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Abstract – In order to improve our understanding of the connections between the biological processes and
abiotic factors,weclusteredcomplex long-termecological datawith the self-organizingmap (SOM) technique.
The available 21-year long (1990–2010) data set from a small pristine humic lake, in southern Finland,
consisted of 27 meteorological, physical, chemical, and biological variables. The SOM grouped the data into
three categories of which the first one was the largest with 12 variables, including metabolic processes,
dissolved oxygen, total nitrogen and phosphorus, chlorophyll a, and taxonomical groups of plankton known to
exist in spring. The second cluster comprised of water temperature and precipitation together with
cyanobacteria, algae, rotifers, and crustacean zooplankton, an association emphasized with summer. The third
clusterwasconsistedof six physical andchemical variables linked to autumn, and to the effects of inflowand/or
water columnmixing.SOMisausefulmethod forgrouping thevariables of sucha largemulti-dimensionaldata
set, especially, when the purpose is to draw comprehensive conclusions rather than to search for associations
across sporadic variables. Sampling should minimize the number of missing values. Even flexible statistical
techniques, such as SOM, are vulnerable to biased results due to incomplete data.
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Résumé – Application de carte auto-adaptative SOM pour des données écologiques complexes : un
test avec des données à long terme d’un petit lac boréal.Afin d’améliorer notre compréhension des liens
entre les processus biologiques et les facteurs abiotiques, nous avons regroupé des données écologiques
complexes à long terme avec la technique de carte auto-adaptative (SOM). L’ensemble de données
disponibles de 21 ans (1990 à 2020) d’un petit lac humique vierge, dans le sud de la Finlande, comprenait 27
variables météorologiques, physiques, chimiques et biologiques. La SOM a regroupé les données en trois
catégories dont la première était la plus importante avec 12 variables, y compris les processus métaboliques,
l’oxygène dissous, l’azote total et le phosphore, la chlorophylle a et les groupes taxonomiques de plancton
connus au printemps. Le deuxième groupe composé de la température de l’eau et des précipitations avec des
cyanobactéries, trois groupes d’algues, des rotifères et du zooplancton crustacé, une association
principalement estivale. Le troisième groupe était constitué de six variables physiques et chimiques
(décharge, couleur, carbone organique dissous, carbone inorganique dissous, ammonium et nitrite et nitrate
d’azote) qui peuvent être liés à l’automne et aux effets d’apports et / ou au mélange de la colonne d’eau.
SOM est une méthode utile pour regrouper les variables d’un tel ensemble de données
multidimensionnelles, surtout lorsque l’objectif est de tirer des conclusions globales plutôt que de
rechercher des associations dans des variables sporadiques.

Mots-clés : lac boréal / partitionnement de données / complexité écologique / données à long terme / carte auto-
organisatrice
1 Introduction

Although long-term data can be extremely powerful to
reveal causal relationships between physical, chemical, and
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biological variables in lakes (Magnuson et al., 2004, 2006;
Voutilainen et al., 2012; Arvola et al., 2014), such data sets
can be difficult to analyse and interpret due to the vast amount
of available information as well as due to the complex
interactions between different variables (Beisner et al., 2006).
For example, in lake ecosystems both irregular and cyclic
fluctuations are common (Gaedke and Schweizer, 1993;
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Adrian and Deneke, 1996; Voutilainen and Huuskonen, 2010)
and many direct and indirect interactions may proceed in
tandem with their own specific spatial and temporal scales,
including rapid metabolic processes and slower population
patterns (Heini et al., 2014). Some variables have distinct
diurnal patterns such as the amount of photosynthetic
radiation (PAR) and consequent metabolic processes like
photosynthetic activity of phytoplankton, while other
variables may have irregular patterns such as nutrient inflow
which is basically a result of changes in precipitation, soil
moisture, and release of nutrients from soil (Huttunen et al.,
2003).

As our previous papers (Arvola et al., 2014; Lehtovaara
et al., 2014; Rask et al., 2014; Vuorenmaa et al., 2014) imply,
the metabolic processes and patterns of the populations of
phytoplankton, zooplankton, and fish may be difficult to relate
to the abiotic and biotic variables due to their complex
interactions and reasons such as species and variable specific
time-scales including varying growth rates and behavioural
patterns. Therefore, special approaches are needed for the
analysis of complex ecological data sets.

Generally speaking, the use of an unconventional
statistical approach is well-grounded only if the method
brings something new and innovative to the topic. Previously
unknown findings per se, however, do not prove the
superiority of an unconventional method but the reliability
and validity of the findings also have to be evaluated. The
simplest way to be assured of an unconventional method is to
analyse the same data with the unconventional and traditional
methods and then compare the results. It is expected that the
unconventional method provides both similar and different
results than the traditional method. In the validation phase,
the similar results are more important, as they denote the
reliability and validity of the unconventional method. If the
unconventional and traditional methods provide only differ-
ent results, all results have to be singly validated.

In previous surveys, the Kohonen's self-organizing map
(SOM) technique (Kohonen, 1990, 2013) has been found to be
the method of choice for clustering large data sets related to
aquatic ecology and water resources (Astel et al., 2007;
Kangur et al., 2007; Kalteh et al., 2008; Rimet et al., 2009;
Vilibić et al., 2011; Voutilainen et al., 2012). It can even be
argued that over the past 10 years SOM has become one of the
standard methods for analysing complex ecological data.
Therefore, new SOM examples are welcomed and needed to
verify the status of SOM as one of the mainline techniques
specifically in aquatic ecology.

In this study, our aim was to apply the SOM for long-term
data collected from a small boreal lake. Specifically, we
wanted to compare the results of SOM to those achieved by
trend analyses using Mann–Kendall and seasonal Kendall
trend tests (Arvola et al., 2014; Lehtovaara et al., 2014; Rask
et al., 2014; Vuorenmaa et al., 2014). In addition, we wanted
to discover, how incomplete data collected in winter, when ice
covers the lake, affects SOM results. Typically, our previous
analyses of the same lake have not included these data, as the
thickness of snow as well as the length of the ice-free period
vary significantly across years, which in turn causes variation
in lake physics, chemistry, and biology.
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2 Materials and methods

2.1 Data and study site

In this paper, we analysed the connections and trends of the
metabolic processes of plankton (primary production and
respiration), biomass of phytoplankton, and abundance of
zooplankton taxonomical groups, chlorophyll a, and a set of
abiotic factors in a 21-year long (1990–2010) data of a small
pristine humic lake, Valkea-Kotinen, located in Southern
Finland (61°140N, 25°040E). In the analysis, we focused on
the uppermost 1m water layer with the most intense plankton
biomass andmetabolism (Keskitalo andSalonen, 1998; Salonen
et al., 1992a, b; Peltomaa andOjala, 2010). The abiotic variables
included major nutrients [nitrogen (N) and phosphorus (P)],
water colour, dissolved organic carbon (DOC), dissolved
inorganic carbon (DIC), dissolved oxygen (DO), air tempera-
ture, water temperature, precipitation, and discharge.

Lake Valkea-Kotinen was chosen because it has been
intensivelymonitored for decades and, consequently, it provided
a dataset large enough for SOM clustering. Moreover, the
Valkea-Kotinen data set has already been statistically analysed
(Arvola et al., 2014; Lehtovaara et al., 2014; Rask et al., 2014;
Vuorenmaa et al., 2014), which enabled us to compare the SOM
results with those from more conventional methods. Lake
Valkea-Kotinen together with its catchment belongs to the
Integrated Monitoring (IM) program, and is the Finnish IM site
with the most research activity. The study area is also part of the
Finnish Long-Term Socio-Ecological Research network
(FinLTSER). As a result of the long-term (LT) research (Jones
et al., 1999; Vähätalo et al., 2003; Starr and Ukonmaanaho,
2004;Huotarietal., 2009;Peltomaaetal., 2013a,b;Arvolaetal.,
2014; Jylhä et al., 2014;KurkaandStarr, 2014;Lehtovaara et al.,
2014; Rask et al., 2014; Vuorenmaa et al., 2014), Valkea-
Kotinen has already provided useful data for environmental
modelling (Forsius et al., 1998; Futter et al., 2009; Saloranta
et al., 2009; Holmberg et al., 2014). Thanks to the LT research
activity, several publications (Arvola et al., 2014; Lehtovaara
et al., 2014; Vuorenmaa et al., 2014) describe in detail the
sampling procedures as well as the methods for field and
laboratory analyses applied in Lake Valkea-Kotinen. Therefore,
we give here only some background information on the lake and
its surrounding landscape.

The lake and its catchment situates in the middle of an old-
growth forest in southern Finland, 100 km north from the
Helsinki-Vantaa airport. Since the end of 1980s the area has
experienced a dramatic decline in sulphur deposition (Ruoho-
Airola et al., 2014). Consequently, a slow recovery process
from acidification is going on in the catchment and in the lake.
For example, the buffering capacity as well as organic matter
concentration and water colour of the lake have increased in
comparison to the early 1990s (Vuorenmaa et al., 2014). As a
consequence of higher light attenuation in the water column,
primary production of phytoplankton has decreased during the
last 10 years (Arvola et al., 2014). At the same time the rate of
primary production relative to the respiration of plankton has
decreased, and the metabolism of the ecosystem has become
more heterotrophic. In addition to the vast data sets, this is the
ecological reason, whywe choose the lake for the present SOM
analysis.
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2.2 Self-organizing map

Physical, chemical and biological variables were clustered
together with meteorological data using a flexible data mining
SOM method (Kohonen, 1990, 2013). The SOM is an
unsupervised artificial neural network especially suitable for
exploratory data mining, i.e. discovering patterns in large
multi-dimensional data sets. Unsupervised means that only
input data is provided to the network instead of both input and
output (results) data (Sathya and Abraham, 2013). The SOM
has been used mainly for data classification, data compression,
pattern recognition, and diagnostic purposes in a wide variety
of fields of science (Oja et al., 2002), including limnology
(Park et al., 2003; Compin and Céréghino, 2007; Kangur et al.,
2007; Rimet et al., 2009; Vilibić et al., 2011; Voutilainen et al.,
2012). Due to the flexibility of SOM its results can be further
analysed with other methods (Voutilainen et al., 2014) and/or
combined with results provided by other methods (Voutilainen
et al., 2015).

The SOM consists of cells organized on a regular grid.
Each cell is represented by a d-dimensional weight vector and
connected to adjacent cells by a relation, which determines the
structure, i.e. topology of the resulted SOM. The SOM is
generated through iterative training. Input vectors correspond-
ing to data samples in the given data matrix are randomly
chosen one at a time and the distances between them and all
weight vectors of the SOM are calculated. The cell which has a
weight vector closest to the input vector in question is the input
vector’s best-matching unit (BMU). After finding the BMU,
the weight vector is updated so that the BMU and its
neighbours are moved towards the input vector. The SOM is
then trained with the net effect of the whole dataset by the
batch algorithm, which calculates an average of the data
samples weighted by the neighbourhood function of each data
sample at its BMU. For a more in-depth description about the
SOM algorithm and how to perform it in the MATLAB®

statistical environment see Vesanto et al. (2000).
An ideal SOM analysis produces such evident results that

visualized maps can be reliably interpret just by looking at
them (Vesanto, 1999; Pölzlbauer et al., 2006), although
additional partitioning that is using SOM as an intermediate
step is often recommended to receive more accurate results
(Vesanto and Alhoniemi, 2000). The k-means clustering is one
of the effective approaches for clustering the SOM (Vesanto
and Alhoniemi, 2000). The basic idea of the k-means method is
rather simple: the algorithm randomly generates k initial means
within the data and then associates each observation with its
nearest mean. The number of initial means can be pre-
determined or the optimal number of clusters can be chosen
from solutions resulted. In the latter case, the choice is made
based on numerical criteria such as the Calinski-Harabasz
criterion (Calinski and Harabasz, 1974).
2.3 Data clustering and analyses

The initial data included 27 meteorological, physical,
chemical, and biological variables (Tab. 1). Samples for them
were taken 1–5 times per month (from May to October) per
year (1990–2010). As a pre-processing step for the SOM
clustering, the values were pooled within the months per year
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and data were arranged in a 126 (rows)� 27 (columns) –
matrix and normalized to unit variance. Consequently, each
row of the final data matrix represented one month (May, June,
July, August, September, or October) of a certain year (1990–
2010) and each column represented a mean value of one
physicochemical, biological, or meteorological variable per
month per year. Missing data points were termed as unknowns
with not a number character (NaN) to enable processing of
input data (Vesanto et al., 2000). The total number of missing
data points was 140 representing <5% of the total number of
data points. NaNs were simply excluded from calculations
(Samad and Harp, 1992; Vesanto et al., 2000) still retaining
every data row in the clustering process.

Data processing included two steps, performing two SOM
maps. The first step was the execution of an unsupervised SOM
to search for clusters in the data partitioned according to
sampling dates corresponding to rows in the input data matrix.
In the second step, a covariance matrix between component
planes of the first SOM map representing the 27 study
variables that is columns in the input data matrix was
calculated. The covariance matrix was then used in the training
of a new SOM. This procedure is called correlation hunting
and it refers to actual correlations between component planes
(Vesanto, 1999). The second step was crucial for detecting
possible associations between the date-based clusters and the
clusters formed from the viewpoint of variables measured. In
the results and discussion sections, the clusters created by the
first SOM are termed as groups to distinguish them from the
clusters created by the second SOM. The SOMwas executed in
theMATLAB® environment using the batch training algorithm
provided by the SOM Toolbox implementation and a
hexagonal lattice was selected as the SOM topology type
(Vesanto et al., 2000). The optimal size of the SOM map was
decided by minimizing the quantization and topographic
errors.

After the two-step data processing, the k-means partition-
ing was used to search for high-density regions in the SOM
maps, groups related to the first step SOM and clusters related
to the second step SOM, and the optimal number of clusters
was decided according to the Calinski-Harabasz index (CH).
The k-means partitioning was executed and CH calculated in
the R 2.11.1 statistical environment using the package ‘vegan’
(http://cran.r-project.org/web/packages/vegan; Borcard et al.,
2011).

The non-parametric Mann–Kendall trend test (Hipel and
McLeod, 1994) was used to test for monotonic trends in time
series of yearly means of all 27 variables. Results of trend
analyses served as a baseline for SOM results and related to the
primary aim of this study: to compare SOM results with those
achieved by methods that are more conventional. The Mann–
Kendall tests were computed using the package ‘Kendall’ for R
(http://cran.r-project.org/web/packages/Kendall). In our pre-
vious studies, we already have reported trends in primary
production, DOC, DIC, and water colour, for example (Arvola
et al., 2014; Lehtovaara et al., 2014; Vuorenmaa et al., 2014).
In this study, however, we performed new trend analyses to
facilitate the comparison between the SOM and more
conventional methods.

A univariate analysis of variance with the Tukey’s post-hoc
test and Kruskal–Wallis one-way analysis of variance were
used to test differences in variable means, including year and
f 16
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Table 1. Variables monitored; n – total number of samples taken from May to October 1990–2010.

Variable n Range

Discharge (mmmonth�1) 126 0–79.23

Precipitation (mmmonth�1) 126 3.2–212.6

Water temperature (°C) 494 1.7–24.4
Dissolved oxygen (mgL�1) 492 6.2–15.0
Water colour (420 nm) (mg Pt L�1) 496 78–247
Dissolved organic carbon (mgL�1) 487 5.8–17.6
Dissolved inorganic carbon (mgL�1) 484 0.1–3.791
Ammonium (NH4

þ) (mgL�1) 493 2.0–168.0
Nitrite (NO2

�) and nitrate (NO3
�) (mg L�1) 491 1.0–55.5

Phosphate (PO4
3�) (mg L�1) 493 0–8.5

Total nitrogen (mg L�1) 494 314–765
Total phosphorus (mgL�1) 495 8.0–46.5
Chlorophyll a (mgL�1) 488 2.3–105.9
Primary production (mgCm�2 day�1) 438 0–426
Respiration (mgCm�2 day�1) 453 0–389

Cyanophyceae (gm�3) 435 0–0.219
Cryptophyceae (gm�3) 468 0–1.062
Dinophyceae (gm�3) 442 0–6.438
Chrysophyceae (gm�3) 468 0.0002–5.190
Diatomophyceae (gm�3) 437 0–1.143
Raphidophyceae (gm�3) 462 0–9.954
Chlorophyceae (gm�3) 421 0.0002–7.859
Choanoflagellata (gm�3) 263 0.0001–2.227

Protozoa (Ind. L�1) 266 0–1442
Rotatoria (Ind. L�1) 277 0.07–4503
Cladocera (Ind. L�1) 277 0–110
Copepoda (Ind. L�1) 277 0.6–244
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month, between the first step SOM groups. These tests were
computed with the IBM® SPSS Statistics 19 for Windows
(Armonk, NY). In the case of Kruskal–Wallis, multiple
comparisons were performed using the formula:

jRi � Rjj > Z�
a=½kðk�1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

12

1

ni
þ 1

nj

� �s
;

where R is a mean of ranks, Z� is a point from the table of
normal distribution, the level of a is 0.05, and k is the number
of groups (Siegel and Castellan, 1988).

In addition to the SOMs above explained, we performed a
third SOM including also incomplete data collected in winter.
This additional SOM related to the secondary aim of this study:
to discover, how increased variation in data caused by changes
in lake physics, chemistry, and biology together with missing
values affects SOM results.
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3 Results

3.1 Data partitioning according to 126 sampling dates

Size of the optimal SOM proved to be nine cells
corresponding to a 3� 3 lattice having a quantization error
of 4.164 and a topographic error of 0. The k-means partitioning
divided the SOM into three groups with CH of 6.394 (Fig. 1).
The quantization and topographic errors as well as CH are
relative variables and, therefore, they cannot be categorized
into low and high, but they are used to choose the best possible
solutions case-by-case. The first group (indicated with green
colour in Figs. 1–3) mainly consisted of samples taken in
1990s, except for 2010 that was represented by three sampling
dates. The second group (blue colour in Figs. 1–3) comprised
of samples taken in the summer months, June, July, and
August. The third group (grey colour in Figs. 1–3) consisted of
samples taken in September and October together with 13
sampling dates in May, mostly in 2000s. In the case of 20
variables, means differed across the groups, and Figure 2
illustrates those variables.
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Fig. 1. Maps of the SOM partitioning according to sampling months (subfigure a on the left) and variables monitored (subfigure b on the right).
In both cases, the k-means partitioning divided the SOM into three groups/clusters indicated with different colours and numbers. For detailed
lists of dates/variables clustered in each cell see Appendices 1 and 2.
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3.2 Data partitioning according to 27 study variables

Size of the optimal SOM was a 3� 3 lattice having a
quantization error of 2.394 and a topographic error of 0. The k-
means partitioning divided the SOM into three clusters with
CH of 9.382 (Fig. 1). In Figure 3, the 27 variables have been
arranged in three clusters according to the second step SOM
and associated with the groups from the first step SOM.

The first cluster was the largest. It consisted of 12 variables
indicating primary production and nutrients together with
diatoms, three groups of flagellates (Dinophyceae, Choano-
flagellata, and Raphidophyceae), and protozoa. These varia-
bles had their highest values in samples which associated to the
“1990s group” in the first step SOM (green colour in Fig. 3).

The second cluster was comprised of water temperature
and precipitation together with cyanobacteria, three groups of
algae (Chrysophyceae, Chlorophyceae, and Cryptophyceae),
rotifers, and crustacean zooplankton. These variables had their
highest values in samples which associated to the “summer
group” in the first step SOM (blue colour in Fig. 3).

The third cluster was the smallest. It consisted of discharge
together with five physical and chemical variables (water
colour, concentrations of dissolved organic and inorganic
carbon, ammonium, and nitrite and nitrate N), but no
biological variables. These six variables had their highest
values in samples, which associated to the “autumn group” in
the first step SOM (grey colour in Fig. 3).
3.3 Trends in time series

Annual variation was large in all variables and a major
proportion of the variables, 22 out of 27 (81%), showed no
long-term trend. Water temperature, colour, DOC, nitrite-
nitrate N, and chrysophytes showed an increasing monotonic
trend in contrast to DO, choanoflagellates, and cladocerans
which showed a decreasing monotonic trend (Fig. 4). Among
the physical and chemical variables the trend was most obvious
in the average level of water colour which increased from c.
100 to over 160mg Pt L�1 within 15 years. Interestingly, the
average level of DO decreased rather linearly until 2006, when
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the direction of the trend changed. A remarkable hundredfold
decrease in the density of choanoflagellates seems linear but
due to the lack of samples between 1998 and 2003 the
possibility of a sudden fall in the density cannot be completely
ruled out.

3.4 Additional SOM including also incomplete
wintertime data

The SOM map resulted was unsatisfactory (Appendix 3).
Nearly all statistical units; in this case, sampling dates, with
incomplete data clustered into three out of 25 best-matching
units. This denotes that missing values guided data partition-
ing, which, obviously, concealed genuine associations across
the sampling dates. Moreover, quantization and topographic
errors suggested several optimal sizes for the SOM, which is a
sign of low SOM quality (Vesanto et al., 2000).

The additional SOM clustered nearly all complete
wintertime data into three cells including no data collected
during ice-free periods (Appendix 3), which means that this
SOM was unable to add new information to results of the two
main SOMs.

4 Discussion

In general, the SOM method offers flexible and versatile
possibilities to cluster large data sets. Typically, the abilities of
SOM to detect both spatial and temporal phenomena
simultaneously (Astel et al., 2007) and associate clusters
based on spatial or temporal sampling points with those based
on variables measured (Voutilainen et al., 2012) are
highlighted. In this study, the SOM method clustered the
whole data into three major categories of which the first one
consisted of variables with high concentration, biomass and/or
abundance in spring during 1990s, or during the first five
summer seasons and summer 2010. The variables of this
category included the metabolic processes, DO, total-N, total-
P, chlorophyll a, and taxonomical groups of plankton known to
exist in spring (Dinophyceae and ciliates). Also Gonyostomum
semen, a migratory Raphidophycean algal species with very
f 16



Fig. 2. Variables which differed across the three groups formed by the SOM. Statistically significant (p< 0.05) difference between the groups is
indicated with different letters a, b, and c. The groups which did not differ from each other are marked with the same letter. Variables are arranged
and separated with lines from each other so that they correspond to the SOM groups which in turn are indicated with different colours (green,
blue, and grey). In the SOM component planes (small figures representing the variables monitored), colours refer to the adjacent scale bar.
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high late summer biomass during the first few years was
grouped into that category. The second category consisted of
all other zooplankton taxonomical groups, i.e. except ciliate
protozoans, and cyanobacteria together with three major
groups of phytoplankton, Chlorophyceae, Cryptophyceae, and
Chrysophyceae. The abiotic factors belonging to this category
Page 6 o
were water temperature and precipitation. The common season
of this category was summer. The third category included
colour, DOC, DIC, ammonium, and nitrite-nitrate, as well as
discharge, and the season was clearly autumn or spring, during
the last 12 years (1999–2010), thus the period when the water
column was unstratified.
f 16



Fig. 3. Associations between the groups from the first step SOM and clusters from the second step SOM. The first SOM divided the data into
three groups according to months and years of sampling. The second SOM divided the data into three clusters according to 27 variables
monitored. In the figure, the groups are indicated with different colours (green, blue, and grey) and the variables are situated close to the group to
which they associated with. n refers to the number of sampling dates per group.
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Fig. 4. Variables which showed increasing or decreasing trends according to the Mann–Kendall test. Note the logarithmic-scale of y-axis in the
case of Choanoflagellata.
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The categories grouped by the SOMseemed logical because
the different seasons clearly had their own specific abiotic
conditions andplanktonorganisms.Thisfinding is in accordance
with our previous analyses (Arvola et al., 2014; Vuorenmaa
et al., 2014). It alsomakes sense that the SOMseparated the first
few summer seasons of 1990s from the rest. The reason for this
separation is that at the beginning of 1990s the lake was more
productive than later on, indicated byhigher primaryproduction,
chlorophyll a concentration, and biomass values in 1990–1995
compared to those taken afterwards (Arvola et al., 2014).
However, based on our knowledge of the lake it was a surprise
that spring and summer seasons were grouped together by the
SOM.Onepossibleexplanation is thechange insampling regime
that occurred. During the first seven years (1990–1996), the
annual sampling program was started in January and continued
until May but since 1997 regular sampling started only after the
lake became ice-free. In some years, this occurred inApril but in
others, the lake was not ice-free until the middle of May. This
maymuddle the calculations because sometimes therewere very
highphytoplanktonbiomassesalreadyunder the ice inApril.The
additional SOM including also incomplete data collected in
winter; however, didnot support this explanation.The additional
SOM instead clearly separated wintertime data from data
collected during ice-free periods. In our previous data analyses
(Arvola et al., 2014; Lehtovaara et al., 2014; Vuorenmaa et al.,
2014), we did not focus on the period before ice-out, and due to
differences in the ice break-up time between the years we
considered that the onset of the “annual season” started on
week 20.

The second category consisted of several phytoplankton
groups which do not necessarily produce a huge biomass in the
lake but are seemingly important food formetazooplankton, also
included in this category. Therefore, category two makes sense
regarding the ecosystem function. Water temperature was also
included in this categorywhichsomehowunderlines that itmight
be a period with intense grazing and rapid nutrient turnover. The
third category associatedwater chemistry variableswhich all are
linked to the inflowfrom thecatchment (colour,DOC)and/or the
water column mixing (ammonium-N, DIC).

Similar colour distributions within each category in
Figure 3 indicate interactions between the variables. For
example, in category one, chlorophyll a and the biomass of G.
semen had a rather identical distribution. Total P had almost
identical distribution with chlorophyll a and G. semen while
primary production and the biomass of Dinophyceae and G.
semen overlapped. In category two, copepods and cyanobac-
teria as well as chrysophytes overlapped, and in category three,
the dissolved fractions of N, DOC, colour, and discharge,
suggesting that ammonium and nitrate were transported from
the catchment to the lake rather than from deeper water layers
up to the surface.

The long-term trends detected by the Mann–Kendall test
were in good accordance with our previous analyses (Arvola
et al., 2014; Lehtovaara et al., 2014; Vuorenmaa et al., 2014),
which increases reliability of the present results. The trends
indicated an increase in water temperature, nitrite-nitrate N
concentration, and DOC, and, respectively, a decrease in DO
concentration.

From the perspective of global change, eutrophication,
climate warming, as well as restoration and management of
lakes and reservoirs it is highly important to detect these trends
Page 9 o
so that they can be used as a starting point when predicting the
future of aquatic environments and water resources (O’Reilly
et al., 2015). Although the SOM logically clustered the data
according to temporal sampling points, detecting temporal
trends solely on the basis of the SOMwould have been unsure.
Modifications of the SOM (Barreto, 2007) as well as
combinations of the SOM and other techniques (Lin and
Chen, 2005) have been successfully applied to time series
forecasting, but the basic unsupervised SOM is not the solution
when the purpose is to search for temporal trends (see also
Voutilainen et al., 2012).

5 Conclusions

Although processes and interactions between the variables
cannot be analysed in detail by the SOM, it provides a useful
method for grouping the variables of such a large multi-
dimensional data set. Even though other analytical tools
together with the SOM may provide new options for the
analysis, it remains that long-term ecological data sets may be
difficult to analyse thoroughly without any supporting
experimental results. Therefore, a good strategy for under-
standing complex processes and inter-actions is to, whenever
possible, use different approaches in how studies are
performed (field vs. experimental) and employing a variety
of analytical tools.

Based on the present study, sampling should minimize the
number of missing values. Even flexible statistical techniques,
such as SOM, are vulnerable to biased results due to
incomplete data. If monthly sampling is not possible,
researchers should consider a less frequent but complete
sampling. We do not recommend replacing missing values
with means, for example, because it unintentionally reduces
dimensionality and may even cause misleading results, if
conclusions regarding associations across variables base on
values of which some are measured and some approximated
according to the measured values.

Taking samples also during wintertime, when boreal lakes
are less active due to low temperature and amounts of sunlight,
is important for detecting long-term trends. Differences
between winter and summer, in general, tend to be larger
than differences between adjacent years, which means that
drawing conclusions on wintertime is not possible based on
summertime data.
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Appendices
Appendix 1. Distribution of sampling months into cells of SOM groups.

Group Cell Year May June July August September October

1, indicated with green colour in Figures 1–3 1 1990

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001 �
2002
2003
2004
2005
2006
2007
2008
2009 �
2010 �

1, indicated with green colour in Figures 1–3 2 1990 �
1991 �
1992 �
1993 �
1994 �
1995
1996
1997 �
1998
1999
2000 �
2001 �
2002
2003
2004
2005
2006
2007
2008
2009
2010

1, indicated with green colour in Figures 1–3 3 1990 � � �
1991 � � � �
1992 � �
1993 �
1994 � � � �
1995
1996
1997
1998
1999
2000
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Appendix 1. (continued).

Group Cell Year May June July August September October

2001
2002
2003
2004
2005
2006
2007 �
2008
2009
2010 � �

2, indicated with blue colour in Figures 1–3 1 1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003 �
2004 �
2005
2006 �
2007
2008
2009
2010

2, indicated with blue colour in Figures 1–3 2 1990
1991
1992
1993
1994
1995 � �
1996 � �
1997 � � �
1998 � �
1999 � � �
2000 � � �
2001
2002 � � �
2003 � �
2004 �
2005 � �
2006 � �
2007 � �
2008 �
2009 � �
2010

2, indicated with blue colour in Figures 1–3 3 1990 �
1991

Page 13 of 16

A. Voutilainen and L. Arvola: Knowl. Manag. Aquat. Ecosyst. 2017, 418, 36



Appendix 1. (continued).

Group Cell Year May June July August September October

1992 � �
1993 � �
1994
1995 �
1996 �
1997
1998 �
1999
2000
2001 � �
2002
2003
2004
2005 �
2006
2007
2008 �
2009
2010 �

3, indicated with grey colour in Figures 1–3 1 1990
1991
1992
1993 �
1994
1995 �
1996 �
1997 � �
1998 �
1999 �
2000 � �
2001 �
2002 �
2003 �
2004
2005 �
2006 �
2007 �
2008 �
2009 �
2010

3, indicated with grey colour in Figures 1–3 2 1990 �
1991
1992
1993 �
1994 �
1995 �
1996 �
1997
1998 �
1999 �
2000
2001 �
2002 �
2003 �
2004 �
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Appendix 1. (continued).

Group Cell Year May June July August September October

2005 �
2006 �
2007
2008 �
2009 �
2010

3, indicated with grey colour in Figures 1–3 3 1990
1991 �
1992 �
1993
1994
1995 �
1996 �
1997
1998 �
1999 �
2000
2001
2002 �
2003 �
2004 � �
2005 �
2006 �
2007 � �
2008 �
2009 �
2010 � �

Appendix 2. Distribution of study variables into cells of SOM clusters.

Cluster Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1, green in Figures 1–3 1 � �
1, green in Figures 1–3 2 � � �
1, green in Figures 1–3 3 � � � �
1, green in Figures 1–3 4 � � �
1, blue in Figures 1–3 1 � � � � � � �
1, blue in Figures 1–3 2 � �
1, grey in Figures 1–3 1 � � � � �
1, grey in Figures 1–3 2 �

Study variables are coded as follows: 1 – Discharge; 2 – Precipitation; 3 – Water temperature; 4 – Dissolved oxygen; 5 – Water colour; 6 –
Dissolved organic carbon; 7 –Dissolved inorganic carbon; 8 –Ammonium; 9 –Nitrite and nitrate; 10 – Phosphate; 11 –Total nitrogen; 12 –Total
phosphorus; 13 – Chlorophyll a; 14 – Primary production; 15 – Respiration; 16 – Cyanophyceae; 17 – Cryptophyceae; 18 – Dinophyceae; 19 –
Chrysophyceae; 20 – Diatomophyceae; 21 – Raphidophyceae; 22 – Chlorophyceae; 23 – Choanoflagellata; 24 – Protozoa; 25 – Rotatoria; 26 –
Cladocera; 27 – Copepoda.



Appendix 3. Results of SOM including also incomplete data collected in winter, 1990–2010.
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