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Abstract

Experimental studies have revealed evidence of both parts-based and holistic representa-

tions of objects and faces in the primate visual system. However, it is still a mystery how

such seemingly contradictory types of processing can coexist within a single system. Here,

we propose a novel theory called mixture of sparse coding models, inspired by the formation

of category-specific subregions in the inferotemporal (IT) cortex. We developed a hierarchi-

cal network that constructed a mixture of two sparse coding submodels on top of a simple

Gabor analysis. The submodels were each trained with face or non-face object images,

which resulted in separate representations of facial parts and object parts. Importantly,

evoked neural activities were modeled by Bayesian inference, which had a top-down

explaining-away effect that enabled recognition of an individual part to depend strongly on

the category of the whole input. We show that this explaining-away effect was indeed crucial

for the units in the face submodel to exhibit significant selectivity to face images over object

images in a similar way to actual face-selective neurons in the macaque IT cortex. Further-

more, the model explained, qualitatively and quantitatively, several tuning properties to

facial features found in the middle patch of face processing in IT as documented by Frei-

wald, Tsao, and Livingstone (2009). These included, in particular, tuning to only a small

number of facial features that were often related to geometrically large parts like face outline

and hair, preference and anti-preference of extreme facial features (e.g., very large/small

inter-eye distance), and reduction of the gain of feature tuning for partial face stimuli com-

pared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features

in the middle patch of face processing in the macaque IT cortex may be closely related to

mixture of sparse coding models.

Author summary

Does the brain represent an object as a combination of parts or as a whole? Past experi-

ments have found both types of representation; but how can such opposing notions
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coexist in a single visual system? Here, we introduce a novel theory called mixture of

sparse coding models for investigating the possible computational principles underlying

the primate visual object processing. We constructed a hierarchical network combining

two sparse coding modules that each represented one feature set, of either facial parts or

non-facial object parts. Competitive computation between the modules, formalized as

Bayesian inference, enabled parts to be recognized with a strong top-down influence from

the category of the whole input. We show that the latter computation is crucial to explain

in detail neural selectivity and tuning properties that were experimentally reported for a

particular face processing region called the middle patch. Thus, we offer the first theoreti-

cal account of neural face processing in relation to parts-based and holistic

representations.

Introduction

The variety of objects that we see everyday is overwhelming and how our visual system deals

with such complexity is a long-standing problem. Classical psychology has often debated on

whether an object is represented as a combination of individual parts (parts-based processing)

or as a whole (holistic processing) [1]. Experimental studies have revealed evidence of both

types of processing in behaviors [1, 2] and in neural activities in higher visual areas [2–5],

somewhat favoring holistic representation for faces and parts-based representation for non-

face objects [1, 2, 5]. However, a theoretical question is: how could a single system reconcile

such two seemingly contradictory types of processing? Although a number of studies on

computational vision models showed remarkable performance in visual recognition [6–10],

success in modeling higher visual areas [11, 12], or account for behavioral experiments on

holistic face processing [12, 13], none of these studies offered insight into the tension between

parts-based and holistic processing in a comparative manner with neurophyisology.

In this study, we address this question in a novel theoretical framework, called mixture of

sparse coding models. We assume two separate sparse coding models, one dedicated to encode

face images and the other to encode non-face object images, that perform competitive interac-

tion. Sparse coding is well known for its close relationship with representations in early visual

areas [14–22]; we transfer this technique to the study of higher visual representations. That is,

exploiting the fact that sparse coding to image data of a specific category can yield parts-based

feature representations (cf. [23, 24]), we constructed two separate category-specific representa-

tions for faces and objects analogously to the formation of specialized subregions for faces and

objects in the inferotemporal (IT) cortex [25, 26]. Furthermore, we combined the two sparse

coding models into a mixture model and modeled neural activities in terms of Bayesian infer-

ence. Then, we found that this framework gave rise to a form of holistic computation: not only

recognition of the whole object depends on the individual parts, but also recognition of a part

depends on the whole. This is in fact a Bayesian explaining-away effect: an input image is first

independently interpreted by each sparse coding submodel, but then the one offering the bet-

ter interpretation is adopted and the other is dismissed. For example, even if a part of an input

image is a potential facial feature (e.g., a half-moon-like shape ), that feature would not be

recognized as an actual facial feature (e.g., a mouth) if the whole image is a non-face object

(Fig 1B).

We discovered that our model had a close relationship with computation known for a

region of the macaque IT cortex called the face-selective middle patch, as documented by Frei-

wald et al. [4]. First, our model cells in the face submodel exhibited prominent selectivity to
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Fig 1. (A) The architecture of our hierarchical model. It starts with an energy detector bank and proceeds to two sparse coding submodels

for faces and objects, which are then combined into a mixture model. Inset: an energy detector model. (B) Cartoon face and boat. Note that

the mouth of the face and the base of the boat are the same shapes. (C) Learning scheme. We assume explicit class information, either

“face” or “object,” of input images to be given during training, which allows us to use a standard sparse coding learning for each submodel

with the corresponding dataset. (D) Inference scheme. For testing response properties, the network first interprets the input separately by

the sparse code of each submodel (step 1), then compares the goodnesses of the obtained interpretations as posterior probabilities (step

2), and finally modules multiplicatively the responses in each submodel with the corresponding posterior probability (step 3). Note that the

normalization of the probablities in step 2 leads to competition between the submodels in step 3.

https://doi.org/10.1371/journal.pcbi.1005667.g001
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face images over non-face object images in a similar way to actual face-selective neurons, and

this selectivity was crucially dependent on the above-mentioned explaining-away effect. Sec-

ond, these model cells reproduced a number of tuning properties of face neurons in the middle

patch. In particular, our model face cells tended to (a) be tuned to only a small number of facial

features, often related to geometrically large parts such as face outline and hair, (b) prefer one

extreme for a particular facial feature while anti-prefering the other extreme, and (c) reduce

the gain of tuning when a partial face was presented compared to a whole face. We quantified

these properties and compared these with the experimental data at the population level [4]; the

result showed a good match. Thus, we propose the hypothesis that regions of the IT cortex rep-

resenting objects or faces may employ a computational principle similar to mixture of sparse

coding models.

Results

Model

To investigate the computational principles underlying face and object processing in the IT

cortex, we designed a multi-layer network model illustrated in Fig 1A. The network had the

architecture that received an image of 64 × 64 pixels, processed it with a fixed bank of standard

energy detector models, and fed the results to two sparse coding models, called face submodel

and object submodel (each with 400 model neurons), which were then combined into a mix-

ture model to perform competitive interaction as explained later.

Each energy detector computed the squared norm of the outputs from two Gabor filters for

the input image (Fig 1A, inset). The two filters had the same center position, orientation, and

spatial frequency, but had phases different by 90˚. The entire bank of energy detectors had all

combinations of 10 × 10 center positions (in a grid layout), 8 orientations, and 3 frequencies;

thus, the output of this stage had a total of 2400 dimensions (see the section on Model details

in Methods). In the actual visual cortex, inputs to IT areas are presumably computed between

V1 and V4 and this computation must be much more complex than the energy detector bank

in our model. However, some important aspects should still be reflected by this simple opera-

tion since a large number of V4 neurons are known to be orientation-selective [27]; moreover,

this simple assumption was sufficient to reproduce certain response properties of face neurons

as shown in what follows.

In training the mixture model, we assumed, for simplicity, that the class label of each input

image, either “face” or “object,” was given (Fig 1C). This allowed us to use a naive learning pro-

cedure that separately trained each face or object submodel with an existing sparse coding

method. Specifically, we used publicly available face and object image datasets in which the

faces or objects were properly aligned within each image frame [24, 28, 29] (see the section on

Data preprocessing in Methods). Then, for each image class k, which was either 1 (face) or 2

(object), we learned the basis matrix Ak and the mean vector bk by sparse coding of the corre-

sponding set of images that were processed by the energy model. (The basis matrix and mean

vector were used for determining the responses of the model neurons to an input as explained

below.) Classical mixture models are usually trained with an unsupervised learning method

without class labels [30]. However, such learning is generally not easy and not our main inter-

est here since we focus on inference, i.e., on computation of evoked responses, not on learning

or plasticity. (We come back to this point in the Discussion section.)

To perform sparse coding learning, we adopted our previously developed approach based

on independent component analysis (ICA) [22], which is known to be a good approximation

of sparse coding [31] and for which efficient algorithms exist. In this approach, an important

step was to drastically reduce the input dimensions, from 2400 to 100 dimensions here, by

Mixture of sparse coding models and face neurons
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principal component analysis (PCA) before performing ICA. This is, in fact, a simple modifi-

cation of a standard preprocessing used in any classical sparse coding or ICA methods. How-

ever, we have previously discovered that such strong dimension reduction has an effect of

spatial pooling [32] and thereby produces much larger basis patterns than without it [22]. In

the present case, we later show that weaker dimension reduction resulted in representations of

overly small features, which led to a loss of discriminative power. After this step, to regain

enough components from the reduced dimensions, we used overcomplete ICA [33], estimat-

ing 400 components from 100 dimensions. (See the section on Learning details in Methods).

Once the network was trained, the response properties of the model neurons were tested

using various input images. In this phase, we never explicitly gave class information on each

input image, but rather let the network estimate it by Bayesian inference, which worked in the

following three steps (Fig 1D).

1. Given an input x (processed by the energy detectors), interpret it separately by each submo-

del k. Formally, infer the responses ŷk in each submodel k that maximize the sparse coding

objective Lk:

ŷk  argmax
yk

Lkðy
k j xÞ ð1Þ

where

Lkðyk j xÞ ¼ �
1

2s2
k x � Akykk2 �

1

l

X

m
jyk

m � bk
mj ð2Þ

using pre-fixed constants σ and λ. Recall that Ak and bk are the basis matrix and the mean

vector for submodel k that are obtained in the learning phase as described above.

2. Compare the goodnesses of the two interpretations in the form of posterior probabilities.

Formally, for each k:

rk  
pk exp ðLkðŷk j xÞÞ
P

hph exp ðLhðŷh j xÞÞ
ð3Þ

using a pre-fixed constant πk for prior probability. For simplicity, we assume πk = 1/2.

3. Modulate multiplicatively the responses in each submodel by the corresponding posterior

probability computed above. That is, for each k:

ŷk  rkŷk: ð4Þ

Step 1 is similar to inference in the classical sparse coding [31], where the responses in each

submodel are estimated so as to minimize the reconstruction error and maximize the sparsity

at the same time. One difference is, however, that the sparsity constraint here is on the differ-

ence from the mean vector bk. We assume here a non-zero mean since the mean of face images

is not zero and such stimulus usually elicits non-zero responses of actual face neurons, while

the classical sparse coding assumes a zero mean since the mean of natural image patches is a

blank, gray image, and such stimulus evokes no response of V1 neurons. The last two steps in

our inference are a major departure from the classical sparse coding, where step 2 computes

the posterior probability indicating how well each submodel interprets the input and step 3

multiplies the responses in each submodel by the corresponding posterior probability. Note

that, because of the normalization of the probabilities in step 2, the multiplication in step 3

results in a competitive behavior of the two submodels. Thus, even if the input contains a fea-

ture that can potentially activate some units in a submodel, such units may eventually be

Mixture of sparse coding models and face neurons
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deactivated when the whole input was not interpreted well by this submodel compared to the

other submodels (Bayesian explaining-away effect).

Finally, to compare with neural responses later, we passed the response value of each unit

(after step 3) to the smooth half-wave rectifying function h(a) = log(1 + exp(a)), which always

produces non-negative values.

Although we presented above the mixture model and its inference computation in an infor-

mal and procedural way, these can be formalized rigorously within a probabilistic generative

model. Generally, the motivation for such formalization is to regard visual recognition as a

process of inferring hidden causes in the external world that generate a natural image. Our

model can be seen as one such approach: all the computations described above can be derived

from Bayesian inference of posterior probabilities in a statistical framework of mixture of

sparse coding models. The details can be found in the section on Theory of mixture of sparse

coding models in Methods.

Basis representations

We proceed to show the representation in our model obtained by the learning procedure

described so far. The basis matrix Ak of each submodel defines its internal representation and

each column vector of the matrix (basis vector) exposes the specific feature represented by

each unit. Fig 2 shows the basis vectors of three example units in the face submodel. Each unit

is visualized as a set of ellipses corresponding to the energy detectors, where their underlying

Gabor filters have the indicated center positions (in the visual field coordinates), orientations,

and spatial frequencies (inversely proportional to the size of the ellipse). The color of the ellipse

indicates the weight value normalized by the maximal weight value. For readability, we show

only the ellipses corresponding to the maximal positive (excitatory) weight and the minimal

negative (inhibitory) weight at each location. Although this visualization approach may seem a

bit too radical, it did not lose much information: we confirmed by visual inspection that the

local weight patterns for most units had only one positive peak and one negative peak at each

position and frequency and the patterns of orientation integration did not have notable

changes across frequencies. In Fig 2, we can see that unit #1 represented a face outline either

on the left (excitatory) or on the right (inhibitory); unit #2 represented mainly eyes (excit-

atory); unit #3 mainly represented a mouth (excitatory) and nose (weakly inhibitory). Fig 3

Fig 2. The basis representations of three sample model face units. Each panel depicts the weighting pattern (basis vector) from a

face unit to energy detectors by a set of ellipses, where each ellipse corresponds to the energy detector at the indicated x-y position,

orientation, and frequency (inverse of the ellipse size); see the top right legend. The color shows the normalized weight value (color

bar). Only the maximum positive and the minimum negative weights are shown at each position for readability.

https://doi.org/10.1371/journal.pcbi.1005667.g002
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shows the basis vectors of 32 randomly selected units from (A) the face submodel and (B) the

object submodel. The representations in these two submodels were qualitatively different: face

units represented local facial features (i.e., facial parts like outline, eye, nose, and mouth) and

object units represented local object features.

Fig 3. The basis representations of (A) 32 example model face units and (B) 32 example model object units.

https://doi.org/10.1371/journal.pcbi.1005667.g003
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Selectivity to faces

Next, we show a series of comparisons between the response properties of our model and the

experiments conducted by Freiwald et al. [4] on the region in monkey IT cortex called the face

middle patch.

As mentioned above, due to the Bayesian explaining-away effect in the mixture model,

model face units exhibited selectivity to face images and object units to object images. We mea-

sured the responses of our model units to natural face and object images that were separate

from the training images (without explicitly giving class labels). The left panel of Fig 4A shows

the responses (ŷk in step 3 of Bayesian inference) of the face units (top) and object units (bot-

tom) to face images, where the images were sorted by the response magnitudes, separately for

each unit. The right panel similarly shows the responses of the same units to object images. We

can see that the face units were prominently responsive to many face images while indifferent

to non-face object images; the object units had the opposite property. To quantify such face

selectivity, we calculated the face-selectivity index for each unit, which was defined as the ratio

between the difference and the sum of the mean response to faces and the mean response to

objects (where the baseline, i.e., the response to a blank image, was subtracted from each

response value). Fig 4D (blue) shows the distribution of face-selectivity indices for the face

units. The result indicates almost no unit with index between −1/3 and 1/3, which is consistent

with the experimental data [4, Figure 1b].

Such vivid selectivities disappeared when the mixture computation was removed. Fig 4B

shows the analogous responses of the face and object units immediately after performing

sparse coding (ŷk in step 1); the face units became almost equally responsive to object images

to face images. Indeed, Fig 4D (yellow) shows that the face-selectivity indices of those units

became substantially lower by the removal of mixture, with a majority falling between −1/3

and 1/3.

To gain more insight into the underlying computations, see the distributions of face poste-

rior probabilities (r1 in step 2) for face and object images in Fig 4C: faces and objects were

clearly discriminated. In fact, those posterior probabilities modulated the response of each unit

representing a part (step 3), which resulted in prominent face selectivity. (Note that the dis-

crimination capability did not automatically arise from step 3 since it actually depended on

proper training of both submodels; see the section on “Control simulations.”) Further, Fig 4E

shows that the images that elicited the largest responses of the face units were mostly faces in

the mixture model (blue), whereas it was not the case in the model without mixture (yellow).

Thus, even though the face units by themselves could detect accidental features similar to facial

parts, the mixture computation ensured that they responded only when the whole input was a

face image. In other words, face selectivity can be interpreted as a form of holistic processing

in our mixture model.

Tuning to facial features

We next turn our attention to tuning properties to facial features. The experiment by Freiwald

et al. [4] used cartoon face stimuli for which facial features were controlled by 19 feature

parameters, each ranging from −5 to +5. The authors recorded responses of a neuron in the

face middle patch while presenting a number of cartoon face stimuli whose feature parameters

were randomly varied. Then, for each feature parameter, they estimated a tuning curve by tak-

ing the average of the responses to the stimuli that had a particular value while varying other

parameters (“full variation”). We simulated the same experiment and analysis on our model

(see the section on Simulation details in Methods; see also S3 Fig for examples of cartoon face

images.).

Mixture of sparse coding models and face neurons
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Fig 4. (A) The responses of model face units (1–400) and model object units (401–800) to face images (left) and object images (right). The

images are sorted by response magnitudes (color bar) for each unit. (B) The responses in the case of removing mixture computation. (C)

The distribution of face posterior probabilities for face image inputs and for object image inputs. (D) The distribution of face-selectivity

indices for the face units in the case of the mixture model (blue) or the case of the sparse coding model (yellow). The broken lines indicate

the values −1/3 and 1/3. (E) The distribution of the number of face images in the top 10 (face or object) images that elicited the largest

responses of each face unit.

https://doi.org/10.1371/journal.pcbi.1005667.g004
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To illustrate tuning to facial features in our model, Fig 5 shows the tuning curves of the face

units in Fig 2 to all 19 feature parameters. Each unit was significantly tuned to one to nine fea-

ture parameters (where significance was defined in terms of surrogate data; see Methods).

Some tunings clearly reflected the corresponding parts in the basis representations. Unit#1

was tuned only to the face direction, preferring the left as opposed to the right. Unit#2 mainly

showed tuning to eye-related features, in particular, preferring narrower inter-eye distances

and larger irises. Unit#3 mainly showed tuning to mouth- and nose-related features, in partic-

ular, preferring smily mouths and longer noses.

Even in the whole population, most units were significantly tuned to only a small number

of features similarly to the experiment [4]. Fig 6A shows the distribution of the numbers of

tuned features per unit, which were on average 3.6 and substantially smaller than 19, the total

number of features. The face neurons in the monkey face middle patch were also tuned to only

a small number of features, i.e., 2.6 on average [4, Figure 3c] (replotted in red boxes in Fig 6A).

Fig 6B shows the distribution of the numbers of significantly tuned units per feature. The dis-

tribution strongly emphasizes geometrically large parts, i.e., face aspect ratio, face direction,

feature assembly height, and inter-eye distance. The shape of the distribution has a good

match with the experimental result [4, Figure 3d] (replotted in Fig 6B), though iris size seems

much more represented in the monkey case.

A prominent property of the experimentally obtained tuning curves was preference or anti-

preference of extreme facial features [4]; our model reproduced this property as well. For exam-

ple, Fig 5 shows that many tuning curves were maximum or minimum at one of the extreme

values (−5 or +5). For the entire population, Fig 7A shows all significant tuning curves of all face

units, sorted by the peak feature values. To quantify this, Fig 7B shows the distributions of peak

and trough feature values; the extremity preference index (the ratio of the average number of

peaks in the extreme values to the number of peaks in the non-extreme values) was 9.1 and the

extremity anti-preference index (analogously defined for troughs) was 12.0. These indicate that

the tendency of preference or anti-preference of extreme features generally held for the popula-

tion. This result is in good agreement with the monkey experiment [4], which also reported dis-

tributions of peak and trough values that were biased to the extreme values [4, Fig. 4a] (the

Fig 5. The tuning curves (red) of the model face units shown in Fig 2 to 19 feature parameters of cartoon faces. The mean (blue) as well as the

maximum and minimum (green) of the tuning curves estimated from surrogate data are also shown (see the section on Simulation details in Methods).

https://doi.org/10.1371/journal.pcbi.1005667.g005
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extremity preference indices were 7.0, 5.5, and 7.1, and the extremity anti-preference indices

were 12.6, 13.7, and 12.1 for three monkeys; the average distribution is replotted in Fig 7B).

In addition, the experimental study even observed monotonic tuning curves [4], which

were also found in our model as in Fig 5. To quantify this for the population, Fig 7C shows the

distribution of minimal values of the significant tuning curves preferring value +5 pooled

together with the tuning curves preferring value −5 that have then been flipped; the distribu-

tion has a clear peak at value −5. Further, for each minimal value in Fig 7C, the average of the

tuning curves (normalized by the maximum response) with that minimal value is given in

Fig 7D; the averaged tuning curve for minimal value −5 has a monotonic shape. These indicate

that tuning curves preferring one extreme value tended to anti-prefer the other extreme value

and be monotonic. This result is consistent with the experimental data, which also showed a

distribution of minimal values that was peaked at −5 [4, Fig. 4d] (replotted in Fig 7C) and a

monotonic averaged tuning curve corresponding to minimal value −5 [4, Fig. 4d, inset]. We

discuss later why the model face units acquired such extremity preferences.

We have explained above the face selectivity property as a form of holistic processing in the

mixture model. On the other hand, the experimental study investigated holistic face processing

in the IT cortex by using partial face stimuli and inverted face stimuli [4]. To gain insight into

these experiments, we also conducted simulations of the same experiments in our model.

To simulate the experiment with partial faces [4], we estimated two kinds of tuning curves in

addition to the one used so far (“full variation”), namely, the responses to full cartoon faces

where one feature was varied and the other were fixed to standard ones (“single variation”) and

Fig 6. (A) The distribution of the numbers of significantly tuned features per unit, overlaid with a replot of [4,

Fig. 3c]. (B) The distribution of the numbers of significantly tuned units for each feature parameter, overlaid

with a replot (red boxes) of [4, Fig. 3d].

https://doi.org/10.1371/journal.pcbi.1005667.g006
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the responses to partial faces where only one feature was presented and varied (“partial face”).

(See the section on Simulation details in Methods). Fig 8 compares tuning curves in (A) full var-

iation vs. single variation, (B) full variation vs. partial face, and (C) single variation vs. partial

face. Overall, the shapes of the tunings were similar for all three kinds (average correlation 0.94

to 0.95). However, the gain of each tuning function (the slope of the fitted linear function)

tended to drop after the removal of most of facial features (Fig 8C); the average gain ratio was

2.0, which was close to 2.2, the experimentally reported number [4, Fig. 6c]. This effect was not

only because typical face units represented a combination of two features or more, but also

because partial faces looked less face-like than full faces: Fig 8E shows lower face posterior prob-

abilities for the partial face condition than the full variation condition. Indeed, such drop was

weakened when the mixture computation was removed: the average gain ratio was 1.5 when the

same comparison was made for the responses of model face units without the mixture computa-

tion, i.e., using only step 1 in Bayesian inference (Fig 8D). In addition to these, note that the tun-

ings curves in full variation were slightly reduced compared to those in single variation (Fig 8A

and 8B); a similar tendency can be observed in the experimental result [4, Fig. 6c]. This reduc-

tion in the model was because the face images used in the single variation condition took stan-

dard feature values for most parameters and such face images looked more face-like than others

(giving slightly larger face posterior probabilities than the full variation condition; Fig 8E).

To simulate the experiment with inverted faces [4], we presented, to the model, the same

set of full cartoon faces except for their vertical inversion and estimated tuning curves for each

Fig 7. (A) All significant tuning curves of all model face units sorted by the peak parameter value. Each tuning curve (row)

here was mean-subtracted and divided by the maximum. (B) The distributions of peak parameter values (top) and of trough

parameter values (bottom). The overlaid red boxes are replots of [4, Fig. 4a] averaged over three monkeys. (C) The

distribution of minimal values of the significant tuning curves peaked at +5 and the flipped tuning curves peaked at −5,

overlaid with a averaged replot of [4, Fig. 4d]. (D) The average of the tuning curves for each minimal value in (C) (with the

same color).

https://doi.org/10.1371/journal.pcbi.1005667.g007
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facial feature in the same way (full variation). As a result, we found that the number of units

that were tuned to each facial feature was more or less similar to the original model (Fig 8F,

left). However, the tuning curves for assembly height tended to be inverted, whereas those for

most other features did not (Fig 8F, right; for eye eccentricity, only two units had significant

tunings and they happened to have a highly negative correlation between the upright and

inverted cases). These results were consistent with the experiment [4, Figure 7ad]. However,

we also observed that the overall responses of the model face units to inverted faces were much

lower compared to upright faces (a somewhat similar tendency can be discernible in the exper-

imental report [4, Figure 7bc]). This was because the mixture model could not classify well the

inverted faces as faces since the face submodel was trained only with upright face images; con-

sequently, the face posterior probabilities were generally low for inverted faces (Fig 8E, violet).

Taken together, our result indicates that feature tuning for inverted faces could be explained

Fig 8. (A) Full-variation versus single-variation tuning curves. (B) Full-variation versus partial face tuning curves. (C) Single-variation versus partial face

tuning curves. (D) Single-variation versus partial face tuning curves in the case of removing mixture computation. (E) The distributions of face posterior

probabilities for the full variation, the single variation, the partial face, and the inverted face conditions. (F) The distribution of the numbers of tuned units

per feature for inverted faces (left) and the mean correlation coefficient between the tunings for upright faces and for inverted faces for each facial feature

(right).

https://doi.org/10.1371/journal.pcbi.1005667.g008
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by representation of individual parts of upright faces, although whole inverted faces may not

be recognized as faces.

Interaction between feature parameters was limited, though present. For each pair of fea-

ture parameters, a 2D tuning was estimated by averaging the responses to a pair of parameter

values while varying the remaining parameters. Then, the 2D tuning for a pair of parameters

was compared to another 2D tuning predicted by the sum of two (full-variation) 1D tunings

for the same parameters or by the product of these. The distributions of correlation coefficients

are given in Fig 9; the averages were both 0.90, which was similar to the experimental result

(averages 0.88 and 0.89) [4, Figure 5b].

Control simulations

How much do our results depend on the exact form of model? To address this question, we

modified the original model in various ways and conducted the same analysis (Figs 10, 11 and

12; S1 and S2 Figs).

First, we already showed that, when we omitted the mixture computation and simply used

a sparse coding model of face images, the model units were deprived of selectivities to faces vs.

objects (Fig 4). However, tuning properties to facial features did not change much. Fig 10

shows that the distributions of the number of tuned features per unit, of the number of tuned

units per feature, of the peak feature values, and of the trough feature values for the modified

model (cyan curves) are all similar to the original model (blue curves). Therefore, while the

selectivities were from the mixture model, the tuning properties were produced by the sparse

coding.

Next, we varied the strength of dimension reduction of the outputs of the energy detector

bank before performing sparse coding learning (the original model reduced the dimensionality

from 2400 to 100). Three observations were made. First, consistently with our previous obser-

vation in our V2 model [22, 32], overall feature sizes tended to decrease while the reduced

dimensionality was increased. Fig 12 shows example face and object units in the case of 300

Fig 9. The distributions of correlation coefficients between 2D tuning functions and additive (blue) or

multiplicative predictors (red).

https://doi.org/10.1371/journal.pcbi.1005667.g009
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reduced dimensions; compare these with Fig 3. (When we further increased the reduced

dimensionality, we obtained quite a few units with globally shaped, somewhat noisy basis rep-

resentations. These seemed to be a kind of “junk units” that are commonly produced when the

amount of data is insufficient compared to the input dimensionality.) Second, as the reduced

dimensionality increased, face posterior probabilities (as in Fig 4C) were substantially

Fig 10. The distributions of (A) the number of tuned features per unit (cf. Fig 6A), (B) the number of

tuned units per feature (cf. Fig 6B), and (C) the peak (top) and the trough (bottom) feature values (cf.

Fig 7B), in different model variations. The color of each curve indicates the model variation (see legend).

https://doi.org/10.1371/journal.pcbi.1005667.g010

Fig 11. The distribution of face posterior probabilities for face images (solid curve) or for object

images (broken curve) in different model variations (cf. Fig 4C). The color of each curve indicates the

model variation (see legend).

https://doi.org/10.1371/journal.pcbi.1005667.g011
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Fig 12. The basis representations of 32 example model units from (A) the face submodel and (B) the object submodel, in the network trained

with 300 reduced dimensions.

https://doi.org/10.1371/journal.pcbi.1005667.g012
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decreased for face images (Fig 11); the face images could barely be discriminated in the case of

300 reduced dimensions. Meanwhile, face posterior probabilities remained low for object

images. This seemed to happen because the object submodel now learned to represent spatially

very small and generic features so that it could give sufficiently good interpretations not only

to object images but also to face images. This justified our model construction approach that

performs strong dimension reduction before sparse coding learning. Third, Fig 10A and 10B

shows that the number of tuned features per unit and the number of tuned units per feature

decreased in the case of 300 reduced dimensions (red curve). This was due to the weakened

selectivity rather than the size decrease of feature representations since the effect disappeared

when the mixture computation was omitted (yellow curve).

As an additional control simulation, we varied the number of units (200 or 800) in each

submodel of the mixture model while keeping the other conditions. In either case, we observed

no discernible difference in the results from the original model (S1 Fig).

We also examined a single sparse coding model (with no mixture model) trained with face

and non-face images all together. In this model, we found almost no unit having face selectivity

that was as vivid as in the original model; even for the units that gave average responses larger

to faces than non-faces (which were only less than 10% of the whole population), selectivity to

face images was rather weak, with face-selective indices mostly less than 1/3 (S2A Fig). How-

ever, such weakly face-selective units showed tuning properties similar to the original model

(S2B Fig). Taken together, the response properties of those units were comparable to the sparse

coding model trained only with faces without mixture model (Figs 4B and 10, cyan curves).

Discussion

In this study, we proposed a novel framework called mixture of sparse coding models and

used this to investigate the computational principles underlying face and object processing in

the IT cortex. In this model, two sparse feature representations, each specialized to faces or

non-face objects, were built on top of an energy detector bank and combined into a mixture

model (Fig 1). Evoked responses of units were modeled by a form of Bayesian inference, in

which each sparse coding submodel attempts to interpret a given input by its code set, but the

best interpretation explains away the input, dismissing the explanation offered by the other

submodel. The model units in our face submodel not only exhibited significant selectivity to

face images similarly to actual face neurons (Fig 4), but also reproduced qualitatively and

quantitatively tuning properties of face neurons to facial features (Figs 5 to 9) as reported for

the face middle patch, a particular subregion in the macaque IT cortex [4]. Thus, computation

in this cortical region might be somehow related to mixture of sparse coding models.

While sparse coding produced parts-based representations in each submodel (Figs 2 and 3),

the mixture model produced an explaining-away effect that led to holistic processing (Fig 4E).

This combination was key to simultaneous explanation of two important neural properties:

tuning to a small number of facial features and face selectivity. That is, although the former

property could be explained by sparse coding alone (Fig 10), the latter could not (Fig 4B) pre-

sumably since facial parts could accidentally be similar to object parts. However, when the

sparse coding submodels for faces and objects were combined in the mixture model, the indi-

vidual face units could be activated only if the whole input was interpreted as a face. In this

sense, our theory interprets the face selectivity property as a signature of holistic processing. (It

should be noted that the face selectivity may not be considered an “emergent” property of the

model in the same sense as the tuning properties, since some kind of enhanced selectivity

might well be expected by the introduction of a mixture model.) We also linked our model

with more classical experiments on holistic processing by reproducing the tuning properties
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for partial or inverted faces (Fig 8). However, we could not prove the necessity of the mixture

computation in these cases since the results without mixture were still consistent, albeit more

weakly, with the experimental data.

Having explained known response properties, we can draw a few testable predictions of

unknown properties from our theory. First, since face selectivity depends on the computa-

tional progress of stimulus interpretation as a face or as an object, we can predict delayed sup-

pression in responses of face-selective neurons to non-face stimuli. Second, since face

selectivity depends on the failure of stimulus interpretation as an object, we can predict loss of

selectivity of face-selective neurons after deactivation of the object-selective region by musci-

mol injection or cooling.

Among the reported properties of face neurons in the monkey IT cortex, preferences to

extreme features (in particular, monotonic tuning curves) were considered as a surprising

property [4] since they were rather different from more typical bell-like shapes such as orienta-

tion and frequency tunings. We showed that our model explained quite well such extremity

preferences (Fig 7). It is intriguing why our model face units had such property. First, we

would like to point out that the facial features discussed here are mostly related to positions of

facial parts and such features can be relatively easily encoded by a linear function of an image.

This is not the case, however, for orientations and frequencies since encoding these seem to

require a much more complicated nonlinear function, perhaps naturally leading to units with

bell-like tunings. Second, we could speculate that the extremity preferences may be really

necessary due to the statistical structure of natural face images, irrelevant to any particular

details of our model. Indeed, even when we perform a very basic statistical analysis of principal

components of face images (so-called eigenfaces, e.g., [34]), they look like linear representa-

tions of certain facial features, maximal in one extreme and minimal in the other extreme.

However, this seems to be a rather deep question and fully answering it is beyond the scope of

this study.

The results shown here relied on all computational components in mixture of sparse coding

models, including inference computation of each sparse coding submodel and suppressive

operations using computed posterior probabilities. Since these computations seem to be diffi-

cult to implement only with simple feedforward processing in the biological visual system, a

natural assumption would be some kind of recurrent computation possibly involving feedback

processing. While quite a few biologically plausible implementations have been proposed for

sparse coding inference, e.g., [31, 35], we prefer here not to speculate how the mixture compu-

tation might be implemented, in particular, whether class information as in the top layer in

our model might be represented explicitly in some cortical area or implicitly as some kind of

mutual inhibition circuit between the face-selective and the object-selective regions in IT.

Related to the previous point, it would also be interesting whether or not similar results

could be reproduced by a deep (feedforward) neural network model [6–12]. Note that,

although face-selective units, tuning properties to head orientation, or behavioral properties

on holistic face processing (such as the face inversion effect) have been discovered in some

models [11–13, 36], no tuning properties to facial features like here have been reported yet.

We particularly wonder whether the face-selective units in such models represent facial parts,

since such parts are sometimes impossible to recognize correctly without any surrounding

context if the input image does not contain enough detail, e.g., Fig 1B. While it is mathemati-

cally true that such nonlinear context-dependent computation could also be arbitrarily well

approximated by a feedforward model, whether this can be achieved by a network optimized

for image classification needs to be investigated empirically. In any case, however, we think

that top-down feedback processing as formulated in our model would be a simpler and biolog-

ically more natural way of performing such computation.
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Since we trained each submodel of our mixture model separately by face or object images,

our learning algorithm was supervised, implicitly using class labels (“face” or “object”). This

choice was primarily for simplification in the sense of avoiding the generally complicated

problem of unsupervised learning of a mixture model. We do not claim by any means that face

and object representations in the IT cortex should be learned exactly in this way. Nonetheless,

the existence of such teaching signals may not be a totally unreasonable assumption in the

actual neural system. In particular, since faces can be detected by a rather simple operation

[37, 38], some kind of innate mechanism would easily be imaginable. This may also be related

to the well-known fact that infant monkeys and humans can recognize faces immediately after

eye opening [39, 40].

Early work on sparse coding concentrated on explaining receptive field properties of V1

simple cells in terms of local statistics of natural images [14, 15], following Barlow’s efficient

coding hypothesis [41, 42]. The theory was subsequently extended to explain other properties

of V1 complex cells [17–19] and V2 cells [20–22]. The present study continues this approach

to investigate higher visual representations, though a novel finding here is that an additional

mechanism, a mixture model, is necessary to explain the neural properties discussed here. On

the other hand, in computer vision, sparse-coding-like models have also been used for feature

representation learning. In particular, the classical study on ICA of face images [34] may be

related to the construction of our face sparse coding submodel, although the previous study

reported global facial features as the resulting basis set [34]. (Because of this, it was once argued

that parts-based representations require the non-negativity constraint [23]. However, it seems

that such completely global ICA features may have been due to some kind of overlearning and,

indeed, local feature representations were obtained when we used enough data as in Fig 3; we

also confirmed this in the case with raw images.) Another relevant formalism is mixture of

ICA models [43]. Although the idea is somewhat similar to ours, their full rank assumption on

the basis matrix and the lack of Gaussian noise (reconstruction error) terms make it inappro-

priate in our case because the strong dimension reduction was essential for ensuring the face

selectivity (Fig 11).

Our model presented here is not meant to explain all the properties of face neurons. Indeed,

the properties explained here are a part of known properties of face neurons in the middle

patch, which is in turn a part of the face network in the monkey IT cortex [25, 44, 45]. In the

middle patch, face neurons are also tuned to contrast polarities between facial parts [46]. In

more anterior patches, face neurons are tuned to viewing angles in a mirror-symmetric man-

ner or invariant to viewing angles but selective to identities [47]. Further, all these neurons are

invariant to shift and size transformation as usual for IT neurons [47]. Explaining any of these

properties seems to require a substantial extension of our current model and is thus left for

future research. Finally, since most detailed and reliable experimental data on the IT cortex

concerns face processing, we hope that the principles, such as presented here, found in face

processing could serve to elucidate principles of general visual object processing.

Methods

Model details

Our hierarchical model began with a bank of Gabor filters. The filters had all combinations of

10 × 10 center locations (arranged in a square grid within 64 × 64 pixels), 8 orientations (at

22.5˚ interval), 3 frequencies (0.25, 0.17, and 0.13 cycles/pixels), and 2 phases (0˚ and 90˚). The

Euclidean norm of each Gabor filter with frequency f was set to f 1.15 (following 1/f spectrum of

natural images) and the Gaussian width and length were both set to 0.4/f.
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Data preprocessing

As a face image dataset, we used a version of Labeled Faces in Wild (LFW) [28] where face

alignment was already performed using an algorithm called “deep funneling” [29]. By this

alignment, faces had a more or less similar position, size, and (upright) posture across images.

The dataset consisted of about 13,000 images in total. Each image was converted to gray scale,

cropped to the central square region containing only the facial parts and hairs, and resized to

64 × 64 pixels. Since many images still contained some background, they were further passed

to a disk-like filter, which retained the image region within 30 pixels from the center and grad-

ually faded the region away from this circular area. Finally, the pixel values were standardized

to zero mean and unit variance per image.

As an object image dataset, we used Caltech101 [24]. We removed four image categories

containing human and animal face images (Faces, Faces_easy, Cougar_face, and Dalmetian).

The objects within the images were already aligned. The dataset consisted of about 8,000

images in total. Like face images, each image was converted to gray scale, cropped to square,

resized to 64 × 64 pixels, passed to the above mentioned disk-like filter, and standardized per

image.

For each class, we reserved 1,000 images for selectivity test and used the rest for model

training.

Learning details

To train the mixture model, we first processed the images with the energy detectors and then

subtracted, from each data x, the dimension along the mean �x of all (face and object) data:

x x �
�x�x⊺x
k �xk2

ð5Þ

Although this operation was not quite essential, this had the effect of a linear form of contrast

normalization suppressing a part of inputs with prominently strong signals; in fact, we

observed that, without this operation, some elements of mean vectors bk estimated as below

became outrageously large.

Then, for each submodel for image class k, we learned the basis matrix Ak and the mean

vector bk in the following two steps:

1. perform strong dimension reduction using PCA [32] from 2400 to 100 dimensions while

whitening;

2. apply overcomplete ICA [33] to estimate 400 components from 100 dimensions.

For overcomplete ICA, we used the score matching method for computational efficiency

[33]. Formally, let dk be the vector of top 100 eigenvalues (from PCA) sorted in descending

order, Ek be the matrix of the corresponding (row) eigenvectors, and Rk be the weight matrix

estimated by the overcomplete ICA. Then, using the filter matrix defined as

Wk ¼ Rkdiagðdk
Þ
� 1=2Ek; ð6Þ

the basis matrix can be calculated as Ak = (Wk) (# is the pseudo inverse) and the mean vector

as bk
¼Wk�xk (where �xk is the mean of all data of class k). Note that the signs of the filter vec-

tors obtained from ICA are arbitrary; for the present purpose, we adjusted each sign so that all

elements of bk became non-negative.
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Theory of mixture of sparse coding models

A mixture of sparse coding models is similar to a classical mixture of Gaussians [30] in that it

describes data coming from a fixed number of categories, but different in that each category is

defined by a sparse coding model [14].

Formally, we assume an observed variable x : RD, a (discrete) hidden variable k: {1, 2, . . .,

K}, and K hidden variables yh : RM (h = 1, 2, . . ., K). Intuitively, x represents a (processed)

input image, k represents the index of an image class (submodel), and yh represents features

(responses) for the class h.

We define the generative process of these variables as follows (see Fig 13 for the graphical

diagram). First, an image class k is drawn from a pre-fixed prior πh : [0, 1] (where ∑h πh = 1):

PðkÞ ¼ pk ð7Þ

We call k here the generating class. Next, features yk for the class k are drawn from the Laplace

distribution with mean vector bk
: RM and a pre-fixed standard deviation λ (common for all

dimensions)

Pðyk j kÞ ¼ Lðyk j bk
; lÞ ¼

Y

m

1

2l
exp �

jyk
m � bk

mj

l

� �

ð8Þ

and an observed image x is generated from the features yk by transforming it by the basis

matrix Ak : RD�M , with a Gaussian noise of a pre-fixed variance σ2 added:

Pðx j yk; kÞ ¼ N ðx j Akyk; s2IÞ ð9Þ

Here, Ak and bk are model parameters estimated from data (see the section on Learning details

above). Features yh for each non-generating class h 6¼ k are drawn from the zero-mean Lapla-

cian

Pðyh j kÞ ¼ Lðyh j 0; lÞ ð10Þ

Fig 13. The graphical diagram for a mixture of sparse coding models. The variable k is first drawn from

its prior, then each variable yh is drawn from a Laplace distribution depending on whether h = k or not, and

finally the variable x is generated from a Gaussian distribution depending on yk. (Note that, until k is

determined, x is dependent on k and all of y1, y2, . . ., yK.)

https://doi.org/10.1371/journal.pcbi.1005667.g013
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and never used for generating x. Altogether, the model distribution is rewritten as follows:

Pðx; y1; y2; . . . ; yK ; kÞ ¼ N ðx j Akyk; s2IÞLðyk j bk
; lÞ

Y

h6¼k

Lðyh j 0; lÞ

" #

pk ð11Þ

Since data are generated from the mixture of K distributions each of which is a combination of

a Laplacian and a Gaussian similar to the classical sparse coding model [31], we call the above

framework mixture of sparse coding models.

However, we depart from standard formulation of mixture models or sparse coding in two

ways, motivated for modeling face neurons. First, since the feature variable yh for the non-

generating classes h 6¼ k are unused for generating x, a standard formulation would simply

drop the factor Eq (10), leaving yh unconstrained. However, our goal here is to model the

responses of all (face or object) neurons for all stimuli (faces or objects). In fact, actual face

neurons are normally strongly activated by face stimuli, but are deactivated by non-face sti-

muli, which is why our model uses a zero mean for non-generating feature variables. Second,

the classical sparse coding uses a zero-mean prior [31], which is suitable for natural image

patch inputs since their mean is zero (blank image) and this evokes no response like V1 neu-

rons. However, the mean of face images is not zero and such mean face image usually elicits

non-zero responses of actual face neurons. Therefore our model uses a prior with potentially

non-zero mean bk on the feature variable yk for the generating class.

Given an input x, how do we infer the hidden variables yh? Since evoked response values of

neurons that are experimentally reported are usually the firing rates averaged over trials, we

model these quantities as posterior expectations of the hidden variables. Since exact computa-

tion of those values would be too slow, we use the following approximation (see the derivation

in the section on Approximating posterior later).

1. For each image class k, compute the MAP (maximum a posteriori) estimates of the feature

variables y1, y2, . . ., yK, conditioned on the class k:

ðŷ1ðkÞ; ŷ2ðkÞ; . . . ; ŷKðkÞÞ ¼ argmax
y1 ;y2 ;...;yK

Pðy1; y2; . . . ; yK ; k j xÞ ð12Þ

2. Compute the approximate posterior probability of each image class k:

rk ¼
Pðŷ1ðkÞ; ŷ2ðkÞ; . . . ; ŷKðkÞ; k j xÞ

P
hPðŷ1ðhÞ; ŷ2ðhÞ; . . . ; ŷKðhÞ; h j xÞ

ð13Þ

3. Compute the approximate posterior expectation of each feature variable k:

ŷk ¼
X

h

rhŷ
kðhÞ ð14Þ

Note that, in eq (12), the feature variables for non-selected classes are always exactly zero:

ŷhðkÞ ¼ 0 for h 6¼ k: ð15Þ

Therefore, even though an alternative approach would be to model neural responses by the

MAP estimates of feature variable for the best image class, this may be too radical since

responses becoming absolutely zero are a little unnatural.
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The Bayesian inference described in the section on Model can be derived from steps 1 to 3

above in a straightforward manner using the model definition Eq (11) and the property Eq

(15).

Approximating posterior

Given an input x, we intend to compute the posterior expectations of each yh:

E½yk j x� ¼
X

k

Z Z

� � �

Z

ykPðy1; y2; . . . ; yK ; k j xÞdy1dy2 � � � dyK
ð16Þ

Direct computation of this value is not easy. Note, however, that, from the definition of the

model (eq 11), the posterior distribution has a single strong peak for each class k, with vari-

ances more or less similar across all classes. Therefore we approximate the posterior probabil-

ity by

Pðy1; y2; . . . ; yK ; k j xÞ � dðy1 ¼ ŷ1ðkÞ; y2 ¼ ŷ2ðkÞ; . . . ; yK ¼ ŷKðkÞÞrk ð17Þ

where ŷhðkÞ is the MAP estimate of yh when the selected image class is k (eq 12) and rk is the

relative peak posterior probability for the class k (eq 13). Here, δ(�) is the delta function that

takes infinity for the specified input value and zero for other values. Substituting the approxi-

mation Eq (17) into eq (16) yields eq (14).

Simulation details

Cartoon face images were created by using the method described by Freiwald et al. [4]. Each

face image was drawn as a linear combination of 7 facial parts (outline, hair, eye pair, iris pair,

eyebrows, nose, and mouth). The facial parts were controlled by 19 feature parameters: (1) face

aspect ratio (round to long), (2) face direction (left to right), (3) feature assembly height (up to

down), (4) hair length (short to long), (5) hair thickness (thin to thick), (6) eyebrow slant

(angry to worried), (7) eyebrow width (short to long), (8) eyebrow height (up to down), (9)

inter-eye distance (narrow to wide), (10) eye eccentricity (long to round), (11) eye size (small

to large), (12) iris size (small to large), (13) gaze direction (11 x-y positions), (14) nose base

(narrow to wide), (15) nose altitude (short to long), (16) mouth-nose distance (short to long),

(17) mouth size (narrow to wide), (18) mouth top (smily to frowny), and (19) mouth bottom

(closed to open). Note that the first three parameters globally affected the actual geometry of

all the facial parts, while the rest locally determined only the relevant facial part. See S3 Fig for

example images.

Following the method in the same study [4], we estimated three kinds of tuning curves: (1)

full variation, (2) single variation, and (3) partial face. For full variation, a set of 5000 cartoon

face images were generated while the 19 parameters were randomly varied. For each unit and

each feature parameter, a tuning curve at each feature value was estimated as the average of the

unit responses to the cartoon face images for which the feature parameter took that value. The

tuning curve was then smoothed by a Gaussian kernel with unit variance. To determine the

significance of each tuning curve, 5000 surrogate tuning curves were generated by destroying

the correspondences between the stimuli and the responses. Then, a tuning curve was regarded

significant if (1) its maximum was at least 25% greater than its minimum and (2) its heteroge-

neity exceeded 99.9% of those of the surrogates, where the heterogeneity of a tuning curve was

defined as the negative entropy when the values in the curve were taken as relative

probabilities.

For single variation, a tuning curve for a feature parameter at each value was estimated as

the response to a cartoon face image for which the feature parameter took that value and the
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other were fixed to standard values. The standard parameter values were obtained by a manual

adjustment with the stimuli used in the experiment [4, Suppl. Fig. 1]. For partial face, cartoon

face images with only one facial part (hair, outline, eyebrows, eyes, nose, mouth, or irises) were

created. Each tuning curve for each feature parameter was obtained similarly to single varia-

tion, except that only the relevant facial part was present in the stimulus.

Supporting information

S1 Fig. Control simulations varying the number of units. A mixture model was constructed

in the same way as the original one, except that each submodel here had 200 units (upper half)

or 800 units (lower half). (A) The responses of model face units and object units to natural face

images (left) or natural object images (right), together with the distribution of face-selective

indices for the face units (bottom); compare these with Fig 4A and 4D (blue). (B) The distribu-

tions of the numbers of significantly tuned features (of cartoon faces) per unit (left), of num-

bers of significantly tuned units for each feature parameter (middle), of peak and trough

parameter values (right); compare these with Figs 6 and 7B. Overlaid red boxes are replots of

corresponding experimental data [4].

(TIF)

S2 Fig. Control simulation with a single sparse coding model. A single sparse coding model

with 800 units was constructed on top of the same energy model and trained with an ensemble

of face and non-face images. In the resulting model, only 71 units gave larger average

responses to face images than non-face images. The response properties of these units are

shown. (A) The responses of face and object units to face images (left) or object images (right),

with the distribution of face-selective indices for the face units (bottom). No prominent selec-

tivity like in Fig 4A can be observed; the result is more similar to Fig 4B. (B) The distributions

of the numbers of significantly tuned features per unit (left), of numbers of significantly tuned

units for each cartoon face feature parameter (middle), of peak and trough parameter values

(right); compare these with Figs 6 and 7B as well as Fig 10 (cyan curves). Overlaid red boxes

are replots of corresponding experimental data [4].

(TIF)

S3 Fig. Random examples of cartoon face images.

(TIF)
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