
 

 

 

 

 

Application of satellite image time series and texture 
information in land cover characterization and 

burned area detection 

 

 

Jinxiu Liu 

Department of Geosciences and Geography 
Faculty of Science 

University of Helsinki 
Finland 

 

 

 

Academic Dissertation 

 

To be presented, with the permission of the Faculty of Science of the University of Helsinki, for 
public criticism in the lecture hall 5 of the Main Building on September 28th 2017, at 12 o’clock 
 

Helsinki 2017 
 

 

 



 
 

 
 
 
 Supervisors:            Professor Petri Pellikka 

Department of Geosciences and Geography 
University of Helsinki 
Finland 

 
Dr. Janne Heiskanen                                 
Department of Geosciences and Geography 
University of Helsinki 
Finland 

 
Pre-examiners:        Professor Martin Herold 

Laboratory of Geo-Information Science and Remote Sensing 
Wageningen University 
The Netherlands 

                      
Professor Chaoyang Wu 
Institute of Geographic Sciences and Natural Resources Research 
Chinese Academy of Sciences 
China 

 
 Opponent:               Professor Timo Tokola 

School of Forest Sciences 
University of Eastern Finland 
Finland 

 

 

 

 

 
ISSN-L 1798-7911 
ISSN 1798-7911 (print) 
ISBN 978-951-51-2931-4 (paperback) 
ISBN 978-951-51-2932-1 (PDF) 
http://ethesis.helsinki.fi 
 

Unigrafia 
Helsinki 2017 

 



 
 

 

Abstract 
Land cover is critical information to various land management and scientific applications, 
including biogeochemical and climate modeling. In addition, fire is an essential factor in 
shaping of vegetation structures, as well as for the functioning of savanna ecosystems. Remote 
sensing has long been an important and effective means of mapping and monitoring land cover 
and burned area over large areas in a consistent and robust way. Owing to the free and open 
Landsat archive and the increasing availability of high spatial resolution imagery, seasonal 
features from the temporal domain and the use of texture features from the spatial domain create 
new opportunities for land cover characterization and burned area detection. 

This thesis examined the application of satellite image time series and texture information in 
land cover characterization and burned area detection. First, the utility of seasonal features 
derived from Landsat time series (LTS) in improving accuracies of land cover classification 
and attribute prediction in a savanna area in southern Burkina Faso was studied. Then, the 
temporal profiles from LTS were explored for mapping burned areas over a 16 year period, and 
MODIS burned area product was used for comparison. Finally, the application of texture 
features derived from high spatial resolution data in land cover classification and attribute 
predictions was investigated in a savanna area of Burkina Faso and an urban fringe area in 
Beijing. 

According to the results, firstly, seasonal features from LTS based on all available imagery 
during one year as input led to a significant increase in land cover classification accuracy in 
comparison to the dry and wet season single date imagery. The harmonic model used for time 
series modeling provided a robust method for extracting seasonal features, and the influence of 
burned pixels on seasonal features could be considered simultaneously. Secondly, the annual 
burned area mapping based on a harmonic model and breakpoint identification with LTS was 
capable of detecting small and patchy burn scars with higher accuracy than MODIS burned area 
product. The approach demonstrated the potential of LTS for improving burned area detection 
in savannas, and was robust against data gaps caused by clouds and Landsat 7 missing lines. 
Thirdly, predictive models of tree crown cover (CC) using RapidEye and LTS imagery achieved 
similar accuracy, indicating the importance of texture and seasonal features from RapidEye and 
LTS imagery, respectively. Predictions of aboveground carbon and tree species richness, which 
were strongly correlated with CC, were promising using RapidEye and LTS imagery. Finally, 
the optimized window size texture classification improved classification accuracy in 
comparison to the classifications with single window size texture features and multiple window 
size texture features in an urban fringe area in Beijing, indicating the importance of multiscale 
texture information. 

Keywords: Landsat time series, texture, land cover classification, burned area, savanna, tree 
crown cover 
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1 Introduction 

1.1 Land cover characterization 

Land cover is a fundamental variable that refers to the biophysical attributes of the Earth’s 
surface, such as vegetation cover, water, bare soils, and human infrastructure (Foody 2002; 
Lambin et al. 2001; Gómez et al. 2016). It is critical information for studies of climate change, 
carbon cycling, hydrology, biodiversity, and food security; in addition, accurate land cover 
information is essential for natural resource management and policy making (Bounoua et al. 
2002; Jung et al. 2006; Miller et al. 2007; Wulder and Coops 2014; Herold et al. 2016). Land 
cover is a detectable indicator and a good proxy for understanding the dynamics of the Earth’s 
surface (Herold et al. 2006). Land cover characteristics can provide information on ongoing 
processes of deforestation, urbanization, and loss of biodiversity (Herold et al. 2008). Therefore, 
timely and reliable land cover information is critical for many planning and management 
activities, in addition to scientific applications.  

Remote sensing has been an important and effective approach to monitoring land cover, 
particularly due to its ability to collect data over a large area as compared to field survey 
(Franklin and Wulder 2002; Joshi et al. 2016). Many land cover maps have been produced using 
remote sensing data on global and regional scales (Hansen et al. 2000; Loveland et al. 2000; 
Friedl et al. 2002; Gong et al. 2013). The land cover information derived from remote sensing 
data can be expressed as discrete classes or continuous land cover attributes (Heiskanen 2006; 
Colditz et al. 2011; Pengra et al. 2015). Image classification is a popular approach to extracting 
discrete land cover types from remote sensing images. Many studies have used different 
approaches to predicting continuous land cover attributes, such as tree crown cover (CC), 
aboveground carbon (AGC), soil organic carbon (SOC), and tree species richness (S) (Halperin 
et al. 2016; Eckert 2012; Zhu and Liu 2015; Forkuor et al. 2017; Maeda et al. 2014). The 
prediction of land cover attributes as continuous variables enables the definition of 
classification legends more flexible, so that it can better meet the users’ needs (Cihlar 2000). 
Moreover, CC is an essential attribute in forest definition, and is often mapped as a continuous 
variable by remote sensing (Hansen et al. 2002; Heiskanen and Kivinen 2008). Soil attributes 
related to agricultural productivity and land degradation are important for land management 
interventions (Vågen et al. 2013). The assessment of biodiversity can be conducted in many 
ways, and species richness is one of the most commonly used indices (Rocchini et al. 2015). 

Many studies have explored the potential of land cover characterization using coarse resolution 
satellite Earth observation data, due to its high temporal resolution and large spatial coverage, 
including Moderate Resolution Imaging Spectrometer (MODIS) data, Advanced Very High 
Resolution Radiometer (AVHRR) data, and Satellite Pour l’Observation de la Terre (SPOT) 
data (Hansen et al. 2000; Loveland et al. 2000; Friedl et al. 2002; Friedl et al. 2010). However, 
land cover characterization on a local scale requires detailed and accurate data for social and 
management activities. Medium (10-100 m) and high spatial resolution (≤ 10 m) Earth 
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observation data (i.e. Sentinel, Landsat, RapidEye, SPOT-5) can satisfy the requirements of 
local studies, and have recently become increasingly popular. In addition to the spectral 
dimension of the medium and high spatial resolution Earth observation data, the use of temporal 
and spatial dimensions as supplemental information has been proven beneficial for improving 
the performance of land cover characterization. 

Savanna is an ecosystem which consists of a continuous layer of grass interspersed with 
scattered trees and shrubs (Cahoon et al. 1992). Savannas account for about 60% of the surface 
of tropical Africa, and human activities have a large influence on their appearance and 
degradation status (Callo-Concha et al. 2013). The southern part of Burkina Faso is located in 
the West Sudanian savanna, where there is a high potential for agriculture due to the fertile soils 
and abundant rainfall (Knauer et al. 2017). Due to the rapidly growing population in Burkina 
Faso, there is an increasing demand for land resources, leading to unsustainable land cover 
changes and loss of biodiversity (Kalema et al. 2015). Accurate monitoring and mapping of 
land cover and change is important, and needed for environmental management. However, the 
frequent cloud coverage in this area makes land cover mapping a challenging task.  

There are frequent and extensive bush fires in African savannas, accounting for a large 
proportion of the total global burned area (Dwyer et al. 2000; Archibald et al. 2009; Musyimi 
et al. 2017). Fires, which occur mostly due to anthropogenic reasons, have both positive and 
negative effects. Fire is an important positive ecological determinant of the African savanna 
and grassland vegetation types (Higgins et al. 2000; Siljander 2009). The fires emit large 
amounts of greenhouse gases and aerosol particles, which influence the carbon cycle and can 
drastically alter vegetation cover (Nielsen and Rasmussen 1997; Mouillot et al. 2014; Giglio et 
al. 2010; Schroeder et al. 2008). Frequent burning of the savanna can also lead to land 
degradation and loss of biodiversity (Laris 2005). Therefore, accurate mapping and monitoring 
of burned area in savannas is crucial for social and environmental applications (Boschetti et al. 
2015).  

With the enormous growth in population and economy, land use and land cover changes take 
place rapidly in urban fringe areas, and lead to a process of urbanization (Xue et al. 2013). The 
characteristic of the spatial patterns in urbanization is the conversion of rural land into urban 
land in order to satisfy the increasing demand (Liu and Zhou 2005). An accurate and timely 
understanding of urban dynamics from remote sensing data is increasingly necessary for urban 
planning and management. High spatial resolution data are of particular benefit in monitoring 
urbanization, as they are capable of capturing spatial patterns in detail. However, the spectral 
variability within a particular class increases, making the classification based on spectral 
information only even harder (Agüera et al. 2008). The approach of combining both spectral 
and texture information has been developed and proven effective in improving land cover 
classification accuracy (Berberoglu et al. 2007). 

Previous studies show that the incorporation of temporal information from time series data and 
texture information from high spatial resolution data improves the accuracy of land cover 
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characterization, but relatively few studies have been conducted in the savanna area in West 
Africa. The burned area detection approach using multi-temporal information has been 
constrained to two date comparisons, and there is potential for time series approaches using the 
full temporal information contained in the Landsat archive to improve burned area detection 
performance. Furthermore, the texture features derived from high spatial resolution imagery are 
widely used in urban studies, but the determination of parameters (i.e. window size, 
combination of texture measures) in texture features extraction has not yet been 
comprehensively studied. 

1.2 Objectives of the thesis 

The main objective of this thesis was to assess the potential of seasonal and textural information 
from Landsat time series (LTS) and high spatial resolution imagery for land cover classification, 
land cover attribute prediction, and burned area mapping in two case study areas. The more 
detailed objectives and contents of the four Papers (I-IV) constituting this thesis are summarized 
below and in Figure 1. 

 
Figure 1. Key words describing the main contents of the thesis and four Papers (I-IV). 

Paper I examined the potential of seasonal features to improve the accuracy of land cover 
classification and CC prediction in a savanna area in southern Burkina Faso. The dry and rainy 
season single date images were used for comparison to assess the utility of seasonal features. 
In addition, the effect of burned areas on seasonal features was evaluated. Paper II explored the 
potential of using LTS for annual burned area mapping in southern Burkina Faso. The burned 
area detection methodology was developed and applied to 16 years of Landsat data. The results 
from LTS were also compared with MODIS burned area product. Paper III compared predictive 
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models for mapping various tree, soil, and species diversity attributes in southern Burkina Faso 
using spectral, textural, and seasonal features from RapidEye and LTS. Paper IV studied how 
the window size in texture analysis affects land cover classification accuracy with SPOT-5 
image in an urban fringe area of Beijing, and aimed to optimize the texture window size for 
land cover classification. 

2 Background 

2.1 Temporal perspective: Landsat time series  

The Landsat satellite image archive stores more than four decades of Earth observations, 
providing an unparalleled record of the status and dynamics of the Earth (Cohen and Goward 
2004). Since the beginning of the free and open access policy to the Landsat archive in 2008, 
Landsat imagery have become a consistent source of medium resolution data for monitoring 
land cover and change in near-real time over large areas (Woodcock et al. 2008; Wulder et al. 
2012). Data from the recently launched Landsat 8 and Sentinel-2 satellites further increases the 
frequency of geometrically and radiometrically compatible Earth observations. Specifically, 
LTS brings two key elements to land cover monitoring: a spatial dimension that is ideal and 
appropriate for regional land cover mapping (Townshend and Justice 1988), and a temporal 
dimension that enables the monitoring and detecting of land cover with a tremendously rich 
archive of long term Earth observations (Wulder et al. 2012). 

Vegetation seasonality, or phenology, refers to the study of periodic plant life cycle events, and 
is particularly useful for land cover classification, especially for vegetation cover mapping (Wu 
et al. 2016). The seasonal information contained in a time series remote sensing data is capable 
of depicting vegetation growth and the shape of vegetation growing profiles (Brown et al. 2013; 
Xiao et al. 2002). It has been proven that temporal information from time series remote sensing 
data is particularly helpful in the identification of land cover types, especially types dominated 
by vegetation, and has also been successfully applied to the identification of forest disturbances, 
cloud cover, and urbanization (Jia et al. 2014 ; DeVries et al. 2015; Goodwin et al. 2013; Fu 
and Weng 2016). For example, phenological differences can increase discrimination between 
herbaceous crops and savanna vegetation (Senf et al. 2015), or crops and pastures (Müller et al. 
2015). 

Approaches to time series analysis in remote sensing have long been applied to coarse spatial 
resolution data, such as pixel-based compositing with AVHRR and MODIS data (Cihlar et al. 
1994; Justice et al. 2002). With the advent of free Landsat imagery, an increasing number of 
observations have been made available to users, and compositing approaches have become 
more relevant and popular for Landsat applications, including land cover characterization. The 
best-available-pixel (BAP) composite approach aims to produce large area, cloud free surface 
reflectance composites by selecting the best available observation matching the user defined 
criteria (e.g. target day of year, cloud cover, sensor) (White et al. 2014). However, an important 
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limitation of the BAP approach is missing data, such as pixels with no observations due to 
clouds, cloud shadows, sensor issues (e.g. Landsat 7 ETM+ SLC-off gaps), or restricted 
acquisition period. Furthermore, the BAP approach does not make full use of the seasonal 
information in the time series, as only the single best pixel is selected. Therefore, alternative 
approaches utilizing all the cloud free observations are needed. 

There are several methods to derive seasonal or temporal features from LTS. Pixel-based 
statistical metrics (e.g. average, maximum, minimum, and variability) derived from multi-
temporal spectral data and vegetation indices are commonly used as inputs in land cover 
classification and continuous attributes prediction (Jia et al. 2014; Potapov et al. 2012; Karlson 
et al. 2015). Furthermore, a number of temporal trajectory approaches have been developed in 
recent years. For example, TIMESAT software is a popular tool for seasonal feature extraction 
(Jönsson and Eklundh 2004). Metrics such as the beginning, end, and length of a growing 
season derived from vegetation index time series can be used as input data in land cover 
classification to separate vegetation types with unique phenological characteristics (Brandt et 
al. 2016).  

Also, an approach based on the harmonic model has been increasingly applied in land cover 
classification, change detection, forest disturbance mapping, cloud detection, and land surface 
temperature data generation (Zhu and Woodcock 2014a; DeVries et al. 2015; Zhu and 
Woodcock 2014b; Fu and Weng 2016). The advantage of the method is that it allows the use 
of all available Landsat imagery with missing values due to clouds and cloud shadows or sensor 
malfunctioning (e.g. Landsat 7 ETM+ SLC-off gaps). However, because of the lower data 
availability due to persistent cloud cover in rainy season (Ernst et al. 2013; Mitchard et al. 2011) 
or excessive gaps in the Landsat archive (Broich et al. 2011), there are relatively few studies 
demonstrating the seasonal features derived from the harmonic model and LTS for land cover 
characterization in tropical African savanna. 

2.2 Spatial perspective: texture analysis 

With the development of remote sensing technology, high spatial resolution satellite imagery 
have become an essential data source for a wide range of applications, such as land cover 
classification, forest structure variable prediction, soil mapping, and habitat modeling (Agüera 
et al. 2008; Kayitakire et al. 2006; St-Louis et al. 2006; Culbert et al. 2012). Conventional 
approaches which use only spectral information have proved ineffective when applied to land 
cover classification, due to the complex spectral characteristics of land cover types (Puissant et 
al. 2005). Many studies have found that texture can play an important role in improving the 
performance of land cover classification using high spatial resolution imagery (Puissant et al. 
2005; Ghimire et al. 2010), but it has also been used earlier with airborne remote sensing 
imagery (e.g. Pellikka et al. 2000). In studies of continuous land cover attributes prediction, the 
most widely used predictors are spectral bands and vegetation indices (Sarker and Nichol 2011). 
Texture features derived from high spatial resolution data have recently been used to aid in 
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forest structure variables prediction (Pargal et al. 2017). Previous studies report that texture 
features correlate better with field data measurements, since they allow for the identification of 
different vegetation structural details, and are capable of enhancing vegetation discrimination 
(Dube and Mutanga 2015). 

Texture refers to the visual effect caused by spatial variation in tonal quantity over relatively 
small areas (Feng et al. 2015). Texture analysis provides information on the local spatial 
structure and variability of land cover types in the spatial dimension. Many texture feature 
extraction methods have been proposed; for example, the gray level co-occurrence matrix 
(GLCM), Gabor filters, wavelet features, and Markov random fields (Ouma et al. 2006). GLCM 
(Haralick et al. 1973) is an effective and popular method to extract texture features (Shaban and 
Dikshit 2001; Pacifici et al. 2009). GLCM features are usually calculated using an odd-sized 
moving window, and the accuracies of the classification procedure and attributes prediction 
using texture measures depend largely on the selected window size (Huang et al. 2007; 
Kayitakire et al. 2006).  

A number of studies have been carried out on testing and comparing different window sizes, 
with the aim of finding an optimal window size (Chen et al. 2004; Puissant et al. 2005; 
Kayitakire et al. 2006). However, the optimal window size for texture measurements is highly 
dependent on the image spatial resolution and the land cover characteristics (Pesaresi 2000; 
Zhu et al. 2012a). Generally, in order to include the entire texture pattern, a large window size 
should be selected; in contrast, a small window size should be used to include only one land 
cover type (Dell'Acqua and Gamba 2006; Zhu et al. 2012a). In addition, both the pixel size and 
the size of the objects of interest should be considered. However, the current methods used for 
image texture analysis in land cover classification depend on a single moving window, and 
ignore the various scales of different land cover types in texture features. Furthermore, the 
feasibility of texture features for predicting continuous land cover attributes in savannas has not 
yet been fully examined. 

2.3 Burned area detection 

Fire is recognized as a critical land surface disturbance, causing severe economic, ecological, 
and atmospheric effects (Vivchar 2011). Burned area is also included in the list of 13 terrestrial 
essential climate variables (ECVs) by the Global Climate Observing System (GCOS) (Food 
and Agriculture Organization of the United Nations, 2008). Analyses of past and present burned 
area patterns can assist in selecting proper fire management practices, and benefit a range of 
resource management objectives (Dempewolf et al. 2007; Koutsias et al. 2013). Remote sensing 
is recognized as an essential source of information for mapping burned areas from regional to 
global scales. Global scale burned area mapping has primarily been derived from coarse spatial 
resolution data such as MODIS, AVHRR, and SPOT VEGETATION (Siljander 2009; Roy et 
al. 2008; Giglio et al. 2010; Carmona-Moreno et al. 2005; Tansey et al. 2008). However, burned 
area products derived from coarse resolution data cannot provide enough spatial detail, and do 
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not meet the requirements of climate modeling at local and regional scales (Siljander 2009; Roy 
and Boschetti 2009; Bastarrika et al. 2011). The medium and high spatial resolution satellite 
images are preferable for accurate monitoring of burned areas at local and regional scales 
(Chuvieco et al. 2002), and Landsat imagery have been widely used for regional-scale burned 
area mapping (Miller and Thode 2007; Boer et al. 2008).  

The methods for monitoring and mapping burned areas using remote sensing data include: 
manual digitalization of burned areas (Silva et al. 2005), supervised image classification such 
as decision trees and neural networks (Kontoes et al. 2009; Maeda et al. 2009), logistic 
regression (Siljander 2009), principal component analysis (Koutsias et al. 2009), region 
growing (Hardtke et al. 2015), and threshold-based methods with single date or multi-date 
images using spectral indices such as the global environmental monitoring index (GEMI), the 
normalized burned ratio (NBR), and the burned area index (BAI) (Chuvieco et al. 2002; 
Bastarrika et al. 2011; Musyimi et al. 2017). Burned area detection using multi-temporal 
information with Landsat imagery has been limited to two date comparisons (Goodwin and 
Collett 2014).  

Due to the diverse and complex patterns of the spectral response of burned areas over space and 
time, detection and mapping of burned areas using remote sensing image comparisons remains 
challenging. It can be difficult to acquire and compare cloud free images of pre-fire and post-
fire conditions due to the cloud contamination especially in West Africa. The comparison 
process requires that the two images be obtained within the same season, to minimize the 
phenology effect. Burned areas demonstrate a wide range of spectral characteristics, caused by 
the severity of the fire, the vegetation burned, atmospheric conditions, and image acquisition 
date (Chuvieco et al. 2006; Stroppiana et al. 2012). Moreover, spatially fragmented small 
patches of burn scars, and the old and new burn scars can be more challenging to detect with 
remote sensing images (Bastarrika et al. 2014). Although the image comparison approach can 
provide good results for a particular region, it can be difficult to extend to other locations. 
Therefore, more robust and automated methods for burned area mapping are needed. 

With the release of the Landsat archive freely available to the public, mapping burned areas at 
Landsat resolution back to the mid-1980s is now possible. There has been considerable research 
undertaken to characterize trends, and disturbances using temporal information contained in 
LTS. Kennedy et al. (2007) proposed an automatic trajectory based change detection method 
using annual LTS for detecting disturbances. Huang et al. (2009) developed a vegetation change 
tracker algorithm to map forest disturbance. Goodwin et al. (2013) screened clouds and cloud 
shadows automatically using all available time series of Landsat imagery. However, there are 
few studies using LTS for monitoring burned area dynamics, and a robust, automatic, and 
efficient algorithm utilizing LTS for burned area detection is required. Moreover, the effects of 
burned areas on seasonal features from LTS are not clear, and the pre-processing step of burned 
area detection before classification study using LTS should be investigated for a better 
understanding of the possible effects of burn scars on seasonal features. Two Landsat images 
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in Figure 2 illustrate burn scars in dry season and savanna landscape in wet season in southern 
Burkina Faso. 

 
Figure 2. The dark burn scars are clearly visible on dry season Landsat 5 TM image (RGB: 
NIR, red and green bands) acquired on 23 January 2011. Seasonal variation in reflectance in 
savanna is large between the dry season image and rainy season Landsat 7 ETM+ image (RGB: 
NIR, red and green bands) acquired on 11 August 2011. 

3 Material and methods 

3.1 Study areas 

Research was conducted in two study areas: the savanna area in southern Burkina Faso, and an 
urban fringe area in Beijing (Figure 3, Figure 4). The first study area (Papers I, II, and III) was 
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located in Ziro and Sissili provinces in southern Burkina Faso in West Africa. The mean annual 
precipitation is 827 mm, and the mean annual temperature is 27.5 °C for the period 1950–2000 
(Hijmans et al. 2005). The topography is relatively flat with a mean elevation of 350 m above 
sea level. The study area belongs to the West Sudanian savanna ecoregion (Olson et al. 2001), 
and vegetation consists of tropical dry forests and woodlands surrounded by agroforestry 
parklands and cultivated lands. The agricultural farming system is a mixture of traditional 
subsistence farming (i.e. sorghum, millet, maize) and the cultivation of cash crops (i.e. cotton, 
sesame, peanuts). Forests are partly under community forest management and protection, which 
provide a sustainable fuelwood production (Coulibaly-Lingani et al. 2011). Southern Burkina 
Faso has experienced a rapid population growth, which is mostly driven by the immigration of 
farmers, and has led to land cover changes, particularly the conversion of forest and woodland 
to cropland (Ouedraogo et al. 2009). Regular fires due to anthropogenic and natural causes are 
a typical feature of this region (Sawadogo et al. 2002). The majority of the fires take place 
during the dry season, in November, December, January, and February, extending even into 
early October, and very late in March and April (Gessner et al., 2015). The fires have not led 
to permanent land cover changes, and typically the burned vegetation recovers quickly (Silva 
et al. 2005). 

 

Figure 3. Landscape in savanna area of southern Burkina Faso. (a) Typical savanna woodland 
close to village of Vrassan. (b) Agricultural landscape with scattered Vitellaria paradoxa trees, 
settlements, and livestock. (Photos: Janne Heiskanen) 

The second study area (Paper IV) was an urban fringe area located on the border between 
Shunyi and Changping districts in Beijing, China (Figure 2). With the development of 
urbanization and industrialization, this area has experienced rapid land cover change. Based on 
the characteristics of the land cover types in the study area, five classes were identified, 
including impervious surfaces, bare land, crops, trees, and water. As there was some spectral 
confusion between the impervious surfaces and the bare land in the land cover classification, 
the study area was selected to explore the potential of texture features. 
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Figure 4. The location of the study areas with false colour satellite image composites: (a) 
Burkina Faso (Landsat 8 image) with the full study area of Paper II and the subset study area 
(yellow box) of Papers I and III; (b) Beijing (SPOT-5 image). 

3.2 Datasets 

3.2.1 Satellite imagery 

The satellite imagery and data product used in this thesis are summarized in Table 1. All 
available Landsat Surface Reflectance Climate Data Record (CDR) data for WRS-2 coordinates 
Path 195 and Row 52 were downloaded for the period between October 2000 and April 2016 
from the USGS Earth Resources Observations and Science (EROS) Center archive. There were 
in total 281 imagery, including 40 Landsat 5 Thematic Mapper (TM) imagery, 185 Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) imagery, and 56 Landsat 8 Operational Land Imager 
(OLI) imagery. The product has been atmospherically corrected, and clouds and shadows have 
been detected with Fmask algorithm (Zhu and Woodcock 2012b). Blue, green, red, near-
infrared (NIR), and two shortwave infrared (SWIR1, SWIR2) bands were used for further 
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analysis. In Papers I and III, an annual LTS consisting in total of 35 imagery between November 
2013 and October 2014 (14 Landsat 7 ETM+ and 21 Landsat 8 OLI images) were used. In Paper 
II, the complete time series was used. MODIS burned area product (MCD45A1) between 
October 2000 and April 2016 was also acquired for comparison in Paper II. 

In Paper III, four RapidEye imagery acquired on 4, 7 and 16 February 2014 were used to cover 
the study area. Imagery included five spectral bands (blue, green, red, red edge, and near 
infrared) with a spatial resolution of 5 m. The DN values were converted to radiance with 
radiometric scale factor, and the atmospheric correction was conducted using ENVI FLAASH 
algorithm (Exelis Visual Information Solutions, Inc.). Due to the reflectance differences 
between RapidEye imagery, a relative calibration of the spectral bands by linear regression was 
made based on overlapping areas. 

In Paper IV, a SPOT-5 multispectral image acquired on 19 May 2007 was used. The image 
included green, red, and near infrared bands with 10 m resolution, and shortwave infrared band 
at 20 m resolution. In order to match other spectral bands with the same spatial resolution, the 
shortwave infrared band was resampled to 10 m resolution. The pre-processing procedure 
included geometric correction with 124 ground control points, and the total root mean square 
error was 0.6 pixels. Atmospheric correction was not performed, as it is not necessary when 
classifying a single image (Song et al. 2001). 

Table 1. Satellite imagery and data products used in the different Papers (I-IV). 
Imagery Period Number 
Landsat ETM+ and OLI (I, III) November 2013 - October 2014 35  
Landsat TM, ETM+ and OLI (II) October 2000 - April 2016 281 
MODIS burned area product (II) October 2000 - April 2016 187 
RapidEye Imagery (III) 4, 7 and 16 February 2014 4 
SPOT-5 Imagery (IV) 19 May 2007 1 

3.2.2 Field data 

Field data was used in Papers I and III as training data for classification, and for building 
predictive models for vegetation and soil attributes. The field data were collected from 160 
sample plots from December 2013 to February 2014. The sampling design followed Land 
Degradation Surveillance Framework (LDSF) protocol (Vågen et al. 2013). The study area (10 
km × 10 km) was stratified into 16 tiles, which were randomly sampled by 100 ha clusters. 
Each cluster had ten randomly placed circular sample plots with a radius of 17.84 m (0.1 ha), 
which were further sampled by four subplots having a radius of 5.64 m (0.01 ha). The plots 
were located with a GPS device. Tree species and diameter at breast height (1.3 m, DBH) were 
measured for all the trees having DBH > 10 cm. Height and crown diameter were measured for 
the smallest, largest, and median trees. In subplots, all the stems having a diameter between 4 
cm and 10 cm were counted, and height, diameter, and species were recorded for the median 
tree. For stems that were not measured, a non-linear mixed effect modeling was applied for 
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predicting height, and linear regression for predicting crown diameter (Valbuena et al. 2016). 
CC was estimated from the canopy area index (Torello-Raventos et al. 2013). The field plots 
were classified as closed woodland, woodland savanna, and grassland savanna based on the 
canopy cover and mean tree height, and the cultivated plots were classified as cropland. The 
biomass was estimated with allometric model (Chave et al. 2014) and converted to carbon with 
a carbon fraction. Soil organic carbon content and nitrogen concentrations were analyzed from 
soil samples. Tree inventory was used for calculating tree species richness and diversity indices.  

3.3 Time series analysis 

3.3.1 Time series model 

A harmonic model (Equation 1) was used to capture seasonality of reflectance and normalized 
difference vegetation index (NDVI). The following model was fitted for each pixel: 

                                                          ŷt = a + b × sin(  + c) + et                                                   (1) 

where ŷt is a dependent variable (reflectance, vegetation index) on Julian date t, T is 365 as a 
frequency, a, b, and c are model parameters in the harmonic model (intercept, amplitude and 
phase, respectively), and et is the residual. Parameter a is an estimate of the mean value of the 
time series, parameter b captures the inter-annual changes caused by vegetation phenology, and 
parameter c represents the timing of the phenological events. Since the harmonic model can be 
simplified as a linear model, an ordinary least squares method (OLS) was used to fit it for each 
pixel. In Papers I and III, the harmonic model was fitted using annual LTS. In Paper II, the 
model was fitted using LTS of 16 years.  

3.3.2 Breakpoint detection 

The Breaks For Additive Season and Trend (BFAST) Monitor algorithm has been proved 
effective in identifying deforestation from stable trajectories and robust in regions with low 
availability of clear observations in the time series data (Verbesselt et al. 2012; DeVries et al. 
2015). The BFAST Monitor method was applied to detect breakpoint in Paper II. The harmonic 
model was fitted for each pixel NDVI time series using ordinary least squares (OLS) within a 
stable history period. Then the breakpoint detection was performed over the monitoring period 
by comparing the new observations and the model predictions. If the absolute value of the 
moving sums (MOSUM) of the residuals during the monitoring period was significant, a 
breakpoint was identified. Each pixel-wise time series had its own stable period after breakpoint 
detection. The pixels without land cover change were regarded as stable from 2000 to 2016, 
and the pixels with breakpoints were divided into before and after land cover change periods. 
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3.3.3 Identifying burned area using Landsat time series 

The burned area detection method was utilized in Papers I, II, and III. Because burned pixels 
had higher burned area index (BAI) values than unburned pixels, it was used for detecting 
burned pixels from the time series data. Zhu and Woodcock (2014b) applied a similar method 
to detect clouds and cloud shadows remaining after more simple cloud masking. By comparing 
the actual Landsat observations and corresponding model predictions, it is possible to identify 
pixels affected by fire. 

Some pixels remained stable for the complete 16 year period (i.e. land cover did not change), 
and the method can be applied to the whole BAI time series. However, otherwise the method 
needs to be applied to the period before and after land cover change. First, BAI image stack 
was created from LTS. Second, the harmonic model was fitted for each pixel using all the BAI 
observations within the stable period as response variable. Third, a threshold was determined 
to detect burned pixels by comparing the observed and predicted BAI values. The threshold 
was defined by checking its influence for accuracy, and computed as a difference of predicted 
BAI value plus 3 times root mean square error (RMSE) and observed BAI value. If the threshold 
was less than zero, the pixel was identified as a burned pixel. Furthermore, as not all the burned 
pixels could be detected once, the method was applied iteratively until no more outliers were 
detected. The harmonic model was fit using the robust iteratively reweighted least squares 
method, which is robust to outliers (Zhu and Woodcock 2014a). In order to obtain annual 
burned area from LTS, the burned area detection results were incorporated from the separate 
imagery during the fire season. Finally, the annual burned area detection results were compared 
with MODIS burned area product.  

3.4 Texture analysis 

The statistical measures of the texture features created from GLCM include the mean, variance, 
homogeneity, contrast, dissimilarity, entropy, angular second moment, and correlation 
(Haralick et al. 1973). In order to compute the texture features, principle component analysis 
(PCA) transformation was applied to RapidEye and SPOT-5 imagery, and texture features were 
extracted from the first principal component (Berberoglu et al. 2007; Wang and Zhang 2014). 
The interpixel distance was set to one pixel, and measures were averaged over four orientations 
at a quantization level of 64. Three window sizes were used for RapidEye imagery in Paper III 
(3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels). In Paper IV, window sizes from 3 × 3 pixels to 15 
× 15 pixels were used to extract the features. In addition, the texture features were extracted 
using an optimized window size. The optimal window size was defined for each pixel based on 
the posterior probability images from the single window size texture classification based on 
support vector machine (SVM) classifier. The largest posterior probability was determined for 
each pixel, and the corresponding window size was used as the optimized window size for 
texture extraction for that pixel. The texture features extracted using optimized window size 
were combined with spectral features for the final land cover classification.  
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3.5 Classification and regression methods 

Random Forest (RF) algorithm is an ensemble of tree based classifiers, and has been 
increasingly applied in applications related to land cover mapping, landscape ecology and 
attribute prediction (Zhu et al. 2012a; Belgiu and Drăguţ 2016). In RF, a large number of 
classification trees are constructed with bootstrap samples with replacement from the original 
training data. Each tree is trained using about two thirds of the samples randomly, and the 
remaining one third of the samples, called out of bag samples, are served to calculate the 
accuracy. For classification, the output is determined by the maximum number of votes from 
the group of classification trees. For regression, the prediction is an average of the values from 
all the trees. There are only two parameters to be optimized: the number of trees and the number 
of variables to split the nodes.  

Here, 500 trees were selected, and the number of variables to split each node was set to the 
square root of the total number of input variables. In addition, the Random Forest algorithm 
also provides the variable importance for all the input variables (Breiman 2001). Variable 
importance is estimated by the difference of the accuracy between the permuted and original 
out of bag samples. In order to improve the accuracy, in Papers I and III the “VSURF” package 
in R was adopted to eliminate the least important variables (Genuer et al. 2015). Furthermore, 
a leave-one-out cross validation method (Brovelli et al. 2008) was performed to evaluate the 
accuracy.  

The SVM classifier has been a widely used method in land cover classification (Pal and 
Mather 2005), and was used for performing classifications in Paper IV. The advantage of the 
SVM classifier is that it requires no assumptions about the data distribution, and only a small 
training sample (Mountrakis et al. 2011; Foody and Mathur 2004). The classification was 
performed in ENVI 4.5 with default parameters for radial basis function (RBF) kernel. Besides 
the hard classification output, the posterior probability imagery for each class were also 
obtained. The incorporation of posterior probability has shown potential for improving land 
cover classification and change detection (Ibrahim et al. 2005; Gonçalves et al. 2009; Chen et 
al. 2011). Here, the posterior probability was utilized to help select the window size for each 
pixel. The training samples were selected with the help of ground knowledge, visual 
interpretation, and high resolution imagery from Google Earth (Google Inc.) for the period from 
25 April 2007 to 10 June 2007. The validation samples were 600 points that were generated 
according to the stratified random sampling method. McNemar’s test was used to evaluate the 
significant difference between different classification results. 

4 Results 

4.1 Seasonal features for land cover classification in savannas 

In order to evaluate the effect of burned pixels on seasonal features (time series model 
parameters), we compared the seasonal features with and without burned pixel removal (Figure 
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5). The burned pixel removal procedure affected parameter a, representing the mean reflectance 
of the annual time series only slightly. However, parameter b, which corresponds to the 
amplitude of reflectance, was affected in NIR band, leading to an increasing variation between 
different land cover types after burned pixel removal. Cropland differed from other land cover 
types before burned pixel removal in terms of parameter c, which represents the phase of the 
reflectance, but all the land cover types had similar parameter c after burned pixel removal. 

 
Figure 5.  Mean values of seasonal features (time series model parameters) before and after 
burned pixel removal. 

The seasonal features derived from the harmonic model after burned pixel removal clearly 
increased the overall accuracy from 68.7% and 66.1% to 75.5% in comparison to the dry (12 
Nov 2013) and rainy (8 Jun 2014) season single date imagery, respectively, followed by the 
seasonal features without burnt pixel removal (73.7%). The overall accuracy was further 
improved by variable selection (76.2%). The selected inputs included parameter a (mean) in 
blue, green, red, SWIR1 and SWIR2 bands, and parameter b (amplitude) in NIR band.  
According to variable importance, parameter a (mean) in green, blue, red, SWIR1 and SWIR2 
bands, and parameter b (amplitude) in NIR band were the most important variables in the 
seasonal features classification procedure. According to the McNemar’s test, the classifications 
based on seasonal features (both before and after burnt area removal), and the classifications 
based on the single date images (both dry and rainy season image), were significantly different 
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(p < 0.05). Therefore, the results indicate that the seasonal features extracted from LTS can 
significantly improve land cover classification accuracy in comparison to the single date images.  

4.2 Burned area detection using burned area index time series  

The burned area detection procedure is demonstrated in Figure 4. The detection procedure was 
based on the phenomenon that the burned pixels had higher BAI values when compared to 
unburned pixels, and were outliers in the harmonic model. The detection process was applied 
iteratively until there were no outliers. In Figure 4, the stable pixel BAI time series was fit with 
a harmonic model, and the burned pixels were detected iteratively. The detected pixels occurred 
during the fire season, and were correctly identified as burned pixels based on visual analysis. 
For BAI time series with breakpoint (Figure 6c and 6d), the breakpoint was identified using the 
BFAST Monitor method, which then divided the time series into two periods. The harmonic 
models were fit separately for the two periods, and all the outliers were detected and removed. 
The detected pixels were then checked, and it was found that the outliers before the breakpoint 
were all correctly identified as burned pixels, and occurred during the fire season. However, the 
outliers detected in the period after the breakpoint occurred in July and October, which are not 
in the fire season, so they were not regarded as burned pixels. 

 

Figure 6. Demonstration of burned area detection for a single pixel without breakpoint (a, b) 
and with breakpoint (c, d). The black points are the BAI values, the red points are outliers, the 
blue curve is the harmonic model, and the dashed blue line is the threshold for detecting outliers. 

The overall accuracy of burned area detection from LTS was 79.2%, which was higher than 
that of MODIS burned area product (65.9%). The omission error for Landsat burn scars was 
26.9%, much lower than 62.3% for MODIS burned area product, implying that MODIS product 
omitted more burned areas. The commission errors for LTS and MODIS burned area product 
were similar, 18.8% and 20.3%, respectively. Specifically, the overall accuracies of Landsat 
burned area and MODIS burned area product were compared for each year. In general, Landsat 
fire scars had consistently higher overall accuracies than MODIS burned area product. The 
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overall accuracy ranged from 70.0% to 91.4% for Landsat fire scars, and from 57.1% and 77.1% 
for MODIS burned area product. The best overall accuracy occurred during 2014–2015 for both 
Landsat burn scar and MODIS burned area product. 

The proportion of burned area was also computed for 5×5 km grid cells. The comparison of 
burned areas with Landsat and MODIS at 5×5 km resolution indicated that MODIS burned area 
product underestimated the amount of burn scars compared to Landsat. Specifically, it was 
observed that the burned proportion values ranging from 0.1 to 0.3 had a higher frequency in 
the Landsat results, while the corresponding areas had values close to zero in the MODIS 
burned area product (Fig. 10 in Paper II). In general, the MODIS burned area showed poor 
agreement with burn scars detected from Landsat (R2 = 0.30). 

4.3 Seasonal and texture features in predictive models 

The performances of CC, AGC and S predictions are shown in Table 2. The predictions for CC 
from RapidEye and LTS imagery achieved similar results, with R2 of 0.68 and 0.67 respectively. 
Considering predictions of S, the R2 was 0.62 for RapideEye imagery and 0.61for LTS, and the 
RMSE was the same for RapidEye and LTS imagery. RapidEye imagery provided R2 of 0.61 
and RMSE of 4.2% for AGC prediction, however LTS only achieved R2 of 0.53 and RMSE of 
4.6%. In general, the higher resolution RapidEye imagery provided the best accuracy, but the 
improvement compared to Landsat imagery was quite marginal. Other response variables (i.e. 
SOC) which were weakly correlated with CC were poorly predicted (Fig.3 in Paper III).  

Table 2. Accuracy of tree crown cover (CC), aboveground carbon (AGC), and tree species 
richness (S) predictions from RapidEye and LTS imagery. 
Response 
Variable 

Input Data  R2 RMSE Selected variables1 

CC 
RapidEye 0.68 10.2 

blue, green, GNDVI, RENDVI, red, red.sd, RENDVI.sd, 
contrast, NDVI.sd, entropy 

LTS 0.67 10.4 GNDVI, SR, green.a, blue.a, EVI, SWIR2.a, SWIR1.c 

AGC 
RapidEye 0.61 4.2 

blue, green, VREI1, angular second moment, entropy, 
red.sd   

LTS 0.53 4.6 SWIR2.a, SR, GNDVI, blue.a, green.a, SWIR1.c 

S 
RapidEye 0.62 2.4 blue, green, RENDVI, VREI1, red 

LTS 0.61 2.4 GNDVI, blue.a, SR 
1 “blue”, “green”, “red”, “NIR”, “SWIR1”, and “SWIR2” refer to reflectance corresponding to blue, 
green, red, near-infrared, and shortwave infrared wavelength regions, and suffixes “.a”, “.c”, and 
“.sd” refer to seasonal parameters a (mean) , c (phase) and standard deviation, respectively.  

The variable selection procedure improved model performance, because it eliminated less 
important predictors among many input variables. Texture features (i.e. contrast, entropy, 
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angular second moment) were selected when predicting CC and AGC with RapidEye imagery. 
Other important input variables included reflectance in blue, green bands, vegetation indices 
such as green NDVI (GNDVI), red edge NDVI (RENDVI), vogelmann red edge index (VERI1) 
and enhanced vegetation index (EVI) from RapidEye imagery for CC, AGC, and S predictions. 
For prediction models with LTS, the most important and frequently selected variables included 
seasonal feature parameter a (mean) for blue band, GNDVI, and simple ratio (SR). In addition, 
parameter a (mean) for green band, parameter a (mean) for SWIR2 band, and parameter c 
(phase) for SWIR1 band were also commonly selected input variables.  

4.4 Optimal window size to compute texture features for land cover classification 

The texture features improved the classification accuracy in Paper IV in comparison with the 
classification based on spectral features only. The window size influenced the classification 
accuracy, and the best overall accuracy was achieved with window size of 7 × 7 pixels. However, 
not all the land cover types achieved the best overall accuracy with window size of 7 × 7 pixels, 
revealing that there was not a single optimal window size for all the land cover types.  

The multiple window size texture classification outperformed the best single window size 
texture classification. However, the optimized window size texture classification method 
achieved the best accuracy among all the classifications. The McNemar’s test showed that the 
best single window size and optimized window size texture classifications were significantly 
different (p < 0.05).  

It was also observed that different land cover types had a different distribution of the optimized 
window size (Figure 7). The smallest window (3 × 3 pixels) distributed with a high proportion 
among impervious surface, tree, and water pixels, and these land cover types usually formed 
irregular shapes in relatively small patches. On the other hand, the largest window of 15 × 15 
pixels was selected by crop and bare land pixels, and these two land cover types usually 
occurred in large patches with regular rectangular shapes. 

 
Figure 7. Optimized texture window size distribution for different land cover types. 
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5 Discussion 

5.1 The potential of seasonal features in land cover characterization  

The results of Papers I and III indicate that seasonal features from LTS are useful information 
for land cover characterization, including classification and tree and species diversity attributes 
prediction, which is consistent with a number of studies from different parts of the world 
(Heiskanen and Kivinen 2008; Esch et al. 2014; Brandt et al. 2016). In comparison to the single 
date images, the land cover classification, predictions of CC, AGC, and S using seasonal 
features from LTS achieved better accuracies. The results are in agreement with Karlson et al. 
(2015), who found higher accuracies of canopy cover and biomass predictions in Burkina Faso 
were achieved using statistical seasonal features from dry season NDVI images. This could be 
explained by the fact that different land cover types exhibit distinctive phenological 
characteristics and temporal profiles in LTS (Brown et al. 2013). The prediction performances 
for tree and species diversity attributes demonstrated that the seasonal features from free of cost 
LTS can be an optional data choice in comparison to high resolution RapidEye data. The 
seasonal component, representing intra-annual change in LTS, offers new opportunities for land 
cover characterization in terms of temporal information. 

The traditional method of burned area detection depends on bi-temporal image comparison. 
The method in Paper II provides new insights into depicting spatial-temporal patterns of burned 
areas and detecting annual burned areas using LTS in savanna areas. The results of Paper II 
demonstrate that this method is capable of identifying small and fragmented burn scars in 
comparison to lower resolution MODIS burned area product. The accuracies of classification 
and CC prediction after burned area removal were better than those without burned area 
removal, indicating that the burned area affects the seasonal features and harmonic time series 
model. In particular, it was observed that the reflectance in NIR and SWIR1 bands decreased 
when compared to pre-fire conditions, because fire destructs the leaf structure of the vegetation 
(Koutsias and Pleniou 2015). Therefore, the burned area should be considered when seasonal 
parameters are extracted from LTS data.  

As LTS are based on free and open data, and data processing can be automated, it is obvious 
that the seasonal component in LTS should be considered when conducting land cover 
classification and tree, soil, and biodiversity attributes prediction. The performance differences 
between rainy and dry season images for land cover characterization indicate that image 
selection is required and needed when using single date image. The late dry season imagery 
performs better than imagery from the rainy season in Papers I and III, which is in line with a 
previous study that reported imagery from the peak season was less accurate for predicting 
AGB (Zhu and Liu 2015). The reason for this is that in the rainy season all vegetation types, 
such as trees, grasses, and crops are green, which decrease their spectral differences. However, 
due to the phenological differences, imagery from the late dry season provides a better contrast 
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for different vegetation types (Karlson et al. 2015), and the utilization of LTS can avoid the 
problem of image selection (Liu et al. 2015).  

5.2 Feasibility of the harmonic time series model for seasonal feature extraction  

By using all available Landsat imagery, the harmonic time series model enables to construct a 
current or even historical temporal profile of the Earth’s surface. The estimated time series 
coefficients can be utilized for land cover classification and attributes prediction, which indicate 
the robustness of the method (Jakubauskas et al. 2002; Zhu and Woodcock 2014a). Furthermore, 
the harmonic time series model has been successfully employed in forest disturbance studies 
by comparing the deviation of new observations from the predicted model values (Zhu et al. 
2012c; DeVries et al. 2015). 

The harmonic time series model has many advantages. It is easily automated, and also capable 
of monitoring land cover change. In addition, there are no empirical thresholds in studies of 
land cover change and burned area detection. The thresholds depend on the model estimations 
and original observations, which are done for each individual pixel separately. Furthermore, the 
method exploits all available Landsat observations regardless of partially cloudy imagery. 
Future studies can employ even greater amounts of Earth observations by combing data from 
Landsat 8 and Sentinel-2, which leads to land cover monitoring in near real-time at medium 
resolution scale (Wulder et al. 2015). LTS can overcome limitations such as missing lines or 
gap filling due to clouds and cloud shadows, as only good-quality observations are used for 
constructing the model. Subjective image selection and mosaicking are not required in a 
harmonic time series model. When comparing the harmonic model with the BAP compositing 
method, it does not require the target day for compositing. The statistical metrics (e.g. maximum, 
minimum, mean of reflectance), which are commonly extracted from cloud-free images to 
represent seasonal features, depend on the distribution of clear observations over the 
observation period, but the harmonic time series model does not have this problem. 

There are also limitations to the harmonic time series model. It is not applicable in places with 
persistent cloud or snow cover, as there may be too few clear observations for reliable model 
fitting. The simple harmonic model could capture the seasonality of different land cover types 
in the study area in southern Burkina Faso, but a more complicated model might be needed for 
land cover types with more complicated intra-annual variations.  

5.3 Factors influencing burned area detection accuracy 

The comparison of the Landsat burned area and MODIS burned area product revealed 
differences in the burn scar distinction due to image spatial resolution. Landsat was able to 
capture small and fragmented burn scars, but MODIS burned area product could not capture 
the same level of spatial detail when burn scars were small. This caused an underestimation of 
burn scar area by MODIS. These results are consistent with previous studies (Laris 2005; Silva 
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et al. 2005; Roy and Boschetti 2009), demonstrating the importance of higher spatial resolution 
data in burned area detection.   

The fire season in the study area lasts from November to February, and the vegetation recovers 
rapidly after a fire event, which makes the spectral distinction unclear and the detection more 
challenging (Roy et al. 2008). As the low severity fires only show minimal spectral differences 
when compared to unburned pixels, the burn scars cannot be detected, which leads to omission 
errors (Hardtke et al. 2015). These errors are emphasized with lower temporal resolution, as 
burn scars do not occur at the overpass time of the satellite, when they could be easily and best 
detected (Giglio 2007). Our findings are consistent with earlier studies which also report data 
gaps due to temporal resolution, and further limitations due to cloud and cloud shadow 
obstruction (Koutsias et al. 2013; Goodwin and Collett 2014; Boschetti et al. 2015). The use of 
LTS to characterize temporal profiles in BAI time series facilitated the automation of burned 
area detection in the algorithm of this thesis, and it would be possible to combine observations 
from Sentinel-2 with Landsat observations to generate denser time series in future work. 
However, one disadvantage of the algorithm is the lack of accurate burning date. The relatively 
low temporal resolution of Landsat imagery is the main reason for this shortcoming. 

Discriminating burned area is a significant challenge in applying a time series analysis 
algorithm across a range of land cover types. Overestimation of burned areas is caused by 
unmasked cloud shadows, due to the similar BAI values in the temporal profile. Furthermore, 
errors also arise from cropland and forest, as they are spectrally similar to burned areas in the 
study area. These results are in agreement with previous studies that reported crop harvesting, 
rapid vegetation senescence, agricultural areas, and dark soils leading to commission errors due 
to spectral confusion with burned pixels (Stroppiana et al. 2012; Boschetti et al. 2015). This 
highlights that a multi-criteria or multi-index approach would be another choice to improve 
burned area detection accuracy (Bastarrika et al. 2011). In this study, a distinct fire season was 
defined, which helped to exclude false detections during the wet season. Including land cover 
types as a criteria could have been another way to increase detection accuracy, because 
grassland and woodland are frequently burned, whereas agricultural lands are seldom burned 
in the study area (Devineau et al. 2010; Gessner et al. 2015). The errors from the disturbance 
detection using the BFAST Monitor algorithm could also result in constructing inaccurate 
harmonic models for BAI time series, which would further influence the burned area detection 
accuracy. 

5.4 Insights on the use of texture features 

The approaches incorporating texture features from high spatial resolution imagery were 
developed and adopted in land cover characterization in Papers III and IV. Texture features 
derived from RapidEye and SPOT-5 imagery were selected as important inputs contributing to 
continuous land cover attribute predictions and land cover classification, and the results agreed 
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with previous research suggesting that texture features are useful in improving land cover 
characterization accuracies (Feng et al. 2015; Halperin et al. 2016).  

The improvement of AGC prediction from RapidEye imagery shown in Paper III demonstrates 
the potential of texture features, as texture features are more effective in defining forest 
structure with fine spatial resolution imagery, especially in heterogeneous regions (Sarker and 
Nichol 2011). Among the four important selected predictors for AGC prediction using 
RapidEye imagery, three of them were texture features. These results are in line with the 
findings that texture features correlate to a greater degree with aboveground biomass and carbon 
than spectral bands (Kelsey and Neff 2014). Another reason is that spectral indices often 
saturate in high biomass conditions, but texture features are less sensitive to this problem 
(Eckert 2012). The CC predictions from RapidEye and LTS obtained promising and similar 
accuracies, demonstrating the utility of texture and seasonal features in CC estimation in 
savanna areas. This finding is consistent with that reached by Karlson et al. (2015), who found 
texture and seasonal features to be important variables when predicting CC. However, 
accessibility to RapidEye imagery may be restricted due to high costs, and LTS is a freely 
available alternative data source for predicting CC with similar accuracy. Moreover, the results 
also indicate that reasonably accurate S predictions can be derived using RapidEye imagery and 
LTS. However, texture features were not selected as important variables for predicting S, 
although texture is often assumed to be an essential input in biodiversity studies (Oldeland et 
al. 2010; Maeda et al. 2014).  

Paper IV demonstrated that the incorporation of optimized window size texture features 
improved classification accuracy significantly, as texture features could decrease classification 
errors caused by similar spectral reflectance between different land cover types, such as bare 
land and impervious surfaces in our study area. The traditional method for determining the 
optimal texture window size is comparing the overall classification accuracies using several 
window sizes (Chen et al. 2004; Puissant et al. 2005). In addition, the optimal window size for 
texture features also depends on the spatial resolution of imagery and land cover characteristics 
(Pesaresi 2000). It has been suggested that window size should be small enough to preserve 
detailed structures and avoid including several land cover types (Acharyya et al. 2003); by 
contrast, a large window size was also found to be effective in regions with a homogeneous 
character (Myint et al. 2004). Therefore, texture features based on single window size cannot 
be optimal for different land cover types. The multiple window size texture classification and 
optimized window size texture classification approaches outperformed single window size 
texture classification, indicating the importance of multi-scale texture features.  

From the distribution of posterior probabilities and optimized texture window size distribution 
images, we found that a larger window size was preferable for cropland and bare land; by 
contrast, a small window size was preferable for impervious surface and trees. This finding is 
in line with previous studies, which revealed that the optimal window size for texture features 
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varies between different land cover types, and the optimal texture window size is highly 
dependent on the homogeneity or heterogeneity of land cover types (Huang et al. 2007).  

6 Conclusions 

This thesis examined the application of satellite image time series and texture information to 
land cover characterization and burned area detection. More specifically, the focus was on 
investigating the feasibility of utilizing seasonal features based on satellite image time series, 
exploring the potential of time series data in burned area detection, and assessing the use of 
texture features in improving land cover classification accuracy and land cover attributes 
prediction. The study areas were located in the savanna area of southern Burkina Faso in West 
Africa, and in an urban fringe area in Beijing. The main conclusions of the thesis are presented 
below. 

(1) The use of seasonal features based on harmonic model and LTS show potential for 
improving the accuracy of land cover classification in savanna area in southern Burkina Faso. 
Due to the clouds in the wet season and burned areas in the dry season, good quality Landsat 
imagery without clouds and burned areas are hard to acquire, and the applied method enabled 
annual land cover characterization using LTS. In addition, as the burned areas influenced the 
seasonal features based on LTS, this effect should be considered in time series processing and 
seasonal feature extraction. Considering the robustness of the harmonic analysis method, a data 
fusion of Landsat and Sentinel-2 images should be considered in future studies. The acquisition 
dates of Landsat images affect prediction accuracy, and the peak of the growing season is not 
the optimal time for land cover mapping in savanna areas. 

(2) The LTS based on harmonic model and breakpoint identification provides a novel method 
for annual burned area mapping. The annual burned area from LTS can capture small patchy 
burn scars and achieve higher accuracy in comparison to MODIS burned area product. It is 
robust against decreased data availability due to clouds and missing lines, and explores the 
temporal domain of all available LTS. The method should be evaluated in other landscapes and 
over larger geographical areas in future studies. 

(3) The results show that CC is best predicted using RapidEye and LTS imagery. Attributes 
such as AGC and S could be predicted most accurately, as they had a strong correlation with 
CC. The vegetation indices, texture features from high spatial resolution image and seasonal 
features from LTS, are useful predictors, and the selected important predictors have variations 
according to different response variables. The predictions from RapidEye imagery showed only 
marginal improvement in comparison to that from the free of cost LTS. 

(4) The optimized window size texture classification can improve classification accuracy in 
comparison to the classifications with three other input features (i.e. spectral features, spectral 
and single window size texture features, spectral and multiple window size texture features). 
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The multiscale texture information is useful in land cover characterization, and posterior 
probability information helps to obtain the optimal window size for each pixel.  
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