
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2010

Information integration for graph databases
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Aixin SUN

Anwitaman DATTA

CHANG KUIYU

DOI: https://doi.org/10.1007/978-1-4419-6515-8_10

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Book Chapter is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng; SUN, Aixin; DATTA, Anwitaman; and KUIYU, CHANG. Information integration for graph databases. (2010). Link
Mining: Models, Algorithms, and Applications. 265-281. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1340

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-1-4419-6515-8_10
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Chapter 10
Information Integration for Graph Databases

Ee-Peng Lim, Aixin Sun, Anwitaman Datta, and Kuiyu Chang

Abstract With increasing interest in querying and analyzing graph data from mul-
tiple sources, algorithms and tools to integrate different graphs become very impor-
tant. Integration of graphs can take place at the schema and instance levels. While
links among graph nodes pose additional challenges to graph information integra-
tion, they can also serve as useful features for matching nodes representing real-
world entities. This chapter introduces a general framework to perform graph infor-
mation integration. It then gives an overview of the state-of-the-art research and
tools in graph information integration.

10.1 Introduction

Graph is fast becoming an important data genre in today’s database and data analysis
systems and applications. Web itself is a very large graph with Web pages as nodes
and links among them as edges. The Internet that makes Web possible is also a
large graph with computers as nodes and network links as edges. The emergence
of Web 2.0 applications further creates many other graphs that associate Web users
with one another, and graphs that associate Web users with Web objects including
photos (e.g., Flickr1), videos (e.g., Youtube2), and questions/answers (e.g., Yahoo!
Answers3).

Graph is often used for data modeling or knowledge representation. Entity rela-
tionship model [6] is essentially a graph consisting of entity types and relation-
ship types as nodes and connections among them as edges. It is widely used to
design databases conceptually before the relational schemas are created. Ontology
is a another kind of graph used for sharing knowledge between applications
from the same domain [11]. Instead of keeping schema and data separate as in

E.-P. Lim (B)
School of Information Systems, Singapore Management University, Singapore
e-mail: eplim@smu.edu.sg

1 http://www.flickr.com.
2 http://www.youtube.com
3 http://answers.yahoo.com.

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications,
DOI 10.1007/978-1-4419-6515-8_10, C© Springer Science+Business Media, LLC 2010

265

http://www.flickr.com.
http://www.youtube.com
http://answers.yahoo.com.

266 E.-P. Lim et al.

database design, ontology uses nodes to represent both schema and data objects and
edges to represent schema–level relationships (e.g., PhDStudent is a subclass of
Graduate student), schema–data relationships (e.g., John and Mary are instances
of PhDStudent), and data–level relationships (e.g., John is a friend of Mary).
With ontology graphs defined for different knowledge domains, knowledge-based
systems and applications are expected to interoperate using the same set of concepts
to describe data and to perform reasoning on them. Ontology is later adopted by
Semantic Web as an extension to the existing Web enabling machines to standardize
the description of Web objects and services so as to understand them and deploy
Web services.

Graphs also exist in relational databases although the graph structures in rela-
tional database are very much normalized. Records in a relational table can be
associated with records from another table using foreign key references or via a
relation containing many-to-many associations between record keys. For example,
Internet Movie Database (IMDb) is an online relational database of movie, actor,
and director-related data. These movie-related entities essentially form a graph if
we view them as nodes and associations among them as edges. For example, every
movie record is linked to its actors and director, and each actor is linked to all
of his or her movies. Compared to ontology, graphs that are embedded in rela-
tional data are more structured and their structures are governed by the database
schema.

Other than the above two schools of thought, schemaless graphs with nodes and
edges assigned labels have also been widely used to represent complex structures
such as protein and chemical compounds. Examples of such graph models are OEM
[5, 10, 20]. With the popularity of e-commerce, such graph models have also been
applied to modeling XML data so as to formulate and evaluate queries on XML
databases.

Information integration [13], sometimes also known as data integration and
semantic integration, refers to merging information from different data sources in
order to gain a more complete set of data for developing new applications, and for
conducting data analysis/data mining. The new applications to be developed can be
due to the demand for new functionalities or due to application, database, or even
enterprise level merger activities. Since the original databases residing at different
data sources are likely administered by different parties, information integration
has to address three major technical challenges arising from data heterogeneity
[18, 21, 22]:

– Schema-Level Heterogeneity: This refers to schema differences between two
or more databases to be integrated. Depending on the physical data models of
the original data sources, the scheme level heterogeneity may involve matching
schema elements of original databases and mapping them to the schema elements
of an integrated schema [22]. In the case of schemaless graph data, schema-level
heterogeneity does not exist as there is only a single node type and a single edge
type.

10 Information Integration for Graph Databases 267

– Instance-Level Heterogeneity: Data heterogeneity occurs at the instance level
when data instances from different data sources but describing the same real-
world entity do not look alike. The conflicts incurred can be classified into
entity identity conflicts [16] and attribute value conflicts [17]. Entity identity
conflicts refer to the difficulties in resolving records that model the same real-
world entities due to synonym and homonym problems [16]. Attribute value
conflicts refer to attribute value differences in records to be integrated together.
The tasks of resolving entity identity and attribute value conflicts are known as
entity identification (or entity resolution) and attribute value conflict resolution,
respectively.

– Federated Query Processing: Heterogeneous databases can be integrated either
physically or virtually. The former refers to migrating the original data to a cen-
tral database to be physically merged and stored there. Virtual information inte-
gration refers to developing a software layer simulating an integrated database
while keeping the original databases intact. The physical and virtual database
integration approaches are also known as the data warehousing and federated
database approaches. To evaluate queries on a federated database, one has to
determine the source databases to query and to resolve data heterogeneity during
query processing [15].

In the context of relational databases, the above challenges have been studied for
almost three decades [24] and many interesting information integration techniques
have been developed. Nevertheless, not all integration issues have be fully addressed
so far as there are often hidden semantics in the data heterogeneity that are not made
available to the information integration techniques that depend on them. Meanwhile,
the emergence of graph data will pose additional research issues to be considered in
designing information integration techniques.

This chapter will thus give an overview of information integration for graph data.
Although there are applications that require different types of integrated graph data,
the same integration framework and techniques can be applied. In Section 10.2, we
introduce a general integration framework for graph integration before describing
the techniques appropriate for the different framework components. We specifically
describe a few entity resolution approaches in Section 10.3. We will highlight two
graph information integration applications that have been reported in the research
literature in Section 10.4. and 10.5 concludes the chapter.

10.2 Framework for Graph Information Integration

Figure 10.1 depicts the framework of integrating multiple graphs together although
it is also possible to integrate two graphs at a time. The framework broadly
divides the steps into schema-level and instance-level integration. The former
addresses the heterogeneity of schemas of the original graphs by automatically or
semi-automatically deriving the mappings between the schema elements. This is

268 E.-P. Lim et al.

Fig. 10.1 Graph information integration framework

also known as schema matching. Instance-level integration refers to resolving the
heterogeneity among data instances. The sub-steps include entity resolution and
relationship resolution which can be carried out either sequentially or in an iterative
manner. The entity resolution sub-step attempts to match graph nodes representing
the same entities. The relationship resolution on the other hand matches graph edges
representing the same relationships. After entity and relationship resolution, one can
conduct attribute value resolution on the matched nodes and relationships to resolve
any differences in their attributes.

The complexity involved in each integration step is correlated with the hetero-
geneity to be resolved. For example, in cases when the graphs to be integrated share
a common schema, the graph schema matching step becomes trivial. The step can,
however, be complex when (a) the underlying data models are different, (b) schemas
have very different elements (i.e., node types, edge types, node attributes, and edge
attributes) causing the mappings between them may not be 1-1, and (c) different
constraints on the node and edge types are specified for different schemas.

Graph schema matching, depending on the data model used to represent graph
instances, can be quite similar to schema matching involving relational data
instances [22]. Many techniques already developed for relational schema match-
ing are still applicable. Attribute value resolution is a step conducted on matched
entities or matched relationships and is largely not affected by the graph structures.
Again, the existing attribute value resolution techniques for relational data can be
employed. Between entity and relationship resolutions, entity resolution has been
intensively studied while relationship resolution is still a relatively less studied
problem because most of the graphs to be integrated have relationships uniquely
identified by their associated entities. This makes relationship resolution relatively
straightforward. In other words, if entities A and B are linked with a relationship
in each of two given graphs, the two relationships are identified to be the same. In
this chapter, we shall therefore focus largely on the entity resolution step and its
associated approaches.

Entity resolution for graph data is quite different from that for relational data
due to the existence of links in graphs. When two nodes are to be determined as
the same entity, one has to consider the links and even link structures connected

10 Information Integration for Graph Databases 269

to the two entities. We would ideally like the two nodes to share the same links or
link structures if they are the same entity. This is, however, impossible unless some
of the neighboring nodes have been resolved a prior. A naive approach to break
this chicken and egg situation is to ignore links and simply apply entity resolution
techniques for relational data. Such an approach is non-ideal and we thus introduce
other techniques that consider links.

10.3 Entity Resolution for Graphs

Entity resolution, sometimes also known as record linkage and entity de-duplication,
for graphs essentially identifies nodes that model same real-world entities. When
two nodes model the same real-world entity, they form a matched entity pair. There
have been many approaches proposed to determine matched entity pairs. Some of
them assume that no two nodes in the same graph model the same real-world entity.
In a more general integration setting, this assumption may not hold and one may
have to perform entity resolution on a single graph.

The general strategy of entity resolution is depicted by the following steps:

1. Compute similarities for entity pairs.
2. User(s) judge if the pairs are matched.

The first step heavily depends on the definition of inter-entity similarity. Given
two or more graphs, we can measure the inter-entity similarity using a similarity
function sim(ei , e j). When each graph has N entities, the number of entity pairs for
similarity computation will be N 2 in the worst case. To reduce the number of entity
pairs in steps 1 and 2, a minimum similarity threshold can be introduced. Omar et al.,
in the context of relational database integration exploited properties of the matching
and merging entities to reduce the computation and judgment overheads of entity
resolution [1].

Bhattacharya and Getoor provided a comprehensive survey of entity resolution
approaches in [3]. In the following, we adopt their classification of entity resolu-
tion approaches and briefly describe them. Entity resolution can be solved in both
supervised or non-supervised approaches. The former requires training data while
the latter does not. In the research literature, there is a variety of supervised entity
resolution approaches [8, 23] but due to space constraint, we will only cover the
non-supervised ones below.

10.3.1 Attribute-Based Entity Resolution

Attribute-based entity resolution compares the attribute values of entities in order
to match them. It has been widely used in resolving entity identities in relational
databases and graphs due to its simplicity. Attributes or combinations of attributes
that can identify entities either strongly or weakly are used in attribute-based entity

270 E.-P. Lim et al.

resolution approaches. Attributes or attribute combinations that strongly identify
entities are the entity identifiers, e.g., social security number (or SSN), person
name and birthdate, and mobile number. The other attributes or attribute com-
binations that increase the odds of identifying entities are then known to identify
entities weakly, e.g., birth year, land phone number, home address, and com-
pany address. According to the nature of the attributes used in entity resolu-
tion, there can be a few different ways of defining entity level similarity function
sim(ei , e j).

The simattrib(ei , e j) can be defined to be either 0 or 1 only depending on the
outcome of comparing the entity attributes ei .attrib and e j .attrib. For exam-
ple, the following inter-entity similarity function simSSN(ei , e j) returns a binary
value whenever ei and e j have identical social security number. The second func-
tion simhomeaddress,birthyear(ei , e j) returns Jaccard similarity metric value of their
home address, a value between 0 and 1, indicating how likely ei and e j are
matched entities when their birth year values are the same, and 0 when the birth
year values are different:

simSSN(ei , e j) =
{

1 if ei .SSN = e j .SSN
0 otherwise,

simhome address,birth year(ei , e j) =
⎧
⎨

⎩

Jaccard(ei .home address, if ei .birth year =
ej .home address) e j .birth year

0 otherwise.

The Jaccard similarity metric of two strings of word tokens si and s j is
defined by

Jaccard(si , s j) = number of common words between si and s j

number of distinct words in si and s j
.

A survey of similarity metrics for string attributes such as Jaccard can be found in
[7]. Similarity metrics for numeric attributes include normalized difference, cosine
similarity, and euclidean distance [14]. Given that entities usually have multiple
attributes, these similarity metrics can be combined in various ways to determine
entity similarity.

10.3.2 Relational Entity Resolution

Relational entity resolution essentially involves the use of link connectivity of enti-
ties to determine how similar the entities are. Bhattacharya and Getoor proposed
several relational entity resolution approaches [3] to improve over using direct
attribute entity resolution.

10 Information Integration for Graph Databases 271

In the naïve relational entity resolution approach [3], the inter-entity similarity is
derived by applying an attribute-based similarity function sim A(ei , e j) and another
edge-based similarity sim H (ei , e j) on the pair of entities to be matched. The overall
inter-entity similarity is defined by

sim(ei , e j) = (1− α) · sim A(ei , e j)+ α · sim H (ei , e j),

where 0 ≤ α ≤ 1. The function sim H (ei , e j) is determined by the similarity of
edges of ei and e j and can be defined as the aggregated similarity between the
edges of ei and e j (denoted by ei .edges and e j .edges respectively), i.e.,

sim H (ei , e j) =
∑

li∈ei .edges,l j∈e j .edges

sim H (li , l j).

The similarity between a pair of edges can then be defined by

sim H (li , l j) = Maxes∈Ei ,et∈E j sim A(es, et),

where Ei and E j denote the entities linked to li and l j , respectively.
In the Simrank approach proposed by Jeh and Widom [12], the inter-entity sim-

ilarity is defined by a random walk process on neighbors of entity pairs. Suppose a
graph is directed and Ii (and I j) denotes the set of in-neighbors of ei (and e j), the
Simrank similarity between entities ei and e j is defined by

simsimrank(ei , e j) =
{

1 if ei = e j
C
|Ii ||I j |

∑
e′i∈Ii

∑
e′i∈Ii

simsimrank

(
e′i , e′j

)
otherwise,

where C is a decay factor constant between 0 and 1. Unlike the earlier approach,
Simrank does not use attribute-based similarity function at all. Simrank also requires
the graph to be directed. For it to work on undirected graph, a simple way is to
replace an undirected edge by two directed edges, one for each direction.

10.3.3 Collective Relational Entity Resolution

The main idea of collective relational entity resolution is to group entities into entity
clusters each representing a group of entities that model a real-world entity. The
inter-entity similarity is thus measured by a combination of how similar a pair of
entities ei and e j are by their attributes, and how similar they are by the cluster labels
of their neighbors. Bhattacharya and Getoor proposed an agglomerative clustering
algorithm that group entity clusters into larger entity clusters incrementally using
the inter-entity cluster similarity function [3]:

sim(ci , c j) = (1− α) · sim A(ci , c j)+ α · sim R(ci , c j),

272 E.-P. Lim et al.

where sim A(ci , c j) and sim R(ci , c j) represent the attribute-based and relational
similarities between two entity clusters ci and c j , respectively. The former can be
determined by an aggregated attribute-based similarity between entities from ci and
c j . The latter, sim R(ci , c j), is determined by the number of common cluster labels
among the neighbors of entities in ci and c j . This neighborhood similarity can be
measured using a variety of functions including common neighbors, jaccard simi-
larity.

Instead of agglomerative clustering, Bhattacharya and Getoor also introduced a
Latent Dirichlet Allocation (LDA) model for conducting collective relational entity
resolution for authors of a set of publications using probabilistic model [2]. Here,
author entity clusters are represented by latent authors. The observed author entities
are assumed to be generated by these latent authors. Learning the mapping from
observed author entities to latent authors is thus a problem of learning LDA model
parameters.

10.4 Example Applications

In this section, we shall describe two example applications of entity resolution to
social network analysis. The first is D-Dupe, an interactive tool for entity resolu-
tion [4]. The second is SSnetViz, an application to visualize and explore integrated
heterogeneous social networks [19].

10.4.1 D-Dupe

D-Dupe is an interactive application specially designed to resolve entity identities
for authors of publications [4]. The graphs to be integrated have authors as nodes
and co-authorships as edges. Each edge is thus associated with a set of publica-
tions between the connected authors. Figure 10.2 shows the user interface design of
D-Dupe using the Infoviz data set that comes with the application demo [9]. It con-
sists of mainly three user interface components including

– Search Panel: The search panel shows a list of entity pairs ranked by their inter-
entity similarity values. Different attribute and relational similarity metrics can
be chosen by the user. The panel also supports string search on author entities so
as to find potential duplicates of the selected authors.

– Graph Visualizer: The graph visualizer displays a subgraph with a selected can-
didate pair of duplicate authors (e.g., “Lucy Nowell” and “Lucy T. Nowell” in
the figure), their common co-authors in-between (“Deborah Hix” in the figure)
and other non-common co-authors at the sides. The purpose of graph visualizer
is to allow user to easily tell whether the candidate duplicate authors are indeed
the same author. The user can then decide whether to merge the two candidate
authors and to mark them distinct.

10 Information Integration for Graph Databases 273

Fig. 10.2 User interface of D-Dupe

– Detail Viewer: The detail viewer provides detailed views of selected author can-
didates, their co-authors’ nodes and edges in the graph visualizer.

The layout of the author graph is such that there is always some node(s) between
the selected author candidates as it is not possible to have both of them appearing in
the same publication. The size of an author node can be based on the author’s num-
ber of publications. Both nodes and edges can be filtered for clearer viewing. Once
the user selects two candidate authors to be merged together, the graph visualizer
will show the two nodes combined into one and their two sets of edges are assigned
to the new node labeled by “Lucy T. Nowell” as shown in Fig. 10.3. D-Dupe auto-
matically selects the next node most similar to the merged node, i.e., “Lucy Terry
Nowell,” as a candidate entity to be merged. The entity resolution steps can repeat
till all author entities are appropriately merged.

10.4.2 SSnetViz

SSnetViz, unlike D-Dupe, is an ongoing research project to explore and analyze
heterogeneous social networks integrated from multiple data sources [19]. A het-
erogeneous social network is one with multiple node types (or entity types) and link
types (or relationship types). In SSnetViz, nodes of the same type share the same
attribute set while links are not assigned any attributes. SSnetViz provides some
functions to integrate multiple heterogeneous social networks and data exploration
features that allow the data sources to be identified even after entities are merged.

274 E.-P. Lim et al.

Fig. 10.3 After merging “Lucy Nowell” and “Lucy T. Nowell”

The design of SSnetViz is originally motivated by the need to support data
analysis of terrorism related social networks from disparate sources. The networks
SSnetViz has so far integrated come from three data sources: (a) TKBNetwork: a
terrorism network from the MIPT Terrorism Knowledge Base4 (TKB); (b) PVTR-
Network: a terrorism network created by the International Center for Political Vio-
lence and Terrorism Research (ICPVTR), a center focusing on gathering and anal-
ysis terrorism data using public domain data; and (c) WikiTerrorism: a network we
constructed using terrorism-related articles from Wikipedia. Both TKBNetwork and
PVTRNetwork are constructed by experts while WikiTerrorism represents knowl-
edge collaboratively edited by the online community.

Figure 10.4 depicts the user interface design of SSnetViz. It consists of a network
viewer that displays the entire social network graph or selected subgraph. Nodes of
different types are shown using different shapes while the different data sources are
shown using different colors. The legend of shapes and colors of nodes and links
is shown at the bottom of network viewer. For example, terrorists are shown as
oval nodes and terrorist groups are shown as rectangle nodes. Light blue and yellow
indicate the information from TKBNetwork and PVTRNetwork respectively. When
a node or link is derived by integrating two or more original networks (e.g., “Jemaah
Islamiya (JI)” node in Fig. 10.4), we assign them a distinct color representing the
overlapping data sources. The color and shape schemes can be configured by users
for easy viewing. Zooming, rotation, hyperbolic view, node expansion, node/link

4 MIPT is the acronym of Memorial Institute for the Prevention of Terrorism.

10 Information Integration for Graph Databases 275

Fig. 10.4 User interface design of SSnetViz

hiding, node search, path search, and other operations are also provided to manipu-
late and explore the social network in network viewer. Whenever a node is selected,
its attribute values divided according to the data source(s) the node is found will
be shown in the node information panel on the right side. In Fig. 10.4, “Jemaah
Islamiya (JI)” node’s attribute values from TKBNetwork and PVTRNetwork are
shown.

Since SSnetViz has to integrate social networks with heterogeneous schemas and
node/link instances, both schema-level integration and instance-level integration are
required. The integration steps depicted in Fig. 10.5 have been adopted. SSnetViz
has a generic graph schema that is capable of storing and updating social networks
with heterogeneous schemas. When two social networks are to be integrated, the
user first matches the node types of the networks using a node type matching
module. The step is performed once only and the matched node types are stored
for subsequent instance-level integration.

Instance-level integration in SSnetViz involves mainly node matching, i.e., entity
resolution. Link instances are automatically integrated if their link types are identi-
cal. Both rule based and manual node matching approaches are supported by a node
merging module shown in Fig. 10.8.

276 E.-P. Lim et al.

Fig. 10.5 SSnetViz’s integration steps

For illustration, we show two social network subgraphs showing the one-hop
neighborhoods of “Jemaah Islamiyah (JI)” from TKBNetwork and PVTRNetwork
in Figs. 10.6 and 10.7 respectively. Note that the TKBNetwork and PVTRNetwork
have several discrepancies in naming their entities. We would like to match their

Fig. 10.6 Social network subgraph from TKBNetwork

10 Information Integration for Graph Databases 277

Fig. 10.7 Social network subgraph from PVTRNetwork

nodes and derive the integrated network. Table 10.1 shows a subset of matched
nodes that need to be identified. Note that some of these entities have identical
names in TKBNetwork and PVTRNetwork but others have some name differences,
e.g., “Jemaah Islamiya (JI)” and “Jemaah Islamiyah (JI).”

In general, node instances modeling the same real-world entities may have dif-
ferent attribute values. SSnetViz users can match them using user-defined match-
ing rules which specify the attribute similarity functions for generating candidate
matched node pairs (see Fig. 10.8). Among the candidate matched node pairs, the
user can manually merge the correct node pairs and mark the rest as incorrect (“no”

Table 10.1 Matched node pairs

TKBNetwork PVTRNetwork

1 Jemaah Islamiya (JI) Jemaah Islamiyah (JI)
2 Umar Patek Umar Patek
3 Noordin Mohammed Top Noordin Bin Mohd Top
4 Azahari bin Husin Azahari bin Husin
5 Dulmatin Dulmatin
6 Abu Bakar Bashir Abu Bakar Ba’asyir

278 E.-P. Lim et al.

Fig. 10.8 SSnetViz’s node merging module

option in the figure) or unconfirmed. A cylindrical bar showing the numbers of
matched and unmatched node instances in each social network is also shown by
the node merging module. In cases where matching rules fail to include a matched
node pair, a manual node merging module can be used where matched node pairs
can be identified manually (see Fig. 10.9). Using these two matching approaches,
the integrated network can be derived. Fig. 10.10 shows the one-hop neighborhood
of “Jemaah Islamiyah (JI)” in the integrated network.

10.5 Conclusion

Graph information integration is an important class of data integration problem as
graph data can be found in many databases and integrated graphs are extremely
useful for complex queries, data analysis, and data mining. This chapter aims to
give an overview of the integration framework. We focus on entity resolution in

10 Information Integration for Graph Databases 279

Fig. 10.9 SSnetViz’s manual node merging module

graphs which has made significant progress in recent years. We also introduce two
example applications, D-Dupe that is specifically designed for performing interac-
tive entity resolution on graphs, and SSnetViz that integrates and manages integrated
heterogeneous social networks.

Looking ahead, there are still many interesting problems to be addressed in graph
information integration. Most of the research today has largely focused on specific
problems, e.g., entity resolution, without considering the other related integration
problems, e.g., schema integration and attribute value conflict resolution. Designing
a complete suite of solutions for all the integration problems is challenging but is
certainly the direction to pursue as the cost of data integration will only increase
with more graph data to be generated in the future.

At present, researchers in graph information integration are also struggling with
the evaluation of different graph information integration methods. This is mainly
caused by a lack of publicly available graph data sets and methodology for perfor-
mance comparison. DBLP is a good example of graph data that is publicly available.
The ground truths of its integration with other author–paper graphs are, however,
not available. Hence, it is difficult to compare accuracies of different integration
methods on the data set.

280 E.-P. Lim et al.

Fig. 10.10 Integrated social network subgraph

Acknowledgments We would like to acknowledge the support by A*STAR Public Sector R&D,
Singapore, Project Number 062 101 0031 in the SSNet Project. We also thank Maureen and Nel-
man Lubis Ibrahim for implementing the SSnetViz system.

References

1. O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom. Swoosh:
A generic approach to entity resolution. VLDB Journal, 18(1):255–276, 2009.

2. I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution. In
SIAM Conference on Data Mining, Bethesda, Maryland, USA, 2006.

3. I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. ACM Transac-
tions on Knowledge Discovery from Data, 1(1), 2007.

4. M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman. D-dupe: An interactive tool for entity
resolution in social networks. In International Symposium on Graph Drawing, volume 3843
of Lecture Notes in Computer Science, pages 505–507, September 2005.

5. P. Buneman. Semistructured data. In ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, Tucson, Arizona, 1997.

6. P. Chen. The entity-relationship model—toward a unified view of data. ACM Transactions on
Database Systems, 1(1):9–36, 1976.

10 Information Integration for Graph Databases 281

7. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for
name-matching tasks. In IJCAI Workshop on Information Integration, pages 73–78, Acapulco,
Mexico, August 2003.

8. P. Domingos. Multi-relational record linkage. In KDD-2004 Workshop on Multi-Relational
Data Mining, pages 31–48, Seattle, Washington, 2004.

9. J.-D. Fekete, G. Grinstein, and C. Plaisant. The history of infovis. In IEEE InfoVis 2004
Contest, www.cs.umd.edu/hcil/iv04contest, Austin, Texas, 2004.

10. M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Strudel: a web site manage-
ment system. In ACM SIGMOD International Conference on Management of Data, Tucson,
Arizona, 1997.

11. N. Guarino. Formal Ontology in Information Systems, chapter Formal Ontology in Information
Systems. IOS Press, Amsterdam, 1998.

12. G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 538–543, Edmon-
ton, Alberta, Canada, 2002.

13. A. Jhingran, N. Mattos, and H. Pirahesh. Information integration: A research agenda. IBM
Systems Journal, 41(4):555–562, 2002.

14. L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. In International
Conference on Database Systems for Advanced Applications, Kyoto, Japan, 2003.

15. E.-P. Lim and J. Srivastava. Query optimization and processing in federated database systems.
In ACM Conference on Information and Knowledge Management, pages 720–722, Washing-
ton D.C., 1993.

16. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database
integration. In IEEE International Conference on Data Engineering, pages 294–301, Vienna,
Austria, 1993.

17. E.-P. Lim, J. Srivastava, and S. Shekhar. An evidential reasoning approach to attribute value
conflict resolution in database integration. IEEE Transactions on Knowledge and Data Engi-
neering, 8(5):707–723, 1996.

18. W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of multiple autonomous databases.
ACM Computing Survey, 22(3):267–293, 1990.

19. Maureen, A. Sun, E.-P. Lim, A. Datta, and K. Chang. On visualizing heterogeneous semantic
networks from multiple data sources. In International Conference on Asian Digital Libraries,
pages 266–275, Bali, Indonesia, 2008.

20. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database manage-
ment system for semistructured data. SIGMOD Record, 26(3), 1997.

21. A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing Survey, 22(3):183–236, 1990.

22. S. Spaccapietra and C. Parent. View integration: A step forward in solving structural conflicts.
IEEE Transactions on Knowledge and Data Engineering, 6(2):258–274, 1994.

23. P. Treeratpituk and C. L. Giles. Disambiguating authors in academic publications using ran-
dom forests. In Joint Conference in Digital Libraries, Austin, Texas, June 2009.

24. P. Ziegler and K. R. Dittrich. Three decades of data integration — all problems solved? In
18th IFIP World Computer Congress (WCC 2004), pages 3–12, Toulouse, France, 2004.

www.cs.umd.edu/hcil/iv04contest

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2010

	Information integration for graph databases
	Ee Peng LIM
	Aixin SUN
	Anwitaman DATTA
	CHANG KUIYU
	Citation

	10 Information Integration for Graph Databases
	Ee-Peng Lim, Aixin Sun, Anwitaman Datta, and Kuiyu Chang
	10.1 Introduction
	10.2 Framework for Graph Information Integration
	10.3 Entity Resolution for Graphs
	10.3.1 Attribute-Based Entity Resolution
	10.3.2 Relational Entity Resolution
	10.3.3 Collective Relational Entity Resolution

	10.4 Example Applications
	10.4.1 D-Dupe
	10.4.2 SSnetViz

	10.5 Conclusion
	References

