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Abstract

Transcript prediction can be modeled as a graph problem where exons are modeled as nodes and reads spanning two or
more exons are modeled as exon chains. Pacific Biosciences third-generation sequencing technology produces significantly
longer reads than earlier second-generation sequencing technologies, which gives valuable information about longer exon
chains in a graph. However, with the high error rates of third-generation sequencing, aligning long reads correctly around
the splice sites is a challenging task. Incorrect alignments lead to spurious nodes and arcs in the graph, which in turn lead
to incorrect transcript predictions. We survey several approaches to find the exon chains corresponding to long reads in a
splicing graph, and experimentally study the performance of these methods using simulated data to allow for sensitivity/
precision analysis. Our experiments show that short reads from second-generation sequencing can be used to significantly
improve exon chain correctness either by error-correcting the long reads before splicing graph creation, or by using them to
create a splicing graph on which the long-read alignments are then projected. We also study the memory and time con-
sumption of various modules, and show that accurate exon chains lead to significantly increased transcript prediction
accuracy. Availability: The simulated data and in-house scripts used for this article are available at http://www.cs.helsinki.
fi/group/gsa/exon-chains/exon-chains-bib.tar.bz2.
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Introduction

Third-generation sequencers Pacific Biosciences (PacBio) and
Oxford Nanopore increased the sequencing read length tremen-
dously compared with the next-generation platform Illumina.
Whereas Illumina read lengths vary from �75 bases to 400
bases, PacBio platform generates reads up to several tens of
thousands bases long.

However, because of library preparation limitations, full-
length reads for transcripts longer than 2.5 kilobases are less
likely to be sequenced [1]. But even non-full-length long reads
can give valuable information about nonadjacent exons in a

transcript: Assuming a genome reference is available, one can
‘align’ the long reads allowing introns to be spliced out in the
alignment. Then one can read an ‘exon chain’ corresponding to
the read alignment, that is the sequence of exons that the read
overlaps.

The prediction of full transcripts can be modeled as a com-
binatorial problem in a ‘splicing graph’ [2], where nodes are
exons and arcs are exons consecutive in some read alignment.
Rizzi et al. [3] proposed modeling long reads as subpath con-
straints (exon chains) in a splicing graph. Figure 1 illustrates
these concepts.
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Kuosmanen et al. [4] implemented the concepts proposed by
Rizzi et al. in the transcript prediction tool Traphlor, and using
simulated data demonstrated against two state-of-the-art tran-
script prediction tools StringTie [5] and FlipFlop [6] that using
the information provided by exon chains can significantly im-
prove the transcript prediction accuracy.

However, with the high error rates of the third-generation
sequencers (�15% for PacBio and up to 45% for Nanopore, com-
pared with the 1% error rate of second-generation sequencers),
aligning the long reads correctly around the splice sites is a dif-
ficult task (however, see PacBio ‘Reads Of Insert’ for a potential
technique to lower down the error rate). An additional challenge
is posed by the error types: second-generation sequencing
errors are generally substitutions, whereas third-generation
sequencing errors are mostly insertions and deletions. Incorrect
alignments lead to spurious extra nodes and arcs in the splicing
graph, which in turn lead to erroneous transcript predictions.

In Figures 2 and 3, we have replicated the experiments of
Kuosmanen et al. on a smaller data set simulated from human
chromosome 2. As can be seen in the figures, introducing even
just mapping errors (as a reminder, in the experimental setup of
[4], no sequencing errors were simulated) causes the accuracy
of the prediction to decrease significantly.

As suggested by Kuosmanen et al. [4], one approach to tackle
the problem of alignment errors near the splice sites would be
to optimize the correctness of the chain of exons instead of the
alignment of each long read separately.

In this article, we survey several approaches to find the
exon chains that correspond to the long reads in a splicing

graph, as well as provide an experimental study on the perform-
ance of these methods. Many of the techniques surveyed are
well known in the literature, but their combination and experi-
mental evaluation toward the identification of exon chains
have not been carried out previously. Our study gives several
new insights into the feasibility of the problem, and proposes
important directions for further studies (see Discussion
section).

Methods

In this section, we introduce four methods that can be used for
finding exon chains; one of them can also be used as a pre-
processor for the other three. As the input, we assume there to
be both ‘short reads’ and ‘long reads’ from the RNA transcripts.
In addition, we assume the reference genome of the species
under study to be available, so that we can exploit RNA to DNA
read alignments. We consider short reads to be reads of lengths
75–250 with error profile consisting mostly of substitutions,
which is typical to the most commonly used second-generation
sequencing platform Illumina. Long reads, on the other hand,
are reads with lengths from several hundred to several thou-
sand bases, produced by third-generation sequencing platforms
such as PacBio and Oxford Nanopore, and their dominant error
type is insertions, followed by deletions. The error rate on the
long reads is also a magnitude higher than on the short reads
(15–45 versus 1%).

The first step in finding exon chains is to build ‘a splicing
graph’ [2]. In a splicing graph, nodes correspond to exons, and
there is an edge between two nodes vi and vj if there exists a
split-read alignment where the exons corresponding to nodes vi

and vj are consecutive. This is illustrated in Figure 4.

Figure 3. F-score of different transcript prediction tools using GMAP software [7]

for aligning error-free reads.

Figure 4. In a splicing graph, exons are represented by nodes, and there is an arc

between two nodes if the corresponding exons are consecutive in some read

alignment.

Figure 2. F-score, the harmonic mean of sensitivity and precision, of different

transcript prediction tools, StringTie [5], FlipFlop [6] and Traphlor [4], using ‘per-

fect alignments’; alignment information was gathered directly from simulated

reads mimicing the use of a perfect aligner.

Figure 1. An example of a splicing graph, in which three exon chains are drawn

in gray. The square nodes are the ones where the transcripts can start or end.

Exon chains limit the way transcripts could be formed, as each chain should be

contained in at least in one transcript.
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Our baseline method is to build the splicing graph using
both the short and long reads, and find the exon chains
corresponding to the long reads in the resulting splicing
graph by matching the genomic coordinates (see ‘Merged
alignments: creating splicing graph from both short and long
reads’ section for details). As accurate long-read alignment
around the splice sites is difficult (the very fact that
prompted this study), using the long reads as is alone is not
feasible.

For comparison, we consider aligning the long reads dir-
ectly on a splicing graph created from the short reads using dy-
namic programming (see ‘Dynamic programming: aligning
long reads to a splicing graph’ section for details), as well as a
more approximate, but significantly faster, approach of con-
sidering the overlaps in genomic coordinates to infer the exon
chains (see ‘Overlaps: inferring paths in splicing graph from
overlaps between exons and aligned long reads’ section for
details).

Additionally, we talk about error-correcting the long reads
with short reads (see ‘Error-correction: correcting long reads
with short reads’ section for details), which can be used both
as a preprocessing step as well as a stand-alone approach. As
error-correction method significantly increases the mappabil-
ity of the reads, the alignments around the splice sites are
more reliable than when using raw long reads, and the long-
read alignments alone can be used for inferring the splicing
graph.

Error-correction: correcting long reads with short reads

Although PacBio reads have high error rate (> 15%) [8], and as
such pose a harder challenge to error-correction than next-
generation sequencing reads, the errors seem to be uniformly
distributed and independent of the sequence context. Because
of this type of error profile, consensus-based methods are suit-
able for the problem.

There are two main approaches for error-correcting long
reads: ‘self-correction’ and ‘hybrid correction’. Self-correction
uses only long reads, and creates a consensus sequence by com-
puting local alignments between the long reads. Hybrid correc-
tion uses more accurate short next-generation sequencing
reads to create a consensus by aligning them on the long reads
(Figure 5A).

For this study, we use error-correction tool LoRDEC [9].
LoRDEC is a hybrid correction method that first builds a de
Brujin graph (DBG) from short reads, and then uses the DBG to
correct erroneous regions within each long read individually. It
has been shown to make most of the sequence alignable with
percentage of identity >97%, and to do so with significantly
lower running time than any previous self-correction tools.

Merged alignments: creating splicing graph from both
short and long reads

Our baseline method for this study is to align both short and
long reads to the reference genome, and use both of these

(a)

(c)

(e) (f)

(d)

(b)

Figure 5. Four approaches to improve exon chain detection: error-correction (a), merged alignments (b and c), dynamic programming (d) and overlaps (e and f): (A) Long

reads with high error rate can be corrected by aligning more accurate short reads on them and taking the consensus of the column. In this example, the errors in the

long read are marked on red, and the corrected bases are marked on green in the consensus sequence. (B) In transcripts, two exons can have overlapping genomic co-

ordinates (top). We split the overlapping exons into nonoverlapping ‘pseudoexons’ (bottom). (C) The path corresponding to the long-read alignment (green) can be read

by comparing the genomic coordinates of the long-read alignment and the pseudoexons. In this case, the corresponding path is ‘1, 2, 3, 5’. (D) From a splicing graph, we

create a sequence graph where each base in the sequence is a node. A read sequence can then be aligned to this base graph using dynamic programming. (E) The read

overlaps nodes 1 and 2 in genomic coordinates, resulting to potential path of ‘1 2’. As there is an arc between nodes 1 and 2, the path is accepted. (F) The read overlaps

nodes 1 and 3, resulting to potential path of ‘1 3’. However, there is no arc between the nodes 1 and 3 in the splicing graph, so the path is rejected.
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alignment sets to infer the splicing graph. As mentioned earlier,
in a splicing graph, exons are represented by nodes, and there is
an arc between two nodes if the corresponding exons are con-
secutive in some read alignment.

The naive approach on locating the exons is to examine the
read coverage at every genomic position: positions where the
coverage c > 0 are designated exonic, and areas where c ¼ 0 are
designated intronic. Additional information about the exon bor-
ders contained within another exon can be found from split-
read alignments.

Instead of this naive approach, one can use more sophisti-
cated methods for splicing graph creation, using, for example,
software tool SpliceGrapher [10].

SpliceGrapher takes as input the read alignment file and gene
model annotation that will be used as the base of the graph.
From the gene model, SpliceGrapher adds all the exon entries as
nodes, and sets arcs between them if they are consecutive in
some transcript. Then, it constructs what the authors call ‘short-
read exons’ from clusters of contiguous ungapped alignments.
Although these are called short-read exons, ungapped regions of
long-read alignments are also included. Any short-read exons
contained within the exons inferred from the gene model are dis-
carded to avoid duplicates. Acceptor and donor sites are pre-
dicted from spliced alignments, and the remaining short-read
exons are extended to the nearest splice site if they do not al-
ready reach it. The extended short-read exons are then added to
the model as novel nodes, and alignments spanning two short-
read exons are added as novel arcs.

It is possible that there exist two exons that overlap in gen-
omic coordinates (but do not have the exactly same start and
end coordinates, which would make them the same exon). As a
post-processing step for the splicing graph creation, we split
any overlapping exons into ‘pseudoexons’ as illustrated in
Figure 5B. Unlike exons, pseudoexons cannot have any overlap
between them, which simplifies the next steps.

The paths corresponding to the long-read alignments can be
read from the graph by comparing the start and end coordinates
of the blocks (i.e. continuous sequences) in the read alignment
with the coordinates of the nodes (pseudoexons). That is, for a
node to be considered a candidate in the path, either the start
and end coordinates for some block in the alignment have to
match the start and end coordinates of the node, or the node
has to be completely contained in some block in the alignment.
For the first and last block of the read alignment, only the end
coordinates (respectively, start) have to match the coordinates
of the node. See Figure 5C for illustration.

If some block of the alignment did not match any node as
described above, the alignment is reported to fail to find a path.
Also, if there is no arc in the splicing graph between two candi-
date nodes vi and vj that are adjacent in the path, the alignment
is also reported to fail.

Note that as the long-read alignments were also used in the
construction of the graph, in theory, there should be a path cor-
responding to every long-read alignment. However, depending
on the implementation details of the splicing graph construc-
tion algorithm, some alignments or parts of them may be dis-
carded. Our experiments indicate that such cases occur with
SpliceGrapher.

Dynamic programming: aligning long reads to a
splicing graph

We assume a splicing graph has been created using short reads.
One can then apply dynamic programming to align a long read

into a splicing graph (Section 6.6.5 of [11]). Although this ap-
proach is guaranteed to be optimal for the long read in question,
other approaches that consider all reads at once may still per-
form better. (Multiple alignment formulation would give an op-
timal model, but is infeasible in practice, and will not be
discussed here further.)

For self-containedness, we briefly review the approach
described in (Section 6.6.5 of [11]). Denote a directed acyclic
graph (DAG) G as ðVG;EGÞ, where VG is the set of vertices, and EG

is the set of arcs. A ‘labeled DAG’ has a label ‘ðvÞ for each vertex
v 2 VG.

‘DAG-path alignment problem’ is defined as follows. Given
two labeled DAGs, A ¼ ðVA;EAÞ and B ¼ ðVB;EBÞ, both with a
unique source and sink, find a source-to-sink path PA in A, and
a source-to-sink path PB in B, such that the global alignment
score Sð‘ðPAÞ; ‘ðPBÞÞ is maximum over all such pairs of paths.
Here, notion ‘ðÞ returns the concatenation of vertex labels on
the path given as argument.

This problem is easy to solve by extending the global align-
ment dynamic programming formulation. Consider the
recurrence:

si;j ¼max

maxi02N�A ðiÞ;j02N�B ð jÞsi0 ;j0 þ sð‘AðiÞ; ‘Bð jÞÞ;

maxi02N�A ðiÞsi0 ;j � d;

maxj02N�B ð jÞsi;j0 � d;

;

8>><
>>:

where i and j denote the vertices of A and B with their topo-
logical ordering number, respectively, N�Að�Þ and N�B ð�Þ are
the functions giving the set of in-neighbors of a given vertex
and ‘Að�Þ and ‘Bð�Þ are the functions giving the corresponding
vertex labels. Initializing s0;0 ¼ 0 and evaluating the values in a
suitable evaluation order (e.g. i ¼ 1 to jVAj and j ¼ 1 to jVBj), one
can see that sjVA j;jVB j evaluates to the solution of the DAG-path
alignment: an optimal alignment can be extracted with a trace-
back. The algorithm takes OðjEAjjEBjÞ time (Section 6.6.5 of [11]).

One can now set A as a linear labeled DAG denoting the long
read and set B as the sequence graph corresponding to the splic-
ing graph (Figure 5D). DAG-path alignment on these inputs
gives the best alignment of the long read to the splicing graph.
To allow a long read to match a subpath (exon chain) instead of
a full transcript, one needs to modify the approach for ‘semi-
local alignment’. This is accomplished by initializing s0;j ¼ 0 for
all j. After the dynamic programming, one can look for node j
with the maximum value sm;j, where m is the length of the long
read. Traceback from this node reveals an exon chain contain-
ing a best match to the read.

For the scores for the dynamic programming formula, we
used the following: match ¼ 4, mismatch ¼�3, insertion ¼�2
and deletion ¼�2. This scheme slightly favors insertions and
deletions over mismatches, as is appropriate for long-read error
profile. Choosing lower penalties for insertion and deletion (or
higher for substitution) is not possible, as in that case, it would
be better to insert and delete instead of reporting a mismatch.

Overlaps: inferring paths in splicing graph from overlaps
between exons and aligned long reads

Next, we consider a hybrid approach, where we again assume a
splicing graph is created using short reads only. But in this case,
the long reads are aligned to the reference instead of aligning
them to the splicing graph. The long-read alignments can then
be projected to the splicing graphs by examining the coordinate
overlaps between the exons in the splicing graphs and the
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aligned long reads, similarly to the approach described in
‘Merged alignments: creating splicing graph from both short
and long reads’ section.

For the purpose of this study, we implemented a naive ap-
proach that works as follows. For every long-read alignment
and for every exon inferred from the short-read alignments, we
calculate the overlap between the coordinates. Every exon e
that has an overlap with the read r is considered a candidate for
the path. Then, we look for a path P ¼ e1; . . . en, where the start-
ing coordinates of the candidate exons in the path are in as-
cending order. If no such path exists in the splicing graph, the
path is considered to fail to align.

These concepts are illustrated in Figure 5E and F.

Experiments
Data and experimental setup

From human chromosome 2 (version GRCh38/hg38), we
sampled all genes that fulfilled the following criteria: (i) shortest
transcript was at least 1000 bases long, (ii) the longest transcript
was at least 3200 bases long and (iii) there were at least two
transcripts that did not share all of their inner borders (i.e. used
the same exons with different 30 or 50 or both). There were 159
genes fulfilling these criteria. We randomly sampled 100 genes
for testing.

For every chosen gene, we simulated 10 000 short (75 bp)
reads with Illumina-like error profile, consisting of 1% substitu-
tion rate, and 1000 long reads of lengths {400, 800, 1200, 1600,
2000, 2400, 2800, 3200} with 11% insertion, 4% deletion and 1%
substitution rate, which is reported as the error profile of PacBio
reads [8].

For sampling the reads, we used RNASeqReadSimulator [12].
As the number of the long reads was low, we considered the
transcripts to have uniform expression levels to guarantee that
all the transcripts would get sufficiently sampled. That is, for
every read, each transcript had an equal chance to be chosen as
the source, regardless of the length of the transcript. The loca-
tion of the read along the chosen transcript was also sampled
from uniform distribution. For read lengths longer than 1000
bases, if the sampled transcript was shorter than the read
length, the full-length transcript was added to the data set.

The use of uniform expression levels deviates from a real
scenario, but it works also as a sufficient benchmark to enable
transcript sequence prediction to consider all observed splice
variants. With nonuniform distribution, the sampling rate
needs to be increased significantly to guarantee the low-ex-
pressed transcripts to be present (Figure 10B). As our main focus
in this article is exon chain prediction evaluation, the setting of
uniform expression levels was chosen to optimize the number
of observed splice variants being sampled to the test data.

For simulating Illumina-like error profile for the short reads,
we used RNASeqReadSimulator. As RNASeqReadSimulator only
simulates substitutions, for simulating PacBio-like error profile
for the long reads, we used an in-house script. The insertions
and deletions simulated by the script have length 1.

For comparison we also simulated both short and long reads
without any errors; this gives a scale on how much the difficulty
lies in the erroneous reads and how much in the spliced align-
ment problem.

For creating the splicing graphs, we used the software tool
SpliceGrapher (version 0.2.4) [10]. As SpliceGrapher requires
being given a gene model in advance, we gave it the annotated
transcripts used for the simulation. In addition to the gene

model, SpliceGrapher takes as an input a SAM format alignment
file. For the alignment of the reads, we used GMAP (version
2014-10-22) [7].

For post-processing of the splicing graph, we used an in-
house script to split any overlapping exons into pseudoexons,
as explained in ‘Merged alignments: creating splicing graph
from both short and long reads’ section. The script is trivial: all
the start and end coordinates of the exons were collected, and
based on these coordinates, the pseudoexon list was built.

As described in the previous section, we tested four different
approaches: 1) creating a splicing graph from both aligned short
and long reads, 2) creating a splicing graph from aligned short
reads, and using dynamic programming to align the splicing
graph and the long-read sequences converted into graphs, 3)
creating a splicing graph from aligned short reads, and inferring
the path by calculating overlaps between the nodes in the splic-
ing graph and the genomic locations of the long-read align-
ments and 4) error-correcting the long reads using short reads,
aligning only long reads and using these alignments to create a
splicing graph.

For Cases 1, 2 and 3, we had two subcases, one for reads with
simulated sequencing error, and one for reads without simu-
lated error. Additionally, we experimented on using error-
correction method as preprocessing step and then applying
Case 2.

To examine how the correctness of the paths affects the
downstream analysis, we assembled the transcripts from these
data sets using software StringTie (version 1.0.1) [5] and
Traphlor [4]. Both StringTie and Traphlor use minimum-cost
flows to choose paths in the splicing graph.

StringTie has an integrated mechanism to predict tran-
scripts directly from reads, while Traphlor can make use of the
exon chains. The hypothesis is that the better the exon chains
the better the Traphlor should perform in comparison with
StringTie.

We attempted the downstream analysis also using Cufflinks
[13], SLIDE [14], IsoLasso [15] and FlipFlop [6]. But for the bigger
read lengths with realistic error profiles, we were either unable
to run the tools because of memory allocation errors (Cufflinks,
FlipFlop) or the tools did not produce any output (SLIDE,
IsoLasso).

During our experiments, we found that SpliceGrapher some-
times creates many erroneous nodes (e.g. a gene model having
only 8 nodes resulted in 306 nodes in the predicted graph when
using both long- and short-read alignments). Traphlor’s original
problem formulation requires covering all the nodes in the flow
network, but because of this problem, we relaxed the constraint
to only require covering all the nodes corresponding to exon
chains.

Validation criteria

For validation, we created the ‘ground truth’ paths for all long
reads by converting long-read BED files created by
RNASeqReadSimulator to alignment BAM files using BEDTools
[16], and mirroring these alignments on the splicing graph.

For a node to be added to the path, either the start and end
coordinates for some block in the alignment had to match the
start and end coordinates of the node, or the node had to be
completely contained in some block in the alignment. This cri-
teria was relaxed for the first and last block of the read to only
require the end (respectively, start) to match the coordinates of
the node. For the rest of the article, we refer to these paths as
‘true paths’.
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For Cases 1 (using both short and long reads) and 4 (error-
correcting long reads), we mirrored the aligned long reads on
the graph in the same fashion. Cases 2 (graph alignment) and 3
(calculating overlaps) directly produced paths. For the rest of
the article, we refer to these paths as ‘predicted paths’.

For all cases, if a sequence of nodes would violate the struc-
ture of the graph, in such way that for any two nodes in the
path, there was no arc between them in the splicing graph, the
path was reported to fail.

Two paths were considered to match if they consisted of
exactly the same sequence of nodes.

We define ‘sensitivity’ as the number of matched paths div-
ided by the number of true paths, and ‘precision’ as the number
of matched paths divided by the number of successfully pre-
dicted paths (i.e. excluding the predicted paths that reported to
fail). If all the reads successfully produced paths, sensitiv-
ity ¼ precision. Otherwise, precision can be higher than sensi-
tivity. F-score, the standard measure of performance, is the
harmonic mean of sensitivity and precision.

For the second part of our experiments, assembling tran-
scripts, we used the same validation criteria as used in [4]. All
predicted transcripts were matched against all the transcripts
from which the reads were sampled. Two transcripts consisting
of more than one exon were considered a match if all internal
boundaries of the transcripts were identical (i.e. the beginning
of first exon and the end of last exon did not need to match).
Single-exon transcripts were considered to match if the over-
lapping area occupied at least 50% of the length of each tran-
script. Only one predicted transcript can match a single
annotated transcript.

For this experiment, we define ‘sensitivity’ as the number of
matched transcripts divided by the number of annotated tran-
scripts and ‘precision’ as the number of matched transcripts
divided by the number of predicted transcripts.

Analysis of experiments

As can be seen in the Figure 6, for the data with realistic error
profiles, both sensitivity and precision were highest using error-
correction (Case 4) and overlap methods (Case 3). The best per-
formance was found combining these two methods, which
shows that the creation of the splicing graph from the short
reads is still slightly more accurate than using error-corrected
long reads. As the difference was not significant, we can with
high probability assume that the difference was not because of
low coverage of the long reads, that is the coverage was suffi-
cient for the long reads to cover every splicing site.

Surprisingly, dynamic programming approach reached only
half of the sensitivity and precision of the top performers, and,
additionally, both of the measures decreased as read length
increased. Although dynamic programming is guaranteed to
find some optimal solution for each long read, for read align-
ment, this approach has one severe limitation; if the last base of
the exon is the same as the last base of the intron, and both of
them are incorporated into the splicing graph, choosing either
will give score-wise optimal solution. Whereas for the purpose
of validation, only the case that uses the last base of the exon is
correct. For the reference, read aligners generally are able to use
the information about canonical dinucleotides to break these
kind of ties.

Also surprisingly, our baseline method, using both long and
short reads in the creation of the splicing graph, had only
slightly worse sensitivity and significantly higher precision
than dynamic programming approach with read length of 400

bases. As a reminder, precision was defined as the number of
matched paths divided by the number of successfully predicted
paths. This result is likely because of a large portion of the reads
failing to produce paths.

For the cases without errors (Figure 7), our baseline method
achieved sensitivity >90%, on par with the method using over-
laps to infer paths. Dynamic programming achieved �10%
higher sensitivity and precision than in the case with errors, but

(a)

(b)

(c)

Figure 6. Exon chain prediction accuracy for the cases with 16% sequencing

error. In ‘merged’ case, long-read alignments are mirrored on a graph made

from both short and long reads, in ‘dynamic programming’, dynamic program-

ming is used to align long reads on the splicing graph and in ‘overlaps’, the best

overlap in genomic coordinates on the exons predicted from short reads is

chosen. In ‘corrected’, the long reads with 16% sequencing error are first error-

corrected with short reads, then aligned to the reference and these alignments

are mirrored on graph made from short reads. ‘Correctedþoverlap’ cases first

use error-correction and then use the overlaps between short- and long-read

alignments to infer the exon chains.
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was still significantly worse than the baseline method and the
overlap method.

Owing to computational resource constraints, for the data
set with simulated sequencing errors, we could only test using
both long and short reads in the creation of the splicing graph
(the baseline method) for read length of 400 bases. For longer
read lengths, the creation of the splicing graph from the highly
erroneous long reads took in the excess of 100 h per gene
(i.e. processing the whole data set for one read length would
have taken >13 months).

We also measured the running time (Table 1) and peak
memory usage (Table 2) of the different approaches and parts of
the pipeline. As expected, the time required for aligning
the long reads and error-correcting them increases as read
length increases, as does the time required for building the
splicing graph from the corrected reads. Surprisingly, the time

requirement for splicing graph creation did not grow signifi-
cantly with the read length when using both short and long
reads without sequencing errors. Excluding the splicing graph
creation for both short and long reads, the main bottleneck for
the pipeline was the dynamic programming module.

As memory testing takes several times the normal module
execution time, we were unable to test dynamic programming
memory requirements for larger read lengths. As the main
memory requirement is building the matrix that takes O(nm)
space, where n is the length of the reference and m is the length
of the read, the theoretical peak memory requirement doubles
as read length doubles.

Although the memory tests were executed on a computing
cluster node with 32 GB of RAM, Table 2 shows that all the mod-
ules tested fit into 4 GB of RAM, and as such are useable on a
regular desktop machine.

For the downstream analysis, we used StringTie and
Traphlor (Traphlor base) on the data set containing both short-
and long-read alignments, and, additionally, gave the splicing
graphs and paths created by the various modules to the flow en-
gine of Traphlor. As seen in the Table 3, for the data with
sequencing errors, the running times of both the original
Traphlor and Traphlor’s flow engine are linear in read length,
but for some reason, StringTie’s running time increases by an
order of magnitude for every increase in read length. Executing
StringTie on 1600 bp was aborted after 3 central processing unit
(CPU) days had passed, with the assumption that the process
had stalled. However, if the order of magnitude increase keeps
up, the expected running time is almost 9 CPU days. However,
for the data without sequencing errors, the running times are
approximately constant for all approaches. We also tested
StringTie with the preprocessing step of error correcting the
long reads, and this input was much more manageable for it
compared with the original input.

For the transcript predictions based on data with 16%
sequencing error, the overall performance of almost all
approaches at small read lengths was low (Figure 8), with sensi-
tivity in the range of 20–40% and precision staying <40%.
Exception to this was StringTie ran on error-corrected reads,
which had precision at �55%. When read length increased to
3200 bp, sensitivity for all the methods except Traphlor base
and the exon chain approached based on dynamic program-
ming increased to 60–80% range.

For the predictions based on the data without sequencing
errors (Figure 9), performance of all the methods increased signifi-
cantly as expected. The approach where exon chains were
inferred from overlaps performed best when no sequencing errors
were involved, beating StringTie in both sensitivity and precision.

Our hypothesis was that the correctness of the exon chains
correlates with the accuracy of the transcript prediction, and
based on Figures 8 and 9, the hypothesis seems to hold; dy-
namic programming approach had the worst correctness of the
exon chains, and also has the worst transcript prediction accur-
acy on all three measures. Error-corrected reads alone, overlaps
and error-correction þ overlaps approaches have similar per-
formances to each other, with varying rankings between the dif-
ferent measures.

Our baseline methods, Traphlor base and StringTie, ranked
as expected. Traphlor base, which contains no heuristics for
dealing with errors near splice sites, was systematically either
the worst competitor or tied with the dynamic programming
approach. StringTie, on the other hand, was among the best.
StringTie was beaten by the overlap approach in sensitivity for
both data with and without sequencing errors, and in precision

(a)

(b)

(c)

Figure 7. Exon chain prediction accuracy for the cases without sequencing errors.

In ‘merged’ case, long-read alignments are mirrored on a graph made from both

short and long reads, in ‘dynamic programming’, dynamic programming is used to

align long reads on the splicing graph and in ‘overlaps’, the best overlap in gen-

omic coordinates on the exons predicted from short reads is chosen.
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Table 1. The median running time per gene (in seconds) of different approaches and parts of the pipeline

Case 400 bp 800 bp 1200 bp 1600 bp 2000 bp 2400 bp 2800 bp 3200 bp

With sequencing error
Short-read alignment 4.46 6.15 7.73 9.66 8.33 8.71 8.34 7.71
Long-read alignment 6.34 18.09 31.39 43.02 44.99 59.57 64.07 61.68
Error-correction 10.95 37.33 76.45 124.28 133.79 189.38 216.78 195.82
SpliceGrapher short reads 11.28 12.64 13.07 13.62 12.81 13.35 12.50 13.83
SpliceGrapher merged 492.19 – – – – – – –
SpliceGrapher corrected 14.73 25.80 38.22 61.36 65.46 96.57 127.57 97.88
Predicted paths in merged 2.16 – – – – – – –
Predicted paths in corrected 1.39 3.01 5.16 8.05 9.71 12.73 14.42 14.25
Dynamic programming 5377.04 17 670.61 42 604.87 74 048.15 103 739.40 151 578.87 189 696.08 166 191.76
Overlaps 0.55 0.92 1.13 1.41 1.48 1.95 1.96 2.10

Without sequencing error
Short-read alignment 4.14 5.89 7.17 7.48 8.07 8.93 7.85 6.27
Long-read alignment 1.32 1.81 2.64 3.59 3.63 4.67 5.13 4.77
SpliceGrapher short reads 11.04 13.28 12.84 14.17 13.14 13.45 12.60 13.03
SpliceGrapher merged 12.56 11.28 11.66 12.40 12.88 12.57 12.32 13.20
Predicted paths in merged 0.76 1.32 1.91 2.29 2.74 2.55 2.15 2.20
Dynamic programming 4900.66 14 854.51 37 694.78 62 319.78 91 721.54 132 044.72 152 728.47 155 836.54
Overlaps 0.37 0.48 0.50 0.57 0.57 0.56 0.55 0.54

Note. As the time-measuring module used measured real time instead of CPU time, median time is more suitable than mean time to filter out outliers. ‘Merged’ data

set includes both short and long reads.

Table 2. The peak memory usage in megabytes for a randomly picked small subset of the data (n¼5), as function of the read length

Case 400 bp 800 bp 1200 bp 1600 bp 2000 bp 2400 bp 2800 bp 3200 bp

Short-read alignment 653 723 715 664 624 668 631 684
Long-read alignment 798 989 1095 1145 1196 1150 1231 1199
Error-correction 341 341 341 341 342 341 341 341
SpliceGrapher (merged alignments) 3802 – – – – – – –
SpliceGrapher (short reads) 3802 2538 3802 2538 2538 2538 2538 2538
SpliceGrapher (corrected reads) 3802 2538 3802 3802 2538 3802 2538 3803
Find paths (merged alignments) 10 – – – – – – –
Find paths (corrected reads) 10 10 10 10 10 10 10 10
Dynamic programming 1184 2368a 3552a 4736a 5920a 7104a 8288a 9472a

Overlaps 10 10 10 10 10 10 10 10

Note. For this test, we used the data sets with errors only.
aDynamic programming values are estimates based on the theoretical bounds. The time for memory testing for them was unrealistic.

Table 3. The total CPU time of running the transcript prediction for all 100 genes

Case 400 bp 800 bp 1200 bp 1600 bp 2000 bp 2400 bp 2800 bp 3200 bp

StringTie 28 s 24 min 22 s 254 min 53 s – – – – –
StringTie no error 4 s 5 s 5 s 5 s 5 s 6 s 6 s 6 s
StringTie corrected 2 s 3 s 3 s 3 s 3 s 3 s 4 s 4 s
Traphlor base 2 min 3 s 5 min 51 s 13 min 26 s 21 min 27 s 26 min 12 s 34 min 9 s 42 min 15 s 50 min 18 s
Traphlor base no error 21 s 25 s 29 s 32 s 35 s 38 s 41 s 44 s
Traphlor merged 29 s – – – – – – –
Traphlor merged no error 5 s 6 s 7 s 8 s 9 s 10 s 10 s 11 s
Traphlor corrected 9 s 17 s 21 s 25 s 18 s 20 s 20 s 18 s
Traphlor dp 18 s 58 s 1 min 11 s 2 min 23 s 2 min 39 s 3 min 31 s 3 min 7 s 4 min 27 s
Traphlor dp no error 4 s 4 s 5 s 5 s 5 s 5 s 6 s 5 s
Traphlor overlap 5 s 7 s 8 s 8 s 6 s 8 s 8 s 6 s
Traphlor overlap no error 3 s 3 s 4 s 4 s 4 s 4 s 4 s 4 s

Note. Note that for StringTie and Traphlor base, the time includes creating the graphs. StringTie ran on the data with sequencing errors stalled with 1600 bp, and the

merged graph for the data with sequencing errors was only created for 400 bp data set.
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for the data without sequencing errors. However, after running
the error-correction preprocessing step, performance of
StringTie improved significantly.

Discussion

In this article, we surveyed multiple approaches on finding
exon chains, and experimented on the effectiveness of the
approaches in finding the exon chains with different read
lengths. We also experimented on the effect of the correctness
of the exon chains on the downstream analysis (transcript pre-
diction). Additionally, we examined the time and memory re-
quirements of the various parts of the pipeline to identify
possible bottlenecks.

For exon chain prediction accuracy, using short reads to
correct the long reads was clearly superior both in sensitiv-
ity and precision. It is noteworthy that the error-correction
software that was used is not even tailored for RNA-seq
reads, and so the error-correction results are likely to im-
prove in the future.

Using short reads to create the splicing graph, and consider-
ing the overlaps between the coordinates of the splicing graph
and coordinates of the long reads aligned to the reference gen-
ome also performed well. As expected, in the tests without
simulated error, it was on par with the F-score of the error-
correction method. However, simply using both short and long
reads without sequencing error and creating the splicing graph
from them performed at the same level.

(a)

(b)

(c)

Figure 8. Transcript prediction accuracy using the data sets with 16% sequenc-

ing error. Transcripts were predicted from the alignment file (both short and

long reads) using software StringTie and Traphlor (Traphlor base), which build

their own graphs. In the remaining cases, the flow network module of Traphlor

was given the predicted graphs and exon chains for each exon chain finding ap-

proach. We also tested StringTie with the preprocessing step of error correcting

the long reads.

(a)

(b)

(c)

Figure 9. Transcript prediction accuracy using the data sets without sequencing

errors. Transcripts were predicted from the alignment file (both short and long

reads) using software StringTie and Traphlor (Traphlor base), which build their

own graphs. In the remaining cases, the flow network module of Traphlor was

given the predicted graphs and exon chains for each exon chain finding

approach.
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Combining error-correction and examining the overlaps im-
proved the results slightly over only using error-correction,
which points to the graph creation from error-corrected reads
not being as good as creating it from the short reads.

The hypothesis before conducting this study was that the
better the exon chain prediction is the better the transcript pre-
diction will be. Based on our experiments, this hypothesis
seems to hold; dynamic programming was by far the worst ap-
proach for finding the exon chains, and the transcript predic-
tion accuracy mirrors this. Also, the performance of the best
approaches in finding exon chains mirrors to their performance
in transcript prediction.

During the experiments, we observed that the splicing graph
creation tool we used, SpliceGrapher, did not scale well with
increasing read length using highly erroneous data when given
both short and long reads. However, the tool did not have such
scaling problems with using reads without sequencing error or
the error-corrected long reads. It seems that the tool is not
equipped to handle the high error rate.

Additionally, we found that SpliceGrapher sometimes cre-
ates many erroneous nodes. Although these low-confidence
nodes are listed as ‘putative’ and could in theory be discarded,
discarding all putative nodes could discard real novel exons and
splicing events.

Based on our study, we think that for the future work, the
most important direction is to develop a splicing graph creation
tool that is both faster and better able to deal with the error pro-
file of third-generation sequencing data.

Although dynamic programming did not show promise in
this study, based on the results of using overlaps, we also

believe an approach combining graph alignment with smart
splicing site detection could be feasible, using e.g. colinear
chaining (colinear chaining on graphs being a topic of another
manuscript). Also, we used a fixed scoring scheme for the dy-
namic programming; one could easily improve the results with
some parameter estimation.

One of the approaches we tested—error correcting the
long reads with short reads—was shown to be applicable
also beyond the exon chain optimization strategy; StringTie
software performance on transcript prediction was boosted
even more clearly than the approach using explicit exon
chains.

Here, we used transcript sequence prediction to evaluate the
different approaches to find exon chains. There are many
approaches in quantifying transcript abundances [17] and dif-
ferential expression analysis between samples [18–20] that can
be applied to the output of transcript sequence prediction. To
help the reader to apply such methods on top of the pipelines
developed in this article, we have included in our scripts an ex-
ample of running StringTie with error-corrected long reads with
uniform and nonuniform expression levels on transcripts of a
selected gene, and then comparing the expression-level differ-
ences. Figure 10 illustrates two different outcomes; with realis-
tic expression-level differences, typically, some splice events
are not sufficiently sampled, and not all transcripts are found.
Among the 100 genes we tested, result as in Figure 10B was
common.

Key Points

• Transcript prediction can be modeled as a graph prob-
lem, where reads spanning several exons can be mod-
eled as exon chains.

• Third-generation sequencing produces significantly
longer reads than second-generation sequencing, but
the error rate is an order of magnitude higher.

• Modeling long reads as exon chains spanning three or
more exons can improve transcript prediction accur-
acy significantly, but the high error rate makes them
difficult to align reliably around splice sites.

• We identify practical exon chain identification scen-
arios to significantly improve the preprocessing steps
of transcript prediction tools Traphlor and StringTie.

• The simulated data and in-house scripts provided
with this article give analysis workflow developers an
opportunity to better exploit third-generation long-
read RNA sequencing data.
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Figure 10. Two scenarios in differential expression analysis. (A) The pipeline

finds the same transcripts when using uniform expression levels (left) and non-

uniform expression levels (right). (B) The pipeline finds all the sampled tran-

scripts when using uniform expression levels (left), but only two when using

nonuniform expression levels (right).
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