object can be
accessed directly from the tertiary drives. We show that a
simplistic policy that adheres strictly to staging or direct ac-
cess does not exploit the full retrieval capacity of both the
tertiary library and the secondary storage. To overcome the
problem, we propose a data retrieval algorithm that dynam-
ically chooses between staging and direct access, based on
the relative load on the tertiary versus secondary devices. A
series of simulation experiments confirms that the algorithm
achieves good access times over a wide range of workloads
and resource configurations. Moreover, the algorithm is very
responsive to changing load conditions.

Key words: Multimedia server – Storage hierarchy – Ter-
tiary library – Data migration – Feedback control

1 Introduction

In recent years, demand for multimedia applications that
are capable of manipulating both continuous media (CM)
data, such as video and audio, and non-CM data, e.g. text
and images, has been growing rapidly. Many of these appli-
cations, including interactive multimedia education [2] and
news on demand [16], are expected to provide access to
tens of thousands of objects. Moreover, the size of these

multimedia objects are likely to be large. For example, a 2-
h MPEG-1 movie can easily occupy 1.5 GB of storage [9].
Consequently, it would be very costly to maintain all of the
objects on secondary storage devices like magnetic disks.
A more economical alternative is to hold only the popular
objects on disks, and to keep the less frequently accessed
objects in a tertiary library that offers lower costs per byte
of storage. Given that a small number of objects account for
a majority of the accesses in most applications e.g., [15, 3],
the bulk of the objects can reside in the tertiary library, thus
significantly reducing the number of disks that are required.

While off-loading objects that are less popular to a ter-
tiary library reduces the disk space requirement of a mul-
timedia storage system, this practice also complicates its
data management function. Instead of dealing only with disk
drives, the storage system now has to contend with both
secondary and tertiary storages, which have very different
access characteristics. One issue that arises is data retrieval
from the slower, tertiary library. For non-CM objects, this
is straightforward, as they can be transmitted directly to the
users at the maximum transfer rate of the tertiary library.
CM objects, however, require their components to be played
back at a controlled rate, e.g., 30 frames per second. Since
the playback rate is not likely to correspond to the maximum
transfer rate of the tertiary library, there is a choice between
stagingand direct access, which operate the tertiary drives
at their maximum speed and the CM objects’ playback rate,
respectively. This paper focuses on the retrieval of CM ob-
jects.

In the staging mode, the cartridge containing a requested
object is first loaded into a tertiary drive. The object is then
copied from the cartridge to a set of staging disks as fast
as possible. Finally, the staging disks feed the data pages of
the object to the user at the object’s playback rate. The stag-
ing mode has the advantage of minimizing turnaround time
at the tertiary library, thus reducing its chances of becom-
ing a system bottleneck. One drawback of staging is that it
requires disk space for the requested object. Moreover, the
disk scheduler must be capable of preventing the I/Os gen-
erated by a staging activity from disrupting any active CM
streams that the staging disks may be supporting. Another
drawback is that staging delays could prolong access times.

2

The direct access mode requires a tertiary drive to re-
trieve a requested object at its playback rate, so that the
retrieved data can be forwarded directly to the user. Thus,
direct access is much simpler to implement than staging.
However, direct access may not lead to effective tertiary li-
brary utilization. This is because tertiary drives are typically
capable of retrieving at higher rates than the playback rate1.
Due to the time-consuming nature of the search-forward and
rewind operations, it is usually impractical to multiplex sev-
eral retrievals from a drive, even if the required objects hap-
pen to reside on the same cartridge. Moreover, the long car-
tridge loading time of a tertiary library precludes each drive
from exploiting any excess bandwidth to retrieve from mul-
tiple cartridges concurrently. As a result of this ineffective
resource utilization, the tertiary library is prone to develop
into a system bottleneck that retards access times.

To date, most work on handling tertiary storage devices
was done in the context of mass storage systems [6, 7]. These
systems include Lawrence Livermore Labs’ LSS [8, 12],
NASA’s MSS-II [21], Los Alamos National Labs’ CFS [4],
the National Center for Atmospheric Research’s MSS [20],
and Epoch’s InfiniteStorage Architecture [13]. All of these
systems require data to be staged to disk before the data can
be used. Recently, there has also been some work that specif-
ically addresses tertiary storage support for multimedia ap-
plications. In [10], Ghandeharizadeh and Shahabi proposed
a pipelining mechanism to overlap the playing back of the
front portion of a CM object from the disks with the staging
of the object’s remaining portion. Finally, Kienzle et al. [14]
developed a cost model to compare the space and retrieval
costs of direct access versus staging. Using this cost model,
they concluded that an object should only be accessed di-
rectly from a tertiary drive if its retrieval rate is similar to
the playback rate of the object; staging is more appropriate
when there is a considerable disparity between the two rates.

While most of the reported studies have favored staging
over direct access, there is no reason why a multimedia stor-
age system has to operate only in the staging mode. Indeed,
an interesting possibility that allows a storage system to en-
joy the advantage of both modes is for it to perform stag-
ing for some requests, and direct access for other requests.
In this paper, we propose an adaptive staging–direct access
algorithm, calledAsdac, that dynamically selects between
staging and direct access in servicing a new object request.
This choice is governed by feedback on the relative load on
the staging disks and the tertiary library. Due to the feedback
control mechanism, we could not model the performance of
Asdacanalytically. Instead, the algorithm is evaluated using
a multimedia storage system simulator that we developed.
The evaluation shows thatAsdacconsistently outperforms
static staging and direct access over a wide range of system
configurations. Moreover,Asdac is able to quickly detect
and adapt to changing load conditions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the performance characteristics of a tertiary
storage library. In Sect. 3, we introduce a couple of algo-
rithms to retrieve data from tertiary storage. A multimedia

1 The case where the retrieval rate of the tertiary drives is lower than the
playback rate is not interesting to this work, as staging becomes the only
feasible solution.

Fig. 1. Schematic representation of a tertiary storage library

storage system simulator, intended for studying the perfor-
mance of the data retrieval algorithms, is presented in Sect. 4.
Section 5 gives the results of a series of experiments high-
lighting the gains thatAsdacbrings about. Finally, Sect. 6
concludes the paper.

2 Tertiary storage libraries

Figure 1 is a schematic representation of a typical tertiary
storage library. It consists of a large set of cartridges, a
number of read/write drives, and a mechanism to automati-
cally load/unload a required cartridge into/from a drive. The
cartridge-handling mechanism services only one cartridge
movement request at a time, completing a load or unload op-
eration before entertaining the next request. Each cartridge
is stored in one of several magazines. The storage library
services an object retrieval request in the following steps:

1. A free read/write drive is assigned for this object re-
trieval.

2. The magazine rack spins until the cartridge containing
the requested object faces the cartridge-handling mech-
anism.

3. The cartridge-handling mechanism extracts the target
cartridge from the magazine and slots the cartridge into
the assigned drive.

4. The drive seeks to the starting location of the object.
5. The object is retrieved at a specified speed (the speed to

use will be discussed shortly).
6. If the cartridge is a magnetic tape, it is rewound.
7. The magazine rack spins until the magazine that is sup-

posed to hold the cartridge faces the cartridge-handling
mechanism.

8. The cartridge-handling mechanism extracts the cartridge
from the drive and slots the cartridge into the magazine.

9. The drive is freed.

As discussed in the introduction, an object retrieval (Step 5)
can be carried out in one of two modes. In the first mode, the
read/write drive transfers data directly to the user terminal
at the playback rate of the object, which is frequently lower
than the maximum transfer rate of the drive. This mode is
calleddirect access. The second mode,staging, transfers the
object from the tertiary drive to a set of staging disks as fast
as the two devices allow, before playing back the object
from the staging disks.

The performance of a tertiary storage library depends on
the technologies used for the read/write drives and the car-
tridge autoloader, which comprises the magazine rack and

3

Table 1. Magnetic tape and magneto-optical disk technologies

Product Capacity Transfer rate Cost US$ Source
EXB-8505XL 7–14 GB 0.5–1 MB/s $3,000 [1]
DEC TZ87 20 GB 2.5 MB/s $8,000 [1]
IBM 1/2′′ 3490E 0.8 GB 3 MB/s $20,000 [17]
Ampex DST 600 25 GB 15 MB/s $150,000 [17]
1′′ Metrum 12.5 GB 22 MB/s $160,000 [17]

Sony SMO-F521 1.3 GB 1-2 MB/s $2,200 [1]
EMO-1300 1-3 GB (2 Sides) 3 MB/s $3,300 [1]
RICOH RS-5060K 1.3 GB 5 MB/s (Sync) $4,290 [1]

cartridge-handling mechanism. Table 1 lists the characteris-
tics of some magnetic tape and magneto-optical disk drives
that are on the market. As shown in the table, many dif-
ferent types of tape drives are currently available, ranging
from low-cost 8-mm drives that transfer at less than 1 MB/s
to high-end drives boasting transfer rates of 22 MB/s at a
much higher cost. The choices for magneto-optical drives
are more limited, both in terms of transfer rate and cost. As
for the cartridge autoloader, this could involve a high-speed
carousel that takes less than a second to load/unload a car-
tridge, as in a StorageTek 9708 DataWheel. Alternatively,
a magazine rack that holds a larger number of cartridges
but incurs longer cartridge loading/unloading times could be
used, as in a Box Hill Ice Box. These technologies enable a
wide range of tertiary storage libraries representing different
cost/performance trade-offs to be built.

The focus of this paper is not on assembling a set of
specific read/write drives and autoloader technologies into a
tertiary storage library that best meets a customer’s storage
capacity, access speed, and budget requirements. Instead,
our objective is primarily to optimize the effectiveness of a
given tertiary storage library. Specifically, we want to min-
imize theaverage access timeof object retrievals from the
tertiary library, defined as the elapsed time between the is-
suance of a retrieval request and the instant when the first
page of data arrives at the user terminal. To achieve this
objective, we propose in the next section a couple of algo-
rithms to retrieve objects from a tertiary library. We then
study the behaviors of the algorithms over a wide range of
tertiary library, staging disks, and workload configurations,
paying particular attention to the interplay between tertiary
library and staging disks. Of course, a thorough understand-
ing of the interplay between these two resources would help
in selecting tertiary devices to complement the secondary
storage at an installation, but that is beyond the scope of
this paper.

3 Data retrieval algorithms

Having described the characteristics and performance ob-
jective of a tertiary library subsystem, we now introduce
data retrieval algorithms for this subsystem. As explained in
Sect. 1, staging a requested object from a tertiary drive min-
imizes the turnaround time of the drive, but adds a staging
delay to the object’s access time. In contrast, accessing the
object directly from the tertiary drive eliminates the stag-
ing delay, but occupies the drive for a longer duration. This
could cause new retrieval requests to experience long wait-
ing times if all of the tertiary drives are engaged. Thus, direct

access is expected to perform better under light load, where
the number of busy drives is low most of the time, whereas
staging is more appropriate when the tertiary library experi-
ences heavy retrieval activities. This section introduces two
data retrieval algorithms,Staging-OccupancyInstant% and
Asdac, both of which attempt to dynamically strike a bal-
ance between staging and direct access in order to minimize
access time. The parameters of the two algorithms, which
will be explained as they appear in the following descrip-
tion, are summarized in Table 2.

3.1 Staging-OccupancyInstant%

The Staging-OccupancyInstant% algorithm selects between
staging and direct access according to the percentage of
tertiary drives that are engaged. On one hand, if this per-
centage falls belowOccupancyInstant%, an input parame-
ter, the algorithm concludes that the load is light and favors
direct access in order to reduce access time. On the other
hand, if the drive occupancy exceedsOccupancyInstant%,
Staging-OccupancyInstant% switches to the staging mode
in an effort to prevent the tertiary library from becoming a
bottleneck.

The Staging-OccupancyInstant% algorithm services an
object request using the staging mode if at least
OccupancyInstant% of the tertiary drives are occupied (in-
cluding the drive that is servicing the current request), and
if the bandwidth that the staging disks can allocate for the
staging activity exceeds the playback rate of the object2. If
either of the two criteria is not satisfied, direct access mode
is selected. Thus,Staging-OccupancyInstant% essentially
means to “attempt staging once the drive occupancy hits
OccupancyInstant%”. To illustrate, suppose that the tertiary
library is equipped with four drives. UnderStaging-25%,
staging is initiated as long as the staging disks can allo-
cate the minimum bandwidth for the staging activity, as
the second condition on drive occupancy is necessarily met
with the current request occupying one drive. In contrast,
Staging-100%favors direct access unless all of the drives
become engaged.

Since the behavior of theStaging-OccupancyInstant%
algorithm depends on the number of requests in the tertiary
library, we can model the algorithm by a Markov chain. The
appendix gives the derivation and solution of the Markov
chains for Staging-25%,Staging-50%,Staging-75%, and
Staging-100%for a tertiary library with four tape drives.
Using a playback time of 8000 s, a staging time of 1500 s,
and an overhead time of 200 s (these timings are derived
from the workload described in Sect. 4), the average wait-
ing time and utilization produced by the four algorithms
are captured in Figs. 2 and 3. We shall postpone the analy-
sis of the algorithms till Sect. 5. For now, it suffices to ob-
serve that none of the algorithms consistently outperform the
rest. The problem is that, whileStaging-OccupancyInstant%
is designed to keep a balance between direct access and

2 In this study, we assume that the disks have a reserved staging area,
so we can focus on the retrieval operations without worrying about space
availability. We hope to address the issues of storage space management
and object migration between secondary and tertiary storages in a future
paper.

4

Table 2. Algorithm parameters

Parameter Meaning Default
OccupancyInstant% Target instantaneous tertiary drive occupancy –
OccupancyAverage% Target average tertiary drive occupancy 50%
ObserveWindow Observation window to base the adaptation of 6

OccupancyInstant% on
Conf% Confidence level used in modifyingOccupancyInstant% 90%

staging, the decisions of the algorithm are governed by the
OccupancyInstant% parameter, the targetinstantaneousoc-
cupancy of the tertiary drives. However, theaverageoccu-
pancy is what determines whether a tertiary library can make
good use of its drives without overloading them. Unfortu-
nately, inherent workload variations cause the instantaneous
occupancy to fluctuate, making it difficult to fix a value for
OccupancyInstant% that will lead to the desired average
occupancy. Consequently, it is necessary to design an algo-
rithm that is able to setOccupancyInstant% dynamically.

3.2 Asdac

The Asdacalgorithm enhancesStaging-OccupancyInstant%
by automatically deriving an appropriate setting for
OccupancyInstant%. Asdaccontinually monitors the average
occupancy of the tertiary library. Based on this feedback, the
algorithm then adjustsOccupancyInstant% to bring the av-
erage occupancy towardsOccupancyAverage%. The setting
of OccupancyAverage% is studied in Sect. 5.5. The feedback
control process is described below.

At system start-up time,Asdac initializes the
OccupancyInstant% parameter to 100%. Thereafter, the ter-
tiary drive occupancy observed by each new object request
is recorded. If this causes the number of recorded obser-
vations to exceedObserveWindow, an algorithm parameter
that is discussed in Sect. 5.4, the oldest observation is dis-
carded. The reason for keeping only theObserveWindow
most recent observations is to ridAsdac of the influence
of old and possibly invalid observations, so that it remains
sensitive to any changes in workload characteristics. Having
recorded the most recent drive occupancy,Asdacnext re-
visesOccupancyInstant% as necessary. In cases where less
than ObserveWindowobservations are available,Asdac is
unable to judge whether the observed occupancy is satisfac-
tory, so the currentOccupancyInstant% setting is retained.
However, should there beObserveWindowobservations,
Asdacwill compute theConf% confidence interval for the
observed occupancy, assuming that it follows a t-distribution
[5], to determine whetherOccupancyAverage% falls within
the interval. If so, the average observed occupancy satisfies
OccupancyAverage%, so the currentOccupancyInstant% set-
ting need not be changed. IfOccupancyAverage% lies out-
side the computed confidence interval,OccupancyInstant%
is modified using the following formula:

OccupancyInstant%(new) = OccupancyInstant%(old)

× OccupancyAverage%
Average Observed Occupancy

.

Moreover, all of the existing occupancy observations are
discarded in order forAsdacto track the average occupancy

effected by the newOccupancyInstant% setting. Having car-
ried out any required adjustment toOccupancyInstant%,
Asdacthen decides on a retrieval mode for the new object
request according to theStaging-OccupancyInstant% algo-
rithm.

4 Simulation model

As for any algorithm that operates by feedback control, we
need to study the efficacy of theAsdacalgorithm by ex-
amining how it steers itself toward the optimal operating
point, and whether the algorithm will remain there if the
workload is stable. Equally importantly, we need to be sure
that Asdaccan respond quickly to changing workload com-
positions. SinceAsdac bases its actions not only on the
present load condition, but also on past system states, we
could modelAsdacby a Markov chain where each state is a
vector that captures the lastObserveWindowsystem states.
Unfortunately, this causes the state space to explode expo-
nentially with ObserveWindow, rendering the solution in-
tractable. The alternative of “approximate” modeling, rather
than exact modeling, is also unsatisfactory, because we could
not be certain about the validity of the approximations. These
reasons, together with the need to studyAsdacunder tran-
sient workloads, led us to conclude that analytical modeling
is not the most appropriate tool for our purpose. We there-
fore constructed a simulation model of a multimedia storage
server to facilitate our evaluation, taking care to capture the
detailed operations of the server as faithfully as we could.
The simulation model is described below.

The simulator is constructed after the model in Fig. 4.
There are four components: aSourcethat generates object
retrieval requests and collects statistics on completed re-
quests; aTertiary Library component and aStaging Disks
component that model the hardware resources; and aServer
Managerthat coordinates the execution of retrieval requests,
including requisition for transfer bandwidths on the tertiary
library and staging disks. In this section, we describe how
the simulation model captures the details of the database,
workload, and various physical resources of a multimedia
storage system.

4.1 Database and workload model

Table 3 summarizes the database and workload model pa-
rameters that are relevant to this study. Our objective is to
simulate a stream of retrievals from various cartridges in the
tertiary library. To facilitate this, we populate each cartridge
with as many objects as possible. The objects have an aver-
age playback rate ofPlayback. The size of each object is
uniformly distributed between the rangeObjectSize.

5

Fig. 2. Access time (analytical)

Fig. 3. Tape library utilization (ana-
lytical)

Fig. 4. Multimedia storage system model

Table 3. Database and workload model parameters

Parameter Meaning Default
Playback Average playback rate 1.5 Mbits/s
ObjectSize Range of object sizes [1, 2] GB
ArrivalRate Average request arrival rate –

In this study, the workload is made up of a series of
object requests. Since most of the requests in a multimedia
storage system are expected to be targeted at popular objects
that are disk-resident, retrievals from the tertiary library are
likely to be irregular. For this reason, we adopt an open
model, with request arrivals modeled after a Poisson distri-
bution with a mean ofArrivalRate. We assume that the
objects in the tertiary library are accessed equally rarely.

4.2 Physical resource model

The parameters that specify the physical resources of our
simulation model, which consist of a tertiary library and a
set of staging disks, are listed together with their default val-
ues in Table 4. The CPU and memory are not expected to be
a bottleneck at the transfer speed that the tertiary library is
capable of achieving, hence, they are left out to simplify the
simulation model. Also, instead of treating the staging disks
individually, we model them as a single resource with an
aggregate bandwidth ofDiskBandwidth. The rationale is
as follows. On one hand, if the staging disks are managed as
a RAID, then the individual disks are transparent to the mul-
timedia storage system anyway; the storage system simply
sees a high-capacity, high-speed logical disk. On the other
hand, if the disks are managed directly by the multimedia
storage system, we have a set of data placement and retrieval
algorithms that allow the aggregate bandwidth of the stag-

Table 4. Physical resource model parameters

Parameter Meaning Default
DiskBandwidth Aggregate bandwidth of staging disks 18.75 MB/s
NumCartridges Number of cartridges in tertiary library 80
TapeCapacity Storage capacity of a cartridge 14 MB
NumMagazines Number of cartridge magazines 8
RotationT ime Magazine rotation time [0, 2] s
CartTransfer Time to transfer cartridge between [4, 14] s

magazine and drive
NumTapeDrives Number of tape drives 4
TapeBandwidth Max. transfer rate of each tape drive 1 MB/s
SearchT ime Cartridge search time [0, 190] s
RewindT ime Time to rewind cartridge [0, 190] s

ing disks to scale up linearly with the number of disks [18].
Therefore, there is no need to model the individual disks for
the purpose of this study.

The tertiary library that we use in this study is mod-
eled after an EXB-480 tape library. The tertiary library con-
sists of a total ofNumCartridges tape cartridges that are
evenly divided amongNumMagazines magazines, and
NumTapeDrives EXB-8505XL drives. Each cartridge has
a storage capacity ofTapeCapacity. The cartridge load-
ing/unloading time is made up of two components: (a) a
magazine rotation time that is in the rangeRotationT ime,
depending on the distance between the required magazine
and the cartridge-handling mechanism; and (b) a delay in
the intervalCartTransfer to transfer the target cartridge
between the magazine and a tape drive, as determined by the
cartridge’s assigned location in the magazine and the posi-
tion of the tape drive. Once the cartridge has been loaded,
the drive takesSearchT ime to seek forward to the start
of the target object. When the tape is in position, it is
retrieved at a maximum rate ofTapeBandwidth, though
the actual retrieval speed may be lower if the object is be-
ing accessed directly from the tape, or if the staging disks
have limited bandwidth. After the entire object has been re-
trieved, the cartridge has to be rewound, an operation lasting
RewindT ime. Finally, the cartridge is unloaded.

5 Experiments and results

In this section, our multimedia storage system simulator
will be used to evaluate the performance of theStaging−
OccupancyInstant% andAsdacalgorithms. The first three
experiments are designed to profile the performance ofAsdac

6

under different kinds of workload and resource composi-
tions. The tertiary library is the bottleneck resource in the
first experiment; the second experiment uses shorter stag-
ing and playback times, which could result from employing
faster storage devices or having objects with a shorter dura-
tion or a lower bit rate; in the third experiment, we shift the
bottleneck from the tertiary library to the staging disks. The
next three experiments provide a sensitivity analysis of the
Asdacalgorithm. We first examine the impact of different
settings forObserveWindowand OccupancyAverage%, the
input parameters ofAsdac, before investigating its respon-
siveness by subjecting it to a transient workload.

For comparison purposes, we shall also examine two
static tertiary storage retrieval algorithms,Staging and
DirectAccess. TheStaging algorithm always stages a re-
quested object to disks, even if the staging disks are over-
loaded and the tertiary library only needs to support sporadic
retrievals. In contrast, theDirectAccessalgorithm insists on
direct access all the time, ignoring the existence of the stag-
ing disks. These two algorithms are included to highlight any
performance gains that can be realized by algorithms which
are cognizant of the relative loads on the tertiary library and
the staging disks, such asStaging-OccupancyInstant% and
Asdac.

Since we adopt an open model, the steady-state through-
put is the same for all algorithms, and, hence, is not a suitable
performance metric. Instead, we choose as the primary per-
formance metric theaccess time, defined as the elapsed time
from the submission of an object request to the instant when
the first data page of the object arrives at the user terminal.
Each experiment was run for 3000 simulated hours, allow-
ing a minimum of 2000 object retrievals. We also verified
that the size of the 90% confidence intervals for access time
(computed using the batch means approach [19]) was within
a few percent of the mean in almost all cases.

5.1 Baseline experiment

The objective of the baseline experiment is for us to es-
tablish an initial understanding of the trade-offs between
the various proposed tertiary storage retrieval algorithms.
We simulate a “typical” operating environment where the
tertiary library plays the role of “cheap-but-slow” storage,
and where the staging disks form “expensive-but-fast” stor-
age. While it is true that tape drives like the Ampex DST
600 and 1′′ Metrum are faster than most disk drives, in-
stallations that invest in such high-end tape drives are also
likely to acquire high-performance disk arrays, so the rel-
ative cost/performance characteristics of the tertiary library
and staging disks that we use are realistic [17]. To create
the above operating environment, we model a storage sys-
tem that comprises a tape library with four drives, each of
which has a transfer rate of 1 MB/s. The storage system is
also equipped with a set of staging disks offering an ag-
gregate bandwidth of 18.75 MB/s. The rest of the resource
parameter settings follow the default values in Table 4. As
for the workload, the object sizes are uniformly distributed
between 1 GB and 2 GB, and the average playback rate is
1.5 Mbits/s. These parameter settings are chosen to model
the kind of workloads that can be expected in a video-on-

demand system offering a library of MPEG-1 movies. Fi-
nally, theStaging-OccupancyInstant% andAsdacalgorithm
parameters are set as in Table 2.

Figure 5 plots the access times produced byStaging,
DirectAccess,Staging-25%,Staging-50%,Staging-75%,
Staging-100%, andAsdac. As the figure shows,Staging-
100%,Staging-75%,Staging-50%andStaging-25%perform
best for request arrival rates of 0.0002–0.0004, 0.0005–
0.0008, 0.0009–0.0012, and 0.0013–0.0022 requests/s, re-
spectively. However, none of these algorithms consistently
work well. These observations are exactly the same as those
derived from our analytical model, described in Sect. 3.1,
which confirm the validity of our simulator.Asdacmanages
to track the best performingStaging-OccupancyInstant% al-
gorithm for the entire range of load levels.DirectAccess
behaves satisfactorily only for a very low arrival rate of
0.0002 requests/s; the performance of this algorithm be-
comes unacceptable as soon as the load mounts. Finally,
Stagingproduces exactly the same access times asStaging-
25%. These observations clearly show that the choice of ter-
tiary storage retrieval algorithms can have a very significant
impact on the access time. We shall explain the behavior of
each algorithm in turn with the aid of Figs. 6–8, which give
the utilization of the staging disks, the waiting time for tape
drives, and the utilization of the tape library.

Let us first examine theDirectAccessalgorithm. Since
this algorithm always insists on the direct access mode, the
staging disks are never used, hence, their 0% utilization.
DirectAccessforces every tape drive to retrieve objects at
a playback rate of 1.5 Mbits/s, instead of fully utilizing the
transfer bandwidth of the tape drive which, at 1 MB/s, is
more than five times faster than the playback rate. With an
average object size of 1.5 GB, this means that the transfer
time of each object takes 8000 s instead of the minimum of
1500 s. When the arrival rate is as low as 0.0002 requests/s,
this produces a tape library utilization of only 40%, so no
harmful consequences are observed. As the arrival rate in-
creases, however, the tape library utilization immediately
climbs very steeply. This makes the tape library a system
bottleneck, and contention for tape drives causes object re-
quests to experience long waiting times, as Fig. 7 indicates.
In fact, at an arrival rate of 0.0004 requests/s, the access
time is made up almost entirely of tape drive waiting time.
Beyond 0.0004 requests/s, no stable access time measures
can be obtained, because the workload overwhelms the tape
library.

In contrast toDirectAccess,Stagingalways stages ob-
jects off the tape drives at their maximum transfer rate.
This frees the tape drives for subsequent object requests as
soon as possible, leading toStaging’s lowest tape library uti-
lization rates and waiting times. Unfortunately, minimizing
tape drive waiting does not automatically lead to low access
times, sinceStaginghas to invest in a staging delay that av-
erages 1500 s, as explained above, for each object retrieval.
At an arrival rate of 0.0002 requests/s, where the load is light
and the tape drive waiting time is relatively low, the staging
delay produces a net increase in access time, which explains
why Stagingperforms worst. As the load mounts and the
tape drive waiting time builds up, however, the staging de-
lay gradually diminishes in significance until, at an arrival

7

Fig. 5. Access time (baseline)

Fig. 6. Disk utilization (baseline)

Fig. 7. Tape drive waiting time (base-
line)

Fig. 8. Tape library utilization (base-
line)

rate of 0.0014 requests/s, staging begins to pay off, helping
theStagingalgorithm to dominate all of the other algorithms.

Next, we turn our attention to theStaging-100%algo-
rithm. Staging-100%allows up to three of the four tape
drives to be deployed in direct access mode. When the arrival
rate is low, this enables almost all of the requested objects to
be accessed directly, since the number of retrieval requests
at the tape library is low anyway. Thus,Staging-100%effec-
tively mimicsDirectAccessunder light loads. When the load
is heavy and a backlog of requests begins to form, one of
the tape drives will be staging at its maximum transfer rate
in order to get to the next request in the queue in the shortest
possible time. Moreover, upon completing the requests that
are currently being served, the three drives that are in direct
access mode will switch to staging mode to cope with the
waiting requests. The tape drives will only revert to direct
access mode when there are again less than four requests
(including those being served) at the tape library, indicating
that it has caught up with the backlog of object requests.
This ability to dynamically switch tape drives between stag-
ing and direct access modes is the reason thatStaging-100%
degrades much more gracefully thanDirectAccessas the ar-
rival rate increases. However, since as many as three drives
can be deployed in direct access mode,Staging-100%runs
a high risk of allowing request backlogs to build up, thus
degrading access times. This is whyStaging-100%performs
considerably worse thanStagingunder heavy loads, despite
Staging-100%’s ability to switch retrieval mode dynami-
cally.

Compared toStaging-100%,Staging-75%,Staging-50%
andStaging-25%set increasingly stricter limits on the num-
ber of tape drives that can be in direct access mode. Conse-
quently, the three algorithms behave less likeDirectAccess
and more likeStaging. In fact,Staging-25%exhibits exactly
the same behavior asStaging, becauseStaging-25%resorts
to accessing an object directly from a tape drive only if
the available bandwidth of the staging disks is below the
object’s playback rate. Since disk bandwidth is abundant
in this experiment,Staging-25%is always able to perform
staging, hence,Staging-25%is equivalent toStaginghere.
Therefore,Staging-100%,Staging-75%,Staging-50%and
Staging-25%represent a range of trade-offs between staging
delay and tape drive waiting. Since tape drive waiting time
is jointly determined by the setting ofOccupancyInstant%
and the system load, the most appropriate trade-off point is
not fixed. This testifies to the need to automatically derive
the bestOccupancyInstant% setting, which is exactly what
Asdacaims to achieve.

Finally, we examine theAsdac algorithm. In order to
understand howAsdac adapts itself to the workload, we
examine Fig. 9, which traces theOccupancyInstant% set-
ting of Asdac over the initial 100 h of operation at an
arrival rate of 0.0012 requests/s. At system start-up time,
Asdac initializes OccupancyInstant% to a default value of
100%. However, afterObserveWindow= 6 requests,Asdac
immediately detects that a 100%OccupancyInstant% pro-
duces a backlog of requests at the tape library. This causes
Asdacto reduceOccupancyInstant% to 60%, then to 25%
after another iteration. Thereafter,OccupancyInstant% re-

8

Fig. 9. OccupancyInstant% (base-
line)

Fig. 10. Access time distribution
(baseline)

Fig. 11. Access time (small objects)

Fig. 12.Tape library utilization (small
objects)

mains at 25% most of the time, occasionally rising up to
50% in response to workload fluctuations before settling
back at 25%. This leads to an averageOccupancyInstant%
setting of 35%, which enablesAsdac to behave like the
best Staging-OccupancyInstant% algorithm for that arrival
rate. In fact, Asdac manages to find the most appropri-
ate OccupancyInstant% setting over the entire range of ar-
rival rates that we tested, gradually reducing itsOccu−
pancyInstant% from 100% to 25% as the arrival rate in-
creases. The access time distribution produced byAsdacis
typified by Fig. 10, which shows the distribution at 0.0012
requests/s. The figure shows that the access times concen-
trate around the average of 1750 s, as 70% of the access
times fall within the range of 1200–2100 s. Furthermore,
about 90% of the access times are below 2400 s.

To summarize the results of this experiment, we can de-
rive the following conclusions about situations where the
workload comprises mainly large object retrievals and the
tertiary library is the system bottleneck: First,DirectAccess
performs well only if the tertiary library is used very in-
frequently; the access times produced by this algorithm
are unacceptable even for moderate system loads. Second,
Stagingdominates the rest of the algorithms under heavy
retrievals, but suffers from (relatively) long staging delays
under light loads. Third,Staging-OccupancyInstant% deliv-
ers good access times under light load conditions if a high
OccupancyInstant% is chosen, whereas a lowOccupan−
cyInstant% helps the algorithm to cope with heavy loads bet-
ter. However, no singleOccupancyInstant% setting works
well for all load conditions. Finally, theAsdacalgorithm is

capable of finding the rightOccupancyInstant% setting very
quickly, consistently achieving low access times by balanc-
ing between direct access and staging.

5.2 Small objects/high transfer speeds

In the baseline experiment, the workload was made up of
retrieval requests for large objects that are typical of full-
length movies. For the second experiment, we maintain the
algorithm, resource, and workload parameters of the base-
line experiment, but we reduce the object sizes to a range of
only 4–12 MB. One objective of this experiment is to pro-
file the relative performance of the proposed tertiary storage
retrieval algorithms in systems that deal with a variety of
multimedia objects, like video/audio clips and still images.
An example would be a news-on-demand system. Another
objective is to investigate the impact of a larger array of stag-
ing disks and a higher end tape library, such as a RAPID-tape
array that stripes data across multiple drives like a RAID.
These storage devices boast very fast transfer speeds that
reduce object transfer times, which has the effect of making
objects appear “smaller”.

Figures 11 and 12 plot the access time and the uti-
lization of the tape library produced by the various algo-
rithms. As Fig. 11 shows, the access time differences be-
tween Staging, Staging-25%,Staging-50%,Staging-75%,
Staging-100%, andAsdacare hardly noticeable. Even the
performance gap betweenDirectAccessand the rest of the
algorithms is much narrower now. The reason is that, with

9

an average object size of 8 MB, the staging time and play-
back time are only 8 s and 43 s, respectively. In compari-
son, the fixed overhead of the tape library averages 206 s
(cartridge loading 8 s, tape search 95 s, tape rewind 95 s,
and cartridge unloading 8 s). Consequently, the access time
penalty that staging incurs is insignificant, which explains
why all of the algorithms are almost equally good at low
loads. At higher arrival rates, however,DirectAccess’s pol-
icy of accessing the tape drives directly again exacerbates
the contention that object requests experience at the tape li-
brary (see Fig. 12), resulting in longer access times. As for
Asdacand the fourStaging-OccupancyInstant% algorithms,
theirOccupancyInstant% settings do not matter here because
the short staging and playback times allow the algorithms to
quickly switch to staging mode once there is a backlog of
retrieval requests at the tape library.

In summary, we conclude that the staticStagingalgo-
rithm is satisfactory if the workload comprises mainly small
object retrievals and the tertiary library is the system bottle-
neck. However,Asdacis still the algorithm of choice.

5.3 Staging disk bottleneck

For the first two experiments, we have made the tertiary li-
brary the bottleneck resource of the system. As explained
earlier, this is because the staging disks are normally faster
than the tertiary drives. However, if the disks are not ded-
icated to staging operations, then the disks could conceiv-
ably become the bottleneck instead. An arrangement that will
limit the bandwidth available for staging is where the disks
that support staging operations are also used to cache the
popular objects, so most of the disk bandwidth is consumed
by the retrieval of these popular objects. To explore the im-
plication of having a bottleneck at the disks, we lower the
disk bandwidth to 1 MB/s without changing the rest of the
resource parameters. The workload and algorithm parame-
ters also remain at their settings in the baseline experiment.

Figures 13–16 plot the access time, staging disk utiliza-
tion, tape drive waiting time, and tape library utilization
values, respectively. The figures show that the various algo-
rithms exhibit very different behaviors here than they did in
the baseline experiment. WhereasStagingperformed badly
at low loads but dominated under heavy loads previously, it
now produces much higher access times than the other al-
gorithms at all arrival rates. The reason is that, with a small
transfer bandwidth, the staging disks quickly become satu-
rated (see Fig. 14) by staging operations. As a result, object
requests have to wait for a long time before they get to
use the staging disks. In the meantime, the object requests
hold on to their assigned tape drives, causing the utilization
of the tape library to increase. This, in turn, leads new ob-
ject requests to experience long tape drive waiting times, as
Fig. 15 shows. Consequently,Staginghas the worst access
times. In contrast,DirectAccessrelies exclusively on the tape
drives for its retrievals. Since the tape drives have a higher
aggregate bandwidth than the staging disks,DirectAccess
destabilizes later thanStaging, as indicated in Fig. 13.

Having examined the two static algorithms, we now turn
our focus toAsdacand the fourStaging-OccupancyInstant%
algorithms. At low arrival rates, the relative performance be-

tween the fourStaging-OccupancyInstant% algorithms are
the same as before, withStaging-25%and Staging-50%
suffering more from staging delays thanStaging-75%and
Staging-100%. Under heavy loads where the staging disks
and, in turn, the tape library approach saturation, the
Staging-OccupancyInstant% algorithms degenerate to a sim-
ple policy of staging whenever the staging disks have enough
bandwidth, and accessing from the tape drives directly oth-
erwise. In other words, the setting ofOccupancyInstant%
has a negligible impact. This is why all four algorithms
deliver the same access times. Due to their ability to ex-
ploit the staging disks, theStaging-OccupancyInstant% al-
gorithms outperformDirectAccess. Moreover, since they
can bypass the staging disks when they get overloaded,
the Staging-OccupancyInstant% algorithms are superior to
Staging. Finally, we observe thatAsdacagain tracks the best
Staging-OccupancyInstant% algorithm, producing the short-
est access times.

To summarize, we conclude that, when the disks have
limited bandwidth for staging operations,DirectAccessis
superior toStaging, butStaging-100%gives the best perfor-
mance. Again,Asdacis able to set itsOccupancyInstant%
appropriately to exploit both the staging disks and the tape
library.

5.4 Impact ofObserveWindow

In the previous experiments, theObserveWindowparame-
ter of theAsdacalgorithm has been set to 6. We now vary
ObserveWindowin order to evaluate the sensitivity of the
Asdacalgorithm. The rest of the parameter settings are the
same as for the baseline experiment. The resulting access
times are given in Fig. 17. We also plot in Fig. 18 the stan-
dard deviation ofAsdac’s targetOccupancyInstant% setting.

With ObserveWindow= 1, Asdac decides the transfer
mode for a retrieval request based solely on the tape drive
occupancy that the request observes when it first arrives.
This allows the setting ofOccupancyInstant% to fluctuate
with variations that are inherent in the workload, which is
why the standard deviation ofOccupancyInstant% is high-
est atObserveWindow= 1. We also observe in Fig. 18 that
the standard deviation rises with the arrival rate initially,
peaking at an arrival rate of 0.0006 requests/s before declin-
ing with further increases in the arrival rate. This is be-
causeOccupancyInstant% is bounded from above by 100%
at low arrival rates and bounded from below by 25% at high
arrival rates, soOccupancyInstant% fluctuates most freely
at 0.0006 requests/s when the averageOccupancyInstant%
(not shown) is right in between 25% and 100%. The high
variations inOccupancyInstant% means that it is very fre-
quently set either too high or too low, although the average
levels are about right. Consequently,Asdac produces the
worst access times at thisObserveWindow.

As ObserveWindowis raised,Asdacbecomes less sensi-
tive to temporary load variations. As a result,Asdacis bet-
ter able to hold theOccupancyInstant% parameter at its best
level, thus achieving shorter access times. AtObserveWin−
dow = 6, Asdac’sOccupancyInstant% setting becomes sta-
ble enough that further increases inObserveWindowpro-
duces only inconsequential reductions in access time. Since

10

Fig. 13. Access time (staging)

Fig. 14. Disk utilization (staging)

Fig. 15.Tape drive waiting time (stag-
ing)

Fig. 16. Tape library utilization (stag-
ing)

too large anObserveWindowimpedesAsdac’s ability to
quickly adapt to changes in workload characteristics, we
conclude that aObserveWindowof 6 suffices.

5.5 Impact ofOccupancyAverage%

BesidesObserveWindow,OccupancyAverage% is the other
input parameter that may affect the performance ofAsdac.
We now vary the value of this parameter, which has been
kept at 50% in previous experiments. The rest of the pa-
rameters remain at their settings in the baseline experiment.
The resulting access times are plotted in Fig. 19. The figure
shows that anOccupancyAverage% of 50% is the best. In-
tuitively, this is because inherent workload variations cause
the ideal (instantaneous) tape drive occupancy to fluctuate
between 0% and 100%, so anOccupancyAverage% of 50%
gives Asdac the most flexibility in adjusting to the vari-
ations. However,OccupancyAverage% values of 25% and
75% are not much worse. The reason is thatAsdac’s feed-
back control mechanism can largely compensate for subop-
timal OccupancyAverage% settings. To illustrate, let us re-
fer to the formula for computingOccupancyInstant%, given
near the end of Sect. 3.2. IfOccupancyAverage% is too
low, OccupancyInstant% will initially be low too. This will
soon lead to a small average observed occupancy, which
in turn will force OccupancyInstant% back up. Adjust-
ments to overly highOccupancyAverage% values are made
in a similar fashion. Consequently, we recommend setting
OccupancyAverage% to 50%, though that is not crucial.

5.6 Transient workload

Our last experiment is designed to find out how quickly
Asdaccan adapt to workload changes. This is achieved by
retaining all of the algorithm, resource, and workload pa-
rameter settings of the baseline experiment, except for the
request arrival rate that now alternates periodically between
0.0002 and 0.0022 requests/s. The duration between work-
load changes,ClassDuration, is varied. Thus, there are two
workload classes which we shall denote by Light and Heavy.
As explained in Sect. 3 and demonstrated in the baseline ex-
periment,Staging-100%produces lower access times for the
Light class, whereasStaging-25%is more suitable for the
Heavy class. Consequently, this fluctuating workload serves
to testAsdac’s ability to steer itself towardsStaging-100%
or Staging-25%as the workload changes. For this ex-
periment, we will only show the access times produced
by Staging-25%,Staging-50%,Staging-75%,Staging-100%
andAsdac.Stagingis left out, since it has been shown to give
the same performance asStaging-25%for the two workload
classes, whileDirectAccessis not able to handle the Heavy
class.

Figures 20 and 21 plot the access times for the Light
class and Heavy class. At a ClassDuration of 2 h, an object
request experiences at least one class change during its life-
time, as each request lasts more than 2 h on average (average
object size/playback rate = 1.5 GB/1.5 Mbits per s = 8000 s).
Therefore, no object request can be clearly identified as be-
longing to either class, although, for accounting purposes,
we attribute the access time of a request to the class that is
active when the request first arrives. Consequently, it is no

11

Fig. 17. Access time (ObserveWindow)

Fig. 18. Standard deviation ofOccupancyInstant% (ObserveWindow)

Fig. 19. Access time (OccupancyAverage%)

Fig. 20. Light access time (change)

Fig. 21. Heavy access time (change)

surprise that both Fig. 20 and Fig. 21 register similar access
times at this ClassDuration.

As ClassDuration increases and class boundaries become
more distinct, we expect the access time of the two classes
to move gradually toward the levels observed in the base-
line experiment. This is indeed the case for the Light class,
as Fig. 20 shows. However, Fig. 21 reveals that, except for
Staging-25%, the Heavy class access times produced by the
algorithms grow faster than anticipated between ClassDu-
rations of 25 and 150 h, peaking at ClassDuration = 100 h
before dropping back down. We were surprised by this trend
initially. After monitoring the behavior of the algorithms
closely, we discovered that the unexpected trend in the ac-
cess time of the Heavy class is due to performance deterio-
ration induced by class transitions. To simplify our explana-

tion, we shall first focus onStaging-100%. When the Light
class is active,Staging-100%allows up to three of the four
tape drives to be employed for direct accesses. This causes a
backlog of object requests to form suddenly when the work-
load changes to the Heavy class. Since the tape library takes
a while to complete the direct accesses at the tape drives be-
fore switching them to staging mode, access time naturally
deteriorates when the workload switches from the Light class
to the Heavy class. This deterioration is worst at a Class-
Duration of 100 h, which is just about enough time for the
tape library to catch up with the backlog of object requests.
Beyond 100 h, the tape library begins to reap the benefits of
having tuned to the Heavy class, and access time improves
as a result. This explains the trend inStaging-100%’s ac-
cess times between ClassDurations of 25 and 150 h. As for

12

the rest of the algorithms,Staging-75%,Staging-50%and
Staging-25%suffer less from class transitions, because these
algorithms employ fewer of the tape drives in direct access
mode. Finally,Asdacis also adversely affected by class tran-
sitions, as evident from the sharp rise in its access time in
Fig. 21. However, beyond a ClassDuration of 25 h,Asdac’s
automaticOccupancyInstant% tuning mechanism starts to
take effect, bringing the access times of both classes to sat-
isfactory levels. This experiment shows thatAsdac is able
to adapt to a given workload, even if its characteristics re-
main stable for only 15–20 times the average object retrieval
duration after each workload change.

6 Conclusions

In this paper, we have focused on the problem of retrieving
data from a tertiary library. This problem will arise in storage
systems that need to deal with very large volumes of data,
making a purely disk-based implementation uneconomical.
Systems that are likely to require tertiary storage include
those that support multimedia applications like interactive
multimedia education [2] and news on demand [16]. These
applications not only need to maintain large collections of
objects, but the objects themselves also tend to be huge in
size. For example, a 2-h MPEG-1 movie can easily occupy
1.5 GB of storage [9]. Consequently, accessibility of objects
that reside in the tertiary library plays an important role in
determining the performance of a multimedia storage sys-
tem. One measure of accessibility is theaccess time, defined
as the elapsed time between the submission of a retrieval re-
quest and the instant when the first page of data arrives at the
user terminal. At present, most existing storage systems sup-
port onlyStaging, which requires an object to be transferred
to disks before it can be accessed. An alternative approach
that has been studied isDirectAccess, where objects are read
off the tertiary library directly. Our study demonstrated that
neitherStagingnor DirectAccessproduce satisfactory access
times consistently. Therefore, there is a need for dynamic ap-
proaches that combineStagingand DirectAccessaccording
to the resource composition of a storage system.

To explore the efficacy of dynamically combiningStaging
andDirectAccess, we first propose a family of tertiary stor-
age retrieval algorithms, calledStaging-OccupancyInstant%.
These algorithms decide on a retrieval mode for an object
request based on the occupancy of the read/write drives
in the tertiary library at the time of the request’s arrival.
If the occupancy is above theOccupancyInstant% param-
eter, then the requested object is staged; otherwise the
object is accessed from a tertiary drive directly. Analyti-
cal modeling, as well as simulation experiments using dif-
ferent workloads and resource configurations reveal that
there are always someOccupancyInstant% settings that
enableStaging-OccupancyInstant% to perform at least as
well as Staging and DirectAccess. Unfortunately, no sin-
gle OccupancyInstant% setting is optimal for all situations.
On one hand, a lowOccupancyInstant% usually produces
shorter access times at low loads, because staging delays
are avoided by accessing objects directly from the tertiary
drives, which are free most of the time. On the other hand, a
high OccupancyInstant% works better when the tertiary li-

brary is heavily accessed, as objects are read off the tertiary
drives as fast as possible, thus speeding up turnaround time
at the tertiary drives.

In order to provide efficient tertiary storage retrieval un-
der different system configurations, we next introduce an
Asdac algorithm. Asdac augmentsStaging − Occupan−
cyInstant% with a mechanism that automatically derives
the most appropriateOccupancyInstant% value based on
feedback on the observed tertiary drive occupancy: If the
observed occupancy is low, thenAsdacraisesOccupan−
cyInstant% to allow more direct accesses, so as to lower
access time. Conversely, if the observed occupancy is high,
thenOccupancyInstant% is lowered to favor staging, result-
ing in faster turnaround at the tertiary drives. Experiments
show thatAsdacis very effective for a wide range of work-
load and resource configurations, consistently reaching the
optimal OccupancyInstant% setting in all cases. Moreover,
Asdacachieves this quickly enough, so that it works well
even if the workload composition changes over time. There-
fore, we conclude thatAsdacshould be very useful for man-
aging data retrievals from the tertiary library of a multimedia
storage system.

For future work, we intend to integrate storage space
management with the data retrieval algorithm presented in
this paper. Specifically, we will look into ways to determine
which objects should reside on disks, and which objects can
be held in tertiary library. We also plan to study issues re-
lating to object migration across secondary and tertiary stor-
ages. Once these issues have been resolved, we will build a
complete hierarchical storage subsystem for the multimedia
storage server that we have implemented.

Appendix:
Modeling Staging-OccupancyInstant% analytically

In this appendix, we describe how we model theStaging−
OccupancyInstant% algorithm analytically. To simplify the
model, we assume that the tertiary library is the only bot-
tleneck resource in the multimedia storage system, and that
all other resources have abundant capacities, and hence need
not enter into the model. This means that the disks always
have sufficient space and bandwidth for staging and the sub-
sequent playback operations. With only the tertiary library
to consider, the behavior ofStaging-OccupancyInstant% is
entirely determined by the number of requests in the library.
We can therefore model the algorithm by a Markov chain.
Before we derive the Markov chain, let us first introduce
some notation:

play : playback time
stage : staging time
overhead : time for cartridge loading/unloading

and search/rewind
λ : request arrival rate/system throughput
µp = 1

overhead + play
: service rate for direct access

µs = 1
overhead + stage

: service rate for staging
Pi : probability of havingi requests in the

tertiary library
W : average waiting time for playback to

begin

13

For a tertiary library with four tape drives,Staging-100%
can be approximated by the following Markov chain:

where the states capture the number of requests in the ter-
tiary library. From state 5 onwards, the system will always
have four active requests – three being served in direct ac-
cess mode and one in staging mode – after a request arrival
or completion, hence, the number of requests in the sys-
tem increases at a rate ofλ and decreases at 3µp + µs. At
state 4, the system can either be left with three requests in
direct access mode, or two requests in direct access mode
plus one request in staging mode when a request departs.
However, we aggregate the two possibilities with a single
transition to state 3 with a rate of 3µp + µs, in order to
keep the Markov chain simple enough to derive from it a
closed form solution. This approximation is reasonable, be-
cause the purpose of the Markov chain is to demonstrate the
crossover between differentStaging-OccupancyInstant% al-
gorithms, so the operating level of interest would push the
system beyond state 3 most of the time. Moreover, there is a
good chance that the departing request is the one in staging
mode anyway, asµs is expected to be considerably higher
thanµp. The same approximation applies to the transitions
between states 0 and 3. As shown in Figs. 2 and 5, the re-
sulting Markov chain still captures the qualitative trade-offs
between theStaging-OccupancyInstant% algorithms.

The above Markov chain yields the following solution:

Pi =

{
1
i! (

λ
µp

)iP0 for 1 ≤ i ≤ 2
1
3! (

λ
µp

)3(λ
3µp + µs

)i−3P0 for i ≥ 3
,

P0 = (1 +
λ

µp
+

1
2!

(
λ

µp
)2 +

1
3!

(
λ

µp
)3(

3µp + µs
3µp + µs − λ

))−1 ,

W =
∞∑
i=0

Pi × wi ,

wherewi is the waiting time that a new request can ex-
pect when there are alreadyi requests in the tertiary library.
When there are up to three requests in the library, a new
request does not need to wait for a free tape drive. Since
Staging-100%allows up to three of the four drives to be
used for direct access, the delay experienced by a new re-
quest is simplyoverhead with two or fewer existing requests
in the library. With three existing requests, the waiting time
could be eitheroverhead or overhead+stage, depending on
whether one of the existing requests is already doing stag-
ing; on the average, the waiting time is4×overhead+stage

4 .
When there arei > 3 existing requests, a new request has
to wait for (i− 3) requests to leave the library before it is
assigned a tape drive. The expected duration for this wait
is i − 3

3µp+µs
. After seizing a tape drive, the new request goes

through a further4×overhead+stage
4 delay before playback

begins. Therefore,

wi =

{
overhead for 0 ≤ i ≤ 2
i − 3

3µp+µs
+ 4×overhead+stage

4 for i ≥ 3 .

The behavior of the otherStaging-OccupancyInstant%
algorithms can be modeled using the same method. We will
simply present their solutions here:

Staging-75%:

Pi =

{
1
i (λ

µp
)iP0 for 1 ≤ i ≤ 2

1
2(λ

µp
)2(λ

2µp+µs
)(λ

2µp+2µs
)i−3P0 for i ≥ 3

P0 = (1+
λ

µp
+
λ2

2µ2
p

+
λ3

2µ2
p(2µp+µs)

× 2µp+2µs
2µp+2µs − λ

)−1

wi =


overhead for 0 ≤ i ≤ 1
3×overhead+stage

3 for i = 2
i − 3

2µp+2µs
+ 4×overhead+2×stage

4 for i ≥ 3

Staging-50%:

Pi =


λ
µp
P0 for i = 1
λ2

µp(µp+µs)P0 for 1 = 2
λ3

µp(µp+µs)(µp+2µs) (
λ

µp+3µs
)i−3P0 for i ≥ 3

P0 = (1 +
λ

µp
+

λ2

µp(µp + µs)
+

λ3

µp(µp + µs)(µp + 2µs)

× µp + 3µs
µp + 3µs − λ

)−1

wi =

{
(i+1)×overhead+i×stage

i+1 for 0 ≤ i ≤ 2
i − 3
µp+3µs

+ 4×overhead+3×stage
4 for i ≥ 3

Staging-25%:

Pi =

{
1
i! (

λ
µs

)iP0 for 1 ≤ i ≤ 2
1
3! (

λ
µs

)3(λ
4µs

)i−3P0 for 1 ≥ 3

P0 = (1 +
λ

µs
+

1
2!

(
λ

µs
)2 +

1
3!

(
λ

µs
)3(

4µs
4µs − λ

))−1

wi =

{
overhead + stage for 0 ≤ i ≤ 2
i − 3

4µs
+ overhead + stage for i ≥ 3

Acknowledgement.The author would like to thank Desai Narasimhalu and
the reviewers for their helpful comments on an earlier version of this paper.

References

1. Asia Computer Weekly, (1994) December 5–11
2. Adam JA (1993) Interactive multimedia: applications, implications,

IEEE Spectrum. 30(3):24–31
3. Bestavros A (1995) Demand-based Document Dissemination for the

World Wide Web. Technical Report TR-95-003, CS Dept., Boston Uni-
versity, Boston, Mass.

4. Collins B, Devaney M, Kitts D (1988) Profiles in mass storage: a tale
of two systems. In: Digest of Papers, Ninth IEEE Symp. on Mass
Storage Systems, October 1988, pp 61–67

5. Devore JL (1991) Probability and Statistics for Engineering and the
Sciences. Brooks/Cole Pub. Co., Pacific Grove, Calif.

6. Digest of Papers, Ninth IEEE Symp. on Mass Storage Systems, October
1988. Ed: Friedman KD, Monterey, Calif.

7. Digest of Papers, Tenth IEEE Symp. on Mass Storage Systems, May
1990. Ed: Friedman KD, Monterey, Calif.

14

8. Foglesong J et al. (1990) The Livermore distributed storage system: im-
plementation and experiences. In: Digest of Papers, Tenth IEEE Symp.
on Mass Storage Systems, May 1990, pp 18–25

9. Gall D (1991) MPEG: A video compression standard for multimedia
applications, Commun ACM, 34(4):46–58

10. Ghandeharizadeh S, Shahabi C (1994) Multimedia repositories, per-
sonal computers, and hierarchical storage systems. Proc. of the ACM
Multimedia Conf., San Francisco, Calif., pp 407–416

11. Haas LM, Carey MJ, Livny M (1993) Tapes hold data, too: challenges
of tuples on tertiary store. In: Proc. of the ACM SIGMOD Conf. Wash-
ington D.C. 413–417

12. Hogan C et al. (1990) The Livermore distributed storage system: re-
quirements and overview. In: Digest of Papers, Tenth IEEE Symp. on
Mass Storage Systems, May 1990, pp 6–17

13. Kenley GG (1990) An architecture for a transparent networked mass
storage system. In: Digest of Papers, Tenth IEEE Symp. on Mass Stor-
age Systems, May 1990, pp 160–167

14. Kienzle MG, Dan A, Sitaram D, Tetzlaff W (1995) Using tertiary
storage in video-on-demand servers. In: Proc. of the IEEE COMPCON.
San Francisco, Calif., pp 225–233

15. TDC. Little, Venkatesh D (1993) Popularity-based assignment of
movies to storage devices in a video-on-demand system. In: Proc. of
the 4th Int. Workshop on Network and Operating System Support for
Digital Audio and Video. Lancaster, England, pp 213–224

16. Miller G, Baber G, Gilliland M (1993) News on demand for multimedia
networks. In: Proc. of the ACM Multimedia Conf. Anaheim, Calif., pp
383–392

17. Myllymaki J, Livny M (1995) Disk-tape joins: synchronizing disk and
tape access. In: Proc. of the ACM SIGMETRICS Conf. Ottawa, On-
tario, pp 279–290

18. Pang H (1995) Data placement and retrieval in a distributed multi-
media storage system. Technical Report, Institute of Systems Science,
National University of Singapore, Singapore

19. Sargent R (1976) Statistical analysis of simulation output data. In:
Proc. of the 1976 Symp. on Simulation of Computer Systems. Boulder,
Colorado

20. Thanhardt E, Harano G (1988) File migration in the NCAR mass stor-
age system. In: Digest of Papers, Tenth IEEE Symp. on Mass Storage
Systems, May 1990, pp 114–121

21. Tweten D (1990) Hiding mass storage under UNIX: NASA’s MSS-II
architecture. In: Digest of Papers, Tenth IEEE Symp. on Mass Storage
Systems, May 1990, pp 140–145

HweeHwa Pang received his BS -
with first class honors – and MS degrees
from the National University of Singa-
pore in 1989 and 1991, respectively, and
the PhD degree from the University of
Wisconsin at Madison in 1994, all in
Computer Science. He is now on the re-
search staff of the Institute of System
Science. Dr. Pang’s research interests
include database management systems,
multimedia servers, and real-time sys-
tems. He is now heading the METEOR
project that has the goal of building an
operational distributed multimedia stor-
age server.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-1997

	Tertiary Storage in Multimedia Systems: Staging or Direct Access?
	Hwee Hwa PANG
	Citation

	tmp.1472369344.pdf.rl89J

