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ABSTRACT 

Background: With 1.1 million new cases diagnosed annually worldwide and 

4500 to 5000 in Finland, prostate cancer (PC) is, in developed countries, the 

most common non-cutaneous cancer in men. It is a highly heterogenous 

disease with great variability in its clinical course. Men diagnosed with PC 

are stratified into risk groups, reflecting how aggressive the disease is and 

how actively it should be treated and monitored. Low-risk PC is generally 

indolent and often requires no curative treatment. Active surveillance (AS) is 

its primary treatment option, whereas high-risk PC, at the opposite end of 

the disease spectrum, offers significant risk for local advance and metastasis; 

radical treatment is therefore necessary. Despite treatment, high-risk PC still, 

however, poses a risk for cancer recurrence and even risk of death. 

Intermediate- and high-risk PC are generally treated with radical 

prostatectomy (RP) or radiation therapy. 

Accurate risk stratification is essential for choosing proper treatment. 

Currently, stratification is based on diagnostic prostate biopsies, the patient’s 

prostate-specific antigen (PSA) level, and clinical stage. This current 

stratification system has well-established limitations. The biggest uncertainty 

stems from prostate biopsies. The biopsies are performed in a schematic 

manner with ultrasound guidance, which does not, however, distinguish 

possible tumors from surrounding benign tissue. Current risk stratification 

also ignores prostate magnetic-resonance imaging (MRI). Better strategies 

for the diagnosis and risk stratification of PC are thus necessary.  

Study I: Prostate biopsy is one of the most common urological out-

patient procedures. The procedure is carried out via the rectum and carries a 

substantial risk for complications, such as infection, bleeding, and pain. The 

most severe complications involve infections, an alarming rising trend in 

incidence of which has occurred globally in recent years. In Study I, we 

retrospectively evaluated the incidence of bacteremic post-biopsy 

complications in the Helsinki and Uusimaa hospital district during 2005-

2013. Annual incidences were calculated by combining databases of all 

prostate biopsies and positive blood cultures during this period. Clinical data 

on the bacteremic patients allowed exploration of possible risk factors for 

infections.  

Study II: The current standard prostate biopsy procedure involves 

taking 12 biopsy cores in a prespecified pattern, without knowledge of 

possible tumor location. Until the introduction of prostate MRI, biopsies 

were the only tool with which to plan curative therapies in detail. PC is often 

a multifocal disease, with several separate tumor foci in the prostate. In 

Study II we retrospectively investigated in RP specimens the performance of 

12-core prostate biopsies in predicting tumor location and extent. We also 

analyzed tumor morphologies with emphasis on clinically significant PC and 
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the index tumors. This was achieved by charting all tumors in the RP 

specimens of 96 men treated with laparoscopic robot-assisted RP at our 

institution between 2009 and 2010. Detailed information on tumor locations 

and morphologies was compared with data from diagnostic biopsies.     

Study III: AS entails close monitoring of patients and relies heavily on 

serial PSA measurements and repeat biopsies. This monitoring is 

increasingly complemented with prostate MRI. Study III was a prospective 

study investigating the value of prostate MRI in the follow-up of AS patients. 

In 2009-2011, 80 men underwent prostate MRI after being on AS for one 

year and before receiving their first follow-up biopsies. MRI findings were 

compared with clinical and pathological parameters to assess whether MRI 

added any value to the standard follow-up.   

Study IV: Novel tools for better prediction of PC patients’ outcomes are 

being actively explored, with much attention to PC tissue biomarkers. In 

Study IV, we retrospectively analyzed 358 men treated with RP between 1983 

and 1998 at Helsinki University Hospital and 457 men operated on between 

2000 and 2005 at Turku University Hospital. The expression of each of three 

PC tissue markers–ERG, PTEN, and AR–were analyzed by constructing 

tissue microarrays from the patients’ RP samples. We explored the 

association of marker expression with clinical outcomes: requirement for 

secondary therapy after RP, disease-specific survival (DSS), and overall 

survival (OS). 

Main results and conclusions: A 2.4-fold increase in the annual 

incidence of post-biopsy bacteremic complications emerged over the study 

period, with no clinical risk factor for developing bacteremic complications. 

Recent international travel was associated with development of an infectious 

complication by a fluoroquinolone-resistant organism. Strategies to avoid 

unnecessary biopsies and reduce biopsy-related infections call for 

development (I). Twelve-core prostate biopsies predicted location and extent 

of tumors in RP specimens unreliably, which makes them a poor tool for 

detailed planning of radical or focal therapies. Analysis of significant tumors 

and index tumors revealed that positive surgical margins and extraprostatic 

extension at RP were mostly caused by the index tumor. The index tumor can 

thus be chosen based on dedifferentiation instead of on tumor size (II). 

Prostate MRI added no value to the standard follow-up of AS patients. To 

perform reliably as a diagnostic and follow-up tool, prostate MRI should be 

performed and reported based on prespecified and standardized protocols 

(III). Loss of PTEN expression led to shorter DSS times and shorter 

secondary-therapy-free survival after RP. The poorest outcomes were for 

patients with PC samples negative for both ERG and PTEN expression and 

with strong AR expression. PTEN loss appears to be a strong driver for disease 

progression, and its performance as a prognostic tool should be further studied 

in prospective settings (IV). 
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1 INTRODUCTION 

Prostate cancer (PC) is the most common cancer in men in the Western world 

(Torre et al. 2015), but is still, in many ways, a poorly characterized disease. 

The older the man, the more likely he is to be diagnosed with PC (Sakr et al. 

1994), and men of African heritage are at higher risk (McGinley et al. 2016). 

Genetics also play a major role: roughly half of an individual’s risk for PC is 

the result of advancing age and environmental factors, but the remaining half 

stems from genetic factors (Lichtenstein et al. 2000, Mucci et al. 2016). 

Despite this, no genetic tests can as yet aid in identifying at-risk men at 

population level. Age, race, and genetics are all unamenable factors, with no 

firmly-established environmental or life-style factors exist that men can avoid 

to lower their PC risk. 

One unanswered question is how to properly screen for PC. PSA-based 

screening has been tested and studied in two large prospective trials in Europe 

and the USA (Schröder et al. 2014, Pinsky et al. 2017), but with conflicting 

results. PSA-based screening has been able to prevent deaths from PC 

(Schröder et al. 2014), but at such a high cost of over-detection and over-

treatment that general screening for unselected men is not recommended. 

Unorganized or opportunistic PSA-based screening is, however, still widely 

prevalent in clinical practice, and the problem of over-detection and over-

treatment of PC remains unsolved. In 2010-2014 in Nordic countries, the 

proportion of men dying from PC compared to men diagnosed with PC was 

23% (NORDCAN 2017). This reflects the slow natural progression of PC and 

the relevance of competing causes of death for such men. Nevertheless, in 2014 

in Finland, PC was still the second-most likely cancer to kill men (Finnish 

Cancer Registry 2016) 

When a man presents with a PSA value higher than considered normal for 

his age, the next step is to decide whether to proceed with the diagnostic work-

up. There are no safe cut-off values below which we can be sure that PC, even 

potentially lethal PC, does not occur (Thompson et al. 2007). The decision to 

proceed with further work-up such as prostate biopsies is therefore hardly ever 

straightforward. Besides the baseline PSA value, other factors need to be 

considered as well, such as patient age, comorbidities, assumed life 

expectancy, possible family history of PC, and personal preferences. A 

straightforward approach would be simply to take biopsies from all men who 

present with elevated PSA values, but that approach would not only be fraught 

with complications, but also expose men to an unnecessary risk of 

overdiagnosis. The biopsy procedure carries a risk for bleeding, pain, and most 

importantly, infectious complications that can be catastrophic (Borghesi et al. 

2017). Traditional prostate biopsies have several limitations, of which the most 

important is their under-estimation of disease extent and grade (Epstein et al. 

2012). Sampling all patients with elevated PSA in a non-organized setting 
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would also result in a substantial number of men overdiagnosed with low-

grade, clinically insignificant PC with an inherent risk for overtreatment, 

causing an undue burden upon the patient and health-care system. 

PC is a heterogenous disease. Most PCs progress slowly and most likely 

cause no harm during a patient’s lifetime (Lu-Yao et al. 2009). Some PCs, on 

the other hand, are irrefutably aggressive, recur despite radical therapies 

(Stattin et al. 2016, Pompe et al. 2017), and progress to a metastatic and lethal 

stage. The challenge is in properly identifying which patients harbor 

“benevolent” and which patients aggressive disease. Current tools for 

characterizing PC are largely inadequate, especially regarding the proper 

assessment of disease aggressiveness. The current risk stratification is based 

on histopathological evaluation of PC needle biopsies, where a Gleason score 

(Gleason 1966) is assigned for the disease. This score is used in risk assessment 

along with PSA level at diagnosis, clinical disease stage, and, for low-grade 

disease, number of biopsies positive for PC (Mohler et al. 2016, Mottet et al. 

2017). This risk stratification guides the choice of treatment, but the varying 

outcomes of patients within risk groups reflect how imperfectly these risk 

groups actually predict the course of the disease (Beauval et al. 2016a, 2016b, 

Carlsson et al. 2016). When assigning low-risk patients to AS, 50 to 70% of 

these patients will eventually end up having definitive therapies, such as 

radical prostatectomy (RP) or radiation therapy (RT) (Bokhorst et al. 2016b). 

After surgery or RT, 27 to 53% of patients will have disease recurrence (Mottet 

et al. 2017), and some will develop metastases and eventually die from PC. 
Attempts are ongoing to overcome these shortcomings in risk stratification. 

Magnetic-resonance imaging (MRI) of the prostate holds great promise for 

improving the diagnostic process. Performance of prostate MRI before taking 

biopsies can potentially select the right patients for the procedure (Ahmed et 

al. 2017) and MRI-targeted biopsies appear to be more accurate in terms of 

determining disease location and aggressiveness (Siddiqui et al. 2015). A new 

prognostic grouping of histological cancer grades–grade grouping–aims to 

predict disease outcomes better than conventional Gleason scoring, mainly for 

the most frequent Gleason score 7 group (Epstein et al. 2016b). Research 

efforts in the field of PC biology have revealed some key genetic phenomena in 

disease progression that have given rise to potential biomarkers (Bostrom et 

al. 2015). Biomarkers would, ideally, reflect true disease aggressiveness and 

could be used in conjunction with conventional tools to estimate patients’ risk 

for harboring a more aggressive disease than otherwise suspected. 

This thesis focuses on the challenges and limitations of current diagnostic 

and predictive tools in assessing localized PC and aims to offer insight into 

areas with room for improvement. 
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2 REVIEW OF THE LITERATURE 

2.1 EPIDEMIOLOGY OF PROSTATE CANCER 

With 1.1 million new cases diagnosed in 2012, PC is the fourth most common 
cancer worldwide among both sexes, and the second-most common cancer in 
men. PC accounts for 8% of all new cancer cases globally and for 15% of new 
cancers in men. A marked difference occurs in PC incidence rates between 
developed and developing countries, with 68% of PC diagnoses in developed 
countries with only 17% of the world’s male population. With an age-
standardized rate (ASR) of 69.5 per 100 000, PC is, excluding skin cancers, 
the most common cancer of Western men (Torre et al. 2015). According to 
Cancer Research UK, about one man in eight in the UK and according to the 
American Cancer Society, one man in seven in the USA will be diagnosed 
with PC during their lifetime. 

 

Figure 1 Estimated worldwide age-standardized incidence rates of prostate cancer in 2012. 
Reprinted with permission from the World Health Organization. 

Globally improved standards of living and health awareness have led to an 

increased life expectancy associated with increasing PC incidence and 

prevalence. Improved health awareness has also led to unorganized screening 

for PC by PSA testing (Nordstrom et al. 2016). Historically, the Food and Drug 

Administration (FDA) approval of the PSA test in 1986 led to a sharp rise in 

PC diagnoses in the USA, reaching its peak five years later in 1992. This was 

succeeded by a steep decline, after which, incidence rates steadily started 
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increasing again. Similar trends have later been observable in many other 

countries where PSA-based detection has been extensive.  

PC mortality rates and PC incidence rates differ markedly (Figure 2).  

Many countries have seen peak mortality rates in the 1990’s, after which they 

have rapidly decreased. The diminishing mortality of PC is to some degree 

due to better therapies, but likely to a greater extent due to the extensive use 

of PSA, which leads to PC detection at earlier, asymptomatic, and localized 

stages. Most men diagnosed with PC will therefore survive despite their 

cancer, which is evident in the 10-fold incidence rates compared with 

mortality rates (Figure 2). This places great pressure on health-care systems 

to appropriately calibrate their diagnostic processes, in addition to adjusting 

their thresholds for radical therapies, to avoid overtreating and causing PC 

patients excessive harm. 

2.2 ETIOLOGY AND RISK FACTORS FOR PROSTATE 
CANCER 

2.2.1 ADVANCING AGE 

Global PC incidence rates vary greatly (Figure 1), and PC is strongly 

associated with advancing age. It can, to some extent, be considered a natural 

occurrence in the aging process. In their seminal autopsy study from 1994, 

Sakr and co-workers found cancer foci in 2%, 29%, 32%, 55%, and 64% of 

prostates of men over 20, 30, 40, 50, and 60 years of age (1994). More-recent 

studies have shown that, at autopsy, 43.9% of men over age 70 harbored 

cancer foci in their prostates (Zlotta et al. 2013) and, in a review of 19 

autopsy studies including over 6000 men, 22% of men aged 50-59, 29% aged 

60-69, 34% aged 70-79, and 43% of men over 80 had undiagnosed PC at the 

time of death (Jahn et al. 2015). Advancing age is therefore a considerable 

risk factor for PC.  

2.2.2 ETHNICITY 

The highest PC rates are encountered in developed high-income regions with 

long life expectancies, such as Australia, New Zealand, North America, and 

Western and Northern Europe. Incidences are also relatively high in some less 

affluent regions such as the Caribbean, sub-Saharan Africa, and in South 

America. The lowest incidences are encountered in Eastern and South-Central 

Asia (Ferlay et al. 2015). This global variance in incidence may be explained by 

economic differences, varying practices of PSA testing and the accompanying 

biopsies, and by various PC risk factors.  
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Figure 2 Age-standardized (world) prostate-cancer incidence (top) and mortality (bottom) 
trends. Mortality trends have been smoothed using three years’ average. Source: 
International Agency for Research on Cancer (IARC). Website accessed on 11.7.2017. 
Reprinted with permission from the World Health Organization. 
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Race-associated differences occur in PC development, with men of African 

heritage being at highest risk. The world’s highest incidences are on the 

Caribbean island of Martinique, with Trinidad and Tobago and Barbados also 

in the top five (Ferlay et al. 2015). Caribbean islands, along with Brazil and the 

USA, are the countries outside Africa with the highest proportions of African 

populations, as reflected in their corresponding high PC incidence rates 

(Figure 1). PC incidence is also highest among men of African heritage in the 

USA (McGinley et al. 2016). The lowest PC incidences are in Asian men (Center 

et al. 2012). This was also evident in the marked diferences between the 

prevalence of PC at time of death in men of different races: in the age group 

70-79, African-American men had the highest prevalence of PC at 51%, 

Caucasian and European men were at 36%, and the lowest prevalence, 21%, 

was in Asian men (Jahn et al. 2015). Research into the genetic phenomena 

underlying these differences is ongoing. 

2.2.3 GENETICS 

Approximately 100 genes have been identified that raise an individual’s risk 

for PC (Ciccarese et al. 2017), most importantly germline mutations in the 

tumor-suppressor breast cancer 1 and 2 genes, BRCA1 and BRCA2. BRCA2 

mutations confer a 5-9-fold risk for developing PC, compared to that of men 

without the mutation, but the risk associated with BRCA1 mutations, at 

approximately 4-fold, is less pronounced (Alanee et al. 2014, Eeles et al. 2014). 

Such mutations are also associated with worse PC outcomes (Alanee et al. 

2014). The prevalence of BRCA2 mutations in one general PC cohort was, 

however, only 1-2% (Kote-Jarai et al. 2011), so testing all PC patients for this 

mutation would be unlikely to prove beneficial.  

A family history of PC may suggest an inherited risk. Having one affected 

first-degree relative raises the risk of PC 2.5-fold and having two or more 

affected first-degree relatives raises it 5- to 11-fold (Steinberg et al. 1990, 

Brandt et al. 2010). Moreover, having a father diagnosed with PC raises an 

individual patient’s risk of PC by 2-fold, whereas a brother’s PC raises the risk 

by 3-fold (Zeegers et al. 2003, Brandt et al. 2010). Carter and co-workers have 

suggested considering PC as hereditary, when there are either three or more 

affected members in a nuclear family, PC in three successive generations, or 

two or more individuals diagnosed with PC before the age of 55 (Carter et al. 

1993). By this definition, 3-5% of PC cases could be classified as hereditary 

(Bratt 2000). A recent report from the Nordic Twin Study of Cancer group 

revealed significant excess familial risk for PC. The estimate of heritability, i.e. 

how much of an individual’s risk for cancer results from genetic factors, has 

been as high as 57% (Mucci et al. 2016). An earlier study, also on a Nordic twin 

cohort, found the estimate to be 42% (Lichtenstein et al. 2000). 
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2.2.4 ENVIRONMENTAL AND LIFE-STYLE FACTORS 

Age, ethnicity, and genetics–all nonmodifiable factors–are the only confirmed 

risk factors for PC. Myriads of environmental and life-style factors that may 

contribute to PC development under investigation, often with conflicting 

results (Giovannucci et al. 2007). This is presumably because of the disease’s 

heterogeneous nature. Another speculation is that instead of being a precursor 

state, early-detectable indolent PC could possibly be a separate disease entity 

from lethal PC, with different etiologies and risk factors (Jahn et al. 2015).  

The contemporary Western lifestyle, i.e. sedentary with a high-calorie diet, 

leading often to high cholesterol and diabetes, is speculated to play a role in 

PC development. Despite Japan’s being a high-income country, PC is still far 

less prevalent in Japan than in Europe or North America. This fact is 

attributable to differing lifestyles, mainly dietary differences. The role of the 

environment has been highlighted in studies on Japanese immigrants in 

Hawaii which demonstrated that, because of a change in environment, PC 

incidence in first- and in second-generation immigrants have risen rapidly 

(Kolonel et al. 2004). Gradual adoption of the Western lifestyle is also 

suggested to explain the current steady rise in PC incidence in Japan, 

Singapore, and Thailand–countries where PSA testing is traditionally 

uncommon (Center et al. 2012).  

High body-mass index seems to have a complex effect on risk for 

developing PC: it has been associated with increased risk for PC (Nunez et al. 

2017) and with more advanced cancer (World Cancer Research Fund 

International: Continuous Update Project 2014), but on the other hand, 

associated with a reduction in risk for localized PC (Discacciati et al. 2012). 

Similarly, taller height has been clearly associated with development of lethal, 

but not of indolent, PC, suggesting that the two disease forms are distinct 

biological entities (Giovannucci et al. 2007).  

Alcohol consumption is generally not considered to raise the risk for PC, 

although evidence to counter this is gradually accumulating (Rota et al. 2012, 

Dickerman et al. 2016). It is unclear whether cigarette smoking is a risk factor 

(Huncharek et al. 2008, Watters et al. 2009) as it has been related to a higher 

risk for lethal disease, but not indolent PC (Giovannucci et al. 2007) Long-

standing inflammation may predispose to development of PC, and evidence 

exists from meta-analyses that suggests gonorrhea to be associated with 

increased risk for PC (Caini et al. 2014, Lian et al. 2015). The role of other 

sexually-transmitted diseases is less clear. 

2.3 DIAGNOSING PROSTATE CANCER 

2.3.1 PSA AND PSA-BASED SCREENING 

PC rarely causes symptoms before it has progressed to an advanced stage. PC 

is, in fact, most often diagnosed at an earlier, asymptomatic stage solely by an 
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elevated PSA. A patient with advanced disease may suffer from lower urinary 

tract symptoms (LUTS): increased voiding frequency and urgency, nocturia, 

hematuria, and even urinary retention. Metastatic disease may present as 

skeletal pain, neurological symptoms, anemia, or general malaise. The process 

of diagnosing PC, initiated by either PSA screening or, rarely, PC symptoms, is 

presented in Figure 3. 

 

 
 

Figure 3 PSA-based and symptom-based detection of prostate cancer (PC). PSA=prostate-
specific antigen, DRE=digital rectal examination, w=with, w/o=without, MRI=magnetic-
resonance imaging, LUTS=lower urinary tract symptoms, TRUS=transrectal ultrasound  

A first-line method of diagnosing PC is the PSA blood test. PSA is a 

kallikrein-like serine protease produced and excreted by the prostate. It is 
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reasonably specific to the prostate, and higher levels are associated with a 

greater likelihood of PC: at level < 1 ng/ml, the likelihood is 1%, at 2-4 ng/ml 

15%, at 4-10 ng/ml 25%, and at > 10 ng/ml > 50% (The Finnish Medical 

Society Duodecim 2014). PSA’s usefulness as a diagnostic test is, however, 

hampered by its susceptibility to increasing for benign reasons, such as benign 

prostatic hyperplasia, inflammation, ejaculation, and prostatic manipulations, 

among others. Elevated PSA is therefore not specific to PC. No safe cut-off 

values exist, below which no significant PC occurs. This fact was demonstrated 

in the Prostate Cancer Prevention Trial, where, in the control arm, even at a 

PSA level ≤ 0.5 ng/ml 6.6% of participants had PC, and 12.5% of those men 

had high-grade PC, defined as Gleason score ≥ 7 (Thompson et al. 2004). 

Reference PSA values are age-adjusted to account for the natural rise in PSA 

resulting from benign prostatic growth. Currently, the European Association 

of Urology (EAU) guidelines consider risk for PC to be elevated with a PSA > 1 

ng/ml at age 40, and with a PSA > 2 ng/ml at 60 (Mottet et al. 2017). 

Presently, no nation has a national screening program for PC, even though 

so-called opportunistic screening by PSA testing is quite prevalent in many 

Western countries. PSA testing appears, at first glance, to be an inexpensive 

and easy way to screen for PC, and the concept has therefore been tested 

globally in several large-scale studies. The Prostate, Lung, Colorectal, and 

Ovarian Cancer Screening Trial demonstrated no mortality benefit from 

organized PSA screening at 15 years (Pinsky et al. 2017), while the European 

Randomised study of Screening for Prostate Cancer found that, after 13 years, 

even though PSA screening reduces mortality from PC, the benefit comes at a 

cost of high over-detection and over-treatment (Schröder et al. 2014). PSA 

screening is thus not currently recommended at population level, although the 

synthesis of a 2014 Cochrane review and the American Urological Association 

guidelines state that PSA screening in men aged 55-69 may be considered after 

shared decision-making by the patient and doctor (Carter 2013, Hayes, Barry 

2014). The EAU guidelines on PC also recommend an individualized risk-

adapted strategy for early detection instead of systematic PSA-based 

screening. Early detection can be discussed with well-informed men who have 

a good performance status and at least 10-15 years’ life expectancy, when they 

are considered as having elevated PC risk: age over 50, age over 45 with a 

family history of PC or African heritage, or a baseline PSA of > 1 ng/ml at 40 

years or > 2 ng/ml at 60 (Mottet et al. 2017). 

Because of PSA’s poor specificity in predicting PC, several other blood and 

urine tests have been developed over the years with the aim of helping to select 

those men at increased risk for PC who thus are candidates for further 

diagnostic work-up. The ratio of free to total PSA (%fPSA) can be useful for 

men with a PSA between 4 and 10 ng/ml and negative digital rectal 

examination (DRE) (Mottet et al. 2017). PC was detected in 56% of such men 

at %fPSA < 0.10, but in only 8% with %fPSA > 0.25 (Catalona et al. 1998).  

Reviews looking into the performance of urine-marker PCA3, a kallikrein 

panel called the 4K Score, and The Prostate Health Index, which incorporates 
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calculation of PSA, free PSA, and the [2]pro-PSA fraction, report that use of 

these tests would reduce unnecessary prostate biopsies and the diagnosis of 

insignificant PC (Bratt et al. 2015, Loeb et al. 2016). Currently, the widespread 

use of these tests is limited by their poor availability, high costs, and, in the 

case of the 4K Score, lack of FDA approval. The STHLM3 model, which 

includes a combination of plasma protein biomarkers and a panel of 232 

single-nucleotide polymorphisms, combined with traditional PSA and clinical 

parameters, has been tested in a prospective setting in Sweden and seems to 

be a promising model for improving the specificity of PSA-based screening for 

PC (Grönberg et al. 2015). STHLM3, however, still lacks validation in non-

Swedish populations. 

2.3.2 PROSTATE BIOPSIES 

2.3.2.1 Performing prostate biopsy 

After DRE of the prostate and blood tests, the next step in the diagnostic work-

up is taking prostate biopsies. Biopsies are essential for establishing cancer 

diagnosis and grade, but also aid in assessing the location and extent of the 

disease. Prostate biopsy is usually performed as an out-patient procedure, 

under local anesthesia, and most often via the transrectal route by a urologist. 

The procedure is performed with ultrasound (US) guidance, so in many 

countries the procedure may also be performed by a radiologist. US serves 

mainly for visualizing the prostate and its outlines and for guiding the biopsy 

needles. The resolution of US is rarely sufficient for visualizing PC, which 

means that standard prostate biopsies are obtained as systematic random 

biopsies. The most common biopsy scheme entails 12 cores from the 

peripheral prostate, from both sides: four from the bases, four from the mid-

gland, and four from the prostatic apex (Gore et al. 2001) (Figure 4). 

 



Review of the literature 

20 

 

Figure 4 A. Taking prostate biopsies with transrectal ultrasound guidance. B. 12-core biopsy 
scheme, four biopsies each from the base, middle, and apex of the prostate. PZ=peripheral 
zone, TZ=transitional zone, U=urethra. (Illustration by Kristiina Tammisalo) 

Sampling the prostate is an invasive procedure, with common side-effects. 

The most common adverse outcomes are hematuria, hematospermia, rectal 

bleeding, and pain, which are most often self-limiting and only rarely require 

further medical attention. The procedure can, however, also cause major harm 

to the patient, if he develops a major infectious complication, the most severe 

form of which is potentially life-threatening septicemia. The patient must be 

informed of the potential risks associated with the procedure before 

proceeding with prostate biopsies. 
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2.3.2.2 Gleason score and Grade grouping 

Presently, the prevailing grading system is the tissue-architecture-based 

Gleason grading system (Gleason 1966) with major consensus modifications 

in 2005 (Epstein et al. 2005), 2010 (Epstein 2010), and 2014 (Epstein et al. 

2016a). The modified grading system assigns the PC a Gleason score of 2 to 10, 

based on the prevalence of individual grade patterns. A new prognostic grade 

grouping system was launched in 2014 in a consensus meeting of the 

International Society of Urological Pathology. The new classification gives 

scores from 1-5, with Gleason patterns ≤ 3+3, 3+4, 4+3, 4+4/3+5/5+3, and 

4+5/5+4/5+5 constituting grade groups 1, 2, 3, 4, and 5. This new grouping 

system aims to better reflect the different prognoses between the groups. It 

also aims to deemphasize the seriousness of Gleason score ≤ 6 cancers – grade 

group 1, on a scale of 1-5, as being easier for treating physicians and patients 

to accept as a low-risk disease, rather than Gleason score 6, on a scale of 2-10. 

Grade grouping also distinguishes subclasses in the most prevalent Gleason 

score 7 group, among other changes. This new grouping has been formally 

accepted by the World Health Organization in 2016 and for now, the Grade 

group should be reported in conjunction with the Gleason score (Epstein et al. 

2016a). 

2.3.2.3 Current 12-core biopsy technique 

Before ultrasound (US) guidance became common, the first prostate biopsies 

were taken with only finger guidance, and with urologists taking as many cores 

as considered necessary. In their landmark study in 1989, Stamey and co-

workers reported improved cancer detection rates by performing random 

systematic biopsies instead of biopsies exclusively directed at suspicious areas 

(Hodge et al. 1989). This approach, later dubbed the Stamey sextant protocol, 

involved sampling the prostate in a systematic fashion: one parasagittal core 

each from the base, middle, and apex of the prostate, from each lobe and with 

US guidance. The sextant protocol was later extended to include more laterally 

directed cores and gradually evolved into the current 12-core biopsy scheme 

that has been in use for practically the last two decades (Levine et al. 1998, 

Gore et al. 2001). The optimal number of cores needed to maximize cancer 

detection, with the procedure still being tolerable for the patient, has been 

studied extensively, with the 12-core scheme remaining an acceptable 

compromise (Eichler et al. 2006, De Laet et al. 2009, Ghafoori et al. 2013, 

Scattoni et al. 2014). 
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2.3.2.4 Detection of prostate cancer by random biopsies  

Standard prostate biopsies have several well-known limitations (Figure 5). 

 

Figure 5 A. Random biopsies missing a significant tumor. B. Random biopsies detecting 
small, low-grade tumors. C. Inaccuracy in determining tumor location. Tumor assumed to be 
from the base of the prostate when in reality it is from the middle. (Illustrations by Kristiina 
Tammisalo) 

As the biopsies randomly sample the entire prostate, the test may result in 

both underdiagnosis of clinically significant disease and overdiagnosis of 

indolent, clinically insignificant PC. Transrectal biopsies are also technically 

limited in estimating disease location. This has been demonstrated in many 

studies reporting the discordance in tumor location between biopsy and RP 

specimens (Schulte et al. 2008, De Laet et al. 2009, Iremashvili et al. 2012, 

Washington et al. 2012).  

As a first-line test for detecting PC, transrectal random biopsies perform 

poorly. Initial biopsies may have detection rates of 28-70% (Meng et al. 2003, 

Presti Jr. 2003, de la Taille et al. 2003, Elabbady et al. 2006, Yuasa et al. 2008, 



 

23 

Serag et al. 2011, Zaytoun et al. 2011a, Aganovic et al. 2012). This wide range 

is due to heterogeneity in study cohorts and in biopsy indications. 

Consequently, after a first round of negative biopsies, if PC is still suspected, 

up to one-third of patients will have PC detected in repeat biopsies (Fleshner 

et al. 1997, Presti Jr. 2003, Scattoni et al. 2007, Yuasa et al. 2008, Campos-

Fernandes et al. 2009, Zaytoun et al. 2011b). After a second round of biopsies, 

however, the detection rates, especially for clinically significant cancers, 

decrease markedly. If, after two rounds of negative biopsies, PC is still 

suspected, then a change in diagnostic strategy is therefore the general 

recommendation (Djavan et al. 2007, Zaytoun et al. 2011a).  

In the situation of repeated negative prostate biopsies and persistent 

suspicion of PC, an intermediate step in the diagnostic work-up has 

traditionally been saturation biopsies, generally defined as obtaining > 20 

cores. A transperineal approach to saturation biopsies is possible, but as it 

necessitates spinal anesthesia, it is thus more arduous. The advantage of the 

transperineal approach over the transrectal route, is, however, better access to 

the apex and anterior prostate. Saturation biopsies have become less popular 

with the advance of MRI targeting. Currently, the shift towards earlier 

incorporation of alternative diagnostic methods is strong, as an alternative to 

automatically repeating the biopsies. The EAU Prostate Cancer Guidelines 

recommend performing prostate MRI before repeat biopsies. The repeat 

biopsy procedure should then preferably include targeting of MRI-visible 

lesions in addition to systematic biopsies (Mottet et al. 2017). 

Some limitations of traditional systematic prostate biopsies are inherent to 

the biopsy technique. The procedure’s randomized nature and the inability to 

visualize tumors with US explain some of the sampling error. Large tumors, 

either exceptionally hypoechoic on US or palpable on DRE, can specifically be 

targeted, but otherwise the needles are placed in the tissue at random. The 

transrectal route also makes accessing the anterior prostate difficult (Bott et 

al. 2002). Sampling the prostatic apex requires angling the rectal probe and 

biopsy needle to a degree that is uncomfortable or even painful for the patient, 

leading to apical tumors’ often being missed (Bolenz et al. 2009, Iremashvili 

et al. 2012). In primary biopsies, the peripheral zone, the area in which 68-

85% of PC originates (McNeal et al. 1988, Stamey et al. 1998, Buyyounouski et 

al. 2017), should be targeted (Figure 6). This approach, however, frequently 

misses those tumors deriving from the transitional or central zones.  
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Figure 6 Zonal anatomy of the prostate. By some estimates, the peripheral zone harbors 80-
85% of prostate cancer, the transitional zone 10-15%, and the central zone 5-10% 
(Buyyounouski et al. 2017). Figure reprinted with permission from Nature Publishing Group: 
Nature Reviews Cancer, 2007, Apr;7(4):256-69, De Marzo et al., “Inflammation in prostate 
cancer”. 

2.3.2.5 Treatment planning based on biopsies 

Despite their known limitations, and outside of clinical study settings, 

transrectal systematic biopsies are still the first-line test by which most PC is 

diagnosed. Before prostate MRI and MRI-targeting, prostate biopsies were 

essential in planning the treatment of PC patients. The histopathological 

assessment of disease grade is essential in appropriately assessing the patient’s 

risk group (Table 2). 

     Prostate biopsies may, however, perform less than ideally in evaluating the 

Gleason score. Accounts of mostly upgrading and also of downgrading of the 

Gleason score in comparisons between biopsies and RP specimens are 

numerous. Rates of upgrading of Gleason score at RP range from 14.8-46.6% 

(Elabbady et al. 2006, Reis et al. 2013, Dinh et al. 2015, Khoddami et al. 2016, 

Winters et al. 2016, Herlemann et al. 2017), with downgrading less frequent at 

8.5-19.5% (Reis et al. 2013, Khoddami et al. 2016, Herlemann et al. 2017). This 

problem is in part due to differences in assigning the Gleason score for biopsies 

and RP specimens (Epstein et al. 2012) and in part to the biopsies’ random 

and imperfect discovery of tumors. 

     Prostate biopsies may also underestimate tumor size and extent. This has 

mostly emerged from a situation of minimal cancer core involvement at 

diagnosis and subsequent faulty classification of patients as “low-risk” 
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(Johnstone et al. 2007). Biopsies have indicated the location and laterality of 

the disease inaccurately (Schulte et al. 2008, Abdollah et al. 2011, Pereira et 

al. 2014). Possible explanations are inaccurate needle placement by the 

urologist or errors in processing of the biopsy samples. A 12-core biopsy also 

yields approximately 0.1 g of prostatic tissue for analysis, which would amount 

to less than 1% of, for example, a moderate-size 50-gram prostate. 

Undersampling and missing of tumors is therefore unsurprising. These errors 

may lead to misinformed decisions in treatment planning, such as to perform 

a nerve-sparing RP on the side of the prostate harboring the significant and 

extensive disease.  

     Such inaccuracies involving prostate biopsies in determinination of disease 

grade, extent, and location can currently be somewhat remedied by prostate 

MRI. MRI can either confirm the findings or reveal significant tumors perhaps 

missed by biopsy. 

2.3.2.6 The index tumor and focal therapy (FT) 

Precise and accurate knowledge of tumor characteristics, based on biopsies 

and on MRI applications, is essential in considering FT of PC (Lecornet et al. 

2010, Abdollah et al. 2011, Tseng et al. 2011, Gallina et al. 2012, Washington 

et al. 2012, Kanthabalan, Emberton & Ahmed 2014). FT aims to target all 

clinically significant tumors in the prostate while leaving the rest of the gland 

intact. Among various ways to define PC as “clinically significant,” the 

prevailing definition is a tumor at least 0.5 ml in volume, a Gleason 4 pattern, 

or non-organ-confined disease at RP (Stamey et al. 1993, Kanthabalan, 

Emberton & Ahmed 2014, Kryvenko, Epstein 2016). In 1994, Epstein and co-

workers proposed pretreatment criteria predictive of significant disease: a PSA 

density of ≥ 0.15 ng/ml/g, Gleason grade 4 in biopsies, ≥ 3 biopsy cores 

showing cancer, and ≥ 50% of any biopsy core length with cancer (Epstein et 

al. 1994). These Epstein criteria became widely validated and are still in use 

(Ploussard et al. 2011).   

The concept of an index tumor often arises regarding FT feasibility. 

Autopsy studies and analyses of RP specimens have revealed that PC is most 

often a multifocal disease, which is the rationale supporting whole-gland 

radical therapies. The tumors can also be heterogenous in their degree of 

dedifferentiation, and one hypothesis is that there always exists one primary 

tumor carrying the highest potential for spread and metastasis (Liu et al. 2009, 

Karavitakis et al. 2011, Boyd et al. 2012, Karavitakis et al. 2012, Singh et al. 

2013), the index tumor. Currently, the prevailing practice is to designate the 

largest tumor as the index tumor (Bott et al. 2010, Mouraviev et al. 2011, 

Kozminski et al. 2014), although the index tumor may in fact be the most 

dedifferentiated one or the one causing extraprostatic extension. Most often 

the largest tumor is the one that also exhibits these unfavorable characteristics 

(Karavitakis et al. 2011, Huang et al. 2014a). 
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2.3.3 PROSTATE MRI 

2.3.3.1 Performing and reporting of prostate MRI 

MRI has recently gained substantial attention in the diagnostic work-up of PC. 

Although first developed in the 1980’s, prostate MRI became a routine practice 

only when functional imaging was developed, offering information on prostate 

tissue physiology as well as anatomy. The current gold standard in prostate 

imaging is multiparametric MRI (mpMRI). The European Society of 

Urogenital Radiology published guidelines in 2011 regarding the technical 

performance of mpMRI and proposed a structured reporting system to help 

minimize variation in interpreting the images and reporting the findings 

(Barentsz et al. 2011). This Prostate Imaging - Reporting and Data System (PI-

RADS) was updated in 2015 into the current reporting system: PI-RADS 

version 2 (Weinreb et al. 2016). 

In mpMRI, traditional T1- and T2-imaging sequences are complemented 

with dynamic contrast enhancement and diffusion-weighted imaging (DWI), 

obtained at different diffusion values, i.e. b values. DW images are further 

processed to create apparent-diffusion coefficient (ADC) maps which reveal 

the tissue enhancement of suspicious foci. MRI thus offers good soft-tissue 

resolution without harmful radiation to the patient. Highly aggressive PC is 

densely packed with cells, which restricts the movement of water molecules at 

cellular level. This gives the tissue a distinct bright appearance on DWI. 

Conversely, low-grade cancer may resemble the surrounding benign tissue, 

making it more challenging to detect. ADC maps, derived from DWI, show 

malignant lesions as dark areas. As ADC is a mathematical parameter, it has a 

numeric value. Lower values have been shown to correlate with higher-grade 

cancer and, conversely, higher values with more benign tissue (Woodfield et 

al. 2010). This information can even serve, in highly specialized PC-MRI 

centers, to estimate possible Gleason grades of visualized tumors, but thus far 

no generally accepted cut-off values allow differentiation between tumor 

grades in ADC maps (deSouza et al. 2008, Kim et al. 2016, Shaish et al. 2017, 

Tamada et al. 2017, Wu et al. 2017). 

The popularity of prostate MRI can be explained by its ability especially to 

detect clinically significant PC. A 2015 review of 12 studies reported a fairly 

large range in the positive and negative predictive values (PPV and NPV) of 

mpMRI for this purpose: 34-93% and 63-98% (Fütterer et al. 2015). A more 

extensive and recent review appearing in 2017 covered 48 studies, including a 

meta-analysis of 8; it reported a median NPV of 88.1% for clinically significant 

PC at a prevalence of 30%, although when prevalence rose to 60%, NPV 

decreased to 67% (Moldovan et al. 2017). A recent prospective study found 

MRI to have a PPV of 65% for detection of any Gleason score 3+4 PC, at a 

prevalence of 53%, and an NPV of 76% (Ahmed et al. 2017). In sum, the NPV 

of MRI is consistently higher than the PPV, making MRI a good potential tool 

for ruling out clinically significant disease. 
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2.3.3.2 MRI-targeted biopsy 

Due to MRI’s ability to locate suspicious areas in the prostate, and its higher 

sensitivity in detecting high-grade versus low-grade cancers (Delongchamps 

et al. 2013, Pokorny et al. 2014, Schoots et al. 2015b, Siddiqui et al. 2016), 

MRI-guided biopsies are becoming exceedingly popular. MRI guidance or -

targeting refers to the practice of using MRI-provided information as to the 

location of a suspicious area, in order subsequently to target that specific area. 

MRI guidance can be implemented in the biopsy procedure in three ways: 1) 

directly by the urologist by what is called cognitive fusion, 2) by performing 

the biopsy procedure with simultaneous MR imaging, an “in-bore” procedure, 

or 3) by specific software that fuses the information from the MRI with real-

time US imaging. MRI targeting generally entails taking fewer biopsies than 

in the 12-core standard procedure. This is expected to reduce biopsy-related 

adverse effects, although evidence to support this is as yet limited (Overduin 

et al. 2013, Egbers et al. 2014). 

Prostate MRI can aid in decision-making in the case of negative prostate 

biopsies but persistant suspicion of PC. Performing MRI in this setting would 

possibly reveal tumors missed by random biopsies, often anteriorly located 

tumors, and aid in targeting in subsequent biopsy settings. A negative MRI 

could also help in the decision not to proceed to repeat biopsies (Hansen et al. 

2016, Thompson et al. 2016, De Visschere et al. 2016). Cancer-detection rates 

have been 22-52% as a result of MRI-targeted biopsies in this setting (Sonn et 

al. 2014, Mendhiratta et al. 2015, Salami et al. 2015). The National 

Comprehensive Cancer Network (NCCN) and EAU both recommend in their 

clinical guidelines considering mpMRI in men with previously negative 

biopsies and persistent suspicion of PC (Mohler et al. 2016, Mottet et al. 2017). 

2.3.3.3 Prebiopsy MRI 

One promising approach to improving diagnostic accuracy is to precede 

prostate biopsies with first-line MR imaging, in which the decision to advance 

to prostate biopsies is based on MRI results. If no tumors are visible, then 

biopsies may be unnecessary, but if a suspicious lesion is evident, then the 

biopsy procedure may, if desired, be performed with MRI guidance. Recent 

reports from prospective studies find that MRI, used as a triage test before the 

first prostate biopsy, can reduce unnecessary biopsies by 24-27% (Ahmed et 

al. 2017, Jambor et al. 2017). A prebiopsy MRI, followed by targeted biopsies, 

was also performed as a substudy of the Göteborg Randomised Screening 

Trial, with promising results (Grenabo Bergdahl et al. 2016). This has 

prompted a new prospective trial, the Göteborg-2, which will explore the role 

of MRI in screening for PC. Preceding the biopsies with MRI–outside of study 

settings–is currently rare in clinical practice, but is slowly becoming more 

common. For now, this practice is restricted by the additional costs and limited 
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availability of both MRI and radiological expertise in interpreting prostate 

MRI outside of PC-referral centers. 

There exist, however, some studies suggesting a limited benefit from this 

approach specifically in cohorts of men with no prior biopsies (Siddiqui et al. 

2015, Baco et al. 2016, Tonttila et al. 2016), in which cancer detection rates 

between targeted biopsies and systematic random biopsies were comparable. 

This is presumably because the prevalence of previously undetected cancers in 

this population is higher than in previously biopsied men. This is also 

highlighted by the lower median NPV of MRI and higher prevalence of PC in 

patients with no previous biopsies—69.9% with a prevalence of 51.4%—versus 

an NPV of 82.6% with a PC prevalence of 42% for men who have previously 

had a negative biopsy (Moldovan et al. 2017). These findings, considered 

together, suggest that performing MRI when suspecting PC may be more 

beneficial only after the first round of negative random biopsies, as the EAU 

and NCCN guidelines on PC currently recommend (Mohler et al. 2016, Mottet 

et al. 2017). 

Implementing prebiopsy MRI in the diagnostic pathway of PC seems, 

however, promising, with several trials underway and many reports sure to be 

forthcoming in the following years. Reports increasingly suggest it also to be a 

cost-effective strategy (de Rooij et al. 2014, Cerantola et al. 2016, Pahwa et al. 

2017, Venderink et al. 2017). 

2.4 PROSTATE CANCER TREATMENT 

2.4.1 STAGING AND RISK STRATIFICATION 

PC staging is based on the Tumour Node Metastasis (TNM) Classification 

(Figure 7, Table 1). 
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Figure 7 The American Joint Committee on Cancer Tumour Node Metastasis criteria for 
prostate cancer. Reprinted by permission from John Wiley and Sons: CA: Cancer Journal for 
Clinicians, Feb 21, 2017, Buyyounouski et al., “Prostate cancer – major changes in the 
American Joint Committee on Cancer eight edition cancer staging manual”.  

Table 1. Staging of prostate cancer based on Tumour (T) Node (N) Metastasis (M) 
classification (Data from Brierley et al. 2016). 

Stage I T1-T2a N0 M0 

Stage II T2b-T2c N0 M0 

Stage III T3-T4 N0 M0 

Stage IV Any T N1 M0 

 

Any T Any N M1 

 

PC is a very heterogenous disease with great variation in its clinical course 

between the opposite ends of the disease spectrum (Lu-Yao et al. 2009, Rider 

et al. 2013). To better characterize PC and to guide the treatment planning, PC 

is divided into differing risk groups. Several risk stratifications have been 

created, but the most commonly used–the D’Amico classification–hails from 

1998 (D'Amico et al. 1998). It has since been validated in prospective cohorts 
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and serves, essentially unchanged, as a basis for contemporary risk group 

classifications (Mohler et al. 2016, Mottet et al. 2017) (Table 2). 

Table 2.  Risk stratifications in prostate cancer (Data from D’Amico et al. 1998, Mohler et 
al. 2016, and Mottet et al. 2017) 

Risk group D’Amico Classification 
(1998) 

NCCN Clinical Practice 
Guidelines in Oncology 
(2016) 

EAU Clinical Guidelines 
(2017) 

Very low  cT1, N0, M0 and  
  GS ≤ 6 and  
  PSA < 10 ng/ml and  
  cancer in < 3 biopsy cores 

and 
 

  ≤ 50% cancer in any biopsy 
core and 

 

  PSA-density < 0.15 ng/ml/g  

Low cT1-T2a, N0, M0 and cT1-T2a, N0, M0 and cT1-T2a, N0, M0 and 
 GS ≤ 6 and 

PSA ≤ 10 ng/ml 
GS ≤ 6 and 
PSA < 10 ng/ml 

GS ≤ 6 or  
GG = 1 and 

   PSA < 10 ng/ml 

Intermediate cT2b or cT2b-T2c or cT2b or 
 GS=7 or 

PSA 10-20 ng/ml 
GS = 7 or 

PSA 10-20 ng/ml 

GS = 7 or 
GG 2 or 3 or 

   PSA 10-20 ng/ml 

High cT2c or higher or cT3a or cT2c or higher or 
 GS ≥ 8 or 

PSA > 20 ng/ml 
GS 8-10 or 
PSA > 20 ng/ml 

GS ≥ 8 or 
GG 4 or 5 or 

   PSA > 20 ng/ml 

Very high  cT3b-T4 or  
  GS 5+4, 5+5 or  
  > 4 biopsy cores with GS 

8-10 
 

NCCN=National Comprehensive Cancer Network, EAU=European Association of Urology, cT=clinical 
tumor stage, N=node, M=metastasis, GS=Gleason score, PSA=prostate-specific antigen, GG=grade 
group 

 

The risk groups reflect an individual patient’s probability of biochemical 

disease recurrence, meaning detectable and rising post-treatment PSA levels, 

after radical therapies for PC and, as such, can serve as a guide in choosing 

appropriately effective treatments. The available treatment options for PC also 

depend on disease stage (Table 1). 

Stages I-III, i.e. localized and locally advanced diseases without nodal or 

distant metastases, are generally treated actively. The appropriate treatment 

choice is based on the risk group, i.e. low, intermediate, or high (Table 2). 

2.4.2 ACTIVE SURVEILLANCE (AS) 

Recent decades have seen a shift towards PC’s being diagnosed at 

progressively earlier stages. Treating all asymptomatic early-stage cancers 

aggressively with radical therapies would constitute overtreatment, because 

only some cancers would ever progress to cause harm during an individual 
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patient’s lifetime. This overtreatment would also lead to excessive harm since 

curative cancer therapies inherently carry a risk for adverse side-effects. It is 

these two factors–potential overtreatment and unnecessary harmful effects–

that led to the introduction of AS in the 1990’s (Epstein et al. 1994), and its 

adoption as the primary treatment for low-risk PC (Cooperberg et al. 2011). 

Immediate curative treatment has also failed to offer overall or disease-

specific mortality benefits in low-risk PC (Wilt et al. 2012, Hamdy et al. 

2016).  

AS aims at surveillance without the chance of missing the window of 

curability. Eligibility criteria for AS differ slightly between guidelines, but are 

most often essentially the Epstein criteria for insignificant disease: PSA-

density of < 0.15 ng/ml/g, Gleason score ≤ 6 in biopsies, a maximum of 2 

biopsy cores involving cancer, and < 50% of any biopsy core involving cancer 

(Epstein et al. 1994). Patients must also be sufficiently young and fit to be 

eligible for possible curative treatment if their disease progresses. In an 

autopsy study by Zlotta and co-workers (2013), 320 prostates were evaluated 

from men aged 20-89 who died without any history of PC. A significant 

proportion of all of these men (35.6%) had malignant lesions in their prostates, 

and although the majority of these cancers were Gleason score 6 (55.6%), 

another 25.6% harbored Gleason score 7 disease. This finding supports the 

notion that some men with low-volume Gleason 3+4 PC might be candidates 

for AS. However, one must bear in mind that Gleason pattern 4 clearly 

indicates increased risk for progression, also in an AS setting (Dall'Era et al. 

2017). 

2.4.2.1 Monitoring during AS 

Patients on AS are carefully monitored, usually by a predetermined 

surveillance protocol. Serial PSA measurements are integral to all forms of PC 

treatments and monitoring, most crucially in AS. Whereas a rising PSA level 

is indicative of tumor growth, such a rise can also result from benign causes 

such as prostate enlargement and inflammation, making it a somewhat 

unreliable and unspecific PC-monitoring tool on its own. Other markers, ones 

based on PSA measurements, have been developed: free PSA, meaning the 

amount of noncomplexed PSA in the bloodstream (Lilja 1993); %fPSA, the 

percentage of total PSA levels amounting to free PSA (Catalona et al. 1995); 

PSA density, the ratio of PSA level to estimated prostate volume (Benson et al. 

1992); and PSA and %fPSA kinetics, the rates at which PSA and %fPSA change 

in serial measurements (Carter et al. 1992). All these PSA-derived parameters 

have been utilized in the decision whether to continue AS or offer curative 

treatment, although with conflicting findings (Ross et al. 2010, Iremashvili et 

al. 2013, Vasarainen et al. 2015, Iremashvili et al. 2016). PSA-doubling time 

and PSA density are, however, still integral elements of the Prostate Cancer 

Research International Active Surveillance (PRIAS) protocol (Bokhorst et al. 

2016b). 
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 Repeat prostate biopsies are also an integral part of AS regimens. Some AS 

programs mandate immediate confirmatory biopsies to ensure the diagnosis 

of low-grade and low-volume disease before initiation of AS, whereas many 

require repeat biopsies after one year of AS. Thereafter, biopsies are generally 

repeated at predetermined time-points, usually at 2- to 4-year intervals. The 

findings of repeat biopsies guide the decision to either continue with AS or 

progress to definitive treatment. All AS protocols have specified criteria on 

what findings should trigger curative treatment (Bruinsma et al. 2016). 

Compared to PSA measurements, DRE, and prostate MRI, biopsies are 

invasive procedures, and as such, are uncomfortable. If patients refuse to take 

part in recommended repeat biopsies, the patency and safety of AS may be 

compromised (Bokhorst et al. 2015, 2016a), unless the lack of histological 

confirmation is compensated for by other means of follow-up, for example by 

prostate MRI or biomarkers. 

Some patients become anxious over knowing that they are living with a 

malignant disease and opt for immediate radical treatment, either RP or RT, 

even in the absence of signs of progression. Many patients, however, manage 

to continue AS for many years without its markedly affecting their quality of 

life (Vasarainen et al. 2012, Pham et al. 2016, Venderbos et al. 2017). 

2.4.2.2 Prospective AS studies 

AS is extensively studied in several high-volume cancer centers (Adamy et al. 

2011, Bul et al. 2013, Selvadurai et al. 2013, Klotz et al. 2015, Tosoian et al. 

2015, Welty et al. 2015, Godtman et al. 2016). One multi-center prospective 

study is the PRIAS trial, launched in 2006 at the Erasmus University Medical 

Center in Rotterdam, Netherlands (van den Bergh et al. 2007). It has evolved 

into the largest prospective AS trial, with over 150 participating centers from 

18 countries (Bokhorst et al. 2016b). The latter study was initially launched at 

eight centers, one of which being Helsinki University Hospital, which is the 

second largest participating center to date. Figure 8 presents the follow-up 

criteria for the PRIAS study, updated in 2015 (Bokhorst et al. 2015). 
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Figure 8 Outline of the follow-up in the Prostate Cancer Research International Active 
Surveillance study. PSA=prostate-specific antigen, PSA-DT=PSA-doubling tiome, 
PCa=prostate cancer. Figure reprinted by permission from Elsevier: European Urology, 2015 
Nov;68(5):814-21, Bokhorst et al., “Compliance Rates with the Prostate Cancer Research 
International Active Surveillance (PRIAS) Protocol and Disease Reclassification in 
Noncompliers”. 

2.4.3 CURATIVE THERAPIES 

2.4.3.1 Radical prostatectomy (RP) 

RP is a first-line treatment option in intermediate- or high-risk localized PC 

(Bill-Axelson et al. 2014). RP entails the surgical removal of the entire prostate 

gland and seminal vesicles. This procedure can be complemented with a 

lymphadenectomy when more accurate staging is deemed necessary or when 

a suspicion exists of lymph node involvement (Gandaglia et al. 2017, Nguyen 

et al. 2017). The operation can be performed either as a conventional open 

procedure or laparoscopically, with or without 3D technique or robot 

assistance. RP requires the patient to be sufficiently fit for general anesthesia 

and major surgery. In high-risk disease, RP with lymphadenectomy is the first-

line choice, but the more aggressive the disease, the more likely it is that RP 
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needs later to be complemented with adjuvant radiotherapy, leading to a so-

called multimodal treatment approach (Daly et al. 2011, Mottet et al. 2017). 

Reported rates of biochemical disease recurrence after RP range from 20 to 

50% (Novara et al. 2012, Meurs et al. 2013, Lee et al. 2015). 

In intermediate- and high-risk PC, RP is beneficial in that it reduces 

disease-specific mortality and development of metastases (Wilt et al. 2012, 

Bill-Axelson et al. 2014), even offering overall-survival benefit (Bill-Axelson et 

al. 2014) compared to no intervention. These reductions have been 

demonstrated in two large prospective trials where patients with localized, 

clinically T1-T2, disease were randomized to either RP or to observation: the 

Scandinavian Prostate Cancer Group (SPCG)-4 trial (Bill-Axelson 2014) and 

the Prostate Cancer Intervention versus Observation Trial (PIVOT) (Wilt et al. 

2012).  

The SPCG-4 trial recruited patients between 1989 and 1999 in Sweden, 

Finland, and Iceland. During its recruitment period, in Nordic countries, PSA 

testing was less prevalent than it is today. A large proportion of patients were 

therefore diagnosed with PC on clinical grounds, with 40% of patients being 

diagnosed with symptomatic disease. The SPCG-4 study revealed RP as 

offering significant reductions—compared to those from solely observation—

in overall mortality, disease-specific mortality, and development of metastases 

when all patients were pooled. This included an especially pronounced benefit 

for patients under 65 and for those with intermediate-risk disease (Bill-

Axelson et al. 2014).  

Findings from the PIVOT were more modest (Wilt et al. 2012). The patient 

cohorts in PIVOT and SPCG-4 were similar in many respects: PSA levels were 

< 10 ng/ml for 65% vs. 50% of patients, and biopsy Gleason scores were ≤ 6 

for 70% vs. 60%. The PIVOT patients were, however, recruited in the USA 

between 1994 and 2002, after PSA testing had become common and after the 

peak years of PC diagnoses in the USA. Of these patients, 50% had non-

palpable disease at diagnosis, compared to only 12% of SPCG-4 patients. This 

demonstrates how patients in the PSA era are diagnosed with PC at an earlier 

stage than before PSA testing, exemplifying lead-time bias. The PIVOT trial 

detected the potential benefit of RP versus observation only in subgroups of 

patients with PSA > 10 ng/ml and intermediate- to high-risk disease based on 

a post-hoc analysis (Wilt et al. 2012). 

More recently, the Prostate Testing for Cancer and Treatment (ProtecT) 

trial from the UK—a trial comparing AS, RP, and RT for screen-detected 

localized PC—demonstrated no survival benefit from radical therapies 

compared to that of AS (Hamdy et al. 2016). Development of metastases was, 

however, rarer for patients receiving radical therapies; RP and RT, than for 

those on AS. This highlights the importance of proper patient selection for 

radical therapies: considering that these patients were aged 50-69 at 

recruitment, this reduction in disease progression will, during prolonged 

follow-up, likely translate into improved survival.  
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2.4.3.2 Predicting outcomes after RP  

Assessing the long-term outcomes of RP objectively can be difficult because of 

variations between studies in reporting their results. Outcomes most often 

reported are biochemical recurrence, disease-specific mortality, or overall 

mortality, or, conversely, survival without these events. Need for secondary 

therapies, or disease progression or metastases after RP are also possible study 

endpoints. Depending on the endpoint of interest, outcomes also vary greatly 

between patient subgroups, with some groups reporting on said clinical 

outcomes for only low-risk or high-risk PC, for patients younger or older than 

65, for different clinical or pathological disease stages, or for such variables as 

positive or negative surgical margins. Obtaining tangible estimates of the 

results of RP for general patient populations is therefore challenging. 

Currently, patients are stratified into risk groups by their TNM stage, PSA, 

and Gleason scores (Table 2). Although intended for estimating the risk for 

disease recurrence after radical therapies, this risk stratification falls short. 

This holds especially true for the former Gleason-score 7 population, where 

patients’ outcomes have varied markedly. The new grade group system aims 

to improve risk stratification especially for this population (Epstein et al. 

2016a). The predictive performance of the new grade groups lacks validation 

from prospective contemporary cohorts but has been validated in 

retrospective studies (Epstein et al. 2016b, Spratt et al. 2016). The new grade 

grouping demonstrated, among other findings, marked differences in 

biochemical-recurrence-free survival rates between Gleason score 3+4 and 

4+3 cancers, especially after RP, differences evident with stratifications made 

from both pre-RP biopsies and RP specimens (Epstein et al. 2016b) (Figure 9). 

This five-tier stratification correlated with cancer-specific mortality, not just 

with biochemical recurrence, in contemporary SEER registry data from 2006-

2012 (He et al. 2017). The new grade grouping–however promising–is only 

part of the solution, as many parameters other than biopsy Gleason scores 

must be considered prior to decisions on appropriate treatment. 
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Figure 9 Probability of survival without biochemical disease recurrence in the years following 
radical prostatectomy (RP), stratified by Grade groups (GG) from pre-RP biopsies. Green: 
Gleason score (GS) ≤6/GG1. Orange: GS 3+4/GG 2. Blue: GS 4+3/GG 3. Red: GS 8/GG 4. 
Purple: GS ≥9/GG 5. Figure reprinted by permission from Elsevier: European Urology, 2016 
Mar;69(3):428-35, Epstein et al., “A Contemporary Prostate Cancer Grading System: A 
Validated Alternative to the Gleason Score”. 

Several nomograms and risk-assesment tools for predicting the clinical 

outcome of PC patients after radical therapies have emerged. A literature 

search in 2008 discovered over 100 prediction tools (Shariat et al. 2008), and 

many more have since been developed. Some tools are designed for the pre-

treatment setting (Kattan et al. 1998, D'Amico et al. 1999, Cooperberg et al. 

2005, Stephenson et al. 2006), and some are intended for estimating 

outcomes after radical therapies (D'Amico et al. 1998, Moul et al. 2001, 

Roberts et al. 2001, Stephenson et al. 2005, Schroeck et al. 2008, Cooperberg, 

Hilton & Carroll 2011). Nomograms have also been designed for use upon the 

event of any biochemical recurrence after radical therapies (Abdollah et al. 

2013, Brockman et al. 2015, Dell'Oglio et al. 2016). For nomograms to be of 

definitive value in the clinical setting requires their being externally validated 

in the separate patient cohorts from which they were developed, with 

sufficiently long follow-up, to accurately predict meaningful clinical end-

points such as PC mortality. They also must be easy to use and interpret 

(Nguyen et al. 2009, Lughezzani et al. 2010, Teeter et al. 2013, Boehm et al. 

2016, Jaderling et al. 2016).  

For the postoperative prediction of PC-specific mortality, the CAPRA-S 

nomogram (Cooperberg, Hilton & Carroll 2011) appears to be the most robust, 

with its prognostic performance having been externally validated in several RP 

cohorts on several continents (Seong et al. 2013, Punnen et al. 2014, Seo et al. 
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2014, Tilki et al. 2015) and even in one radiation-therapy cohort 

(Zimmermann et al. 2016). Recently, MRI-derived parameters have been 

added to existing nomograms in an attempt to increase their predictive power 

(Morlacco et al. 2017, Zhang et al. 2017). 

2.4.3.3 Radiation therapy (RT)  

RT, also a treatment option with curative intent for intermediate- or high-risk 

PC, entails radiating the entire prostate gland, effectively killing the cancer but 

leaving the prostate in situ. RT is the preferred treatment in intermediate- or 

high-risk clinically T3 PC, because no data exist from randomized phase III 

trials for surgery in T3 disease, whereas several trials for RT, when 

supplemented with hormonal therapy, have been published in this setting 

(Widmark et al. 2009, Mottet et al. 2012). Analysis of data provided by the 

Surveillance, Epidemiology, and End Results (SEER) registry—a cancer 

registry of the National Cancer Institute in the USA, which covers 

approximately 28% of the US population—revealed that for 42 403 men 

diagnosed with localized PC in 2010, the proportion receiving RT as a form of 

local treatment rose along with ascending NCCN risk group. Of men with high-

risk disease, 43% were treated with RT and 31% with RP, and the 

corresponding figures were 38% and 45% for men with intermediate-risk 

disease (Mahmood et al. 2014). A study from 2015, looking at 13 803 men who 

received either RP, RT, or brachytherapy at two American institutes, 1995-

2008, also observed that men receiving RT had more adverse disease 

characteristics, such as higher PSA, higher-grade cancers, and more advanced 

clinical stage than did those receiving RP (Lee et al. 2015). 

RT can be performed either as external-beam radiotherapy, with daily 

administration spanning several weeks, or as high-dose-rate brachytherapy 

delivered directly into the prostatic tissue generally in one to four sessions. 

Low-dose-rate brachytherapy—also a form of RT—is recommended mainly for 

“low- and favorable intermediate-risk PC” (Mottet et al. 2017), where radical 

therapies are generally not encouraged. Low-dose-rate brachytherapy is 

therefore not commonly practiced.  

External-beam radiotherapy and high-dose-rate brachytherapy both 

customarily require neoadjuvant hormonal therapy in the 3 to 6 preceding 

months. In the case of high-risk PC the hormonal therapy is typically 

continued for 2 to 3 years post-treatment, to lower risk for disease recurrence 

(Bolla et al. 2009, 2010, Mottet et al. 2012). Biochemical-disease-recurrence 

rates after RT have generally been reported to be 20-30% (Kupelian et al. 

2002, Lee et al. 2015). 

A 2016 meta-analysis of 19 observational studies comparing RT and RP for 

treating localized PC found RT to associate with an increased risk of overall 

and PC-specific mortality (Wallis et al. 2016). This should, however, be 

interpreted with consideration for potential bias arising from: 1) residual 

confounding, which stems from RT’s being, compared to RP, more often 
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offered to older patients with more co-morbidities, and 2) different rates of 

salvage therapies, because RP is often followed by RT after disease recurrence, 

whereas if PC recurs after RT, surgery is seldom performed. The long-awaited 

10-year results of the ProtecT trial revealed no survival differences when 

patients were randomized to receive either RT or RP (Hamdy et al. 2016). 

2.4.4 OTHER THERAPIES 

2.4.4.1 Focal therapies 

The increasing detection of PC cases around the world, more often at earlier 

stages, has given rise to a novel treatment form, focal therapy (FT). FT entails 

treating only the malignant lesion in the prostate while leaving the rest of the 

gland intact. This approach aims to confer less treatment-related harm than 

do whole-gland therapies while providing acceptable cancer control. The 

energy that destroys the cancer can be delivered into the prostate focally by a 

wide selection of techniques: high-intensity focused ultrasound, 

radiofrequency ablation, and cryotherapy, among others. The targeting of the 

tumor is most often carried out with MRI. FT is advertised as a middle-ground 

therapy in situations in whiche AS might be deemed an unsafe option and 

whole-gland radical therapies would be too aggressive. FT is already being 

carried out in prospective clinical trials with promising preliminary results 

(Ahmed et al. 2015, Feijoo et al. 2016), but long-term safety and disease-

control results can be properly evaluated only after many years. FT also lacks 

any comparison with other curative therapies, namely RP and RT, most likely 

because these treatment forms are intended for distinctly different patients.  

2.4.4.2 Therapies for metastatic prostate cancer 

In disseminated stage IV disease, or if the patient is elderly or unfit or both, 

radical therapies such as RP and RT may be inappropriate. For an 

asymptomatic elderly or unfit patient, generally with less than 10-15 years’ life-

expectancy, one who hasn’t developed distant metastases, one treatment 

option is watchful waiting. This treatment option is not strictly outlined 

(Mottet et al. 2017), but can entail repeated PSA measurements and clinical 

check-ups to assess disease stage and general well-being. Interventions may 

become necessary when the patient develops symptoms, such as pain from 

skeletal metastases or LUTS.  

In metastatic PC, the primary treatment option is castration therapy 

because, until near the patient’s death, PC cells generally maintain their 

dependency on circulating testosterone. This dependency was discovered in 

1941 by two doctors, Huggins and Hodges, leading to Huggins’s later receiving 

the Nobel prize in medicine in 1966. Castration can be achieved either 
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surgically or by continuous administration of luteinizing hormone-releasing 

hormone (LHRH) agonists or antagonists. It can be complemented with early 

chemotherapy in select patients (Sweeney et al. 2015, James et al. 2016).  

Such hormonal therapy has, however, a limited effective period of 2-3 years 

before the disease eventually progresses, despite castration levels of 

testosterone, i.e. it becomes castration-resistant (Pienta et al. 2006). At this 

point, the next treatment option has conventionally been to advance to 

cytotoxic chemotherapy, mainly docetaxel, but recent years have seen the 

advance of an abundance of novel therapies for castration-resistant PC. These 

include a novel antiandrogen, enzalutamide (Scher et al. 2012), an androgen-

synthesis inhibitor, abiraterone (de Bono et al. 2011), an alpha-emitting 

radiopharmaceutical, radium-223 (Parker et al. 2013), and a novel cytotoxic 

drug, cabazitaxel (de Bono et al. 2010). Sipuleucel-T is the first FDA-approved 

immunological therapy for PC, although it is unavailable in Europe. Other 

immunological therapies are in development, but none have thus far 

demonstrated overall-survival benefit in phase III trials (Slovin 2016). 

Optimal patient selection, timing, and treatment sequences of these novel 

therapies are thus far unknown, but are the focus of intense research (Sweeney 

et al. 2015, James et al. 2016, Ritch et al. 2016). 

2.5 INFECTIOUS COMPLICATIONS OF PROSTATE 
BIOPSIES 

2.5.1 BIOPSY-RELATED COMPLICATIONS 

Transrectal biopsies can cause many complications for patients (Borghesi et 

al. 2017), among which are pain, hematuria, hematospermia, rectal bleeding, 

and infection. Prostate biopsy may also cause temporary impairment to 

erectile function, which usually returns to baseline by 1-6 months after the 

procedure (Borghesi et al. 2017). Non-infectious complications are most often 

mild and self-limiting, only rarely requiring hospitalization (Borghesi et al. 

2017), whereas infectious complications can be more severe.  

During the biopsy procedure, the needles pass through the rectal wall 

repeatedly. Although the procedure occurs in conjunction with antibiotic 

prophylaxis, it is nearly impossible to completely avoid all infections when 

operating in a region contaminated with fecal bacteria. Transrectal biopsies 

therefore inherently carry a risk for infectious complications, occurring in up 

to 7% of procedures (Eichler et al. 2006). These complications range in 

severity from the mildest forms’ being asymptomatic bacteriuria or 

symptomatic lower urinary tract infections to more severe forms including 

febrile urinary tract infections, with their reported incidence of 2.2-4.2% (Loeb 

et al. 2012, Batura et al. 2013), and in the worst cases, septic infections, the 

incidence of which ranges from 0.6 to 3.1% (Carmignani et al. 2012, Hayatzaki 

et al. 2014, Bruyere et al. 2015, Bulut et al. 2015, Liss et al. 2015b). The latter 
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manifestations are the most feared, since they may lead to patients’ requiring 

intensive care, can cause abscesses and other secondary complications, and 

may even prove fatal. Mortality rates at 30 days have been reported at 0.09-

0.3% (Loeb et al. 2011, Nam et al. 2013), but the rates increase with longer 

observation periods, with a 90-day-mortality rate of 1% reported from Sweden 

(Lundström et al. 2014) and a 120-day-rate of 1.3% from Canada (Gallina et al. 

2008). Mortality is associated with septic complications, advanced age, and 

worsening of co-morbid conditions. 

2.5.2 FLUOROQUINOLONE RESISTANCE  

The last 15-20 years have seen an alarming rise in the incidence of post-biopsy 

infections (Nam et al. 2013, Anastasiadis et al. 2015). One explanatory factor 

is the number of biopsy procedures increasing as a result of widespread PSA 

testing, the aging populations in developed countries, and the emergence of 

AS as a treatment strategy for low-risk PC. Another contributory factor is the 

increasing resistance of enteric bacteria, typically Escherichia coli, to 

fluoroquinolone (FQ) antibiotics (Zowawi et al. 2015) (Figures 10 and 11).  

 

 

Figure 10 Increasing proportions of non-fluoroquinolone-susceptible Escherichia coli in 
European countries, from 2000 to 2015. Gray indicates no calculated data. (Source: 
European Centre for Disease Prevention and Control, website accessed 16 Feb 2017, 
reprinted here with permission.) 
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Figure 11 Global prevalences of fluoroquinolone resistance in Gram negative uropathogens. 
Figures from studies published in 2009-2014. Reprinted by permission from Macmillan 
Publishers Ltd: Nature Reviews Urology, 2015(12), 570–584, Zowawi et al., “The emerging 
threat of multidrug-resistant Gram-negative bacteria in urology”, copyright 2015. 

FQs are the prophylactic antibiotics most commonly used for the prostate 

biopsy procedure (Mottet et al. 2017), due to their easy oral administration, 

generally good coverage against enteric bacteria, and favorable drug 

penetration of prostatic tissue (Dan et al. 1986). The cause of biopsy-related 

infections is therefore often  FQ-resistant bacteria residing in the patients’ 

rectal flora which are translocated by the penetrating biopsy needles 

(Carmignani et al. 2012, Williamson et al. 2012, Taylor et al. 2013, Ehdaie et 

al. 2014, Hayatzaki et al. 2014, Rudzinski et al. 2014, Song et al. 2014, Liss et 

al. 2015a, 2015b, Marino et al. 2015). 

Rising global levels of FQ resistance result from the liberal administration 

of FQs to treat community-acquired urinary tract infections (Fasugba et al. 

2015), from the use of antibiotics in agriculture in developed countries (Oliver 

et al. 2011), and from easy over-the-counter access to antibiotics in developing 

countries. 

     A risk factor clearly associated with developing post-biopsy infections is 

recent international travel (Patel et al. 2012, Anderson et al. 2015). The 

mechanism underlying this association is temporary colonization of the 

patient’s intestinal flora by FQ-resistant bacteria (Kantele et al. 2014) picked 

up when traveling to an area that exhibits marked FQ resistance. The recent 

use of antibiotics–FQs or some other–may also raise the risk for post-biopsy 

infections (Patel et al. 2012, AbuGhosh et al. 2013, Loeb et al. 2013, Anderson 

et al. 2015, Bruyere et al. 2015). Speculation is that the mechanism is 

antibiotics’ temporary disturbance of the balance in rectal bacterial flora, 

again allowing for temporary colonization by more virulent, often FQ-resistant 
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strains. Many studies have demonstrated FQ-resistant bacteria in the rectal 

flora to be a strong risk factor for development of post-biopsy infections. This 

has prompted the introduction of prebiopsy rectal swabs that allow the 

tailoring of antibiotic prophylaxis instead of administration of possibly 

ineffective FQs. This strategy has been effective in reducing post-biopsy 

infections (Duplessis et al. 2012, Taylor et al. 2012, Suwantarat et al. 2013, 

Roberts et al. 2014, Li et al. 2016), and it is suggested to be cost-effective 

(Duplessis et al. 2012, Taylor et al. 2012, Li et al. 2016). 

     Another strategy to reduce post-biopsy infectious complications is to 

circumvent the contaminated transrectal route and perform transperineal 

biopsies instead. Sepsis rates have generally been lower following 

transperineal procedures, although such procedures are associated with 

higher rates of urinary retention (Bennett et al. 2016). This procedure, 

however, requires spinal anesthesia, making it more demanding than 

transrectal biopsy, which can be performed with local anesthesia as an out-

patient procedure.   

2.5.3 OTHER RISK FACTORS FOR POST-BIOPSY INFECTIONS 

Effort has gone into identifying other factors possibly raising the risk for 

post-biopsy infections. Some report an increased risk as being associated 

with repeated biopsies (Ehdaie et al. 2014). This is worrisome because repeat 

prostate biopsies are an integral part of the AS protocols (Bruinsma et al. 

2016), but patients who develop post-biopsy complications may be reluctant 

to comply with programed repeat biopsies (Bokhorst et al. 2015, 2016a). 

Having undergone prostate biopsies typically means having recently taken 

FQs as a prophylactic antibiotic. This predisposes the patient to harboring 

FQ-resistant bacteria, placing the patient more at risk for post-biopsy 

infection (Roberts et al. 2014). Currently no consensus exists as to whether 

repeat biopsies raise the risk for infections, although large-scale studies 

(Loeb et al. 2013a, Aly et al. 2015, Bokhorst et al. 2016a, Halpern et al. 2017) 

and one meta-analysis (Roberts et al. 2014) suggest no connection.  

Any factors weakening a host’s ability to fight bacterial infection can 

naturally be considered risky. Regarding biopsy-related infections, these 

factors may include diabetes (Simsir et al. 2010, Loeb et al. 2012, Halpern et 

al. 2017), other comorbidities (Aly et al. 2015, Anastasiadis et al. 2015, Shahait 

et al. 2016), old age (Anastasiadis et al. 2015, Shahait et al. 2016), and urinary-

catheter use (Simsir et al. 2010, Eruz et al. 2017). 
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2.6 MRI IN THE AS OF PROSTATE CANCER 

2.6.1 MRI IN SELECTING PATIENTS FOR AS 

No clinical guidelines on AS currently recommend the routine use of MRI 

(Bruinsma et al. 2016). It is, however, increasingly employed, and several AS 

guidelines recommend it in situations when any discrepancy emerges between 

biopsy findings and clinical parameters, such as PSA levels or DRE or 

transrectal ultrasound findings. The two most common indications to perform 

prostate MRI for low-risk-PC patients are: 1) to confirm the diagnosis of low-

grade, low-volume disease and to determine whether no significant lesion may 

have been missed by random biopsies, and 2) to monitor disease progression 

during AS (Schoots et al. 2015a). 

Roughly one-third of men on AS will have their disease reclassified as 

worsening in their first confirmatory or follow-up biopsies (Dall'Era et al. 

2012) and will therefore no longer be eligible for AS. This largely fails to reflect 

the true clinical progression of their disease, but rather reflects undersampling 

in their diagnostic biopsies. This inaccuracy has prompted the use of prostate 

MRI with the goal of better identifying those men for whom AS is the proper 

treatment option. In their 2015 review, Schoots and-co-workers (2015a) 

concluded that prostate MRI in men eligible for AS, if based on biopsy data, 

reveals a positive lesion in 70%. When these men receive repeat biopsies, with 

or without MRI targeting, 47% will be reclassified as having worse disease than 

at inclusion for AS. In short, this would imply that if MRI were routinely 

performed for all men before initiation of AS, one-third would evidently have 

a poorer prognosis than predicted and would no longer be suitable candidates 

for AS.  

There exist, however, caveats in interpretation of these results. First, 

studies reporting on reclassification rates of MRI-positive men cannot always 

report on corresponding rates for those men without an MRI-positive lesion, 

because such men will not necessarily undergo repeat biopsies. Second, when 

performing repeat biopsies with MRI targeting, the cancer yield tends to be 

higher than for random biopsies, leading automatically to higher 

reclassification rates. The PRIAS protocol was accordingly modified in 2015 so 

that if the diagnostic biopsies were performed with MRI guidance, the protocol 

would allow a higher number of positive cores at inclusion. Consequently, the 

number of positive cores permitted during repeat biopsies was adapted based 

on the number at baseline (Bokhorst et al. 2016b). Despite these caveats, 

prostate MRI shows promise as a tool for better risk stratification at AS 

inclusion. 

2.6.2 MRI AS A FOLLOW-UP TOOL IN AS  

Another indication for prostate MRI during AS is to monitor possible disease 

progression. Since AS is a treatment option reserved solely for low-volume, 
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low-grade PC, employing MRI as a follow-up tool for AS patients is somewhat 

challenging (Schoots et al. 2015a). Low-grade PC is hard to differentiate from 

benign tissue, making tumor monitoring difficult. The goal of MRI in AS is to 

detect those lesions prompting active therapies, i.e. clinically significant 

disease. MRI is well suited to this purpose because of its NPV for Gleason 4 or 

higher grades (Moldovan et al. 2017). 

Before adopting MRI into AS protocols, what should, however, be decided, 

is what constitutes radiological progression and how MRI findings dictate 

further action. The Prostate Cancer Radiological Estimation of Change in 

Sequential Evaluation (PRECISE) panel of 19 experts in the fields of urology, 

radiology, and radiation oncology has recently released its recommendations 

for documenting changes in MRI findings during AS (Moore et al. 2017). Serial 

MRIs may monitor the size of tumors or, alternately, other radiologic 

parameters such as decrease in ADC values (van As et al. 2009, Morgan et al. 

2011) or other adverse features. Standardized structured reporting systems for 

MRI such as PI-RADS (Weinreb et al. 2016) are essential in properly 

comparing serial images, and ideally the same versions of the reporting 

systems should be the choice. Another issue is how great a change between 

images should trigger further action or whether absolute lower limits are 

necessary, such as a certain tumor diameter or a prespecified PI-RADS score 

(Moore et al. 2017). 

When performing MRI to monitor AS patients, it is natural to utilize MRI 

data to aid in guiding repeat biopsies. Performing MRI-guided biopsies in 

addition to standard biopsies during AS follow-up has allowed detection of 

more Gleason-grade upgrades than by standard biopsies alone (Hoeks et al. 

2014, Walton Diaz et al. 2015, Ma et al. 2017). This approach is, however, 

impractical, because the goal of MRI-guided biopsies is to achieve accurate 

results with fewer cores than standard biopsies require, instead of with more 

cores. The as-yet-limited added value of MRI-guided biopsies in the AS setting 

may be explained by the patient population: MRI-guided procedures perform 

best when targeting high-grade lesions, and AS patients by definition harbor 

only low-volume, low-grade PC. 

Since prostate biopsy is an invasive and often problematic procedure, one 

speculation is that in AS, prostate MRI could someday replace repeat biopsies. 

This would entail continuing surveillance as long as PSA and MRI findings 

remain stable, showing no disease progression, but otherwise advancing to 

active treatment. This may already be practiced in real-life, but accurate 

knowledge of the NPV of MRI still needs confirmation from biopsies 

performed on men with negative MRI findings. Thus far, the NPV for detecting 

Gleason score ≥ 7 PC after a negative MRI in AS patients is reported to be as 

high as 93.1-100% (Wysock et al. 2016, Lu et al. 2017). The PRIAS study group 

has launched an MRI sidestudy with the hopes of further clarifying this issue 

among others (Hoeks et al. 2014). For prostate MRI to trigger active therapies 

by itself would require a strict definition of radiological disease progression 

and firm knowledge of the correlation between adverse radiologic features and 
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with histopathological findings. MRI can result in false-positive results, so the 

decision to advance to active therapies is hardly ever made without 

histopathological confirmation from biopsy. Prostate MRI cannot as yet 

replace repeat biopsy in AS. 

2.7 BIOMARKERS IN PROSTATE CANCER  

2.7.1 MULTIPLE-GENE ASSAYS 

Novel tools for better prediction of patient outcomes are constantly appearing. 

Today, great emphasis is upon finding biomarkers that will aid in outlining a 

PC-patient’s outcome. Biomarkers can range from genes, gene products, or 

cancer-metabolism products to radiological findings that have, in some 

circumstances, been associated with either aggressive PC, risk for expansion, 

or the risk for developing metastases. The presence of such single or multiple 

biomarkers in a patient’s blood or urine sample, prostate biopsy, RP specimen, 

or MR image would theoretically indicate the patient’s having worse disease 

than the standard prediction tools would indicate.  

The first commercially available gene-expression application was the 

Prolaris® test introduced in 2010, which measures the expression of 46 genes 

found to correlate with PC cell proliferation, producing a cell-cycle progression 

score. This score, combined with the PSA and the Gleason score, aims to 

predict the 10-year risk for PC progression and risk of death. Other genetic 

panels have since entered the market, namely the Oncotype DX® that tests for 

17 genes, and the 22-gene Decipher® test. These commercial genetic panels 

are marketed as additional predictive tools to aid physicians and patients in 

making treatment decisions. Oncotype DX®, a prognostic tool also for breast 

cancer,  aids in deciding whether a patient with low-risk PC can safely choose 

AS instead of immediate radical therapy (Klein et al. 2014, Cullen et al. 2015), 

whereas Decipher® aims to help in deciding on possible adjuvant therapies 

after RP (Den et al. 2015, Klein et al. 2015). The Prolaris® test, according to its 

manufacturer, is suited for both scenarios (Freedland et al. 2013, Cuzick et al. 

2015, Koch et al. 2016).  

Being laboratory-developed tests, these commercial panels lack approval 

by the FDA (Office of Public Health Strategy and Analysis, Office of the 

Commissioner, Food and Drug Administration 2015), but are covered by some 

insurance policies and advocated in the USA by NCCN clinical guidelines on 

PC (Mohler et al. 2016). These tests have shown promising results in 

prospective validation studies, as reviewed by Boström and co-workers (2015), 

but are currently expensive, with their cost-effectiveness unestablished. There 

is, interestingly, also no overlap between genes for which these assays test. 

Performances of these panels have yet to be compared with each other in head-

to-head analyses (Moschini et al. 2016). 
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2.7.2 SINGLE BIOMARKERS, FISH, IHC, AND TMA  

Single biomarkers are most often single genes or gene products detectable in 

blood, urine, or tissue samples. One detection method is fluorescence in situ 

hybridization (FISH), which finds DNA sequences or RNA targets in cancer 

cells. FISH can be performed on fresh or formalin-fixed paraffin-embedded 

tissue samples, but requires fluorescence microscopy and is a somewhat 

cumbersome technique. An alternate easier and less-costly method is 

immunohistochemistry (IHC), which detects protein products of relevant 

genes in malignant tissues. Compared to RNA sequencing of multiple genes, 

the study of single biomarkers by IHC is easy and inexpensive. If desired, it 

can be implemented in diagnostic processes in clinical practice, for example in 

the histopathologic analysis of diagnostic biopsies or RP specimens.  

A method for analyzing samples from hundreds of patients is to construct 

a tissue microarray (TMA). TMAs are paraffin blocks that contain tissue 

sample cores from dozens of patients. These blocks are sectioned to produce 

thin (5-µm) sections for study by FISH or IHC techniques (Figure 12), allowing 

for rapid analyses of large patient series. As such, TMAs of large historic 

patient cohorts are a practical means to study expression levels of promising 

biomarkers. 
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Figure 12 Immunohistochemical stainings of tissue microarray (TMA) cores with prostate 
cancer (PC). A. PC demonstrating cytoplasmic loss of PTEN expression (=pale gray 
cytoplasm). B. Sequential section of the same TMA spot as in A, but demonstrating positive 
nuclear ERG expression (=brown nuclei). C. Sequential section of same TMA spot as in A 
and B, but demonstrating high nuclear AR expression (=dark brown nuclei). D. A separate 
core demonstrating negative nuclear ERG expression (=gray nuclei). Modified from a figure 
published in Modern Pathology, 29(12):1565-74 (2016), Lahdensuo et al., ”Loss of PTEN 
expression in ERG-negative prostate cancer predicts secondary therapies and leads to 
shorter disease-specific survival time after radical prostatectomy” and reprinted here by 
permission from Macmillan Publishers Ltd. 

2.7.3 TMPRSS2:ERG FUSION 

An interesting and widely studied PC biomarker is the fusion of TMPRSS2, a 

serine protease gene, with ERG, an ETS family transcription factor oncogene. 

Among the functions of ERG and the other 27 members of the ETS family of 

transcription activators and repressors is regulation of gene expression in 

cancers of the breast, reproductive organs, and prostate (Gutierrez-Hartmann 

et al. 2007). TMPRSS2:ERG fusion is detectable in prostatic tissue by either 

FISH or IHC methods, of which the latter involves detecting the expression of 

the protein ERG. Such fusion is considered the most prevalent genetic 

alteration in PC development, present in 40-80% of PC samples (Tomlins et 

al. 2005, Yoshimoto et al. 2008, Hoogland et al. 2011, Minner et al. 2011, 

Pettersson et al. 2012, Attard et al. 2015). It is also evident in premalignant 

tissues, indicating this alteration to be an early occurrence in carcinogenesis. 

This fusion is therefore not unique to malignant tissues, but it is detectable in 

increasing numbers with rising degrees of disease aggressiveness and stage 

(Pettersson et al. 2012, Attard et al. 2015). This has been the premise for use 

of TMPRSS2:ERG fusion status to gauge an individual patient’s poorer 

prognosis. One hypothesis, however, is that TMPRSS2:ERG fusion is 

necessary in early PC development, but less functionally relevant in later 

disease stages (Baena et al. 2013). Positive ERG status has conversely also 

correlated in RP specimens with less aggressive histology (Kimura et al. 2012, 

Suh et al. 2012). This would explain why positive TMPRSS2:ERG fusion status 

appears to lack prognostic power in terms of mortality (Pettersson et al. 2012, 

Fleischmann et al. 2014). 

2.7.4 PTEN LOSS 

Another common genetic phenomenon is loss of function of the tumor 

suppressor gene PTEN, also detectable with either FISH or IHC techniques 

(Lotan et al. 2011, Picanco-Albuquerque et al. 2016). Original exploratory 

studies have detected, in PC samples, heterozygous PTEN loss in 29-55% 

(Cairns et al. 1997, Feilotter et al. 1998, Pesche et al. 1998) and homozygous 

PTEN loss in 10-15% (Cairns et al. 1997, Wang, Parsons & Ittmann 1998, 

Whang et al. 1998).  
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 PTEN loss activates the PI3K/Akt signaling pathway driving anabolic 

metabolism in cancer cells (Ward et al. 2012), which consequently activates 

the mTOR pathway, which promotes cell division (Hahn-Windgassen et al. 

2005). PTEN loss thus occurs in many cancers other than PC. Its prognostic 

value has been under study in breast cancer (Wang et al. 2013, Beg et al. 2015), 

colorectal cancer (Atreya et al. 2013, Lin et al. 2015), endometrial cancer 

(Westin et al. 2015), and ovarian cancer (Martins et al. 2014), among others, 

and it is associated with a worse prognosis in many other cancers (Qiu et al. 

2015). As a driver of disease progression, PTEN loss, however, seems to be of 

more importance in PC than in other cancer types, often correlating with more 

aggressive disease and, consequently, poorer outcomes, such as unfavorable 

findings at RP (Lotan et al. 2014, Guedes et al. 2016), biochemical-disease 

recurrence (Chaux et al. 2012, Krohn et al. 2012, Barnett et al. 2014, Lotan et 

al. 2016, Murphy et al. 2016), PC metastasis, and death (Lotan et al. 2011, 

Cuzick et al. 2013, Mithal et al. 2014, Ahearn et al. 2015). 

For a single prognostic biomarker to be of value in improving risk 

stratification of PC it would ideally be implemented at the diagnostic stage to 

aid in treatment planning. PTEN loss detected in pre-treatment biopsy 

specimens has predicted disease upgrading or non-organ confined disease at 

RP (Lotan et al. 2014, Guedes et al. 2016, Lokman et al. 2017), shorter time to 

biochemical recurrence after brachytherapy (Fontugne et al. 2014), and even 

increased PC mortality after RP (Mithal et al. 2014). Given the promising 

prognostic power of PTEN loss, determining PTEN expression status from 

diagnostic biopsies or RP specimens could probably aid in treatment planning. 

This may prove most beneficial for patients assumed to be at low risk who are 

deciding between either AS or radical therapies. 

2.7.5 TMPRSS2:ERG FUSION AND PTEN LOSS TOGETHER 

Since TMPRSS2:ERG fusion can be evident in benign tissue as well, the fusion 

alone fails to predict an aggressive disease course (Hoogland et al. 2011, 

Minner et al. 2011, Pettersson et al. 2012, Leinonen et al. 2013, Xu et al. 2014), 

but it may be an indicator of other cancer-promoting mechanisms at play. 

TMPRSS2:ERG fusion and loss of PTEN are often detected together (Attard et 

al. 2009, Carver et al. 2009, Han et al. 2009, Gumuskaya et al. 2013, Shah et 

al. 2015, Lotan et al. 2016), suggesting a causal link between the two genetic 

transformations, with PTEN loss assumed to be a later-occurring 

phenomenon (Krohn et al. 2014). Their joint occurrence has, in some studies, 

reflected an even worse clinical presentation than does either genetic 

transformation alone (Yoshimoto et al. 2008, Leinonen et al. 2013, Fontugne 

et al. 2014). The prognostic significance of PTEN loss is, however, probably so 

strong that it can predict a poorer outcome also in the absence of 

TMPRSS2:ERG fusion (Reid et al. 2010, Ahearn et al. 2015, Qu et al. 2016). 

     Interestingly, the commercially available genetic panels—Prolaris®, 

Oncotype DX®, and Decipher®–do not test for ERG fusions or loss of PTEN, 
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but instead for wholly different genes mostly associated with cell-cycle 

progression, cell profileration, and androgen signaling. This reflects the speed 

at which novel biomarkers associated with poorer PC prognosis are constantly 

being discovered.   

2.7.6 ASSOCIATIONS OF ERG AND PTEN WITH THE ANDROGEN-

RECEPTOR PATHWAY  

TMPRSS2 is an androgen-regulated gene, and TMPRSS2:ERG fusion is 

generally thought to occur in the presence of, and through the influence of 

circulating androgens such as testosterone (Tomlins et al. 2005). Until the 

castration-resistant stage, depriving PC of androgens halts its progress. The 

effects of androgens in PC cells are mediated via the androgen receptor (AR). 

Elevated levels of AR expression in PC appear to correlate with more 

aggressive disease (Donovan et al. 2010, Sahu et al. 2011, Qu et al. 2016). In 

the current era of rapid development of novel drugs aimed at treating PC in its 

castration-resistant stage, much interest focuses on elucidating the 

mechanisms by which castration-resistant PC progresses despite androgen 

deprivation (Hoang et al. 2017). 

The relationship between AR activity and TMPRSS2:ERG fusion apperars 

to be reciprocal (Hoogland et al. 2011, Minner et al. 2011, Huang et al. 2014b). 

One murine study has shown fusion of TMPRSS2 with ETS transcription 

factors–ERG and ETV1–to upregulate AR, even predisposing PC tissue to loss 

of PTEN function (Chen et al. 2013). Other groups, however, have found this 

to be true only for ETV1, and found that TMPRSS2 fusion with ERG may 

actually down-regulate AR (Shin et al. 2009, Yu et al. 2010, Baena et al. 2013), 

which may then promote loss of PTEN. This would suggest that high AR 

activity may be promoted by agents other than TMPRSS2 fusion with ERG, for 

example, by ETV1, IGF-1 (Culig et al. 1994), or FOXA1 (Sahu et al. 2011), 

among many others (Hoang et al. 2017). 

Complicating the issue further, loss of PTEN has also been found to 

downregulate AR, promoting androgen-independent progression of PC by 

activated compensatory signaling pathways (Kaarbo et al. 2010, Carver et al. 

2011, Mulholland et al. 2011). Findings are, however, conflicting, with one 

group reporting that the direction of this interaction is dependent on stage of 

PC. Loss of PTEN and consequent activation of the PI3K/Akt/mTOR pathway 

suppresses AR activity in androgen-dependent LNCaP cells, whereas 

conversely, this pathway enhances AR activity in LNCaP cells with high 

passage numbers (Lin et al. 2003, 2004). This finding suggests that high AR 

activity, when in the setting of PTEN loss, would reflect a more advanced 

disease stage. Figure 13 outlines some of the crosstalk between TMPRSS2 

fusions and other pathways. 
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Figure 13 A. Fusion of TMPRSS2 and ERG through chromosomal deletion and TMPRSS2 
with ETV1 by translocation. Figure reprinted by permission from Elsevier: European Urology 
Supplements, 2010 Dec;9(11):794-99, Martinez-Pineiro, “Personalised Patient Diagnosis and 
Prognosis in Prostate Cancer: What Are the Future Perspectives?” B. Consequent 
interactions with AR signaling and loss of PTEN (Illustration by Kristiina Tammisalo) 

These findings may have clinical significance regarding androgen-

deprivation therapy in advanced PC. A poorer response to androgen 

deprivation has been reported both for patients with a negative 

TMPRSS2:ERG fusion status (Attard et al. 2009, 2015, Graff et al. 2015) and 

for those with loss of PTEN (Ham et al. 2009, Mulholland et al. 2011, Mithal 

et al. 2014, Ferraldeschi et al. 2015). In sum, this would suggest that patients 

with negative TMPRSS2:ERG fusion status and loss of PTEN would represent 

a sub-population of PC patients with shorter survival after development of 

metastases. Results from preclinical studies suggest that patients with loss of 

PTEN and with activated PI3K/Akt/mTOR signaling may benefit from therapy 

involving androgen-deprivation coupled with PI3K/Akt/mTOR-targeting 

agents (Kaarbo et al. 2010, Carver et al. 2011, Mulholland et al. 2011, Yadav et 

al. 2016). This strategy has been tested in phase I-II trials with varying results 

(Meulenbeld et al. 2013, Chow et al. 2016), and several trials are currently 

ongoing (Statz et al. 2017).  

In conclusion, AR signaling with associated TMPRSS2:ERG fusions and 

the PI3K/Akt/mTOR pathway–two of the most important pathways in PC–

cooperate in the development of androgen-independent and eventually fatal 
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PC. Their interactions are, however, complex and need clarification from 

further research with contemporary patient cohorts. 
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3 AIMS OF THE STUDY 

The true clinical outcome for an individual patient diagnosed with PC is 

inaccurately predicted with currently available diagnostic tools. The need is 

ongoing for better strategies in the diagnosis and treatment-planning of PC. 

The aims of this thesis study were to evaluate safety for the patient and the 

performance of conventional prostate biopsies, the utility of MRI in the AS of 

PC, and the value of putative prognostic PC tissue biomarkers. 

 

The specific aims were to discover and establish: 

 
1) incidences and possible risk factors for bacteremic infectious 

complications following transrectal biopsies (Study I). 

2) ability of transrectal biopsies to estimate tumor size and location in RP 

specimens. Morphologies of significant and index tumors were also a 

subject of study (Study II). 

3) suitability of prostate MRI in the AS of PC (Study III). 

4) effects of TMPRSS2:ERG fusion and PTEN loss in clinical outcomes of 

surgically-treated PC (Study IV). 
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4 PATIENTS AND METHODS 

4.1 STUDY COHORTS AND TIMELINES 

Study I 

 

The laboratory archives of the entire Helsinki and Uusimaa Hospital District 

(HUSLAB Laboratory Services), covering a population of 1.62 million people, 

provided the study population. The study analyzed 17 183 biopsy procedures, 

performed at 11 urological centres, on 13 303 men during the period 1 January 

2005 to 31 December 2013. 

The annual incidence of post-biopsy bacteremias were determined by 

means of data searches in the centralized laboratory archives of the hospital 

district (HUSLAB), housing data both on all biopsies and all blood cultures. 

First, a list of all biopsy procedures was extracted with the procedure code for 

transrectal biopsies. A list of all positive blood cultures of male patients over 

age 20 during the same time period also came from the same records. Patients 

who had both undergone a biopsy procedure and had a positive blood culture 

were then detectable by matching with patients’ social security numbers. 

Blood cultures positive within 30 days of the biopsy we considered relevant. 

These men were confirmed by review of their medical records to have suffered 

a post-biopsy complication. Patients who had other causes of bacteremic 

infections were excluded from analysis, leaving 111 men as the bacteremic 

cohort. More detailed information regarding possible risk factors was available 

from the medical records of 107 patients from the bacteremic cohort. 

 

Study II 

 

Study II was retrospectively conducted on 96 patients treated with RP between 

February 2009 and April 2010 at Helsinki University Hospital. These study 

patients were selected from among the first 162 patients treated with 

laparoscopic robot-assisted RP at our clinic who had had their diagnostic 

biopsies taken at our institution. The 96 study patients also had to have 

histological slides of RP specimens available for re-evaluation. Main 

presurgery characteristics and surgical findings are summarized in Table 3.  

Study II tested the performance of the standard 12-core transrectal biopsy 

in detecting tumors and predicting tumor location and size. Detection of 

significant tumors and index tumors were the emphasis. 
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Table 3. Characteristics of the 96 patients in Study II. Modified from two tables published 
as ”Performance of transrectal prostate biopsies in detecting tumours and implications for 
focal therapy,” Lahdensuo et al., in the Scandinavian Journal of Urology,© Acta Chirurgica 
Scandinavica Society, reprinted by permission of Taylor & Francis Ltd, on behalf of the Acta 
Chirurgica Scandinavica Society. 

Median age, years (range) 61.7 (45-74) 

Median preoperative PSA, ng/ml (range) 7.2 (1.5-28.0) 

Preoperative PSA, ng/ml, n (%)  

     0-4.0 13 (13.5) 

     4.1-10.0 67 (69.8) 

     >10.0 16 (16.7) 

Biopsy Gleason score, n (%)  

     6 39 (40.6) 

     3+4 36 (37.5) 

     4+3 15 (15.6) 

     ≥8 6 (6.2) 

Median combined biopsy cancer percentage, % (range) 5.4 (0.5-100) 

Median combined biopsy cancer length, mm (range) 8.0 (0.5-97.0) 

Positive surgical margins at RP 26 (27.1) 

Extraprostatic extension at RP 16 (16.7) 

RP Gleason score, n (%)  

     6 15 (15.6) 

     3+4 55 (57.3) 

     4+3 17 (17.7) 

     ≥8 9 (9.4) 

PSA=prostate-specific antigen 

RP=radical prostatectomy 

  

These purposes required re-evaluation of study patients’ archived RP 

slides. The prostates had been dissected in their entirety and mounted serially 

from apex to base to create the slides. During re-evaluation, tumor location, 

Gleason score, and size were recorded and charted by prostate sextant. The 

same sextant division was utilized as in prostate biopsy sampling, making 

comparisons between preoperative diagnostic biopsies and RP specimens 

possible. The total number of cancer foci was charted as well as whether the 

RP specimen contained significant PC, defined as the presence of Gleason 

grade 4 or 5 patterns. An index tumor was identified for all patients: either the 

most dedifferentiated tumor or the largest tumor in the absence of Gleason 

patterns 4 or 5.  The largest tumor was designated based on the total 

continuous tumor area in consecutive histological sections. If extraprostatic 

extension or positive surgical margins were present—categorized simply as 

positive or negative—their location was charted and also whether they were 

the result of the index tumor or of a secondary lesion. 



 

55 

 

Study III 

 

The study population comprised 80 men who took part in the Finnish arm of 

the PRIAS trial and who, after being on surveillance for one year, underwent 

prostate MRI between February 2009 and May 2011 (Table 4). 

Table 4.  Disease characteristics of 80 study patients in Study III. Table modified from 
one published as ”Diffusion-weighted magnetic resonance imaging in prostate cancer 
patients on active surveillance one year after diagnosis and before repeat biopsy.” 
Vasarainen et al., in the Scandinavian Journal of Urology,© Acta Chirurgica Scandinavica 
Society, reprinted by permission of Taylor & Francis Ltd, on behalf of the Acta Chirurgica 
Scandinavica Society. 

Age at diagnosis, median (range) 64 (50-77) 

PSA at diagnosis (ng/ml), median (range) 5.7 (1.4-10.0) 

Prostate volume (ml), median (range) 44 (16-100) 

Diagnostic biopsy findings  
     Cancer in biopsies (mean), mm (%) 2.1 (1.2) 

     GS 6, n (%) 78 (97.5) 

     GS 7, n (%) 2 (2.5) 

MRI findings  
     Tumor visible on T2 images, n (%) 40 (50.0) 

     Tumor visible in ADC maps, n (%) 30 (37.5) 

Repeat biopsy findings  
     Cancer in biopsies (mean), mm (%) 5.0 (2.6) 

     No repeat biopsies, n (%) 2 (2.5) 

     No cancer, n (%) 30 (37.5) 

     GS 6, n (%) 37 (46.3) 

     GS 7, n (%) 10 (12.5) 

     GS 9, n (%) 1 (1.3) 

PSA=prostate-specific antigen 

GS=Gleason score 

MRI=magnetic-resonance imaging 

ADC=apparent-diffusion coefficient 

 

Study III looked at the performance of prostate MRI in detecting tumors of 

AS patients and predicting treatment change. Study patients, at the time of 

undergoing MRI, had all been on AS for one year and had repeat biopsies taken 

after the MRI, as required by the PRIAS surveillance protocol.  

MRI studies were performed with a 3 Tesla body-array scanner from 

Philips Medical Systems by use of a pelvic coil. In addition to T2-weighted 

images, echo-planar DW images and ADC maps were obtained.  The prostate, 

for interpreting the images, was divided into seven regions: anterior part, left 

apex, middle, and base and right apex, middle, and base. The T2-weighted 

images were first interpreted, and if any suspicious area was detectable, then 

the same region was further assessed in the corresponding DW images and 

ADC maps. Images were ranked as either positive or negative regarding 

suspicion of tumor. The patients subsequently underwent their repeat 
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biopsies, and correlations between MRI findings and repeat biopsy findings 

and MRI findings and possible discontinuation of AS were compared. 

 

Study IV 

 

Study IV utilized the two clinical databases for all patients treated with RP 

between 1983 and 1998 at Helsinki University Hospital and between 2000 and 

2005 at Turku University Hospital. The Helsinki cohort originally comprised 

478 patients, of whom 358 were included in analyses. Turku University 

Hospital provided 532 patients, of whom 457 were included. These two cohorts 

were combined to form the final study cohort of 815 patients. Figure 14 

presents the selection process and Table 5 the patient characteristics. 

 

  

Figure 14 Forming the study cohort for Study IV. RP=radical prostatectomy, TMA=tissue 
microarray, ERG= ETS transcription factor, PTEN=Phosphatase and tensin homolog, 
IHC=immunohistochemistry. 

Table 5.  Characteristics of 815 patients in Study IV treated with radical prostatectomy 
between 1983 and 2005. Table modified from one published in Modern Pathology, 
29(12):1565-74 (2016), Lahdensuo et al., as ”Loss of PTEN expression in ERG-negative 
prostate cancer predicts secondary therapies and leads to shorter disease-specific survival 
time after radical prostatectomy”, by permission from Macmillan Publishers Ltd. 
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Helsinki 

patients 

(1983-1998) 

(n=358) 

Turku 

patients 

(2000-2005) 

(n=457) Total 

Age at RP, years (mean, SD) (N = 815) 63.4 (5.9) 61.6 (5.8) 62.4 (5.9) 

Preoperative PSA, ng/ml (n, %) (n = 708) 

   

     ≤10.0 143 (50.5) 294 (69.2) 437 (61.7) 

     10.1-20.0 89 (31.4) 96 (22.6) 185 (26.1) 

     >20.0 51 (18.0) 35 (8.2) 86 (12.2) 

Gleason score at RP (n, %) (N = 815) 

   

     ≤6 93 (26.0) 168 (36.8) 261 (32.0) 

     7 207 (57.8) 197 (43.1) 404 (49.6) 

     8-10 58 (16.2) 92 (20.1) 150 (18.4) 

Grade group at RP (n, %) (N = 815)       

     1 93 (26.0) 168 (36.8) 261 (32.0) 

     2 93 (26.0) 134 (29.3) 227 (27.9) 

     3 114 (31.8) 63 (13.8) 177 (21.7) 

     4 45 (12.6) 70 (15.3) 115 (14.1) 

     5 13 (3.6) 22 (4.8) 35 (4.3) 

Pathological tumor stage (n, %) (n = 774) 

   

     2 202 (60.5) 233 (53.0) 435 (56.2) 

     3 (including three patients with T4) 122 (39.5) 207 (47.0) 339 (43.8) 

Lymph node status (n, %) (n = 806) 

   

     Negative 342 (97.2) 434 (95.6) 776 (96.3) 

     Positive 10 (2.8) 20 (4.4) 30 (3.7) 

ERG status in TMA (n, %) (N = 815) 

   

     Any core positive 181 (50.6) 228 (49.9) 406 (49.8) 

     Negative 177 (49.6) 229 (50.1) 409 (50.2) 

PTEN status in TMA (n, %) (N = 815) 

   

     Intact 164 (45.8) 338 (74.0) 502 (61.6) 

     Any loss 194 (54.2) 119 (26.0) 313 (38.4) 

     Complete loss 77 (21.5) 58 (12.7) 135 (16.6) 

AR status in TMA (n, %) (n = 358) 

   

     Low 127 (35.5) n.a. 

 

     High 231 (64.5) n.a. 

 

Follow-up time after RP, years (median, range) 

(N=815) 

15.7  

(0.7-28.6) 

9.5  

(0.2-14.0) 

11.9  

(0.2-28.6) 

Death from any cause (n, %) (N = 815) 172 (48.0) 73 (16.0) 245 (30.0) 

Death from prostate cancer (n, %) (N = 815) 33 (9.2) 19 (4.2) 52 (6.4) 

Patients receiving secondary therapy after RP 

(n, %) (n = 796) 

124 (34.6) 136 (31.1) 260 (32.7) 

RP=radical prostatectomy 

SD=standard deviation 
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PSA=prostate-specific antigen 

ERG=ETS transcription factor 

TMA=tissue microarray 

PTEN=Phosphatase and tensin homolog 

AR=Androgen receptor 

n.a.=not available 

 

Study IV looked into the value of tissue markers ERG, PTEN, and AR in 

predicting outcomes of patients after RP, utilizing two clinical databases with 

extensive preoperative and follow-up information and corresponding TMAs. 

These TMAs had been constructed between 2005 and 2010 at both clinics and 

later combined as part of a national PC-TMA-study initiative (FinnProstata 

IX). The TMAs had been constructed in slightly differing fashions: in Helsinki, 

two cores were obtained from the dominant Gleason pattern and one from the 

secondary pattern, whereas in Turku, a median of three cores were obtained 

from the index tumor, assigned primarily on the basis of degree of 

dedifferentiation. The Helsinki TMA slides had been stained and analyzed for 

AR expression and were further stained for ERG and for PTEN expression for 

the purposes of this study. The Turku TMA slides were stained for ERG and 

PTEN expression with the same antibodies and dilutions as in Helsinki, 

enabling combination of the cohorts. ERG and PTEN expression was, in each 

tissue core, evaluated by investigators blinded to the clinical and other 

pathological data. If PTEN loss was detectable, it was determined as either 

complete (=all patient’s cores negative) or partial (=any of a patient’s cores 

negative). 

For this study, the two clinical databases were combined and updated in 

2015 by the Finnish Cancer Registry's data on patients’ all-cause and disease-

specific mortality. Information on possible secondary therapies after RP came 

from patient records.  The decision to administer secondary therapies after RP 

was that of the treating urologists, according to current clinical practices. The 

association of marker expression status with clinical variables and survival was 

then analyzed. 

4.2 STATISTICAL ANALYSES 

All statistical analyses were performed with IBM SPSS Statistics versions 17-

23 (IBM, Chicago, IL, USA) and Stata/SE 12.0 (StataCorp LP, College Station, 

TX, USA) (Study I). Statistical significance was set at P<0.05 in two-sided 

tests. 

 

 

 

 

Study I 
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Annual bacteremia incidences came from dividing the number of bacteremic 

complications annually by the number of biopsy procedures performed in the 

same year. Confidence intervals of 95% (95% CI) for annual bacteremia rates 

were calculated by Wilson score. Calendar year of biopsy, patient age at biopsy, 

and serial number of the biopsy session were included as independent 

variables in a multiple regression analysis of all biopsies to discover possible 

risk factors for developing any bacteremia or bacteremia caused by a FQ-

resistant bacterium in the entire biopsy cohort. Possible risk factors for 

bacteremia with FQ-resistant bacteria in the bacteremic cohort were studied, 

for the 107 patients with available medical records, by means of Pearson’s and 

Fisher’s chi-squared tests (univariate analysis) and exact logistic regression 

(multivariate analysis). 

 

Study II 

 

Pearson’s chi-squared test was employed to evaluate the performance of 

biopsies in predicting tumor location in RP specimens. The correlation 

between extent of cancer in biopsies and RP specimens was studied with the 

aid of Spearman’s rank order correlation and linear regression analysis. In 

linear regression analysis, the dependent variable was the squared percentage 

of cancer in the RP sextant. The square root of the dependent variable served 

to correct for the moderately positively skewed distribution of the variable. 

 

Study III 

 

Spearman’s rank order correlation and Pearson’s chi-squared test were 

employed to study whether any clinical variable correlated with the tumor’s 

being visible on MRI. The association of tumor location sextant-wise between 

MRI and repeat biopsies was also tested with Pearson’s chi-squared test.  

Visualizations of tumors on either standard T2 images or ADC maps were 

included in a multivariate logistic regression model predicting deferred radical 

treatment, along with patient age, PSA level at diagnosis, PSA density at 

diagnosis, percentage of cancer in diagnostic biopsies, PSA doubling time, and 

PSA level at the time of radical treatment. 

 

Study IV 

 

The correlation between ERG and PTEN expression status and clinical 

variables was explored with Pearson’s and Fisher’s chi-squared tests. Kaplan-

Meier survival analyses with Mantel-Cox log rank statistics and uni- and 

multivariate Cox regression analyses compared various marker expressions 

for their effects on disease-specific survival (DSS), overall survival (OS); and, 

for the Helsinki cohort, secondary-therapy-free survival. Standard variables–
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age at surgery, preoperative PSA, pathological tumor stage, Gleason score, and 

lymph node status–were also included in the Cox regression models. 

4.3 ETHICS 

Data for Studies I, II, and IV were gathered retrospectively from patient 

records, laboratory archives, and from the Finnish Cancer Registry (Study IV), 

before anonymization, without requiring informed consent from patients. 

Study III was conducted as part of the prospective PRIAS trial, in which 

patients had given informed consent at enrollment.  

All studies were approved by the Ethics Committee of the Helsinki and 

Uusimaa Hospital District. In addition, the inclusion of patients from Turku 

University Hospital in Study IV was approved by the Ethics Committee of the 

Hospital District of Southwest Finland. For Study IV, use of tissue materials 

was approved by the National Supervisory Authority for Welfare and Health 

(Valvira), and the Cancer Registry’s data by the National Institute for Health 

and Welfare (Terveyden ja hyvinvoinnin laitos). 
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5 RESULTS 

5.1 STUDY I 

The average incidence of post-biopsy bacteremias in our hospital district 

between 2005 and 2013 was 0.7% (111 of 17 183 biopsies, or 7 bacteremic 

complications per 1000 biopsies). The incidence increased from 0.5%, or 5 

bacteremic complications per 1000 biopsies, in 2005 (95% CI 0.3-0.9) to 1.2%, 

or 12 bacteremic complications per 1000 biopsies, in 2012 (95% CI 0.8-1.8). 

Concurrently, the percentages of FQ-resistant Escherichia coli blood isolates 

of adult male patients over the same period rose from 15.9% to 22.9% (Figure 

15). 

 

 
 

2005 2006 2007 2008 2009 2010 2011 2012 2013

Incidence of bacteremic
complications, %

0,5 0,2 0,3 0,5 0,7 0,6 0,9 1,2 0,8

Incidence of bacteremias
caused by fluoroquinolone-

resistant bacteria, %
0,3 0,1 0,2 0,4 0,4 0,2 0,4 0,6 0,4

Incidence of bacteremias
caused by fluoroquinolone-

susceptible bacteria, %
0,1 0,1 0,1 0,1 0,3 0,4 0,5 0,6 0,5

Percentage of
fluoroquinolone-resistance
of all Escherichia coli blood
isolates of over 20-year-old
men (n  =  2352) (second

y-axis)

15,9 14,6 12,5 20,4 22,1 18,0 23,0 22,9 20,7
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Figure 15 Increasing rates of bacteremias after transrectal prostate biopsies and 
fluoroquinolone(FQ)-resistance of Escherichia coli blood isolates of over 20-year-old men in 
the Helsinki and Uusimaa hospital district during 2005–2013. Figure published in Prostate 
Cancer and Prostatic Diseases, 19, 417-422 (2016), Lahdensuo et al., ”Increase of prostate 
biopsy-related bacteremic complications in southern Finland, 2005–2013: a population-based 
analysis”, by permission from Macmillan Publishers Ltd. 

In examination of risk factors for developing post-biopsy bacteremia in the 

biopsy cohort, a previous biopsy session and later calendar year of biopsy 

significantly raised the risk, according to univariate logistic regression 

analysis. Only later calendar year of biopsy, however, remained statistically 

significant in multivariate analysis (Table 6). 

Table 6. Logistic regression analyses for risk of developing post-biopsy bacteremia in the 
biopsy cohort (17183 biopsies during 2005–2013). Table modified from one published in 
Prostate Cancer and Prostatic Diseases, 19, 417-422 (2016), Lahdensuo et al., ”Increase of 
prostate biopsy-related bacteremic complications in southern Finland, 2005–2013: a 
population-based analysis”, by permission from Macmillan Publishers Ltd. 

 
Univariate Multivariate 

 
OR 95% CI P OR 95% CI P 

Calendar year of biopsy 1.164 1.079 1.255 <0.000 1.155 1.070 1.247 <0.000 

Increasing serial number 

of biopsy session 1.232 1.020 1.488 0.030 1.174 0.969 1.423 0.101 

Patient age at biopsy 1.006 0.985 1.027 0.575 1.004 0.982 1.025 0.746 

OR=odds ratio 

CI=confidence interval         

 

These regression analyses were repeated for those patients who had 

bacteremia caused by FQ-resistant bacteria, but none of these variables was 

statistically significant. 

For the bacteremic cohort of 107 patients whose medical records provided 

possible clinical risk factors, Pearson’s and Fisher’s chi-squared tests revealed 

that foreign travel within the three preceding months was statistically 

significantly associated with development of bacteremia caused by FQ-

resistant bacteria. This was also a statistically significant risk factor in exact 

logistic regression (Table 7). The 95% CI started from above one and extended 

to infinity, most likely because of the lack of patients with a history of recent 

travel in the group with FQ-susceptible bacteremia. 
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Table 7. Univariate and multivariate analyses of risk factors for developing bacteremia 
with fluoroquinolone(FQ)-resistant bacteria in the bacteremic cohort. Table modified from 
one published in Prostate Cancer and Prostatic Diseases, 19, 417-422 (2016), Lahdensuo 
et al., ”Increase of prostate biopsy-related bacteremic complications in southern Finland, 
2005–2013: a population-based analysis”, by permission from Macmillan Publishers Ltd. 

 Univariate Multivariatea 

Risk factors  
(107 patients) 

FQ-
resistant 

bacteraemia 
(n  =  52) 

FQ-
susceptible 
bacteraemia  

(n  =  55) 

P OR 95% CI P 

Repeat biopsy 18 (34.6%) 16 (29.1%) 0.678b 1.355 0.521–3.569 0.638 

Antibiotic treatment 
within three months 8 (15.4%) 4 (7.3%) 0.228b 3.485 0.702–23.695 0.154 
Foreign travel within 
three months 6 (11.5%) 0 (0%) 0.011c 9.144 1.238–infinite 0.028 

Diabetes 7 (13.5%) 16 (29.1%) 0.061b 0.330 0.091–1.041 0.060 

Immunosuppressive 
medication 3 (5.8%) 1 (1.8%) 0.354c 4.371 0.331–238.21 0.395 

Indwelling or 
suprapubic catheter 1 (1.9%) 3 (5.5%) 0.618c 0.242 0.003–4.332 0.557 
aExact logistic regression, bPearson's chi-squared test, cFisher's exact test, because of 
expected cell frequencies of less than five 

 

   FQ=fluoroquinolone 

   OR=odds ratio 

   CI=confidence interval 

5.2 STUDY II 

Standard 12-core biopsies performed poorly in predicting tumor location.  

When analyzed by prostate sextant, the concordance of cancer locations 

between biopsies and RP specimens was modest (Table 8).  

Table 8. Sextant distributions of cancer in diagnostic biopsies and radical prostatectomy 
(RP) specimens of 96 patients. Percentages in Biopsy and RP columns exceed 100% in 
total, because patients harbored cancer in multiple sextants. Table modified from one 
published in ”Performance of transrectal prostate biopsies in detecting tumours and 
implications for focal therapy”, Lahdensuo et al., Scandinavian Journal of Urology,© Acta 
Chirurgica Scandinavica Society, reprinted by permission of Taylor & Francis Ltd, on behalf 
of the Acta Chirurgica Scandinavica Society. 

Tumor location 

by sextant 

Biopsy  

n (%) 

RP  

n (%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Base 
Left 41 (42.7) 29 (30.2) 48.3 59.7 34.1 72.7 

Right 48 (50.0) 41 (42.7) 58.5 56.4 50.0 64.6 

Middle 
Left 41 (42.7) 74 (77.1) 48.6 77.3 87.8 30.9 

Right 50 (52.1) 78 (81.3) 57.7 72.2 90.0 28.3 

Apex 
Left 40 (41.7) 73 (76.0) 46.6 73.9 85.0 30.4 

Right 55 (57.3) 80 (83.3) 62.5 68.8 90.9 26.8 
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RP=radical prostatectomy 

NPV=negative predictive value 

PPV=positive predictive value 

 

Sensitivities and specificities of diagnostic biopsy were also unsatisfactory. 

Disease locations predicted by biopsy appeared to be evenly distributed 

between the sextants, but analysis of RP specimens revealed tumors to be 

dominantly in the middle and apex. A positive needle biopsy from the base 

overestimated the prevalence of disease, i.e. this region yielded the greatest 

number of false-positive results, and conversely, a biopsy from the apex 

underestimated the prevalence. The PPV and NPV of a test are dependent on 

the true prevalence; consequently, the low true prevalence—based on RP 

findings—of tumors in the base of the prostate led to a low PPV and a fairly 

high NPV for positive biopsies from the base. The opposite applied to apical 

tumors, which were prevalent in RP specimens, but went underdetected by 

biopsy. This improved the PPV and impaired the NPV of a positive biopsy 

finding from the apex of the prostate. 

Standard 12-core biopsies were also inaccurate in predicting unilateral 

disease. Of the 47 cases, only 11 (23.4%) that were presumed on biopsy to be 

unilateral, were, in analysis of RP specimens, actually unilateral. More 

puzzlingly, biopsies predicted bilateral disease for the 7 patients who in reality 

had cancer confined to only one lobe. This is most likely explained by the 

biopsy needle’s inadvertently crossing the midline of the prostate.  

In comparisons of the extent of cancer sextant-wise between biopsies and 

RP specimens by Spearman’s rank order analysis, both the length and 

percentage of cancer in biopsy cores correlated positively with the percentage 

of cancer in the RP specimen. This correlation was statistically significant in 

the apex and middle of the prostate, but not in the base, probably because of 

the low prevalence of cancer there. The positive correlation of cancer extent 

between biopsies and RP specimens was also corroborated in linear regression 

analysis (Table 9).  

Table 9. Correlations of extent of cancer between biopsies and radical prostatectomy 
specimens per sextant with linear regression analysis. Analyses performed separately with 
cancer length (mm) in biopsies and cancer percentage (%) in biopsies as independent 
variables. Table modified from one published in ”Performance of transrectal prostate biopsies 
in detecting tumours and implications for focal therapy”, Lahdensuo et al., Scandinavian 
Journal of Urology,© Acta Chirurgica Scandinavica Society, reprinted by permission of Taylor 
& Francis Ltd, on behalf of the Acta Chirurgica Scandinavica Society.  

 
Constant 

coefficient 
95% CI 

Slope 

coefficient 
95% CI p 

Correlations using length of cancer (mm) in biopsy cores 

Base 
Left 0.74 0.33-1.15 0.11 0.00-0.22 0.043 

Right 0.92 0.55-1.29 0.08 0.00-0.15 0.033 

Middle Left 1.94 1.50-2.37 0.25 0.14-0.36 <0.001 
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Right 2.39 1.91-2.86 0.19 0.09-0.28 <0.001 

Apex 
Left 2.45 1.95-2.95 0.16 0.05-0.27 0.005 

Right 2.55 2.05-3.06 0.26 0.14-0.37 <0.001 

Correlations using percentage of cancer (%) in biopsy cores 

Base 
Left 0.77 0.35-1.18 0.16 -0.02-0.33 0.073 

Right 0.93 0.56-1.30 0.13 0.00-0.25 0.043 

Middle 
Left 1.98 1.54-2.41 0.36 0.19-0.53 <0.001 

Right 2.38 1.91-2.86 0.31 0.15-0.47 <0.001 

Apex 
Left 2.48 1.99-2.97 0.24 0.07-0.41 0.007 

Right 2.53 2.04-3.02 0.43 0.25-0.61 <0.001 

CI=confidence interval 

 

The higher constant coefficients for tumors in the middle and apex of the 

prostate further highlighted their higher prevalence. 

In further analysis of RP specimens, the majority of the 96 patients, 74  

(77.1%) had multifocal disease, i.e. two or more tumor foci. Cancer foci were 

considered as being significant PC in the presence of a Gleason grade 4 or 5 

pattern, resulting in 81 patients (84.4%) with significant tumors. In examining 

the prevalence and distribution of significant PC, of the 81 patients, 36 (44.4%) 

had significant PC confined to one side of the prostate; 39 (48.1%) had solitary 

significant tumors, i.e. these patients’ other cancer foci exhibited solely a 

Gleason grade 3 pattern. 

Index tumors chosen from each RP specimen had their morphologies 

studied separately. The index tumors were mostly unilateral (81 of 96, 84.4%), 

i.e. confined to one side of the prostate. Sizewise, these index tumors presented 

in one sextant in 45 (46.9%) specimens, with 51 (53.1%) extending to two or 

more adjacent sextants (Table 10). 

Table 10.  Detailed pathological findings of 96 patients at radical prostatectomy. Table 
modified from one published in ”Performance of transrectal prostate biopsies in detecting 
tumours and implications for focal therapy”, Lahdensuo et al., Scandinavian Journal of 
Urology,© Acta Chirurgica Scandinavica Society, reprinted by permission of Taylor & Francis 
Ltd, on behalf of the Acta Chirurgica Scandinavica Society. 

 n 

(%, of 96, unless 

stated otherwise) 

Tumor foci per patient   

     1 22 22.9 

     2 21 21.9 

     3 34 35.4 

  ≥ 4 19 19.8 

Significant disease (presence of  

Gleason grade 4 or 5) 81 84.4 
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Only one significant tumor, n (% of 81 cases) 39 48.1 

Tumor laterality   

     Unilateral any PC 18 18.8 

     Bilateral any PC 78 81.3 

     Unilateral significant disease,  

      n (% of 81 cases) 36 44.4 

     Unilateral index tumor 81 84.4 

     Index tumor extending over midline 15 15.6 

Index tumor characteristics   

     GS 3+3 15 15.6 

     GS 3+4 55 57.3 

     GS 4+3 17 17.7 

     GS ≥ 8 9 9.4 

     Extraprostatic extension, n (% of 16 cases) 14 87.5 

     Positive surgical margins, n (% of 26 cases) 23 88.5 

PC=prostate cancer  

GS=Gleason score 

5.3 STUDY III 

Of the 80 patients who underwent prostate MRI after one year on surveillance, 

only 50% had MRI-visible tumors. No clinical variable: patient age, prostate 

volume, diagnostic PSA, percentage of cancer at diagnostic biopsy, PSA 

doubling time, or PSA at discontinuation, correlated with MRI visibility in 

Spearman’s rank order correlation. This was also explored with Pearson’s chi-

squared test with slightly different clinical variables: Gleason score at 

diagnostic or repeat biopsy, number of positive cores at diagnostic or repeat 

biopsies, or discontinuation of AS, with no statistically significant findings. 

This analysis was also repeated for the subgroup of 23 patients who had 

disease progression in repeat biopsy or who discontinued AS, but this, again, 

revealed no statistically significant associations.  

When comparing cancer locations sextant-wise between MR images and 

subsequent repeat biopsies, Pearson’s chi-squared test revealed a statistically 

significant association only for tumor location between right mid-gland in 

MRI and right base in repeat biopsy (Table 11). 

Table 11. P-values for associations of sextant-wise cancer locations between magnetic-
resonance imaging (MRI) (vertical) and repeat biopsy (horizontal) findings with Pearson’s 
chi-squared test. Table modified from one published in ”Diffusion-weighted magnetic 
resonance imaging in prostate cancer patients on active surveillance one year after 
diagnosis and before repeat biopsy”, Vasarainen et al., Scandinavian Journal of Urology,© 
Acta Chirurgica Scandinavica Society, reprinted by permission of Taylor & Francis Ltd, on 
behalf of the Acta Chirurgica Scandinavica Society. 
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MRI 

Repeat 

biopsies Left base Left middle Left apex Right base Right middle Right apex 

Left base 0.409 

     
Left middle 0.545 0.059 

    
Left apex 

  

0.584 

   
Right base 

   

0.977 

  
Right middle 

   

0.004 0.430 

 
Right apex 

     

0.307 

MRI=magnetic-resonance imaging 

 

At the time of analysis, 23 patients had discontinued AS, 19 due to 

progression on repeat biopsies and 4 to decreasing PSA-doubling time. In 

logistic regression analysis, which included tumor visibility on T2-images or 

ADC maps, the only variable statistically significant for predicting treatment 

change was PSA at the time of discontinuation (Table 12). 

Table 12. Logistic regression analysis of variables predicting discontinuation of active 
surveillance. Table modified from one published in ”Diffusion-weighted magnetic resonance 
imaging in prostate cancer patients on active surveillance one year after diagnosis and 
before repeat biopsy”, Vasarainen et al., Scandinavian Journal of Urology,© Acta Chirurgica 
Scandinavica Society, reprinted by permission of Taylor & Francis Ltd, on behalf of the Acta 
Chirurgica Scandinavica Society. 

 p OR (95% CI) 

Patient age 0.057 0.9 (0.7-1.0) 

PSA at diagnosis 0.371 0.8 (0.4-1.4) 

PSA density at diagnosis 0.921 1.0 (1.0-1.0) 

Percentage of cancer at diagnostic biopsy 0.199 1.8 (0.7-4.3) 

PSA-doubling time 0.921 1.0 (1.0-1.0) 

PSA at time of discontinuation 0.002 1.8 (1.2-2.6) 

Tumor visible on T2 images 0.273 3.4 (0.4-30.1) 

Tumor visible in ADC maps 0.691 0.6 (0.1-5.9) 

OR=odds ratio 

CI=confidence interval 

PSA=prostate-specific antigen 

ADC=apparent-diffusion coefficient  

5.4  STUDY IV 

Crosstab analyses revealed that complete loss of PTEN expression was 

significantly associated with several clinical variables that indicate more 
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aggressive PC, such as higher Gleason score, higher pathological tumor stage, 

and positive lymph nodes. It was also associated with poorer OS and DSS and 

increased likelihood of receiving secondary treatment after RP. Positive ERG 

status, however, correlated only with lower preoperative PSA and increased 

likelihood of receiving secondary therapy but not with DSS or OS (Table 13).  

Table 13. Correlations of ERG and PTEN expressions with clinical variables by Pearson’s 
and Fisher’s chi-squared tests for 815 patients treated with radical prostatectomy. Table 
modified from one published as electronic supplementary material to accompany ”Loss of 
PTEN expression in ERG-negative prostate cancer predicts secondary therapies and leads 
to shorter disease-specific survival time after radical prostatectomy”, Lahdensuo et al., 
Modern Pathology, 29(12):1565-74 (2016), by permission from Macmillan Publishers Ltd. 

 
PTEN   ERG  

Intact 
(n, %) 

Complete 
loss (n, %) 

P 
Positive 

(n, %) 
Negative 

(n, %) 
P 

All patients 
(N = 815) 

680 (83.4) 135 (16.6) ‒ 409 (50.2) 406 (49.8) ‒ 

Preoperative 
PSA 
(n = 708) 

    

0.363a 

    

0.042a 
≤ 10.0 ng/ml 372 (85.1) 65 (14.9) 237 (54.2) 200 (45.8) 

10.1-20.0 ng/ml 157 (84.9) 28 (15.1) 88 (47.6) 97 (52.4) 

> 20.0 ng/ml 68 (79.1) 18 (20.9) 35 (40.7) 51 (59.3) 
Gleason score 
(N = 815)   

  

0.000a 

    

0.102a ≤ 6 243 (93.1) 18 (6.9) 117 (44.8) 144 (55.2) 

7 337 (83.4) 67 (16.6) 215 (53.2) 189 (46.8) 

≥ 8 100 (66.7) 50 (33.3) 77 (51.3) 73 (48.7) 

Pathological 
tumor stage 
(n = 774)   

  

0.000a 

    

0.070a 
2 392 (90.1) 43 (9.9) 203 (46.7) 232 (53.3) 

3 254 (75.6) 82 (24.4) 184 (54.8) 152 (45.2) 

4 1 (33.3) 2 (66.7) 1 (33.3) 2 (66.7) 

Lymph node 
involvement 
(n = 806)   

  
0.000b 

    
0.353b 

Yes 15 (50.0) 15 (50.0) 18 (60.0) 12 (40.0) 

No 659 (84.9) 117 (15.1) 387 (49.9) 389 (50.1) 

Secondary 
therapy after RP  
(n = 796) 

  
  

  
  

0.000b 

  
  

  
  

0.019b 
Yes 177 (68.1) 83 (31.9) 146 (56.2) 114 (43.8) 
No 484 (90.3) 52 (9.7) 252 (47) 284 (53) 

Overall survival 
(N = 815) 

   

0.001b 

    

0.446b 
All-cause death 188 (76.7) 57 (23.3) 128 (52.2) 117 (47.8) 

Alive 492 (86.3) 78 (13.7) 281 (49.3) 289 (50.7) 

Disease-specific 
survival 
(N = 815) 

  
  

  
  

0.004b 

  
  

  
  

1.000b Death due to 
prostate cancer 

36 (69.2) 16 (30.8) 26 (50.0) 26 (50.0) 

Alive or all-
cause death 

644 (84.4) 119 (15.6) 380 (49.8) 383 (50.2) 

a Pearson Chi-squared test, b Fishers-exact test 
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PTEN=Phosphatase and tensin homolog 

ERG=ETS transcription factor 

PSA=prostate-specific antigen 

RP=radical prostatectomy 

 

Performing Kaplan-Meier analyses with ERG status alone revealed no 

associations with OS, DSS, or time until the patient received secondary 

therapy. PTEN expression status was unable to predict OS, but both partial 

and complete PTEN loss was statistically significantly associated with shorter 

DSS time (Figure 16).  

 

Figure 16 Both partial (A) and complete (B) loss of PTEN expression led to shortened disease-

specific survival times. Figure previously published in Modern Pathology, 29(12):1565-74 
(2016), Lahdensuo et al., ”Loss of PTEN expression in ERG-negative prostate cancer 
predicts secondary therapies and leads to shorter disease-specific survival time after radical 
prostatectomy”, by permission from Macmillan Publishers Ltd. 

Complete loss of PTEN expression, when compared with intact or partially 

lost PTEN, raised the risk of PC death with a hazard ratio (HR) of 2.16 (95% 

CI 1.17-3.98, P=0.014) in univariate Cox regression analysis, although not in 

multivariate analysis. In the multivariate analysis, only positive lymph nodes 

or pathological tumor stage >2 statistically significantly raised the risk of PC 

death. Risk of PC death was also raised for patients with high AR expression 

status, but only in univariate analysis (HR 2.38, 95% CI 1.01-5.60, P=0.048). 

Marker expression status failed to associate with increased risk of death from 

any cause in uni- or multivariate analysis. Complete PTEN loss raised the risk 

for receiving secondary therapies after RP in both uni- and multivariate 

analysis (HR 2.78, 95% CI 1.85-4.19, P<0.001 and HR 2.29, 95% CI 1.31-3.99, 

P=0.003, respectively). 

The association of combined ERG/PTEN expression status with the 

likelihood of receiving secondary treatment after RP was explored with 

Kaplan-Meier analyses. Complete loss of PTEN expression was associated with 
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shorter secondary-therapy-free survival in both ERG-positive and ERG-

negative patients. Complete PTEN loss in ERG-negative patients was 

significantly associated with shorter DSS time when compared to ERG-

positive patients with PTEN intact or only partially lost (Figure 17). 

 

Figure 17 Association of combined ERG and PTEN expression status with (A) survival until 
seconday therapies and (B) disease-specific survival. Figure previously published in Modern 
Pathology, 29(12):1565-74 (2016), Lahdensuo et al., ”Loss of PTEN expression in ERG-
negative prostate cancer predicts secondary therapies and leads to shorter disease-specific 
survival time after radical prostatectomy”, by permission from Macmillan Publishers Ltd. 

The utility of combined ERG/PTEN status in stratifying patients with 

intermediate-grade PC (Gleason score 7 or Grade group 3) was also assessed 

with Kaplan-Meier analysis. For these subgroups–similar to findings for the 

entire cohort–negative ERG expression coupled with complete PTEN loss led 

to the shortest DSS times (Figure 18). 
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Figure 18 Association of combined ERG and PTEN expression status with disease-specific 
survival times in (A) Gleason score 7 subgroup and (B) Grade group 3. Figure previously 
published in Modern Pathology, 29(12):1565-74 (2016), Lahdensuo et al., ”Loss of PTEN 
expression in ERG-negative prostate cancer predicts secondary therapies and leads to 
shorter disease-specific survival time after radical prostatectomy”, by permission from 
Macmillan Publishers Ltd. 

The effect of AR expression status in ERG-positive and ERG-negative 

cancers with PTEN loss was also tested. Of the ERG-negative patients, 52% 

(92 of 177) showed high AR expression, compared to 76.8% (139 of 181) of the 

ERG-positive patients. In Kaplan-Meier analysis, ERG-negative patients with 

high AR expression had a significantly shorter DSS time than did ERG-

negative patients with low AR expression. This shorter DSS time among ERG-

negative patients with high AR was further accentuated by their complete loss 

of PTEN, and a similar effect occurred in analysis of the subgroup of Gleason 

score 7 patients (Figure 19). For ERG-positive patients, AR status failed to 

determine survival differences, nor did differences emerge among patients 

with complete PTEN loss in terms of AR-status-determined disease-specific 

survival. 

 

 

Figure 19 Association of combined marker statuses with disease-specific survival (DSS) time. 
(A) AR status stratified patients regarding DSS time for ERG-negative cases. (B) Complete 
PTEN loss was associated with shorter DSS time for ERG-negative patients with high AR 
expression. (C) Same analysis as in figure B, but for Gleason score 7 patients. Figure 
published in Modern Pathology, 29(12):1565-74 (2016), Lahdensuo et al., ”Loss of PTEN 
expression in ERG-negative prostate cancer predicts secondary therapies and leads to 
shorter disease-specific survival time after radical prostatectomy”, by permission from 
Macmillan Publishers Ltd. 
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6 DISCUSSION 

6.1 MAIN FINDINGS AND DISCUSSION OF SUBSTUDIES 

Study I 

 

The rise in the incidence of post-biopsy bacteremias over the 9-year study 

period was 2.4-fold, which may be explained by several factors. Similar rising 

trends have been noted in other countries as well and have been linked to the 

concomitant rise in FQ resistance of enteric bacteria. Interestingly, half the 

causative organisms responsible for bacteremias in our material were FQ 

resistant, and the rest were FQ susceptible. This finding has brought to our 

attention shortcomings in implementing proper antibiotic prophylaxis for the 

biopsy procedure. The evident rising incidence of bacteremias may be in part 

a result of the evolving clinical practice of ordering blood cultures more 

actively for febrile patients now that urologists’ awareness of serious post-

biopsy complications has improved.  

One important finding is that, in multivariate analysis, repeat biopsies did 

not elevate the risk for bacteremic infections. Repeat biopsies may predispose 

the patient to an increased risk for infectious complications, but evidence is 

already robust to counter this (Loeb et al. 2013a, Aly et al. 2015, Bokhorst et 

al. 2016a, Halpern et al. 2017). This is reassuring, considering that AS 

protocols rely heavily on repeat biopsies (Bruinsma et al. 2016) with the 

protocols at Johns Hopkins and the University of Miami even mandating 

biopsies annually.  

Urologists need to be aware of the rising incidence of post-biopsy infectious 

complications. The possibility of developing an infectious complication 

requiring hospitalization–and hospital admission rates have been as high as 

6.9% (Loeb et al. 2013b, Borghesi et al. 2017)–should be mentioned when 

discussing prostate biopsies with a patient. Prior to the procedure, the 

patient’s possible predisposing risk factors for infections, especially diabetes 

(Simsir et al. 2010, Loeb et al. 2012, Halpern et al. 2017) and urinary catheters 

(Simsir et al. 2010, Eruz et al. 2017), need assessment. If the patient has 

recently traveled abroad (Patel et al. 2012), he should not receive the standard 

FQ prophylaxis but instead an alternative antibiotic or should be considered 

for targeted prophylaxis based on a pre-biopsy rectal swab (Duplessis et al. 

2012, Taylor et al. 2012, Roberts et al. 2014, Cussans et al. 2016, Li et al. 2016). 

Having previously undergone a biopsy procedure need not be considered a risk 

factor for post-biopsy infections.    

Limitations of this study include its retrospective design and its including 

information on only blood-culture-positive post-biopsy infections. Collecting 

data prospectively, ideally with patient-reported outcomes, would have 

provided a more comprehensive view of the occurrence of infectious 
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complications, not just blood-culture-positive infections. Lack of data on the 

number of negative blood cultures also prevents us from drawing definitive 

conclusions regarding our region’s rising bacteremia-incidence trend and its 

underlying causes. Because the annual numbers of all blood cultures—positive 

and negative—were unknown, we are unable to rule out of the increasing 

incidence figures the role of urologists’ ordering blood cultures more actively. 

This limitation was acknowledged during data acquisition, but extracting data 

on all blood cultures—positive and negative—during the observation period 

proved technically too challenging and had to be abandoned. The study’s 

strengths derive from the comprehensive patient registries, which have 

covered the 9-year observation period for the entire hospital district and 

allowed collection of detailed clinical data on the bacteremic cohort. 

 

Study II 

 

The study confirmed that random biopsies are unreliable in predicting 

sextant-wise prostate tumor location and unilateral disease. These 

shortcomings make random biopsies a poor tool for detailed planning of 

radical therapies such as RP or RT. Not only did biopsies accurately predict 

unilateral disease in only one-fourth of the patients with unilateral disease at 

RP, but, puzzlingly, for 7% of patients, the biopsies predicted bilateral disease 

when it was actually unilateral. Similarly discouraging findings had occurred 

earlier, before our own data gathering (Schulte et al. 2008, De Laet et al. 2009, 

Gallina et al. 2012, Iremashvili et al. 2012, Washington et al. 2012), so we were 

interested in whether this held true for us. That our results are in line with 

those of other institutions indicates that our practices do not markedly differ 

from theirs.  

The poor performance of 12-core biopsies is disheartening, but instead of 

abandoning the procedure, efforts should focus on improving it. Young 

doctors need proper training, with sufficient biopsy procedures performed 

under supervision to ensure that systematic errors do not occur. Active 

communication between the person taking the biopsies and the one placing 

the cores in specimen jars is key to ensuring correct sorting and labeling. The 

incorporation of a check list–similar to ones already in routine use in 

operating rooms—which ensures that all personnel involved with taking the 

biopsy know the required equipment and procedure stages, could also help to 

minimize errors in sampling and specimen handling. Finally, the placement of 

needles in the prostate could be routinely documented by registering devices 

such as those for fusion of US and MR images.    

The sextant-wise analysis of RP specimens revealed that PC is rarely found 

in the base of the prostate and is more prevalent in the middle and apex. 

Although this is not widely studied, similar findings have emerged (Mai et al. 

2002, Takashima et al. 2002, Ishii et al. 2007). Biopsies overestimated the 

prevalence of cancer in the base of the prostate, leading to low PPVs for 

positive biopsy from the base. This is most likely due to a systematic error in 
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the biopsy procedure, where the needle fails to be inserted adequately deeply 

in the prostate due to the aim of avoiding unnecessarily sampling the seminal 

vesicles or puncturing the bladder neck and causing bleeding (Figure 5C).   

Our statistical analyses indicate that the extent of cancer in biopsy cores 

correlates positively with extent of cancer in the corresponding RP-specimen 

sextant, but the clinical significance of our finding is less clear. It is possible 

that the strengthening of the positive correlation as we move from the base to 

the apex is more indicative of the concurrent increasing prevalence of tumors 

in the craniocaudal direction. The lower prevalence of tumors in the base is 

possibly explained by the zonal anatomy of the prostate. The peripheral zone, 

where most PC arises, extends to the base only in the posterior part of the 

prostate (Figure 6). Likewise, the transitional zone, the second-most common 

origin zone for PC, does not reach the base. The base is therefore mostly 

comprised of the central zone and fibromuscular stroma. This could explain 

the low prevalence of PC in the base. 

In further assessment of tumor morphology, half the patients with 

significant PC had only one significant lesion, which would hypothetically 

make these patients candidates for focal therapies of such lesions. Around 40% 

of our patients with significant PC had their significant disease confined to one 

side, making them candidates for possible hemiablative techniques. Random 

12-core biopsies are, however, not nearly reliable enough for planning of such 

tissue-sparing techniques.  

Most cases of extraprostatic extension and positive surgical margins at RP 

were extensions of the index tumor. Choice of index tumors was based on 

degree of dedifferentiation as opposed to the more common criterion of tumor 

volume (van der Kwast et al. 2011). With these criteria, we were able to 

pinpoint those tumors that had caused unfavorable outcomes at RP. This 

should encourage the practice of assigning the index tumor based primarily on 

degree of dedifferentiation, and only secondarily on tumor size. 

The limited performance of biopsies in our study raises the question of the 

role of random biopsies in the diagnosis and treatment planning of PC patients 

today. Urologists should be aware of shortcomings in predicting tumor 

location and extent and avoid relying too heavily on biopsies in the risk 

stratification of patients. It is this uncertainty that has made urologists ready 

to adopt prostate MRI in the diagnosing and staging of localized PC, because 

MRI appears to be more reliable in estimating disease location and even its 

aggressiveness. For the time being, however, random biopsies are the first-line 

tool for diagnosing PC until prostate MRI becomes more readily accessible and 

affordable. Prostate MRI may someday make random biopsies redundant, 

because possible MRI-visible lesions can consequently be sampled with MRI-

targeting techniques. The objective of this approach would be the accurate 

detection of clinically significant disease while leaving apparently low-grade 

tumors undiagnosed. If radical therapies are later planned, the patients will 

then already have undergone prostate MRI, useful in planning of nerve-

sparing RP or treatment fields for RT with greater reliability than with current 
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random biopsies. MRI is, however, also an imperfect tool for this purpose. A 

2016 meta-analysis has shown the sensitivity and specificity of overall 

detection of T3 disease—pooling results from 38 studies—to be 61% and 88% 

(de Rooij et al. 2016).    

Our findings came from a fairly small number of patients, which may limit 

generalizability. A potential source of bias in comparing tumor locations 

sextant-wise is the assignment of sextant divisions differing between the 

persons taking the biopsies. Our analysis also did not take prostate volume 

into account, although sampling very small and very large prostates have their 

own challenges. The study’s strengths are in the reliability of the data because 

of standardized biopsy protocols and specimen-handling procedures as well as 

reanalysis of all RP specimens by one experienced uropathologist.  

 

Study III 

 

Study III can be viewed as a report of our early experiences with prostate MRI. 

We were interested in evaluating how prostate MRI would perform as a follow-

up tool for patients on AS at our institution and whether it would bring 

additional value. 

PC was visible on MRI for only half these patients. This is in line with the 

fact that these patients all harbored low-risk PC. Tumor MRI visibility showed 

no positive correlation with any clinical or pathological finding that could 

possibly indicate greater tumor burden, nor did it correlate with 

discontinuation of AS; the latter was somewhat surprising. MRI reports were 

available to the treating urologists when the patients came in for their repeat 

biopsies. What could therefore have been expected is that an MRI-visible 

tumor would affect decision-making towards discontinuation of AS, but this 

again reflects how unacquainted urologists were with prostate MRI and its 

significance at the time. Today we know that the PPV of an MRI-visible lesion 

for accurately detecting clinically significant PC is modest. The PROMIS study 

has found the PPV to be 65%, while a 2015 review has reported it to range 

between 34 and 93% (Fütterer et al. 2015). The decision to discontinue AS and 

advance to radical therapy should therefore not be made solely because of an 

MRI-visible tumor; histological confirmation with biopsy of higher-grade 

disease is, for the time being, mandatory.   

When a tumor was visible on MRI, its location correlated poorly with the 

tumor location estimated by prostate biopsies. This is more likely a reflection 

of the inaccuracy of prostate biopsies than of MRI shortcomings. 

In our study, MRI lacked value as a follow-up tool for AS patients, and the 

information it offered failed to influence clinical treatment choices. Based on 

the study findings, prostate MRIs were not ordered for AS patients at our clinic 

for some years. The study taught us that even though the patient population 

was homogenous, and the question regarding MRI–“Is the cancer visible on 

MRI or not?”–was well defined, performing MRIs with suboptimal techniques 

and inadequate standardization would likely be of limited value. Prostate MRI 
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has since developed enormously, however. The uroradiologists at our 

institution now show a great deal of interest in prostate MRI, and both 

versions of the PI-RADS system have been adopted into clinical practice: 

version 1 in 2012 and version 2 in 2015. This means that prostate MRI is 

currently performed with multiparametric techniques and has been reported 

in a standardized and structured format since 2012. As a result, prostate MRI 

is now more informative and is readily ordered for AS patients. At our 

institution, its timing is most commonly immediately after diagnosis of PC 

either to exclude the presence of significant PC or in the same setting as in our 

study, meaning before repeat or confirmatory biopsies. For PRIAS patients it 

is also employed when the surveillance protocol mandates extra measures 

because of decreased PSA-doubling time. Patients who take part in the PRIAS 

study and who have prostate MRI as part of their follow-up are currently 

included in the ongoing prospective PRIAS-MRI side-study (Hoeks et al. 

2014). It will be interesting to see how the implementation of PRECISE 

guidelines for reporting of MRI for patients on AS (Moore et al. 2017) will 

affect radiological practices and AS-patient treatment. 

An obvious limitation to the validity of our findings stems from the 

methods by which prostate MRIs were conducted and assessed. The MRIs 

were performed without much previous experience and before local 

standardization of imaging techniques. Compared to imaging standards today, 

the DWI was then performed with inadequately low b values and with no 

dynamic-contrast enhancement–a requirement for mpMRI. The radiological 

assessment of images also lacked current standardization, but at least all of the 

images were viewed by the same uroradiologist. One strength of our study is 

that the MRIs were performed on a homogenous patient population: patients 

with only low-volume, low-grade PC, all studied after one year on surveillance 

and before their repeat biopsies; this eliminated any possible effects on the 

images of biopsy artefacts. 

 

Study IV 

 

The main finding was that complete loss of PTEN expression raised the risk of 

PC death and the risk for receiving secondary therapies after RP. As a single 

biomarker, complete loss of PTEN expression appears the most promising 

indicator of disease progression for clinical use, because of its strong 

association with required secondary therapies after RP and shortened DSS 

time. Another finding was that, in regard to DSS, ERG-negative-PTEN-

negative patients with high AR expression had the poorest outcomes. We can 

only speculate on the underlying mechanisms: based on other reports, it 

appears that in the absence of TMPRSS2:ERG fusion, some as-yet poorly 

defined factors contribute to activating AR-signaling and promote PC 

progression (Culig et al. 1994, Sahu et al. 2011, Hoang et al. 2017). This may 

be the reason why TMPRSS2:ERG-fusion-negative patients have poorer 
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treatment responses to androgen-deprivation therapy (Attard et al. 2009, 

2015, Graff et al. 2015).  

Marker-expression status did not stratify patients in regard to OS, which 

could be viewed as a shortcoming. OS can to some degree be considered an 

even more meaningful and significant endpoint than DSS. This is because OS 

is not susceptible to interpretation bias, whereas with DSS what is not always 

obvious is whether or not PC was the definite cause of death. When studying 

the effects of cancer treatment, OS should ideally be the end-point, because 

the aim of treatment is prolongation of life expectancy. Our study was, 

however, not an intervention trial; it was instead an observational study of the 

effects of marker expression on outcome after RP. In this setting, OS is 

therefore less relevant than DSS. 

Findings from our observational retrospective study on heterogenous 

patient cohorts can be considered hypothesis-generating only, because of its 

retrospective design and because marker expression status had no influence 

on treatment choice. Properly exploring the prognostic performance of these 

biomarkers would require prospective study settings; ideally, marker 

expression status would be determined from diagnostic biopsy.  

Based on our results, what can be speculated is that patients with 

unfavorable marker combinations may be unsuitable candidates for AS and 

should possibly opt for immediate radical therapy instead. When opting for 

immediate RT, perhaps those patients would benefit from a higher radiation 

dose, larger treatment fields, or longer adjuvant hormonal therapy after RT or 

even high-dose brachytherapy in addition to conventional RT. If unfavorable 

markers were encountered in an RP specimen, perhaps that patient would 

benefit from more intense PSA follow-up, or even immediate adjuvant RT, 

instead of salvage RT at a later stage.  

Because ERG-negative-PTEN-negative patients may have a poorer reponse 

to treatment with either conventional androgen-deprivation therapy or 

abiraterone, they may be good candidates for early administration of cytotoxic 

therapies at their hormone-naïve but metastatic stage. Furthermore, in the 

castration-resistant stage, they may possibly benefit from sequential cytotoxic 

treatments instead of novel antiandrogens. Because PTEN loss activates the 

PI3K/Akt/mTOR pathway, patients demonstrating loss of PTEN expression 

may possibly benefit from mTOR-targeted therapies–a concept currently 

studied in patients with castration-resistant PC (Statz et al. 2017).  

The main limitation of this study is its retrospective design: the fact that 

the patients’ operations took place between 1983 and 2005. It can also be 

argued that the Helsinki patient cohort was historical, as those patients treated 

in the 1980’s were diagnosed in the pre-PSA era. Because of slow disease 

progression, very long follow-up times are, however, necessary when studying 

survival outcomes of PC, especially if the outcome is DSS. The study’s 

strengths include our fairly large patient cohort and comprehensive mortality 

data. Our findings were achieved by means of IHC methods for determining 

marker expression status instead of more cumbersome techniques. This is 



Discussion 

78 

encouraging when considering assessment of marker expression status in the 

clinical practice of PC diagnosis and treatment.  

6.2 THE CHANGING NATURE OF LOCALIZED 
PROSTATE CANCER 

When deciding on appropriate treatments for localized PC today, it is virtually 

impossible to find studies of similar patients with reliable data on long-term 

outcomes. Ten to fifteen years is generally considered the minimum follow-up 

time before achievement of any meaningful conclusions about PC outcomes. 

This makes study patients inherently very different from today’s newly-

diagnosed patients, because the clinical practice in diagnosing and treating 

patients is constantly evolving. The greatest shift occurred with introduction 

of the PSA test in the 1980’s. The European Randomised Study of Screening 

for Prostate Cancer revealed that PSA screening led to PC’s being detected 

almost seven years earlier than it would have been otherwise (Finne et al. 

2010). Study cohorts of men from the pre-PSA era differ markedly from later 

ones, a fact well-known and actively mentioned especially in discussing results 

of the SPCG-4 trial (Bill-Axelson et al. 2014).  

Since the 1980’s, other modifications have occurred in the diagnostic 

process of PC, but none with such major effects as the PSA test. As one 

example, 12-core biopsies are currently standard practice, unlike 15 years ago. 

Twelve-core biopsies detect more low-volume tumors than do sextant 

biopsies, making sextant biopsies now obsolete. Strategies for sampling the 

prostate have also evolved. Instead of repeating random biopsies multiple 

times, the strategy is now actively changed even after the first round of 

negative biopsies–either to more anteriorly directed biopsies or to MRI-

targeted approaches. These biopsy practices lead to high detection rates of 

early-stage, low-volume PC, some of which will eventually receive radical 

therapies. The increasing incorporation of prostate MRI at the diagnostic stage 

concurrently leads to more MRI targeting of prostate biopsies. Because MRI 

has a high sensitivity for Gleason grade 4 and higher disease, such lesions are 

frequently targeted. This results in the overdetection of low-volume Gleason 

score 3+4 cancers that may have previously been diagnosed as Gleason score 

3+3 based on biopsies and could have been managed with AS instead of with 

radical therapies.  

The Gleason grading system has also undergone modifications that affect 

the comparability of historical patient cohorts with contemporary ones. In 

2005, the decision was that instead of reporting the most and second-most 

prevalent Gleason grade patterns in biopsy samples, the report should state 

the most common and the most dedifferentiated pattern (Epstein et al. 2005). 

Another modification entailed assigning distinct histological patterns as 

Gleason grade 4 rather than grade 3 (Epstein et al. 2005). This resulted in both 

Gleason score 6 and 7 PC constituting less aggressive disease today than prior 



 

79 

to 2005. It also remains to be seen how the most-recently introduced Grade 

grouping (Epstein et al. 2016b) will affect treatment planning. 

These changes in biopsy sampling and pathological practice have resulted 

in contemporary RP and RT cohorts representing less aggressive disease than 

did historical cohorts, even when stratifying patients by PSA level or Gleason 

score—evident in the differences between SPCG-4 and PIVOT study patients 

(Wilt et al. 2012, Bill-Axelson et al. 2014). Results from studies on historical 

cohorts must therefore be interpreted while remaining mindful of these 

differences. One way to counteract this phenomenon of RP and RT cohorts’ 

now comprising patients with less aggressive disease would be to update 

contemporary guidelines on risk stratification and AS. Allowing AS protocols 

to include a higher number of positive cores and—to a certain extent—

including Gleason grade 4 as a secondary pattern would make more patients 

eligible for AS and, consequently, reserve RP and RT as treatment choices for 

truly higher-risk disease. MRI and MRI-targeted biopsy are increasingly 

employed for AS patients. Possible undetected anterior tumors and higher-

grade tumors are therefore increasingly ruled out at the commencement of AS, 

which makes AS safer for patients compared to the situation in the pre-MRI 

era. Risk stratification could, all things considered, also include MRI findings, 

because MRI is currently routinely used in disease staging and in checking for 

clinically significant disease. 

On the other hand, so-called inverse stage migration has already been 

noticed in contemporary RP cohorts (Budaus et al. 2011, Silberstein et al. 2011, 

Bernie et al. 2014). This is a consequence of RP’s currently being offered less 

often for patients with low-risk PC, following accumulated evidence of limited 

benefit for such patients (Wilt et al. 2012, Hamdy et al. 2016). Low-risk 

patients are therefore most often offered AS. RP is also increasingly offered to 

patients with locally advanced disease as part of a multimodal-treatment 

approach (Mottet et al. 2017). 

6.3 IMPLICATIONS AND FUTURE PERSPECTIVES 

Over the period during which this thesis study took place, the diagnostic 

workup of PC has changed substantially, mainly due to the introduction of 

contemporary mpMRI and PI-RADS. The shortcomings of random biopsies in 

detecting PC, especially clinically significant cancer, and predicting disease 

location and extent are well-established. Prostate MRI has a high sensitivity 

and NPV for clinically significant PC (Moldovan et al. 2017), making it a 

promising tool for prebiopsy screening. This has now in part led to the clinical 

practice of unorganized “two-tier” screening: first, PSA screening by primary-

care doctors, and then MRI screening at the urological clinic, only after which 

may patients be invited for prostate biopsies: either conventional or most often 

MRI-targeted.  
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Evidence is already robust that MRI targeting detects more cases of 

clinically significant PC than does a standard prostate biopsy. Due to the poor 

performance of random prostate biopsies, the need is ongoing to explore their 

replacement with MRI and MRI-targeted biopsies. This has already been 

investigated in randomized trials, but thus far with conflicting results 

(Panebianco et al. 2015, Baco et al. 2016, Porpiglia et al. 2016, Taverna et al. 

2016, Tonttila et al. 2016). 

Among the goals of such a radical shift in clinical practice would be to 

lessen harm to patients by reducing unnecessary biopsies and biopsy-related 

complications. An interesting secondary end-point—besides accuracy–in 

comparing these diagnostic strategies would be the revelation of whether 

differences exist in the occurence of post-biopsy events like infection, pain, 

and hemorrhagic complications. These should ideally be assessed by means of 

patient-reported outcome and evaluation of quality of life. The total cost of 

both diagnostic pathways, including the cost of post-biopsy complications, 

also requires calculation. The seemingly higher initial cost of the prebiopsy-

MRI approach may later balance out, because the current standard of care for 

patients with PC detected by random biopsy is to undergo prostate MRI before 

initiation of radical therapy.  

Some pathological considerations regarding the replacement of random 

biopsies with prebiopsy MRI and MRI-targeted biopsies are as yet 

unanswered. In a hypothetical trial comparing the two strategies, many 

patients with significant PC in either arm would advance to RP, which would 

then offer the opportunity to compare the performance of random versus MRI-

targeted biopsy in predicting disease location and aggressiveness. Presumably 

there would be less upgrading and downgrading of disease in the prebiopsy-

MRI arm, but there exists as yet scant evidence to support this hypothesis. 

MRI targeting would most likely also perform better than random biopsy in 

detecting the index tumor in the prostate, the index tumor’s being the most 

dedifferentiated and often the largest. 

Incorporating the study of tissue markers would be an additional 

interesting aspect. Prospective assessment of marker expression, such as for 

ERG and PTEN, both from diagnostic biopsies and from RP specimens, would 

allow comparison of the ability of MRI-targeted and random biopsies to detect 

unfavorable marker expression in PC foci. Tissue marker expression in MRI-

targeted biopsies has thus far lacked much intensive study.  

To assess whether the diagnostic approach of prebiopsy MRI followed by 

MRI-targeted biopsies results in improved risk stratification, the clinical 

outcomes of treated patients would also require analysis. An immediate end-

point would be, for those patients undergoing RP, unfavorable pathological 

outcomes such as seminal-vesicle invasion, extraprostatic extension, and 

positive surgical margin; these could be compared between trial arms. 

Intermediate end-points could be discontinuation of AS, biochemical 

recurrence, and requirement of secondary therapy after RP and RT, plus 

clinical disease progression such as metastases. Long-term results like OS and 
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DSS would likely require very extensive follow-up, 10 years at a minimum, to 

show differences between trial arms. 

Total incidence rates of PC in developed countries are currently not rising 

(Finnish Cancer Registry 2016, Hoffman et al. 2016). This is likely due to the 

substantial number of cases already diagnosed during the “heydays” of 

organized and unorganized PSA screenings and due to doctors’ improved 

awareness of the adverse effects of screening today. The PSA test is, 

nonetheless, here to stay. Doubtlessly, the prevailing clinical practice, in 

which, without recommendations for PC screening, PSA screening is 

arbitrarily offered to unselected men, is unsatisfactory for precise detection of 

clinically significant PC.  

As screening is now less frequent, PC incidence, diagnosed at the metastatic 

stage, has started rising again, at least in 50- to 69-year-old US men based on 

SEER registry data (Hoffman et al. 2016). It is therefore possible that 

screening for PC, perhaps with a combination of PSA and genetic markers, will 

someday make a comeback. In light of this, it is especially important to 

optimize diagnostic processes and risk stratification in order to avoid 

overdetection and overtreatment of low-risk PC and to detect in time 

significant PC and offer patients necessary curative treatment appropriately. 
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7 CONCLUSIONS 

1) The average annual incidence of bacteremic complications following 

transrectal biopsies was 0.7%, with a trend toward a rising incidence 

observable. No clinical risk factor for bacteremias was identifiable. 

Recent international travel significantly raised the risk for developing 

bacteremia from an FQ-resistant organism. Patients with recent travel 

abroad should be candidates for alternative antibiotic prophylaxis or, 

following rectal swabs and fecal cultures, for tailored prophylaxis. 

Reduction in unnecessary biopsies and in biopsy-related infections calls 

for development of new strategies. 

2) Twelve-core transrectal biopsies predicted the locations and extent of 

PC tumors in RP specimens unreliably and would have performed 

poorly in planning of focal therapies. Planning of radical therapies is 

currently based on findings from prostate MRI. Positive surgical 

margins and extraprostatic extension at RP mostly resulted from the 

index tumor, supporting the rationale of designating the index tumor 

based primarily on its degree of dedifferentiation instead of on tumor 

size. 

3) Prostate MRI had limitations when serving as a follow-up tool in the AS 

of PC. Low-volume, low-grade PC was visible on MRI for only half the 

patients. Without standardized imaging and reporting protocols such as 

PI-RADS, prostate MRI does not add value to the diagnosis and follow-

up of PC patients.  

4) Loss of PTEN expression appeared to be a strong driver of disease 

progression, leading to shorter DSS times and after RP, shorter survival 

time free of secondary therapy. The subpopulation of patients with the 

poorest outcomes had cancers that were ERG-fusion negative and 

PTEN negative with high levels of AR expression. The prognostic 

performance of PTEN loss should be investigated further in 

prospective-study settings.  
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