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Using ‘Drop-Biasing’ to Stabilize the Occupancy of
Random-Drop Queues with TCP Traffic

Archan Misra Teunis Ott John Baras
archan@research.telcordia.com tjo@research.telcordia.com baras@isr.umd.edu

Abstract— The paper describes how the use of ‘drop-biasing’, a tech-
nique to control the distribution of the gap between consecutive packet losses
in random drop queues (such as RED) can be used to reduce the variabil-
ity of the queue occupancy with TCP traffic. Reducing the variance of
the queue occupancy reduces delay jitter for buffered packets, as well as
decreases the likelihood of buffer underflow. We find that modifying the
packet drop probabilities to ensure a minimum separation between con-
secutive packet drops serves to decrease the variability in the queue occu-
pancy. This is really achieved as a result of the increased negative corre-
lation among the congestion windows of the constituent TCP flows. Such
negative correlation explains why the use of simple drop-biasing strategies
can reduce the queue variability without increasing the likelihood of bursts
of packet losses. The results of our investigations have relevance for the de-
sign and deployment of RED-like algorithms for congestion control in the
Internet.

I. INTRODUCTION

In this paper, we study random drop-based queue manage-
ment algorithms used for buffering TCP traffic in the Internet.
In particular, we study how the use of a simple ‘drop-biasing’
technique to alter the pattern of packet drops generated by al-
gorithms such as Random Early Detection (RED) [1] can sig-
nificantly lower the variability of the queue occupancy, without
resulting in any substantial change in the ability of such algo-
rithms to absorb transient bursts.

The primary objective of algorithms such as RED [1], is to
prevent buffer underflow and consequent under-utilization of
available bandwidth. As long as this primary objective is un-
affected, a randomized dropping strategy should also attempt to
reduce the variability of the queue occupancy. Lower occupancy
variability not only increases queue stability and reduces the
possibility of buffer underflow but also reduces queuing delay
jitter. Reduced jitter is beneficial, especially for real-time appli-
cation traffic, such as Voice-over-IP, which might be multiplexed
on the same queue, and yet may be only a small component of
the traffic load in the immediate future. While such real-time
traffic should ideally be buffered separately, widespread deploy-
ment of such service differentiation is yet to be realized.

We define drop-biasing as the technique by which random
dropping queues can alter the distribution of the gap between
consecutive packet drops, without changing the mean dropping
behavior. Under this technique, the drop probability for an in-
coming packet is adjusted, based on the number of packets ac-
cepted since the last drop. This is usually performed through
the use of a variable ����� , which is incremented by 1 for every
accepted packet and reset to � whenever a packet is selected for
random drop.

Archan Misra and Teunis Ott are with Telcordia Technologies, 445 South
Street, Morristown, NJ 07960. John Baras is with the Center for Satellite and
Hybrid Communication Networks at the University of Maryland, College Park,
MD 20742.

We find that using drop-biasing to mandate a minimum sep-
aration between successive packet drops decreases queue vari-
ability, occasionally to a significant degree. In particular, we
use simulations to demonstrate that suitable drop-biasing tech-
niques reduce the queue variance for both persistent and Web
TCP flows; for reasons explained later, the reduction is much
higher in the case of persistent TCP flows. We also show that
this reduction is achieved without compromising the ability of
the queue to absorb transient TCP bursts without leading to cor-
related losses.

We show how the variability in the queue occupancy is re-
lated to the correlation among the congestion windows of the
competing TCP connections. [9] reported that when TCP flows
are buffered by a random drop queue which bases its packet
drops on the instantaneous queue occupancy alone, the conges-
tion windows exhibit negative correlation. Due to negative cor-
relation, the congestion windows tend to vary ‘out of phase’;
this causes a reduction in the variance of the sum of the con-
gestion windows and hence a smaller fluctuation in the queue
occupancy. Additional studies, reported elsewhere [22], show
that the use of an averaged value of the queue occupancy (as is
suggested in RED to reduce the sensitivity to transient packet
bursts) can decrease this negative correlation. This paper shows
that proper use of drop-biasing can increase this negative corre-
lation among TCP windows, irrespective of the use of either the
instantaneous or the averaged queue occupancy in the dropping
process. As a result of this changing correlation value, the queue
variance will change, even though the overall drop probability
and the individual TCP window distributions do not change no-
ticeably.

Our results can be used to devise useful drop-biasing strate-
gies for choosing packets for random drop. In scenarios where
packet drops are the only way to signal incipient congestion to
TCP, our results can lead to improved buffer stability.

A. Related Work

Randomized packet dropping as a congestion indicator for
TCP traffic was first proposed in [2], where the dropping prob-
ability was based on the instantaneous queue occupancy. The
well known paper by Floyd and Jacobson [1] introduced the
mechanism of Random Early Detection (RED), which contin-
ues to be the most popular random dropping strategy currently
employed. This version of RED (which we call ‘classical RED’
in this paper) bases its dropping probability on a weighted-
average of the past queue occupancy and employs a technique to
generate a uniform distribution for the gap between successive
packet drops. Various modifications to the basic RED algorithm
have been proposed. For example, SRED [6] and BLUE [7]
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are mechanisms that adaptively tune RED parameters based on
estimates of the number of active flows or the buffer overflow
and idling events respectively. The drop-biasing feature studied
in this paper is orthogonal to any of these original or modified
dropping algorithms; it can be used to complement the perfor-
mance of any of these algorithms.

Several papers have analyzed the TCP window dynamics
when subject to random losses. [12], [20], [13] and [8] con-
sider the case when the loss probability is constant; [9] and [16]
consider the window distribution of TCP flows when the loss
probability is not constant but depends on a function of the con-
nection’s window size.

Some recent publications, such as [14], indicate only limited
performance improvements with RED in experimental studies
and suggest the need for further investigation of random drop-
ping strategies before their widespread adoption on the Internet.
Our paper is different from conventional analyses in that it in-
vestigates a specific feature of random drop algorithms from the
viewpoint of the variation in the queue dynamics, rather than the
performance of the TCP flows themselves. However, we take
care to show that our proposed modifications does not compro-
mise the fundamental capability of these algorithms to absorb
transient TCP bursts.

II. MODELS AND TECHNIQUES UNDER INVESTIGATION

In this section, we describe the mathematical model for drop-
biasing (along with a brief description of how an averaged queue
occupancy is used in classical RED). We also indicate the two
different traffic source models for TCP traffic used in our simu-
lations, along with their implications on the results of this paper.
Finally, we clarify the network topology and metrics used in our
simulation studies.

A. Models for Random Drop-based Queuing

In this paper, the packet dropping probability of the buffer is
based on some function of the buffer occupancy; flow-specific
differentiation is not considered. Let

�
be the buffer occupancy �

of the random drop queue. The drop function, which deter-
mines the base packet dropping probability, is denoted by ��� ��� .
While ��� ��� can, in general, be any non-decreasing function of�

, our simulation studies use the popular linear drop model,
given by

�
	����� � ���������������
� � � �"!#�%$'& ���
� �)(�*,+.-.	��0/���$'& ��� ��$'&1���2/3�����4��� �5���������768�"6#�%$'&1��� (1)

where, as per RED’s standard notation, 9;:�<>=@? and 9BA � =@? are
the maximum and minimum drop thresholds and �DC2EGF is the
maximum packet drop probability. Since all simulations re-
ported here use equal-sized TCP/ UDP packets, all thresholds
and queue occupancies are reported in packets (segments) in-
stead of bytes.H

Depending on the context, � represents either the instantaneous queue oc-
cupancy, �.IKJ'LML , or some mapping of the queue occupancies in the past. For
classical RED, � is really a weighted average of the past queue occupancies;
for ERD, � is identical to � INJOLPL .

A.1 Inter-Drop Gap Determination Strategy (Drop-Biasing)

Given a specific drop function, ��� ��� provides an estimate of
the averaged independent drop probability: if the queue occu-
pancy were to remain constant at

�
, on an average, one out of

every �QSRUT�V packets should be dropped. We can then use vari-
ous drop-biasing techniques to alter the distribution of the gap
between drops, without altering the average gap of �QSRUTWV .

Classical RED performs drop-biasing by using the variable
� ��� , introduced earlier, to modify the dropping probability of an
incoming packet. In classical RED, the packet dropping proba-
bility, denoted by �>X,Y[Z Q is given by the equation

�\X,Y[Z Q^] ��� ���_a` � ���cb ��� �3��d (2)

This code is present in the publicly available ns-2 simulator
[18], which we have used for our simulations. Under this ap-
proach, the inter-drop gap that is uniformly distributed between
� _)e dOd'd egf �QSRUTWVGh � . Neglecting the integer constraints, the mean

inter-drop gap is then i �jlk QSRUT�V , if the queue occupancy
�

re-
mains constant. We call this model as the Uniform drop-biasing
strategy.

Early Random Drop, as discussed in [2] or as applied in [16],
on the other hand, computes the dropping probability for each
incoming packet by the equation �DX,Y[Z Qm] ��� ��� , i.e., the drop
probability of an incoming packet does not depend on the treat-
ment applied to the past packets. If ��� ��� is constant, this ap-
proach results in a geometric distribution for the duration of an
inter-drop period. We call this dropping strategy as the Geomet-
ric model; note that under this method, a constant

�
(and hence

��� ��� ) results in a mean inter-drop gap of �QnR�TWV packets.
Both the above drop-biasing strategies do not impose any min-

imum gap between successive packet losses; back to back packet
losses are indeed possible. We shall later see that introducing
such a minimum gap can appreciably reduce the variability of
the queue occupancy. A minimum gap between consecutive
packet drops can be specified in the uniform dropping strategy of
classical RED by delaying random dropping until at least �QSRUTWV
packets have been accepted. The following pseudo-code (also
available in ns-2) uses the variable ����� to achieve this gap:

�po;qP�4r\��� ��g	s��nt rpuSv[�w�1x Lzy|{ �;� t
�po ��g	��} �#qP�4r\��� ~�g	s��nt rpuSv[�w� x Lzy|{ � ~~ /3qP�4r�-4�g	s��nt�po;qP�4r\! ��g	s�� t rpuSv[�w� x Lzy|{ ���'�

We call this scheme as the Delayed Uniform drop-biasing
strategy, since it results in a uniformly distributed gap between
� �QSRUT�V e d'd'd e jQSRUTWV � ; the mean inter-drop gap in this case is �j,k QSRUTWV .

As a natural corollary to the Delayed Uniform model, we have
the Delayed Geometric model where the gap between succes-
sive packet losses is at least �QSRUT�V ; once �QSRUTWV packets have been
accepted, each new incoming packet is likely to be dropped with
a probability of ��� ��� . If the drop function ��� ��� is constant, this
results in a shifted-geometric distribution for the inter-drop gap,
with a mean inter-drop gap of

jQnR�TWV .
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An additional drop-biasing strategy is interesting for its sim-
plicity and resultant insight. This model, which we call the De-
terministic model, causes every �QnR�TWV =@? packet to be dropped.
For a constant ��� ��� , there is indeed nothing random about this
packet dropping strategy; accordingly, special artifacts such as
synchronization and phase effects [19], that unfairly penalize
specific connections, are possible. However, such effects are
unlikely in the real Internet where links and traffic paths ex-
hibit random delays. Moreover, a simple randomization scheme
which distributes the loss probability over a few packets around

the �QSRUTWV =@? packet can effectively counteract this phenomenon.
The Deterministic model is the simplest approach for introduc-
ing a mandatory (yet unpredictable) separation between succes-
sive packet drops. For a fixed value of ��� ��� , the Deterministic
model results in a mean inter-drop gap of �QSRUTWV , as in the Geo-
metric model.

In section III we shall report on the relative performance of
random drop queues under these different drop-biasing strate-
gies. Figure 1 provides a visual understanding of how the vari-
ous dropping strategies result in different shapes for the cumu-
lative distribution function (cdf) for the inter-drop gap.

Geometric

Delayed Geometric

Uniform

Delayed Uniform

Deterministic

1/p(Q) 2/p(Q)

Inter-Drop Gap

C
D

F 
(I

nt
er

-D
ro

p 
G

ap
)

1

Figure 1: Different CDFs for the Inter-drop Gap

A.2 Past Memory in Drop Function

The drop function, ��� ��� , can be based either on the instanta-
neous queue occupancy or on some function of the past queue
occupancy. RED uses the exponentially weighted moving aver-
age model to incorporate the past queue occupancy in the drop
pattern; in this model, an average queue occupancy

� E ��� is
computed according to the iterative relation

����� �E ��� ] � _ `�� � ���E ���
	 � b ����� ��� Y[Y e (3)

where the superscript refers to the arrival of the A 	 _ =@? packet
and

� �� Y Y refers to the instantaneous queue occupancy. Note
that if the weight factor,

�
, equals

_
, the drop function depends

only the instantaneous queue occupancy; as
��� � , the mem-

ory of the averaging process increases. By varying
�

within
the interval � � eO_�� , we can obtain the entire range of memory
in the dropping process. While the results presented here pri-
marily involve instantaneous queue occupancies (

� ] � ), we
have verified that our results apply qualitatively over the entire
range of realistic values of

�
. (We shall in fact provide a few

plots to illustrate how our suggested drop-biasing strategies per-
form equally well when

� ] � d � _ .) When
� ] _ , i.e., when

the instantaneous queue occupancy is used, we shall refer to the

buffer as an ERD queue; when
���] _ , i.e., when averaging is

performed, we shall refer to the queue as a RED queue.

B. TCP Source Models and Version

We used two source models in our simulations, since they
emphasize two different phases of TCP window evolution. The
persistent source model assumes infinite-sized file transfers; un-
der this model, the sender’s congestion window acts as the only
constraint on the injection of new data packets by the sender.
In such a situation, when the loss rates are relatively low, TCP
primarily exhibits the stationary congestion avoidance behavior.

The Web TCP model, on the other hand, mimics the effects of
Web-based TCP transactions and involves the transfer of finite-
sized files. The model and its parameters are based on [15] and
consists of a cycle of a single Web transaction (each consisting
of multiple file transfers) alternating with inactive off-periods
when no data transfer takes place. Each of the multiple file
transfers in a single transaction occurs sequentially and on dis-
tinct TCP connections. Since most files are only a few KBytes
in size, the bulk of the transfers are completed during TCP’s ini-
tial slow-start transient (where TCP congestion control is less
effective). More importantly, the number of active TCP connec-
tions fluctuates rapidly under this model; since the occupancy of
a RED buffer depends on the number of active flows, the queue
occupancy will fluctuate as well [6].

Current Web transfer protocols (e.g., HTTP 1.1 [21]) use per-
sistent TCP connections

j
; the same TCP connection is used for

multiple transfers, even across multiple transactions. The effec-
tive quantity of data transferred by a single connection conse-
quently increases; in comparison to our Web model, a greater
portion of the data is now transferred during TCP’s station-
ary congestion avoidance phase. Results in section III show
that improvements with drop-biasing strategies are more pro-
nounced for persistent TCP traffic rather than our model of Web
traffic. As persistent TCP connections become commonplace
in Web transfers, we expect the performance improvement ob-
tained with our drop-biasing strategies to become more signifi-
cant.

C. Simulation Parameters

Our simulations are performed using the version of TCP New
Reno provided in the ns-2 [18] simulator. To provide represen-
tative simulation results, we use a simulation topology involving
a single random drop queue with a capacity (C) of

_ d�� Mbps, a
9;A � =@? of � � packets, a 9;:�< =@? of � � � packets, a � C2EGF of � d � �
and a maximum buffer size of � � � packets. (Results from other
parameter specifications are qualitatively similar and are not dis-
cussed here.) Furthermore, all TCP and UDP connections have
a packet size of � _ � bytes. To remove the possible synchro-
nization effects among different TCP flows, we ensured that, in
almost all simulations, each of the constituent TCP flows had a
different round trip time within the range between � � msec and
� � � msec. (This is achieved by spacing the RTTs of the individ-
ual TCP flows uniformly over the interval � � � e � � � � msec.) To
�
In the context of HTTP, the use of the word ‘persistent’ implies the use of

a single TCP connection for multiple file transfers. This is different from the
earlier definition of persistent TCP source models, which refers to the transfer
of infinitely large files over a single TCP flow.
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generate the appropriate time-series, the queue occupancy and
TCP window sizes are sampled every � � msec in all our simula-
tions. The number of persistent TCP sources is varied between
� ` _ � while the number of ‘Web TCP’ sources is varied between� � ` _ � � .

We have seen how, for the same ��� ��� , different dropping
strategies give rise to different mean inter-drop gaps. To provide
a fair comparison of the queue variance, we ensured that the
mean queue occupancy is nearly the same for all drop-biasing
strategies. We can ensure this by having the mean inter-drop
gap, for a fixed

�
, equal for all strategies. In other words,

we need �Q�������� RUT�V ] jQ
	 ������������������ R�TWV ] �j,k Q����
��� ����� RUT�V ]
�j,k Q�	 ���������� �������1RUT�V ] �Q 	 ������� RUTWV�� � . For ��� ��� as in equation (1),

this is achieved by setting the �>C2EGF values for the DelayedGeo-
metric, Uniform, DelayedUniform and Deterministic models to
be respectively � , �j , �j and

_
times the value of � C2EGF for the

Geometric model.

D. Jitter Formulation

To measure the effect of alternative drop-biasing strategies on
the delay jitter, we sometimes used a probe stream to directly
obtain the delay variation. The probe stream injects packets pe-
riodically into the queue at a relatively low intensity (  �! Kbps).

We used two alternative definitions of jitter. Both definitions
involve the specification of a time interval. Under the percentile
definition, the jitter for that interval is computed as the differ-
ence between the " � =@? and the � =@? percentile of the packet de-
lays. The alternative RTP-based definition [23] employs a mov-
ing average computation over the delay variation between con-
secutive packets (‘per-packet jitter’) using

# A � �%$�&('*),+ �@A � ] � _ d � `.- � b # A � �%$�&,'*),+ �pA ` _ �
	 - b0/1$�&(/ : ��23$ � # A � �%$�& �pA �

where
- ] ���4 . The RTP-jitter for that interval is defined as the

maximum value of
# A � �%$�&('*),+ in that interval. Graphs in this

paper use intervals of � � � msec and
_ � sec, corresponding to a

sample size of i5! and i _  � probe packets respectively.

E. Effect of Drop-Biasing on Response to Traffic Bursts

To ensure that the drop-biasing strategies do not increase the
incidence of bursty losses, we use a set of loss-related metrics
per flow and subsequently derive average performance metrics
by aggregating over the individual flows.

The simplest such metric of packet losses is the runlength
of packet drops, which represents the distribution of continuous
bursts of losses. To obtain this distribution for a runlength 2 ,
we count the total number of packet losses, say 6 , as well as
the number of loss episodes that correspond to a burst of 2 con-
secutive losses (on a per-flow basis), say 687 ,; the corresponding
fraction of losses with runlength 2 is then 9;: k 79 .

The runlength is, however, not a very suitable metric, since
TCP flows rarely lose consecutive packets. More importantly,
TCP behavior exhibits timeouts and performance degradation
when multiple losses occur in a window; the losses need not
be back to back. To study the presence of such extended loss
bursts, we study the number of losses in a blocks of consecutive
packets. To derive this, we first obtain flow-specific time-series

by considering the number of packet drops in contiguous blocks
(called clusters) of / packets, and hence, the stationary distribu-
tion of the number of packet losses per block of / packets (over
all the constituent flows). (In our studies, we chose / to be ap-
proximately half the reciprocal of the average packet loss rate.
This ensures that, in the case of random and independent packet
drops, the number of losses in a block is typically either � or_

.) To investigate the possible existence of loss bursts of length
larger than the block size / , we also determined, for each in-
dividual flow, the auto-covariance function < �>= � e = ] � eO_)e dOd'd
of the time-series formed by the number of packet drops in each
consecutive cluster. (The auto-covariance plots presented here
are obtained by averaging over all the flows). In general, a drop-
biasing strategy that results in a larger spread of the distribution
of the number of packet losses per cluster or larger values of
the average auto-covariance < E ��� � 2 � for 2 ] � _1e � e dOd'd � is less
capable of absorbing transient bursts.

III. EFFECT OF DROP-BIASING TECHNIQUES ON QUEUE

OCCUPANCY VARIABILITY

In this section, we investigate how the five dropping strategies
enumerated in section II affect the variability of the queue occu-
pancy (and consequently the jitter experienced by the buffered
traffic). To study the effect of drop-biasing strategies in isola-
tion, we mostly vary the number of TCP flows while keeping
the exponential weight

�
constant. Most graphs presented in

this section involve ERD queues (based on instantaneous queue
occupancies); as stated earlier, we have observed similar results
for RED queues (with various values of

�
).

[16] showed that the TCP windows exhibit negative correla-
tion when an ERD queue is used. Negative correlation implies
that the window sizes of the TCP connections tend to vary out-
of-phase: when the window size of one flow is large, the other
flows have smaller window sizes. In such a situation, the sum
of the window sizes (and indirectly the buffer occupancy) at any
instant would exhibit less variability. Mathematically speaking,
we can observe the correlation behavior by comparing the vari-
ance of the sum of the window sizes ?�: & �%@BA��C �

D � � against the
sum of the individual variances @EA�>C � ?�: & �

D � � . When the win-
dows are uncorrelated, the two are equal; for negative correla-
tion, the sum should exhibit lower variance ( ?�: & �%@ A�>C �

D � �GF
@EA�>C � ?�: & �

D � � ), while for positive correlation, the sum should
exhibit larger variance ( ?�: & � @EA�>C �

D � �IH @EA�>C � ?�: & �
D � � ).

This follows from the general relationship

?�: & � AJ
��C �

D � � ] AJ
��C �

?�: & � D � � 	 J
��KCML <

),+ � D � e D L � (4)

Thus, the correlation among the windows can be observed
from comparisons of the variance of the sum of the windows
(or, almost equivalently, the variance of the queue occupancy,
?�: & � �3� ) with the sum of the variances of the individual win-
dows, @ A��C � ?�: & �

D � � .
We now qualitatively motivate why the introduction of a min-

imum spacing between consecutive random drops might reduce
the queue variability. Suppose a random drop queue drops a
packet from TCP flow A at time instant � . If there is no mini-
mum separation between two consecutive packet losses, packets
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from other TCP flows may also encounter packet drops soon af-
ter � . Since TCP reduces its congestion window in response to
a packet drop, such drops can lead to a reduction of the win-
dow sizes of multiple TCP connections at around the same time.
Imposing a minimum inter-drop gap, on the other hand, ensures
that multiple TCP flows do not reduce their windows simultane-
ously. After a packet from a flow is dropped, packets from other
flows are guaranteed to be accepted for the duration of the gap;
this process effectively increases the negative correlation among
the TCP windows. As a secondary benefit, ensuring a minimum
gap between successive packet drops reduces the likelihood of
multiple random packet drops from the same flow within a con-
gestion window. Multiple drops within a window can lead to
TCP transients such as timeouts and slow start, which increase
the burstiness of the offered traffic. Both the above reasons sug-
gest that a minimum inter-drop gap can dampen the fluctuation
in the queue occupancy. We now provide the results that we
have observed with persistent and Web TCP connections.

A. Queue Behavior with Persistent TCP

Figure 2 shows the occupancy statistics of an ERD queue
(as a function of the total number of TCP flows) for different
drop-biasing strategies, when the TCP flows have RTTs ranging
from � � msec to � � � msec. We see that the Deterministic strat-
egy provides the least variance among the five proposed strate-
gies; it also shows the least increase in variance with an increase
in the number of TCP flows. Observe also the fairly large re-
duction in variance between the delayed and non-delayed ver-
sions of the Geometric and Uniform dropping models. The
above results suggest that introducing a minimum inter-drop
gap is much more significant than specifying the exact distri-
bution of the drop pattern. We also note the success of our strat-
egy of adjusting the �>C2EGF � for different drop-biasing strategies
to ensure almost equal mean queue occupancies. The role of
negative correlation among the TCP windows can also be ob-
tained from observing figure 2. While the variance of the queue
occupancy is different for different drop-biasing strategies, the
sums of the variances of the congestion windows of the individ-
ual TCP flows is fairly independent of the choice of the drop-
biasing strategy. As explained earlier, this establishes that the
Deterministic and DelayedUniform drop-biasing strategies lead
to stronger ‘out-of-phase’ behavior among the TCP flows.

To study the impact of the choice of drop-biasing strategy
on the burstiness of the packet losses, we present plots of the
various burstiness-related metrics in figure 3, for the case of� ] _ � . In this case, the average packet drop probability
was obtained (from the corresponding mean of the queue oc-
cupancy) to be � � d _ � , leading to choice of the cluster size of� � . Our plot of the runlength distribution shows that, not only
do the Deterministic and DelayedUniform strategies offer lower
queue variability, they also reduce the likelihood of back to back
losses. Thus, while � "�" d ��� of losses occur in bursts of

_
for

any of the strategies that specify a minimum gap between con-
secutive packet losses (namely Deterministic, DelayedUniform
and Delayed Geometric), the figure is much lower for alternative
strategies ( � "�� � for Uniform and � "� d���� for Geometric).
On the other hand, plots of the distribution and auto-covariance
function of the number of losses in a block of

� � packets are al-

most identical for different drop-biasing strategies and are thus
not very interesting. We use such plots to assert that the De-
layedUniform or Deterministic drop-biasing strategies can offer
lower queue variance without leading to burstier losses. We had
also experimented with network topologies where all the TCP
flows had very similar RTTs; once again, the Deterministic and
DelayedUniform drop-biasing strategies outperformed the rest.
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Figure 2: Persistent TCP and ERD Queues
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Figure 3: Burstiness-Related Metrics for
Persistent TCP and ERD Queues

Figure 4 shows the results for the same experimental setup as
that of figure 2, except that the ERD queue has been replaced
by a RED queue with an exponential weight

� ] � d � _ and
the RTTs of the TCP flows are all i � � msec. Behavior simi-
lar to that mentioned for the instantaneous (ERD) case can be
observed. In particular, we have used extensive simulations to
verify that the relative performance of the different drop-biasing
strategies is qualitatively unaffected by variations in

�
.
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Figure 4: Persistent TCP and RED Queues
(Similar RTTs)

B. Queue Behavior with Web TCP

Figure 5 shows the plots for ERD queue behavior with Web
TCP traffic (when all the flows had round-trip times of approx-
imately � � msec). Simulations of RED (with exponential aver-
aging) with Web TCP provide similar results, as do simulations
with TCP flows with widely divergent round trip times, and are
accordingly not presented here. As before, we can observe that
the Deterministic and the Delayed Uniform dropping models
provide lower queue variance (for the same mean queue occu-
pancies) than alternative dropping strategies.

Note that, compared to the persistent TCP case, the variances
are much larger and the difference in variance between the dif-
ferent drop-biasing strategies is relatively lower. (In fact, the
differences between the coefficients of variation of the queue
occupancies are much lower.) As we have seen, the Web model
implies that the number of active TCP connections can vary,
even over relatively short time scales. Accordingly, a signifi-
cant portion of the observed queue variance is simply due to the
variability in the number of active connections.
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Figure 5: Web TCP and ERD Queue Behavior

To isolate the dependence of the queue variance on the drop-
biasing strategies themselves, we also poll the number of active
connections at each sampling instant and derive the conditional
variance of the queue occupancy, i.e. the variance of the queue
occupancy as a function of the number of active connections.
Plots of the conditional mean and variance of the queue occu-
pancy are provided in figure 6, for the case of � � Web TCP
connections. We also provide the probability distribution of the
number of active connections in this case. We can see that the
number of active connections lies between � _ � e � � � most of the
time; furthermore, there were never more than ! � active con-
nections present at any sampling instant. The value of � for the
mean and variance graphs for

� E  = � ��� H ! � is simply a place-
holder indicating the absence of any samples. The graphs of fig-
ure 6 clearly reveal that while the conditional means are about
the same for each strategy, the conditional variances are very
different. The variance of the Deterministic strategy ( i � � � )
in the region of

� E  = � ���7] � _ � e � � � , where most of the samples
are located, is consistently lower than that of all the alternative
drop-biasing strategies; for example, contrast this with the the
variance of the Geometric strategy ( i* � � ) in the same region.

Mechanisms such as SRED attempt to reduce the dependence
of the queue occupancy on the number of active connections.
Combining the drop-biasing strategies with such mechanisms
will permit us to observe the dependence of the queue variance
on the drop-biasing strategies for Web traffic more directly.
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Figure 6: Conditional Plots for Web TCP and ERD

C. Queue Occupancy and Jitter Plots

For a more direct measurement of the queue variability and
packet jitter, we also plotted the dynamics of the queue occu-
pancy as well as the jitter experienced by our periodically gen-
erated probe packets. As an illustrative example, we present the
plots when the TCP flows had approximately similar round trip
times of � � msec.

We first present the results when
_ � persistent TCP sources

interact with the random drop queue. In this specific instance,
we simply present plots of the queue occupancy (sampled at
� � msec intervals) for the various drop-biasing strategies in fig-
ure 7. These plots are adequate to visually illustrate how, in this
case, the Deterministic drop-biasing strategy provides a much
smoother queue and smaller packet jitter than the Geometric and
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Uniform drop-biasing models.
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Figure 7: Queue Occupancy with Persistent TCP
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Figure 8: ERD Jitter ( � � � msec Interval)
for Web TCP
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Figure 9: ERD Jitter (10s Interval)
for Web TCP

Similar plots, for � � Web TCP streams, also reveal the reduc-
tion in queue variability and delay jitter through the Determinis-
tic and the Delayed Uniform drop-biasing strategies but are less
visually apparent than their persistent TCP counterparts. To pro-
vide a better visual illustration, we therefore provide the delay
jitter plots (as per the two definitions outlined in Section II.E) in
figures 8 and 9 for intervals of � � � msec and

_ � sec respectively.



9

The RTP-based moving averaged jitter is more appropriate for a
� � � msec interval; on the other hand, the percentile-based defini-
tion of jitter is more appropriate for an interval of

_ � sec. These
plots show that, generally speaking, the Deterministic and De-
layed Uniform approaches have lower jitter than the other mod-
els for inter-drop gap.

D. Main Inferences

Our simulation-based studies show that an appropriate drop-
biasing strategy can indeed result in a significant reduction in the
variance of the queue occupancy in a random drop queue. Intro-
ducing a minimum packet gap between successive random drops
provides significant reduction in jitter by increasing the negative
correlation among TCP windows and reducing the fluctuations
in the queue.

In particular, the Deterministic drop model and the Delayed
Uniform drop model were found to perform better than alterna-
tive drop-biasing models. The results indicate that specifying a
minimum gap between consecutive packet drops affects queue
variability much more than detailed specification of the prob-
ability distribution of the dropping pattern. The performance
improvement was more significant with persistent TCP sources
than with Web TCP sources; this is due to the fact that Web TCP
sources inherently result in rapid variation in the number of TCP
connections. When conditional queue variances were observed,
as in figure 6, we could study the performance improvement due
to better drop-biasing strategies in isolation.

While the simulations reported here involved a low speed bot-
tleneck (

_ d � Mbps bandwidth), we have performed similar sim-
ulations at higher link speeds (e.g., ! � Mbps) to study the rele-
vance of our conclusions for higher-speed backbone links. The
results obtained are similar and indicate that our conclusions ap-
ply for buffers both at the network edges and in the backbone.
However, for a given choice of drop-biasing strategy, the coeffi-
cient of variation of the queue occupancy is lower at higher link
speeds (due to the improved traffic aggregation). Accordingly,
relatively speaking, the reduction in queue variance through the
use of appropriate drop-biasing schemes is more significant (in
terms of the actual reduction in delay jitter) at slower edge links
than at faster backbone links.

IV. CONCLUSIONS

In this paper, we have shown that the choice of an appropriate
drop-biasing strategy can significantly reduce the variability of
the occupancy of a random drop queue, without compromising
on the buffer’s ability to absorb transient bursts. Such reduction
in the queue variability can significantly decrease the delay jitter
experienced by buffered packets.

In particular, simply introducing a minimum inter-drop gap
between successive packet drops significantly reduced the vari-
ance of the queue occupancy; we identified the Deterministic
and the DelayedUniform schemes as two attractive drop-biasing
strategies. These strategies were shown to outperform other can-
didate drop-biasing strategies irrespective of whether an aver-
aged or instantaneous queue occupancy was used in the deter-
mination of the random dropping probability. We also identified
and demonstrated how this reduction was achieved through an

increase in the negative correlation among the congestion win-
dows of the constituent TCP flows. Since the Deterministic
strategy is the least computationally complex, it appears to be
an attractive drop-biasing technique.

We have also observed how the improvements are less dra-
matic for conventional RED-like dropping algorithms when the
number of TCP flows is itself variable or when a significant frac-
tion of data transfer occurs during TCP’s slow start phase. New
mechanisms that make the queue occupancy relatively insensi-
tive to the number of active connections (e.g., SRED) or reduce
the variance of TCP’s congestion windows (e.g., ECN) should
be researched and integrated into router buffers to provide im-
proved performance.
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