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Optimum Symbol-By-Symbol Detection 
of Uncoded Digital Data Over the Gaussian 

Channel with Unknown Carrier Phase 
Pooi Yuen Kam, SeniorMember, IEEE, Seng Siew Ng, and Tok Soon Ng 

Abstract-A theory of optimum receiver design for symbol-by- 
symbol detection of an uncoded digital data sequence received 
over the Gaussian channel with unknown carrier phase is pre- 
sented. Linear suppressed-carrier modulation is assumed. The 
work here aims at laying a conceptual foundation for optimum 
symbol-by-symbol detection, and rectifies existing approaches 
to the problem. The optimum receiver structure is obtained 
explicitly for an arbitrary carrier phase model, but its compu- 
tational requirements are too heavy in general for any practical 
implementation. In one important special case, namely, the case in 
which the carrier phase can be treated as a constant over some 
K + 1 symbol intervals, the optimum receiver can be approx- 
imated by a readily implementable decision-feedback structure 
at high SNR. Simulated error performance results are presented 
for this latter receiver for PSK modulations with various carrier 
phase models. Since a decision-feedback receiver can encounter 
a “runaway,” a variation of this receiver is developed which uses 
feedforward of tentative decisions concerning future symbols. 
This modified receiver does not have any “runaway” problem, 
and has been shown to yield good error performance via simu- 
lations. 

I. INTRODUCTION 
ONSIDER a sequence of uncoded digital data transmitted C using linear suppressed-carrier modulations over an addi- 

tive white Gaussian noise (AWGN) channel which, in addition, 
introduces an unknown carrier phase shift 8. For an uncoded 
sequence, each symbol in the sequence will be detected 
individually, i.e., symbol-by-symbol (SBS) with minimum 
symbol error probability (SEP). The decision on each symbol, 
however, will be based on the totality of received signals due 
to the transmission of the entire data sequence because the 
continuity of the carrier phase process introduces memory 
into the received signals. This paper serves to elucidate the 
explicit structure of this optimum SBS receiver, and shows 
systematically the signal processing required in making an 
optimum decision on each symbol of the sequence. 

Kobayashi [l] is the first author to propose an unstructured 
approach to the problem of optimum data detection in the 
presence of an unknown carrier phase; unstructured meaning 
no assumptions are made a priori concerning the receiver 
structure. (He also includes unknown timing phase and in- 
tersymbol interference). Prior to [ 13, all data receivers for the 
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unknown phase channel were designed using the structured 
approach. In this structured approach, the receiver is assumed 
to consist of a carrier phase estimator followed by a coherent 
detector (see Fig. 1). The carrier phase is first recovered by 
using some phase estimating system such as the Costas’ loop. 
See, for instance, [2]. The recovered phase is then treated as 
if it were the true value of the carrier phase, and used in 
(partially) coherent detection of subsequent symbols. The work 
in [5], [6] follows this structured approach. This structured 
approach thus separates the carrier phase estimation problem 
from the data detection problem. It has the disadvantage 
that the entire structured receiver (phase estimator and data 
detector) is not optimized with respect to the ultimate criterion 
of interest in communication, namely, minimum SEP. Even 
the problem of optimizing a structured receiver with respect 
to the minimum SEP criterion does not seem to have been 
addressed at all. The nonstructured approach of Kobayashi [ 11 
performs simultaneous maximum likelihood (ML) estimation 
of the carrier phase and the data sequence, Le., it assumes that 
the carrier phase estimation problem and the data detection 
problem cannot be separated. However, it is not clear whether 
simultaneous estimation of carrier phase and data sequence 
will lead to a receiver that is optimum with respect to the 
minimum SEP criterion. In fact, our work shows that it does 
not. Kobayashi did not obtain any explicit receiver structure in 
[ 11. Only an iterative approach for approximate computation 
of the ML estimates is developed. Another point is that ML 
estimation of the entire data sequence in [ 11 is more applicable 
to the coded case than to the present uncoded case. For an 
uncoded sequence, it is desired to minimize the expected 
number of symbol errors made in detecting the sequence, and 
this is achieved by the SBS receiver optimized with respect to 
the minimum SEP criterion. For the case of a coded sequence 
[4], it is necessary to minimize the probability of deciding on 
the wrong sequence, and this is achieved by the ML sequence 
estimator. 

Macchi and Scharf [lo] also followed the simultaneous 
estimation approach of Kobayashi. They developed a Viterbi 
algorithm for ML estimation of carrier phase and (uncoded) 
data sequence, but no attempt was made to determine the 
explicit receiver structure. 

In [3], Falconer and Salz employed the unstructured ap- 
proach and the minimum SEP criterion and considered SBS 
detection of a data sequence. They included an unknown 
timing phase in addition to the unknown carrier phase, but 
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Fig. 1 .  Receiver structures. 
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explicit receiver results were obtained only for very high 
SNR’s (signal-to-noise ratios). Because of the complexity of 
their results, it is not clear from [3] what systematic procedure 
a system designer can use to come up with a minimum SEP 
SBS receiver. 

This paper obtains the explicit structure of the minimum 
SEP SBS receiver, and shows that it has a detector-estimator 
structure. In detecting a particular symbol, the totality of 
signals received over all the remaining symbol intervals are 
used in the estimator to compute the a posteriori or conditional 
pdf (probability density function) of the carrier phase in 
the interval concerned. The entire information concerning 
the carrier phase summarized in this conditional pdf is then 
employed in detecting the particular symbol. For lack of a 
better term, we also refer to the processor that computes the 
conditional pdf of carrier phase as an estimator. The optimum 
SBS receiver has a structure similar to the conventional 
structured receiver (see Fig. 1). The only difference is that 
the latter makes use of only an ML or MAP (maximum a 
posterior probability) estimate of the carrier phase as if it were 
the true value of the carrier phase in (partially) coherent data 
detection. This difference points out how the conventional 
structured receiver is suboptimum. The optimum receiver 
result also shows that the carrier phase estimation function and 
the symbol detection function are actually separable, i.e., the 
simultaneous estimation approach of Kobayashi [ 11 is wrong. 
Falconer and Salz [3] also conclude that the two functions are 
separable, but they have to assume very high SNR. 

The optimum SBS receiver is, of course, nonimplementable 
in general, because computing the conditional pdf of the carrier 
phase is an infinite dimensional problem. The structure of the 
detector, and in fact the entire receiver, depend mainly on this 
conditional pdf of carrier phase. This latter pdf in turn depends 

Compute ML or MAP 

estimate 4 ( k )  of 

8 ( k ) ,  k -  0 , 1 , 2  ,.--, L - 1 .  

Est imtor  

primarily on the model of the unknown carrier phase. The 
key role played by the carrier phase model in the optimum 
SBS receiver design problem is thus highlighted. For most 
models of carrier phase in practice, it can be shown that this 
conditional pdf cannot be obtained in a simple closed form, 
a form which allows the explicit structure of the estimator 
and the detector to be specified. The only general way to 
deal with the problem of computing this conditional pdf is 
to represent the latter using a Fourier series as in [8] or some 
other suitable series. The estimator’s function in computing 
the pdf is now to compute the Fourier coefficients. The 
explicit structure of the detector can also be specified in 
terms of these Fourier coefficients, as we will show. Thus, 
in principle, the Fourier series representation approach is one 
general way by which the optimum SBS receiver structure can 
be obtained explicitly. The implementation problem, however, 
is still infinite dimensional, because a very large (in theory, 
infinite) number of Fourier coefficients have to be computed 
each time in detecting a particular symbol. It is easy to see 
that as far as implementation is concerned, the problem is 
much simplified if the conditional pdf of carrier phase has 
a simple closed form, such as a Tikhonov pdf [9], which is 
completely characterized by a finite number of parameters. The 
computation of the conditional pdf by the estimator will, in 
this case, reduce to only the computation of these parameters, 
which will also completely characterize the detector. We will 
find that, indeed, there is one special case in which the 
conditional pdf of carrier phase is approximately Tikhonov, 
and in this case the estimator and detector parts of the receiver 
are simple and readily implementable. This is the case in 
which the phase process is slowly time-varying so that it 
can be considered constant at least over the duration of, 
say, K + 1 symbols, and we assume the SNR is sufficiently 
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high. The optimum SBS receiver is then approximately a 
DA (decision-aided) receiver similar to those considered in 
[6], [ll]. This result leads to a new interpretation for the 
latter receivers, namely, as optimum SBS receivers, and this 
interpretation applies also in particular to the concept of 
differential detection. Whether other models of carrier phase 
exist for which the conditional pdf has a simple closed form 
such as a Tikhonov pdf or some other canonical pdf‘s is an 
open question for further investigation. 

The optimum SBS receiver, of course, reduces to the 
conventional structured receiver when the SNR is so high that 
the conditional pdfAof carrier phase 6’ is very peaked around 
the MAP estimate 6 of 6 so that this pdf is approximately an 
impulse. This provides justification for using the conventional 
structured receivers in practice which are easier to implement. 

Having clarified the optimum SBS receiver structure, we 
next tum to its SEP performance. In general, the SEP of the 
receiver cannot be determined analytically. The only case in 
which the SEP can be obtained analytically is when the carrier 
phase can be considered constant over some K + 1 symbol 
intervals, the SNR is sufficiently high so that we can employ 
decision-feedback, and the signal constellation is circular, 
such as the PSK constellations. This is one case, as stated 
previously, in which the explicit structure of the optimum 
SBS receiver can be obtained and readily implemented. Even 
in this case, the SEP can be analyzed only in the absence 
of decision errors, or in the presence of a known number of 
decision errors. We have done this in [6]. In the presence 
of a random number of decision errors, as is the case in 
practice, or in the presence of a rapidly varying phase, the 
SEP can only be obtained via computer simulations. We have 
simulated this DA receiver for 2, 4, and 8 PSK, not only for 
a constant carrier phase, but also for a Gaussian random-walk 
phase model and a model of a linearly increasing phase. The 
simulation results show good SEP performance for this DA 
receiver. The reader should note that this DA receiver, which 
assumes that the carrier phase is constant over some K + 1 
symbol intervals and ignores the details in the statistical model 
of the carrier phase process, is actually suboptimum for the 
Gaussian random-walk phase model and the linearly increasing 
phase model. The simulated SEP performance results, thus, 
indicate that even if the optimum SBS receivers for the latter 
phase models were implemented, the performance gains over 
this DA receiver would not be significant enough to justify 
the complexity involved in their implementations. This DA 
receiver is, therefore, an ideal approximation to the truly 
optimum SBS receiver for various phase models of practical 
interest. 

The simulation studies showed that the DA receiver can 
encounter a “runaway”, especially at low SNR. A variation of 
the DA receiver for PSK modulations is thus developed which 
overcomes this “runaway” problem. This receiver has the same 
structure as the DA receiver, and uses tentative decisions 
conceming future symbols fed forward, instead of firm past 
decisions fed back. The tentative decisions are made possible 
through the use of differential phase encoding. The decision 
feedforward receiver provides a stable technique for achieving 
coherent detection, and does not require any preamble for 

initial carrier phase acquisition, which makes it ideally suited 
to such applications as burst mode TDMA communications. 

Section I1 presents the theory of minimum SEP SBS de- 
tection of an uncoded sequence, and Section I11 presents the 
simulated performance of the decision-feedback and decision- 
feedforward receivers for PSK signals. 

11. OPTIMUM SYMBOL-BY-SYMBOL DETECTION 
The received signal over the kth symbol interval is given 

by [61 

r ( k )  = m(lc)ejO(’c) + n ( k ) .  (1) 

Here, m = [m(O) m(1) . . .  m ( L  - l)]’ is the se- 
quence of uncoded data symbols transmitted, and B = 
[6(0) 6’(l) ... B(L - l)]’ is the unknown random carrier 
phase process. (Superscript T denotes transposed, and * 
denotes complex conjugate). The latter is assumed to fluctuate 
slowly compared to the symbol rate so that the above 
piecewise-constant approximation can be made. The channel 
AWGN is n = [n(O) n(1) . .. n(L - l)]’, a vector 
of independent and identically distributed (iid) complex 
Gaussian random variables (CGRV) with E[n] = 0 and 
E[nn*’] = N,I.  We assume that m, n and B are independent 
of one another. Because the data is uncoded, the symbols 
of m are independent, and each symbol can assume with 
equal probability any point Si, i = 1, . . . , M ,  in the signal 
constellation. The components of B are, however, correlated 
in general. The problem is to determine each symbol 
m ( k ) , k  = 0, l ; . . . , L  - 1, with minimum SEP based on 
the totality of received signals r = [r(O) r(1) . . . r ( L  - l)]’. 

As is well-known [7], the optimum SBS receiver for the 
kth symbol m(k)  computes L ; ( k )  = p(r lm(k )  = Si) for 
each point Si, i = 1, . . . , M ,  in the signal constellation, and 
declares the decision riz(k) = Sj if L j ( k )  = maxi Li(k).  We 
will first show that 

Li(k) = c p ( r ( k ) l m ( k )  = si, 6’(k)) 

. P(6’(k) I f ( k ) )  W k )  (2) 

where C is a constant independent of Si, and F ( k )  = 
[r(o) r ( 1 )  . . .  r ( k - 1 )  r ( k + ~ )  . . .  ~ ( L - I ) ] ’ ,  i.e.,F(k) 
is the totality of signals received outside of the kth interval. 
The key steps in the derivation of (2) are as follows. We 
first write 

L 

p(rlm(k) = Si, 6’(k) )  

.p (6’ (k) lm(k)  = Si) W k ) .  (3) 

Next, we have 

I 
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where we have used the fact that conditioned on m ( k )  and 
6 ( k ) ,  the only randomness in r ( k )  is due to n ( k ) ,  and this 
renders it independent of F ( k ) .  Putting (4) into (3), we obtain 
(2) with C = p ( F ( k ) )  by noting that 

P(F(k)lm(k) = si, qk))P(qk)lm(k) = Si) 
= P ( f ( k ) ,  qk)Im(k) = Si)  
= P(~(k ) lF (k )b (F(k ) )>  (5 ) 

because B( k )  and F( k )  are both independent of m( k ) .  
From (l), we have 

Consider now the pdf p ( B ( k )  I f ( k ) )  which will determine the 
structure of both the estimator part and the detector part of the 
receiver. In general, given the signal model (1) and a statistical 
model for the random process 8, it is impossible to analytically 
determine the pdf p(B(k) lF(k) ) .  The most general way to deal 
with the problem is to represent the pdf using a Fourier series 
or some other suitable series. We will present here this general 
approach using the Fourier series representation. Since B(k) is 
restricted to [ -T,  7r), p(B(k ) lF(k ) )  is aperiodic function when 
treated as a function of B(k) over (-00, 00), and it admits the 
following Fourier series representation: 

The likelihood function & ( k )  in ( 2 )  can now be evaluated 
in principle, and hence the structure of the optimal receiver 
can be specified explicitly, if the conditional pdf p(B(k) lF(k))  
is known. Note that B(k)  depends on T ( k )  because of the 
dependence among the components of 8. We will discuss later 

L i ( k )  = CBexp[-IS;12/No] 
00 

1=1 
\ 

the computation of this pdf. 
The detector-estimator structure of the optimum receiver is 

obvious from (2) .  For each time k ,  the estimator computes the 
conditional pdf of B(k) given the signals f ( k )  received outside 
the kth symbol interval. Suppose, for simplicity of discussion, 
that the phase B(k) is a discrete random variable which takes 
on only one value in the set {el}:, for each time k .  The 
estimator then computes the conditional probability Pl ( k )  = 
P(B(k) = BllF(k)) for each 1 = 1,. . . , Q. The integral in (2) 
becomes a finite sum and the detector forms the weighted sum 
L ~ ( L )  = ~ ( 7 r ~ , ) - l  E:, P ~ ( L )  exp [ - l r (k) -  ~;ej’C 1 2 / ~ , ] ,  
and makes the decision accordingly. This illustrates the roles 
played by the detector and the estimator in making a symbol 
decision. Note that the detector takes into account all possible 
values that B( k )  can take on, the weight given to each value 6’1 
being the conditional probability Pl(k). The receiver structure 
is shown in Fig. 1. 

The reader should note from the derivation of ( 2 )  how 
the data detection problem and the carrier phase estimation 
problem separate out. One key assumption is that the chan- 
nel noise is AWGN, which makes the components of n 
independent. This renders the components of r independent 
when conditioned on given values of m and 8, and leads 
to the factor p ( r ( k ) l m ( k )  = Si, B(k))  in L i ( k )  [see (4)] 
which constitutes the detector part of the receiver. The other 
key assumptions are the independence between m and 6,  
and the independence among the uncoded symbols of m. 
These latter assumptions lead to the term p(B(k) lF(k) )  [see 
(5)] in & ( I C )  which constitutes the estimator part of the 
receiver. The independence between m and 8 in particular 
leads to p(B(k) lF(k) ,  m ( k )  = Si) = p ( B ( k ) l F ( k ) )  in ( 5 ) ,  
i.e., it separates the carrier phase estimation problem from 
the detection problem. This separation is important because it 
simplifies the receiver structure. The independence among the 
symbols of m leads to p ( F ( k ) l m ( k )  = Si) = p ( F ( k ) ) ,  which 
gives the hypothesis-independent constant C in ( 2 ) .  If m were 
a coded sequence, this simplification would not result. 

. [cos(lai(k))al(k) + sin (lai(k))bl(k)] . (8) 

Here, C is defined in (2) ,  B = (2/N0) exp [*] 
is independent of Si, & ( k )  = &lr(k)S:l, a ; ( k )  = 

arg (&r(k)S: ) ,  ~ ( k )  = 2Re[cl(k)], h ( k )  = -2Im[cl(k)], 
and 4( . )  is the modified Bessel function of the first kind of 
order 1. The key step in deriving (8) is to write (6) as 

1 

and then to expand the second exponential using the Ja- 
cobi-Anger formula [9, p. 1001: 

W 

e*y cos 6 = ~ ~ ( r )  + zC(&~)”I,(~) cos l4, 

before performing the integration in ( 2 ) .  The result (8) shows 
immediately the infinite-dimensional computational problem 
involved in implementing the detector even if the set of Fourier 
coefficients { cl( were available from the estimator. 
This, of course, severely limits the practical utility of the 
optimum receiver result in (8). 

Since p ( B ( k ) l f ( k ) )  is represented in (7) as a Fourier series, 
the estimator’s function now is to compute the coefficients 
{c~(k)}pO,~,. This can be a very complicated task in general. 
We will present here one case in which these coefficients can 
be computed recursively in time k .  In this case, assume for 
simplicity that 6 is given by the Gaussian random-walk model: 

(11) 

where w = [w(O) . . . w ( L  - 2)lT is a vector of iid Gaussian 
random variables with E[w] = 0 and E[wwT] = 0’1. Also, 

(10) 
1=1 

e(k  + 1) = e ( q  + w(k) 
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O(0) is Gaussian with E[d(O)] = 0 and E[02(0)] = A', 
and is independent of w .  The model (11) is a commonly 
employed model for random carrier phase [ 101. We next make 
the receiver suboptimal by constraining it to detect the symbols 
sequentially in time k so that the decision on each symbol 
m(k)  is based only on the past and present received signals 
[r(O) r(1) . . . r (k  - 1) r(k)]'. Then, it is not difficult to 
see that the likelihood function Li (k )  in (2) remains the same 
except that the conditional pdf p ( d ( k ) ) f ( k ) )  is replaced by 
p(O(k)Jr,(k)) where r p ( k )  = [r(O) r(1) . . .  r ( k  - l)]' is 
the set of past received signals at time k .  We also assume the 
use of decision feedback, i.e., we assume all the past decisions 
[.;l(O) k ( 1 )  ... .;l(k - l)]' are correct (k(Z) = m(l)) and 
that the past received signals are given by 

Using these assumptions and following the work of Willsky 
[8], it is now straightforward to show that p(B(k)(r,(k))  can 
be computed recursively in time k by recursively computing 
the Fourier coefficients {c~(k)}f",- , .  The procedure is to 
first compute p(O(k)Irp(k + 1)) starting from p(O(k)lr,(k)), 
and then to compute p(O(k + l ) lr , (k  + 1)) starting from 
p(O(k)lr , (k  + 1)). The reader can refer to [8] for details. 
Note that although we assume the model (1 l), the recursive 
computation procedure here can be applied for a general 
Gauss-Markov model of 8.  

It is obvious from [8] that the computational load imposed 
on the estimator is infinite dimensional even for this DA 
suboptimal receiver. This, coupled with the computational load 
of the detector (8), makes it extremely unlikely that any system 
designer would implement the optimal receiver in this most 
general form in practice. 

For the optimal SBS receiver in (2 )  to be readily im- 
plementable, the conditional pdf p ( O ( k ) ) f ( k ) )  has to have a 
suitable analytical form for which the integral in (2) can be 
evaluated. It will be ideal if this analytical form is character- 
ized by a finite number of parameters so that computing the 
pdf in real time amounts to only computing these parameters. 
We have found one case in which p(O(k)lr ' (k))  has such an 
analytical form. In this case, we assume that B is slowly time- 
varying so that it can be considered constant over a duration 
of at least K + 1 symbol intervals where K << L. (Assume 
a very long sequence so that L is very large.) As in the 
Fourier series case, we constrain the receiver to detect the 
symbols sequentially in time k ,  and to be DA with perfect 
decision feedback so that the received signals are given by the 
model (12). In addition, we constrain the receiver to basing its 
decision concerning the kth symbol m ( k )  on the present and 
the past K received signals [r(k  - K )  . .. r ( k  - 1) .(IC)]'. 
Then, again, the likelihood function L;(k)  in (2) remains 
the same, except that the pdf p ( O ( k ) l f ( k ) )  is replaced by 
p ( d ( k ) l r , ( k ,  K ) ) ,  where r p ( k ,  K )  = [r(k  - K )  . . .  r ( k  - 
1)IT is the set of received signals over the past K symbol 
intervals at time k .  Letting 19 denote the common value of 
O(k-K), . . . , O(k) ,  and assuming O to be uniformly distributed 

over [-T: x), it is easy to show (see Appendix) that 

This conditional pdf is a Tikhonov pdf centered at the mean 

IC-1 

v ( k )  = T(Z)&*(Z). (14) 
l=k-K 

Using (13) and (6) in (2) ,  and ignoring constants independent 
of Si, we obtain 

The result (15) defines the suboptimal DA SBS receiver which 
bases its decision on the present and the past K received 
signals. For PSK modulations where (SiI2 = E,, the energy 
per symbol for all i, Li (5) in (15) reduces to L: ( k )  where 

Li (k )  N Re [r(k)S,*v*(k)]. (16) 

This receiver (16) is identical to the structured receiver in 
[6] in which a DA ML estimate of carrier phase is made 
from the past K received signals at each time k and then 
used in data detection as if it were the true value of carrier 
phase. In fact, we have shown in [6] that for PSK modulations, 
forming the coherent reference v(k) in (14) is equivalent to 
making a DA ML estimate of the unknown carrier phase. The 
work here, thus, shows that the latter structured receiver of 
[6] is optimum if the receiver is constrained to be DA and 
to basing its decision concerning each symbol on the present 
and the past K received signals, if the carrier phase is indeed 
constant over K + 1 symbol intervals. It also shows that the 
latter structured receiver makes optimum use of information 
concerning unknown carrier phase gleaned from the past K 
received signals. In [6], we have shown that the receiver (16) is 
a generalized differentially coherent receiver. By specializing 
(16) to the case of K = 1, we can also conclude that 
differential detection of DPSK makes optimum use of carrier 
phase information given by the previous received signal. As 
in [6], the decision-feedback assumption we made in arriving 
at (15) can be shown to be optimum at high SNR. 

Note from (15) that, in general, explicit computation of the 
estimate of carrier phase is not required. The receiver achieves 
(partially) coherent detection through the establishment of the 
coherent reference v(k) from the past K received signals. In 
the high SNR limit, since IO(.) behaves basically as e" for 
x >> 1, the result (15) reduces to 

A ; ( k )  = In L i ( k )  

N Iv(k) + r(k)S;I - ;Is;(? (17) 

In this form, the receiver is readily implementable, since it 
requires only a square-root nonlinearity, which can be stored 
in a ROM, for instance. For PSK modulations, no nonlinearity 



2548 

‘b 

1i2: 

1f3: 

10‘: 

lo5: 

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 8,  AUGUST 1994 

@ COHERENT (THEORETICAL) 
Q CONSTANT UNKNOWN PHASE 
@ GAUSSIAN RANDOM -WALK2 

PHASE, e2 rod  
@ LINEARLY INCREASING PHASE. 

RESTART AFTER EVERY 1000 BITS 

: @ ACTUAL DECISIONS FED BACK 
8 CORRECT B I T S  FED BACK 

is required. The SBS DA receiver (17) is identical to that 
arrived at in [ l l ,  eq. (S)] via sequence estimation. 

Note that treating a slowly varying carrier phase as being 
constant over some K+1 symbol intervals is only a convenient 
approximation by which an implementable receiver can be 
obtained. The simulated performance results in Section 111, 
however, will show that the approximation works well for 
phase models of practical interest. 

111. PERFORMANCE RESULTS: DECISION-FEEDBACK 
AND DECISION-FEEDFORWARD RECEIVERS 

The error performance of the DA receiver (16) has been 
determined via computer simulations using various models of 
the phase process 6. We present the bit error probability (BEP) 
Pb results of the receiver (16) in Figs. 2 4 ,  for 2,4, and 8 PSK, 
respectively, as a function of SNR Eb/N, where Eb = E,  = 
lm(k)I2 for 2PSK, Eb = Es/2 for 4 PSK, and Eb = E , / 3  
for 8 PSK. Gray coding of bits onto signal points is assumed 
for 4 and 8 PSK. The Gaussian random-walk phase model 
refers to the model in (1 l), while the linearly increasing phase 
model is also given by (1 1) except that the inputs w are known 
constant phase increments, Le., w ( k )  = AQ, IC = 0 , .  . . . L - 2. 
Results for both actual decision-feedback (detected symbols 
fed back) and ideal decision feedback (no decision errors) 
are presented to show the performance loss due to decision 
errors. The simulation results show that the effect of decision 
errors on the receiver performance becomes negligible when 
the error probability is in the region of lop3 or less. Thus, for 
the range of SNR &/No shown, the performance difference 
between actual decision feedback and ideal decision feedback 
is not noticeable for 2PSK, is slightly more pronounced for 
4PSK, and is most significant for 8PSK. In general, it is also 
observed that the performance loss due to decision errors is 
higher for faster carrier phase variations, Le., for a larger 
0 (the rms phase fluctuation in the random-walk model) or 
a larger A0 (the constant phase increment in the linearly 
increasing model). The interval KT (T = symbol duration) 
over which the received signals are averaged via (14) to obtain 
the reference v(k) is important as (KT)-l is a measure of the 
DA ML carrier phase estimator’s bandwidth. The results of 
Fig. 5 for 2PSK with the Gaussian random-walk phase model 
show that a more rapidly varying phase requires an estimator 
of larger bandwidth (KT)-l, or shorter averaging interval KT. 
Also, since the receiver is a DA receiver, we had to prevent a 
“runaway” due to decision errors by sending known symbols 
periodically so as to restart the estimator (14) with known 
symbols replacing the decisions r iZ (Z) .  The effect of this restart 
period on the receiver performance is demonstrated in Fig. 6 
for 2PSK with the Gaussian random-walk phase model. Note 
also that for a constant unknown carrier phase, performance 
very close to that of coherent is obtained in all cases. 

If the carrier phase is constant, the BEP Pb of the receiver 
(16) for 2PSK with no prior decision errors in the coherent 
reference v(k) in (14) is given by [6, eq. (14)]: 

Fig. 2. Simulated BEP results of DA receiver for 2PSK. 

p b  
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0 CONSTANT UNKNOWN PHASE 
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l o3_  

RESTART AFTER EVERY 

l f L r  

\ ‘  
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8 CORRECT B I T S  FED BACK 

Fig. 3. Simulated BEP results of DA receiver for 4PSK. 

for high SNR, i.e., Eb/N, >> 1. For K = 1, the receiver (16) 
is the ordinary differential detector, and its BEP Pb is 

~ t ,  = exp [-&/No]. ( 18b) 

By plotting Pb in (18) against Eb/N, for different values of K 
the reader can easily show that most of the performance gain 
of (perfectly) coherent detection over differential detection can 
be recovered by merely the inclusion, in the receiver (16), of 
a memory of K = 3 or 4 past received signals for forming the 
reference v(IC). (See Fig. 7, for instance.) For larger values of 
K ,  the law of diminishing marginal returns sets in. A similar 
result can be shown to hold for MPSK in general. However, 
in practice, a larger value of K should be used so that the Pb E +(I - K-’)-’/’erfc [Eb/No]1/2 ,  K 2 2, (18a) 
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Fig. 7. Simulated BEP results of decision-feedforward receiver for 2DPSK. 

in [6 ] ,  and it explains our choice of the values of K in the 
simulation studies above. 

The disadvantage of the DA receiver (16) is that it can 
suffer a “runaway” due to a burst of decision errors, especially 
at low SNR. To eliminate the possibility of a “runaway,” we 
developed a modified receiver in which the coherent reference 
is formed through the use of feedforward of tentative decisions 
concerning future symbols. The carrier phase is still assumed 
constant over a duration of at least K symbol intervals. To 
enable tentative decisions to be made, we employ differential 
encoding of PSK (DPSK). Each symbol m(k)  is given by 
m(k)  = E i / 2 e J + ( k ) .  The information is encoded in the phase 

the initial reference). To detect the information in A+(k + l), 
the receiver also employs generalized differentially coherent 
detection as in (16), Le., it computes 

IOEAL DECISION- FEEOEACK ( N O  OEClSlON ERRORS I 

GAUSSIAN RANDOM-WALK PHASE p b  

1 2 
1/2,~$(0) is 

do 
SNR’ 8 d “ B  difference A$(k+l) = $(k+l) -$(k)  (m(0) = E,  

N O  

Fig. 5. 
averaging intervals. 

Simulated BEP results of  DA receiver for 2PSK with different 

q, (k)  = Re [.(k)S,*-ij*(k)l, (19) 0 IOEAL OECISION FEEDBACK 
I N 0  DECISION E R R R S )  

loo r 

for each possible value Sa, i = 1, . . . , M ,  of eJA+(k+l), and 
decides that A $ ( k +  1) = arg (S,) if q, (k)  = max, q a ( k ) .  The 
coherent reference U ( k )  in (19) is given by 

(20) 

where the sequence of coherent references [ z ( k  + 1) z ( k  + 
2 )  . . . z ( k  + K)IT is formed recursively as follows: 

G ( k )  = z ( k  + 1) 

z ( k  + K )  = T ( k  + K ) ,  
- GAUSSIAN RANDIM-WALK PHASE 

o2 : IO-‘ rad2 
K = 2 0  z ( k  + K - 1) = T ( k  + K - 1) + z ( k  + K)e-’Ad(k+K), 

Fig. 6. 
intervals. 

Simulated BEP results of DA receiver for 2PSK with different restart 

effect of prior decision errors on the receiver’s performance 
can be minimized. This point has been proven by our analysis z ( k  + 1) = T ( k  + 1) + z ( k  + 2)e - jAi (k+z)  

I 
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Here, A$( k + Z), 1 = 2, . . . , K ,  is the tentative decision on 
the phase information A4(k + 1 )  obtained from the gener- 
alized differential detector similar to (19) which computes 
the decision statistic Re [ ~ ( k  + Z - l)S,*z*(L + l ) ]  for each 
possible- value S,, i = 1, . . . , M ,  of eJ*+('+'), and declares 
that A$(k + I) = arg(SJ) if S, has the largest decision 
statistic. Thus, the reference W(k)  is obtained through a process 
of progressively aligning the signal components of the received 
signals ~ ( k  + K ) ,  ~ ( k  + K - 1) :.., and r(k + l), until 
they are all in the same direction as the signal component 
m ( k  + l)eJ8("') of ~ ( k  + l), assuming that all the tentative 
decisions {A$(L + Z)}E, are correct. The tentative decisions 
are formed in the reverse order in time, i.e., first A$(k + K ) ,  
then A$(k + K - l), then A$(k + K - 2), and so on, 
similar to the order: first z ( k  + K ) ,  then z ( k  + K - l), 
then z ( k  + K - 2),  and so on, for the coherent references. 
The tentative decisions are thus made with "stronger" and 
"stronger" coherent references, stronger in the sense of the 
SNR of the reference vector [6]. Thus, these decisions have 
lower and lower error probability, and the final decision on 
A$(k + 1) has the smallest error probability. 

If one uses only K = 1 future received signal in forming 
the reference V( k )  , the receiver (19) reduces to the ordinary 
differential detector. The decision feedforward receiver (19) 
is identical to the decision feedback receiver (16), except for 
the manner in which the coherent reference F ( k )  is formed. 
Note that differential encoding is employed in the receiver 
(19) only to enable tentative decisions to be made and fed 
forward to form the coherent reference V ( k ) .  Once ?T(k) is 
obtained, data detection in (19) is identical to that in (16), 
even though differential encoding is employed in the former. 
Thus, the two receivers (16) and (19) have the same error 
probability performance. In particular, for 2DPSK, the BEP 
Pb of the receiver (19) in the absence of tentative decision 
errors is given by [6, eq. (14)] or (1 8). As K tends to infinity, 
it is obvious from (18a) that the performance of the receiver 
(19) converges to that of coherent 2PSK. For M 2 4, the 
same conclusion follows by letting K go to infinity in the 
symbol error probability result [6, eq. (13)]. Since the SNR 
of the coherent reference W(k)  becomes infinite as K goes to 
infinity in the absence of tentative decision errors, it is easy to 
see why the performance of the receiver (19) converges to that 
of coherent MPSK. The effect of tentative decision errors on 
the receiver performance can only be assessed via computer 
simulations. The simulated BEP Pb results are presented in 
Figs. 7 and 8 for 2 and 4DPSK, respectively, with Gray coding 
assumed in the latter. In Fig. 7, we also plot the theoretical 
BEP (18a) for 2DPSK with K = 3 and with no tentative 
decision errors. The difference between this theoretical BEP 
curve and the simulation results shows the performance loss 
due to tentative decision errors. Note, as expected, that the 
performance loss decreases as the SNR increases, since for 
higher SNR the probability of tentative decision errors is 
smaller. Also, most of the performance gain of (perfectly) 
coherent detection over differential detection can be recovered 
by the receiver (19) with only a decision delay of K = 3 
or 4 bit intervals for 2DPSK, and K = 6 or 7 symbol 
intervals for 4DPSK. This is similar to the previously stated 

1 

Fig. 8. Simulated BEP results of decision-feedforward receiver for 4DPSK. 

result for the DA receiver (16), and is deduced theoretically 
from (18) for 2DPSK, and [6, eq. (13)] for 4DPSK. Our 
simulation studies have also confirmed this observation. For 
2DPSK (Fig. 7), the simulated performance with K = 4 is 
not significantly improved from that with K = 3 except in 
the high SNR region. The same thing is observed for 4DPSK 
(Fig. 8) with values of K higher than 6. For both cases, the 
explanation is that the theoretical increment in performance 
gain due to a larger value of K is somewhat reduced by 
the larger number of tentative decision errors present within 
the K intervals, especially at lower SNR. For high SNR, the 
theoretical increment in performance gain due to a larger value 
of K is more closely realized in the simulations. 

The effects of a time-varying carrier phase on the receiver 
performance are similar to those of the receiver (16), and will 
be omitted. The important advantage of the receiver (19) over 
the receiver (16) is that since the tentative decisions used for 
forming the coherent reference Ti( k )  are made again each time 
a new reference is to be formed, there is no danger of the kind 
of error propagation which is encountered by the receiver (16). 
This has been confirmed in our simulation studies. Of course, 
the computational load on the receiver (19) is increased as 
compared to the receiver (16). However, this increase is only 
modest since in practice only a decision delay of K = 3 to 6 
symbol intervals would be used, as mentioned above. 

The receiver (19) is somewhat similar to the receiver based 
on multiple-symbol differential detection of MPSK developed 
by Divsalar and Simon [12]. The motivation of our receiver 
(19), however, differs from that in [12] which is based on 
sequence estimation. While [ 121 employs differential encoding 
to resolve ambiguity in sequence estimation, we employ 
differential encoding so that tentative decisions can be made 
and fed forward to enable a coherent reference to be formed. 
The receiver (19) can be regarded as a sequential, decision- 
feedforward, SBS version of the receiver of [12]. It has the 
advantage that it attains coherent MPSK performance as K 
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tends to infinity in the absence of tentative decision errors, 
Le., to erfc [Eb/No]1/2 for 2 and 4PSK, for instance. The 
performance of the receiver in [12], on the other hand, only 
converges to the performance of coherent MPSK with differ- 
ential encoding and decoding, as the length K of the sequence 
being processed tends to infinity, Le., to erfc [Eg/N0]1/2 for 
2 and 4PSK in the high SNR regime. Of course, the latter 
receiver is not affected by any prior decision errors, and 
the coherent performance just mentioned can be attained as 
K tends to infinity. The receiver (19), however, can also 
be expected to converge in performance to that of coherent 
MPSK (as K tends to infinity) in the high SNR regime 
where the tentative decision errors are rare. This behavior is, 
in fact, verified by the trends of the simulated performance 
curves of the receiver (19). As Fig. 7 shows for 2DPSK with 
K = 3, for instance, the simulated performance converges 
to the theoretical performance given by (18a) as the SNR 
increases. Thus, one can expect that for a sufficiently large 
K and sufficiently high SNR, the receiver (19) will perform 
better than coherent MPSK with differential encoding and 
decoding. 

Edbauer [ 131 has also proposed a system employing dif- 
ferential MPSK and some K (> 1) differential detectors in 
the receiver, with the aim of achieving better than differential 
detection performance. His receiver is different from (19) in 
that at each time IC it employs K differential detectors, each 
forming an output r(k)r*(IC-Z), 1 = 1,. . . , K ,  i.e., the receiver 
uses each of the past K received signals individually as a 
reference for .(IC). Using decision feedback to form a desired 
output for each detector, the receiver is optimized based on 
the heuristic approach of minimizing the quadratic errors of 
the outputs of these differential detectors. The basic receiver 
design approach as well as the resulting receiver structure are 
apparently different from ours. 

IV. CONCLUSION 
We have developed the theory for the design of the optimum 

SBS receiver for an uncoded data sequence received over the 
AWGN channel with unknown carrier phase. The optimum 
receiver structure is clarified, but in general it involves such 
a heavy computational load that it is very unlikely to be 
implemented in practice. One important special case has been 
identified in which the optimal receiver can be approximated 
by a readily implementable structure. The main contribution 
of this work lies in building a conceptual foundation for the 
optimum receiver design problem, a foundation which can be 
applied in other similar problems. 

APPENDIX 

To derive (13), first note that 

P(Olr,@! K ) )  = GP(rp.,(k, K)lO> (AI) 

where G = p(8) /p(rp(IC!  K ) )  is independent of 8 since 
p ( 0 )  = 1/27r, for -T 5 8 < T .  In general, O is a priori 
uniform over [-T! T ) .  Now, from the DA signal model (12), 
we have 

E-1 

= Dexp ( L  E Re [r(Z)h*(1)e-je] 
l=k-K NO 

(A21 

where D = ( T N ~ ) - ~  exp [-(l/No) ~ ~ ~ ~ - K ( I r ( 1 ) 1 2  + 
l~n(1)1~)]. The exponent in (A2) can be written as 
2N11Re [v(IC)e-je] = 2N;llw(IC)l cos (0  - $(k)). Putting 
(A2) into (Al)  now gives (13). The constant G D  can be 
shown to be 1/{2~1~(2N;l(v(k)I)} for normalization. 
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